Prinzip 2 – Präzisierung der Annahmen

Prinzip 2 Komplexitätsannahme

Es muss spezifiziert werden, unter welchen Annahmen das System als sicher gilt.

Eigenschaften:

- Angriffstyp COA, KPA, CPA oder CCA muss definiert werden.
- Wir müssen das Berechnungsmodell des Angreifers definieren,
 z.B. eine Beschränkung auf ppt Angreifer.
- Annahmen sollten unabhängig von der Kryptographie sein. Bsp: Das Faktorisierungsproblem ist nicht in polynomial-Zeit lösbar.

Prinzip 3 – Reduktionsbeweis der Sicherheit

Prinzip 3 Beweis der Sicherheit

Wir beweisen, dass unter den gegebenen Annahmen *kein* Angreifer die Sicherheit brechen kann.

Anmerkungen:

- D.h. wir beweisen, dass das System gegen alle Angreifer sicher ist, unabhängig von der Herangehensweise des Angreifers!
- Typische Beweisaussage: "Unter Annahme X folgt die Sicherheit von Konstruktion Y bezüglich der Sicherheitsdefinition Z".
- Der Beweis erfolgt per Reduktion: Ein erfolgreicher Angreifer A für Y bezüglich Z wird transformiert in einen Algorithmus B, der Annahme X verletzt.

Bsp: Angreifer \mathcal{A} auf die CCA-Sicherheit einer Verschlüsselung liefert einen Algorithmus \mathcal{B} zum Faktorisieren.

Perfekte Sicherheit

Szenario:

- Angreifer besitzt unbeschränkte Berechnungskraft.
- Seien $\mathcal{M}, \mathcal{K}, \mathcal{C}$ versehen mit Ws-Verteilungen.
- Sei M eine Zufallsvariable für die Ws-Verteilung auf \mathcal{M} , d.h. wir ziehen ein $m \in \mathcal{M}$ mit Ws[M = m].
- Analog definieren wir Zufallsvariablen K für K und C für C.
- Es gelte oBdA $\operatorname{Ws}[M=m]>0$ und $\operatorname{Ws}[C=c]>0$ für alle $m\in\mathcal{M},c\in\mathcal{C}.$ (Andernfalls entferne m aus \mathcal{M} bzw. c aus $\mathcal{C}.$)

Definition Perfekte Sicherheit

Ein Verschlüsselungsverfahren $\Pi = (Gen, Enc, Dec)$ heißt *perfekt sicher*, falls $Ws[M=m \mid C=c] = Ws[M=m]$ für alle $m \in \mathcal{M}, c \in \mathcal{C}$.

Interpretation: *c* liefert dem Angreifer keine Informationen über *m*.

Verteilung auf Chiffretexten unabhängig vom Plaintext

Satz Chiffretext-Verteilung

Ein Verschlüsselungsverfahren Π ist perfekt sicher gdw $\operatorname{Ws}[C=c\mid M=m]=\operatorname{Ws}[C=c]$ für alle $m\in\mathcal{M},c\in\mathcal{C}.$

Beweis:

"⇒": Sei П perfekt sicher. Nach dem Satz von Bayes gilt

$$\frac{\operatorname{Ws}[C=c\mid M=m]\cdot\operatorname{Ws}[M=m]}{\operatorname{Ws}[C=c]}=\operatorname{Ws}[M=m\mid C=c]=\operatorname{Ws}[M=m].$$

- Daraus folgt $Ws[C = c \mid M = m] = Ws[C = c]$.
- " \Leftarrow ": Aus $Ws[C = c \mid M = m] = Ws[C = c]$ folgt mit dem Satz von Bayes $Ws[M = m] = Ws[M = m \mid C = c]$.
- Damit ist Π perfekt sicher.

Ununterscheidbarkeit von Verschlüsselungen

Satz Ununterscheidbarkeit von Verschlüsselungen

Ein Verschlüsselungsverfahren Π ist perfekt sicher gdw für alle $m_0, m_1 \in \mathcal{M}, c \in \mathcal{C}$ gilt $\mathrm{Ws}[C = c \mid M = m_0] = \mathrm{Ws}[C = c \mid M = m_1].$

Beweis:

- " \Rightarrow ": Mit dem Satz auf voriger Folie gilt für perfekt sichere Π Ws[$C = c \mid M = m_0$] = Ws[$C = c \mid M = m_1$].
- " \Leftarrow ": Sei $m' \in \mathcal{M}$ beliebig. Es gilt

$$Ws[C = c] = \sum_{m \in \mathcal{M}} Ws[C = c \mid M = m] \cdot Ws[M = m]$$

$$= Ws[C = c \mid M = m'] \cdot \sum_{m \in \mathcal{M}} Ws[M = m]$$

$$= Ws[C = c \mid M = m'].$$

Die perfekte Sicherheit von Π folgt mit dem Satz auf voriger Folie.

Das One-Time Pad (Vernam Verschlüsselung)

Definition One-Time Pad (1918)

Sei
$$\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^{\ell}$$
.

- **• Gen:** Ausgabe $k \in_R \{0,1\}^\ell$
- **2** Enc: Für $m \in \{0,1\}^{\ell}$ berechne $c = Enc_k(m) := m \oplus k$.
- **3 Dec:** Für $c \in \{0,1\}^{\ell}$ berechne $m = Dec_k(c) := c \oplus k$.

Satz Sicherheit des One-Time Pads

Das One-Time Pad ist perfekt sicher gegenüber COA Angriffen.

Beweis:

• Wegen $C = M \oplus K$ gilt für alle $m_0, m_1 \in \mathcal{M}$ und $c \in \mathcal{C}$

$$\operatorname{Ws}[C = c \mid M = m_0] = \operatorname{Ws}[M \oplus K = c \mid M = m_0] = \operatorname{Ws}[K = m_0 \oplus c]$$

= $\frac{1}{2^{\ell}} = \operatorname{Ws}[C = c \mid M = m_1].$

Damit ist das One-Time Pad perfekt sicher.

Nachteil: Schlüsselraum ist so groß wie der Nachrichtenraum.

Beschränkungen perfekter Sicherheit

Satz Größe des Schlüsselraums

Sei Π perfekt sicher. Dann gilt $|\mathcal{K}| \geq |\mathcal{M}|$.

Beweis: Angenommen $|\mathcal{K}| < |\mathcal{M}|$.

- Für $c \in C$ definiere $D(c) = \{m \mid m = Dec_k(c) \text{ für ein } k \in K\}$.
- Es gilt $|D(c)| \le |\mathcal{K}|$, da jeder Schlüssel k genau ein m liefert.
- Wegen $|\mathcal{K}| < |\mathcal{M}|$ folgt $|D(c)| < |\mathcal{M}|$. D.h. es gibt ein $m \in \mathcal{M}$ mit $\mathrm{Ws}[M=m \mid C=c] = 0 < \mathrm{Ws}[M=m]$.
- Damit ist Π nicht perfekt sicher.

Satz von Shannon (1949)

Satz von Shannon

Sei $\Pi = (\textit{Gen}, \textit{Enc}, \textit{Dec})$ mit $|\mathcal{M}| = |\mathcal{C}| = |\mathcal{K}|$. Π ist perfekt sicher gdw

- **①** *Gen* wählt alle $k \in \mathcal{K}$ gleichverteilt mit Ws $\frac{1}{|\mathcal{K}|}$.
- ② Für alle $m \in \mathcal{M}, c \in \mathcal{C}$ existiert genau ein $k \in \mathcal{K}$: $c = Enc_k(m)$.

Beweisidee:

- " \Leftarrow ": Jedes $m \in \mathcal{M}$ korrespondiert zu genau einem $c \in \mathcal{C}$ via k.
- D.h. m wird zu c verschlüsselt, falls k verwendet wird.
- Dies geschieht gleichverteilt mit Ws $\frac{1}{|\mathcal{K}|}$. Damit gilt

$$\operatorname{Ws}[C = c \mid M = m] = \frac{1}{|\mathcal{K}|} \text{ für alle } m \in \mathcal{M}.$$

- Es folgt Ws $[C = c \mid M = m_0] = \frac{1}{|\mathcal{K}|} = \text{Ws}[C = c \mid M = m_1].$
- Damit ist Π perfekt sicher.

Satz von Shannon (1949)

Beweisidee (Fortsetzung):

- " \Rightarrow ": Sei Π perfekt sicher mit $|\mathcal{M}| = |\mathcal{C}| = |\mathcal{K}|$.
- Ann: $\exists (m, c) \text{ mit } c \neq Enc_k(m) \text{ für alle } k \in \mathcal{K}.$ Dann gilt $\operatorname{Ws}[M = m | C = c] = 0 < \operatorname{Ws}[M = m].$ (Widerspruch)
- Ann: $\exists (m, c)$ mit $c = Enc_k(m)$ für mehrere $k \in \mathcal{K}$. Dann existiert ein (m', c') mit $c' \neq Enc_k(m')$ für alle $k \in \mathcal{K}$. (Widerspruch)
- Damit gibt es für jedes feste c und jedes m genau einen Schlüssel k_m mit $c = Enc_{k_m}(m)$.
- Daraus folgt f
 ür alle m, m'

$$Ws[K = k_m] = Ws[C = c \mid M = m]$$

= $Ws[C = c \mid M = m'] = Ws[K = k_{m'}].$

• D.h. es gilt $\operatorname{Ws}[K=k] = \frac{1}{|\mathcal{K}|}$ für alle $k \in \mathcal{K}$.

