Präsenzübungen zur Vorlesung Kryptanalyse I

SS 2015

Blatt 4 / 25 Juni 2015

Aufgabe 1:

The BKW algorithm.
In the BKW algorithm after performing $\widetilde{\mathcal{O}}\left(2^{\frac{n}{\log n}}\right)$ steps, we receive a sample

$$
\left\langle\mathbf{u}_{1}, \mathbf{s}\right\rangle+e=s_{1}+e=l,
$$

where $\operatorname{Pr}[e=1]=\frac{1}{2}+\frac{1}{2}(1-2 p)^{2^{a-1}}$. How many such samples do you need to deduce on the value s_{1} with probability exponentially close to 1 ?
Hint. Use Hoeffding's inequality: Let X_{1}, \ldots, X_{n} be independent $\{0,1\}$-valued random variables with $\operatorname{Pr}\left[X_{i}=1\right]=p$. Let $X=\sum_{i=1}^{n} X_{i}$. Then

$$
\operatorname{Pr}[|X-p n| \geq \gamma p n] \leq e^{-n \gamma^{2}}
$$

Aufgabe 2:

Representation technique for the subset sum over \mathbb{F}_{2}^{n}.
Given matrix $\mathbf{A} \in \mathbb{F}_{2}^{n \times n}$ and $\mathbf{s} \in \mathbb{F}_{2}^{n}$, find a linear combination $I,|I|=\frac{n}{2}$ of the columns of \mathbf{A}, s.t. $\sum_{i \in I} \mathbf{a}_{i}=\mathbf{s}$. Doing this in the MITM way, one splits the columns of \mathbf{A} by half, creates two lists of linear combinations for each half and searches for a collision:

$$
\begin{equation*}
\sum_{i \in I_{1}} \mathbf{a}_{i}=\mathbf{s}-\sum_{i \in I_{2}} \mathbf{a}_{i} \tag{1}
\end{equation*}
$$

where $\left|I_{1}\right|=\left|I_{2}\right|=\frac{n}{4}, I_{1} \cap I_{2}=\emptyset$.

1. Assume now that we allow the sets I_{1}, I_{2} to overlap. In other word, we take $I_{1}, I_{2} \subseteq$ [1..n]. How many representations R does Eq.(1) have? What will be the size of the resulting list $\left|L_{1}\right|$?
2. Taking into an account the number of representations R, we need to enumerate only an $1 / R$-fraction of L_{1}. To do so, we impose an additional constraint on elements in the list L_{1}. Think why the following constraint will be appropriate:

$$
L_{1}=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n}, w t(\mathbf{x})=\frac{n}{4}: \mathbf{A} \mathbf{x}=\left[\mathbf{0}^{n / 2} \mid \mathbf{x}^{\prime}\right], \mathbf{x}^{\prime} \in \mathbb{F}_{2}^{n / 2}\right\}
$$

What does the list L_{2} look like?
3. Explain how to construct the list L_{1} (equivalently, L_{2}) using an MITM approach. With this, estimate the size of L_{1} and time needed to construct it. Conclude on the running time of the decoding.

Aufgabe 3:

Allowing -1's in the representations.
You're given a subset-sum instance: a_{1}, \ldots, a_{n}, S, s.t.

$$
\sum_{i=1}^{n} \varepsilon_{i} a_{i}=S, \quad w t(\varepsilon)=\frac{n}{4}
$$

In the representation, we enumerate a $1 / R$-fraction of the lists

$$
\begin{aligned}
& L_{1}=\left\{\sum_{i=1}^{n} \varepsilon_{i} a_{i}, w t(\varepsilon)=\frac{n}{8}\right\} \\
& L_{2}=\left\{S-\sum_{i=1}^{n} \varepsilon_{i} a_{i}, w t(\varepsilon)=\frac{n}{8}\right\}
\end{aligned}
$$

What is the size of the lists $\left|L_{1}\right|,\left|L_{2}\right|$? How many representations R of the solution is there?
How will the number of representations R change, if we take $w t(\epsilon)=\frac{n}{8}+\alpha \cdot n, \alpha \in(0,1 / 8)$?

