Präsenzübungen zur Vorlesung Kryptanalyse I

SS 2015

Blatt 3 / 11 Juni 2015

Aufgabe 1:

In the Pollard's ρ method for collision-finding with the 'tail'-length i and 'loop'-length k show that a collision $s_{m}=s_{2 m}$ will appear for

$$
m=k\left\lceil\frac{i}{k}\right\rceil
$$

Aufgabe 2:

Pollard's ρ for the factorization problem.

In this exercise we develop a variant of the Pollard's ρ method for factoring n. We assume that $p \mid n$ is the smallest (but still large to brute-force) divisor of n.
The idea is to find two distinct $x, x^{\prime} \in \mathbb{Z}_{n}$, s.t. $x-x^{\prime}=0 \bmod p($ note that we do not know p, but $\operatorname{gcd}\left(x-x^{\prime}, n\right)$ reveals $\left.p\right)$. The tuple $\left(x, x^{\prime}\right)$ defines a collision.
To find a collision efficiently, we define a random walk on \mathbb{Z}_{n} as

$$
f(x)=x^{2}+a \quad \bmod n, \quad a \in \mathbb{Z}_{n}
$$

and consider a sequence $x_{0}, x_{1}, x_{2}, \ldots$ such that $x_{i}=f\left(x_{i-1}\right)$ (we fix some initial x_{0}).

1. Describe a Pollard's ρ algorithm for factoring having the running time of $\widetilde{\mathcal{O}}(\sqrt{p})$.
2. Explain why the following choices for $f(x)$ are bad:

- $f(x)=a x+b \bmod n, a, b \in \mathbb{Z}_{n}$,
- $f(x)=x^{2} \bmod n$,
- $f(x)=x^{2}-2 \bmod n$.

3. Given $f(x)=x^{2}+1$ and $x_{0}=1$, factor $n=899$.

Aufgabe 3:

4 -List Problem.

1. Solve the following 4-List problem:

$$
\begin{array}{ll}
L_{1}=\{101111,101001,001101,010100\}, & L_{2}=\{011101,001100,101011,100011\} \\
L_{3}=\{101000,001110,100011,111101\}, & L_{4}=\{100010,100001,110100,010111\}
\end{array}
$$

2. Show how to solve an 'inhomogeneous' version of the 4-List problem: for four lists $L_{1}, L_{2}, L_{3}, L_{4},|L|=2^{n / 3}$ and $c \in \mathbb{F}_{2}^{n}$, give an algorithm that finds $x_{i} \in L_{i}, i=1 \ldots 4$ s.t.

$$
x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}=c
$$

in time $\widetilde{\mathcal{O}}\left(2^{n / 3}\right)$.
3. Using the previous result, solve the following 4-List problem for $c=101101$:

$$
\begin{array}{ll}
L_{1}=\{101111,101001,001101,010100\}, & L_{2}=\{110000,100001,000110,001110\}, \\
L_{3}=\{101000,001110,100011,111101\}, & L_{4}=\{100010,100001,110100,010111\}
\end{array}
$$

