Ruhr-Universität Bochum

LEHRSTUHL FÜR KRYPTOLOGIE UND IT-SICHERHEIT

Prof. Dr. Alexander May

Stefan Hoffmann

Präsenzübungen zur Vorlesung

Diskrete Mathematik 2

Einführung in die theoretische Informatik

Sommersemester 2014

Blatt 3 / 13./14. Mai 2014

AUFGABE 1:

Sei $M = \{m_1, \ldots, m_n\} \subset \mathbb{N}, t \in \mathbb{N}, S \in \{0, 1\}^n \text{ mit } S = s_1 s_2 \ldots s_3 \text{ und } s_i \in \{0, 1\}.$ Es gilt $\overline{s_i} = s_i + 1 \mod 2$. Wir betrachten die Sprache SubsetSum (Hausübung 2, Aufgabe 3) und definieren die Sprache

Teilung :=
$$\{M \mid \text{es existiert ein } S \text{ mit } \sum_{i=1}^n s_i m_i = \sum_{i=1}^n \overline{s_i} m_i \}$$

Zeigen Sie, dass Teilung \leq_p SubsetSum.

AUFGABE 2:

Betrachten Sie die Sprache

HALF-CLIQUE :=
$$\{G \mid G = (V, E), |V| \text{ ist gerade und } G \text{ besitzt eine } \frac{|V|}{2}\text{-Clique.}\}$$

Zeigen Sie, dass Half-Clique \mathcal{NP} -vollständig ist, d. h. zeigen Sie zunächst:

- (a) Half-Clique $\in \mathcal{NP}$.
- (b) CLIQUE \leq_p HALF-CLIQUE.

Benutzen Sie dann, dass Clique \mathcal{NP} -vollständig ist.

AUFGABE 3:

und

Wir betrachten die Sprachen

SAT := $\{\phi \mid \phi \text{ ist eine Boolesche Formel mit mindestens einer erfüllenden Belegung.}\}$

DOPPELSAT := $\{\phi \mid \phi \text{ ist eine Boolesche Formel mit mindestens zwei erfüllenden Belegungen.}\}$

Es gilt DoppelSat $\in \mathcal{NP}$. Zeigen Sie, dass DoppelSat \mathcal{NP} -vollständig ist.

AUFGABE 4:

Sei G = (V, E) ein ungerichteter Graph. Eine Teilmenge $U \subseteq V$ heißt unabhängig, falls keine zwei Knoten $i, j \in U$ durch eine Kante $\{i, j\} \in E$ verbunden sind. Es gilt also für alle Knoten $i, j \in U$, dass $\{i, j\} \notin E$. Sei

 $\text{Independent} := \{(G,k) | G = (V,E) \text{ besitzt eine unabhängige Menge } U \subseteq V \text{ mit } |U| \geq k\}.$

Zeigen Sie, dass Independent \mathcal{NP} -vollständig ist.