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Abstract—We examine secret communication over interference
channels, starting with a model in which communication is semi-
secret in that secrecy may depend on other transmitters to follow
an agreed-upon signaling strategy. We compare this to robustly-
secret communication, in which each user must allow for other
users to deviate unilaterally from an agreed-upon strategy to
enable better overhearing, as long as that alternate strategy
impairs neither the secrecy rate of its own link nor the reliability
of any other communicating links. For a particular two-user
binary expansion deterministic interference channel, we find and
compare the semi-secret and robustly-secret capacity regions.

I. INTRODUCTION

In the traditional setting of information-theoretic secret

communication, a transmitter wishes to communicate reliably

but secretly to a receiver at a specified rate in the presence

of an overhearing eavesdropper. Building on the fundamental

contributions of Wyner [1] and Csiszár and Körner [2], there

has been a burst of recent work on secret communication over

wireless channels. Directly relevant to this work are those

papers on multiuser channels, including multiple access [3],

[4], relay [5], interference [6], and broadcast [7] channels.

In a wireless setting, the interference channel in which

independent transmitter-receiver pairs wish to communicate

reliably and secretly is of particular importance. Each transmit-

ter i must encode its messages so that only the corresponding

receiver i can decode the messages. The receiver of any link

j �= i is not permitted to resolve more than arbitrarily little

information regarding the communication on link i.

Because receiver j must also decode its own messages, the

secrecy afforded to link i from an eavesdropping receiver j
may depend on the signaling employed on link j as well as

on other links. For example, in a 2-user Gaussian interference

channel, if transmitter 2 is silent, then receiver 2 can act as

a traditional eavesdropper of link 1. Similarly, over a DMC,

user 2 may choose to transmit a particular symbol that best

“opens” the channel for eavesdropping. On the other hand,

if transmitter 2 sends at a nonzero rate, then this signal can

interfere with the eavesdropping ability of receiver 2. That is,

the rate at which user 1 can communicate secretly will depend

on the signaling strategy of user 2.

In this case of multiple communication links, the enforce-

ment of a secrecy requirement at a receiver suffers from an

asymmetry of trust. Explicit in a receiver secrecy constraint

is that the link i transmitter and receiver do not trust the link

j receiver. Nevertheless, if secrecy on link i depends on the

signaling employed on link j, then the link i user implictly

trusts the link j user will not have its transmitter deviate to a

signaling strategy that facilitates better overhearing.

Stronger secrecy definitions would ensure secrecy even if

link j deviates from its signaling strategy. Thus this work

examines secret communication over interference channels,

starting with a model in which communication is semi-secret
in that secrecy may depend on trusting other transmitters. In

fact, semi-secret is the prevailing model for multiuser secret

communication [4]–[8]. Here we compare semi-secrecy to

robustly-secret communication in which user i must account

for the possibility that user j will deviate from an agreed-upon

strategy to enable better overhearing as long as that alternate

strategy does not impair the secrecy rate of link j nor the

reliability of any other communicating links.

While a complete characterization of semi-secret or

robustly-secret rate regions for interference channels remains

elusive, this work does find the robust-secrecy capacity for

a binary expansion deterministic interference channel in the

class of channels introduced in [9]. In the context of a

converse result, an additional contribution of this work is

the development of methods for evaluating robustly-secret

strategies in the absence of a single-letter characterization.

II. SYSTEM MODEL AND DEFINITIONS

To formalize these ideas, we consider a discrete memoryless

interference channel with two communication links. Each

transmitter i ∈ {1, 2} produces input xi ∈ Xi for each

channel use and each receiver i observes the output yi ∈ Yi

of a discrete memoryless channel PY1,Y2|X1,X2 (y1, y2|x1, x2) .
Each transmitter i communicates by coding over blocks of

ni symbols. Transmitter i communicates in block t a mes-

sage W(t)
i = [w(t)

i,1 , . . . , w
(t)
i,li

], a sequence of li independent

equiprobable bits, to receiver i by transmitting a codeword

denoted by the vector x(t)
i = [x(t)

i (1), . . . , x(t)
i (ni)] of ni

transmitted symbols. Given the observation vector y(t)
i =

[y(t)
i (1), . . . , y(t)

i (ni)], receiver i guesses the message bits

Ŵ(t)
i = [ŵ(t)

i,1 , . . . , ŵ
(t)
i,li

]. Without loss of generality, we will

assume receiver i employs maximum likelihood decoding on

each bit w
(t)
i,l , i.e. chooses ŵ

(t)
i,l that maximizes the a posteriori

probability of the observed sequence y(1)
i ,y(2)

i , . . . given the

transmitted bit w
(t)
i,l .
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Note that this communication scenario is more general than

what is typical in multiuser information theory, as we allow

the two users to code over different block lengths. However,

such generality is necessary here, since even though the two

users may agree a priori on a common block length, a self-

interested user may unilaterally decide to choose a different

block length during the actual communication process.

The encoding method on link i is represented by the

signaling strategy si that defines

• the block length ni,

• the code rate Ri = li/ni,

• the codebook Ci, the set of codewords xi employed by

transmitter i,
• the encoder fi : {1, . . . , Mi} × Ωi → Ci that maps

the message W(t)
i to a transmitted codeword x(t)

i =
f(W(t)

i , ω
(t)
i ) ∈ Ci,

We note that the encoder of transmitter i may employ a

stochastic mapping from the block t message to the transmitted

symbol sequence; ω
(t)
i ∈ Ωi representing the randomness in

that mapping is assumed to be independent between trans-

mitters and across different blocks and is only known at the

respective transmitter and not at any receiver.

The communication strategy s = (s1, s2) defines a proba-

bility measure Ps(·). As a function of the strategy s, the bit

error rate (BER) for block t of link i under strategy s is given

by

ε
(t)
i (s) =

1
li

li∑

l=1

Ps(ŵ
(t)
i,l �= w

(t)
i,l ). (1)

Note that if the two users have different block lengths, the

BER could vary from block to block even though each user

employs the same encoding for all blocks. In this case, we

measure the BER for user i by εi(s) = maxt ε
(t)
i (s). We

measure the reliability of a communication strategy s by the

maximum BER ε(s) = maxi εi(s). When ε(s) = ε, we say

that s is a (1− ε) reliable strategy. When all users i agree on

a common block length ni = n, we say that s = (s1, s2) is

a block synchronous strategy for the system. In this case, the

error probability ε
(t)
i (s) = εi(s) for user i is the same across

all blocks.

In the traditional setting, a receiver j is simply a pas-

sive eavesdropper on the communication of link i, and the

secrecy-capacity requirement is that there exists a rate Ri

encoding strategy si such that normalized information leakage

I(Wi;Yj)/n can be made arbitrarily small. However, in the

context of multiple transmitters, the leakage depends on the

strategy s. Thus we define the strategy-dependent information

leakage

Li→j(s) = I(Wi;Yj)/n (2)

associated with communication link i being overheard at

receiver j. With more than two users, the secrecy of link i
would then be measured by Li(s) = maxj �=i Li→j(s). With

only two users, Li(s) = Li→j(s) for that user j �= i; however,

we preserve the (redundant) notation Li→j(s) as a reminder

of the direction of the information leakage. Given a strategy

s, the secrecy over all links is measured by

L(s) = max
i

Li(s). (3)

Definition 1: The rate vector R is semi-secret if given any

ε > 0 there exists a rate R strategy s such that ε(s) ≤ ε and

L(s) ≤ ε.

We note that Definition 1 is called semi-secret precisely

because the link i transmitter and receiver trust the link j
transmitter to stick to the nominal strategy. A stronger secrecy

definition would ensure secrecy even if link j deviates to a

strategy that facilitates better overhearing. However, we wish

to distinguish between strategies of user j that compromise

the secrecy of link i as opposed to jamming strategies that

interfere with the reliability of link i.

Definition 2: The rate vector R is robustly-secret if given

any ε > 0 there exists a rate R strategy s such that ε(s) ≤ ε
and L(s) ≤ ε, and

(a) L1→2(s1, s
′
2) ≤ ε for all user 2 strategies s′2 such that

(s1, s
′
2) is a rate R strategy with ε(s1, s

′
2) ≤ ε and

L2→1(s1, s
′
2) ≤ ε,

(b) and vice-versa for user 1.

We note that this definition of robust secrecy incorporates

the requirements of semi-secrecy but in addition allows uni-

lateral strategy deviations by user j that injure the information

leakage but not the reliability of link i nor cause any reduction

in the rate, reliability, and secrecy of its own link. Such users

have been called “nice but curious” in [10]. Consequently, a

robust strategy for user i �= j must preserve its secrecy in the

event that user j chooses such an alternative strategy.

With respect to both definitions of secrecy, we define the

secrecy capacity region R to be the closure of the set of all rate

pairs (R1, R2) such that for every ε > 0, there exists a block

length n and a (1−ε)-reliable block-synchronous strategy pair

(s1, s2) that achieves the rate pair (R1, R2).

The careful reader may note that while we allow users to

code over different block-lengths, we restrict users to block-

synchronous strategies in the definition of R. We argue there

is no loss in this assumption. First, we claim that if there is a

(1 − ε)-reliable strategy pair (s1, s2) that achieves a rate pair

(R1, R2) using block lengths n1, n2, then there exists a block-

synchronous (1 − ε) strategy pair that achieves the same rate

pair. This follows by considering “super-blocks” of length n
equal to the least common multiple of n1 and n2. Over these

super-blocks, the users can be viewed as using two equal-

length codes. The bit error rates, being the average bit error

probabilities across the super-block, remain less than ε. Thus

in computing the capacity region R, we can consider only

strategies in which both users employ the same block length.

We observe that the definitions imply for any channel that
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Fig. 1. A Two-Sided Deterministic Interference Channel

the robustly-secret rate region Rrobust is contained in the semi-

secret rate region Rsemi; however, to say more we must work

with specific channel instances. For clarity, we focus now

on a particular two-user deterministic interference channel

(DIC). We look to identify secret communication strategies

that combat opportunistic consequence-free eavesdropping by

either user.

III. A TWO-USER TWO-SIDED DIC

Now we consider the two-user deterministic interference

channel of Figure 1 in which user i controls inputs Xia and

Xib. The users observe the corresponding outputs

Y1a = X1a, Y2a = X2a, (4)

Y1b = X1b + X2a, Y2b = X2b + X1a, (5)

under mod 2 addition. For non-secret capacity, this channel is

a special case of the deterministic channels in [11] and the

capacity region given by [11, equations (7)-(11)] reduces to

RDIC = {(R1, R2)|R1 ≥ 0, R2 ≥ 0, R1 + R2 ≤ 2} . (6)

The same rate region is also achievable under semi-secrecy

using time-sharing and uncoded transmissions. In particular,

in mode 1, user 1 transmits independent equiprobable binary

data bits X1a and X1b while user 2 sends X2a = 0, (silence on

the a-level input) and equiprobable binary noise X2b on the b-

level input. Silence on X2a allows user 1 to communicate 1 bit

with the b-level input reliably and also secretly because user 2
has no observation of this input. In addition user 1 transmits

1 bit reliably with the a-level input because user 2 is self-

deafening the Y2b receiver through the transmission of noise on

X2b. Thus mode 1 enables reliable and secret communication

at rate (R1, R2) = (2, 0). In mode 2, the roles are reversed

and we obtain the rate (R1, R2) = (0, 2). Using mode i for a

fraction of time ri, we obtain the rates (R1, R2) = 2(r1, r2)
for all r1 + r2 ≤ 1 and thus RDIC ⊆ Rsemi. Moreover, as any

semi-secret achievable rate must be in the non-secret capacity

region, Rsemi = RDIC.

To characterize the robustly-secret capacity region, we work

with the n-symbol block inputs X1a = [X1a(1), . . . , X1a(n)]
and X1b = [X1b(1), . . . , X1b(n)]. Similarly, user 2 signals

with the block inputs X2a and X2b as shown in Figure 1.

Given a message Wi to communicate, the user i encoder

generates Xia = fia(Wi, ωi) and Xib = fib(Wi, ωi), where

ωi denotes any randomness in the encoder mapping.

The interference channel of Figure 1 is a simple example

of a binary expansion deterministic interference channel in-

troduced in [9]. We note that labeling each user’s inputs as a
and b goes beyond mere convenience. For each sender, the a
input causes interference at the corresponding eavesdropping

receiver. In the parlance of [9], the signals X1a and X2a are

above the noise floor at the corresponding eavesdropper while

the signals X1b and X2b are below the noise floor. In the

channel of Figure 1, each user exposes its a-level symbols to

its corresponding eavesdropper. Thus each sender may well

wish to employ a stochastic encoder for secrecy. We cannot

conclude yet that there is no benefit to the b-level signal in

that stochastic mapping. In addition, each user may wish to

transmit correlated a-level and b-level inputs. As a result, even

though this deterministic interference channel is simple, the

evaluation of robustly-secret strategies is nontrivial.

A rate R strategy s = (s1, s2) is characterized by

four parameters: the information rates I(W1;Y1a,Y1b)/n
and I(W2;Y2a,Y2b)/n, and the leakage rates L1→2(s) =
I(W1;Y2aY2b)/n and L2→1(s) = I(W2;Y1a,Y1b)/n. For

the semi-secret rate R strategy (s1, s2), the reliable decoding

constraint ε(s1, s2) ≤ ε implies each user i is subject to the

Fano bound H(Wi|Yia,Yib) ≤ 1 + nεRi. Since H(Wi) =
nRi, it follows that

I(Wi;Yia,Yib)
n

≥ Ri(1 − ε) − 1
n

. (7)

Given a semi-secret rate R strategy in which X2a and X2b

may be dependent, our approach will be to show that user 2
can switch to a new policy s′2 in which inputs X2a and X2b

are independent, without penalty to the rate and secrecy of

user 2 but with improved eavesdropping on user 1. Of course,

given the channel symmetry, user 1 can make the same switch

and this will be reflected in the secrecy capacity region.

The idea of strategy s′2 is for user 2 to code over m uses

of the n-symbol blocks with independent messages W̃2a and

W̃2b communicated in nm channel uses. That is, under s′2,

user 2 has switched to a blocklength ni = nm while user 1
continues to communicate with the agreed-upon blocklength

n1 = n. However, by the design of strategy s′2, this switch

will be invisible to user 1 who will continue to see for each

block t an error probability ε
(t)
1 (s1, s

′
2) = ε1(s1, s2).

The message W̃2a is transmitted using a stochastic en-

coder that employs m uses of the stochastic encoder X2a =
f2a(W2, ω2). On the other hand, the message W̃2b is transmit-

ted using a deterministic encoder that employs m uses of the

block input X2b. For the m blocks of blocks signaling, inputs

are denoted by Xm
1a,Xm

1b and Xm
2a,Xm

2b with the corresponding

outputs Ym
1a,Ym

1b and Ym
2a,Ym

2b.

We start by identifying an upper bound that shows how

the information rate of user 2 can be partitioned into con-

tributions I(W2;Y2a) and I(X2b;Y2b). For the functional

dependency graph (FDG) of Figure 2(a), we use the d-

separation method of [12, Definition 1] to verify the Markov
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Fig. 2. Functional dependency graphs for (a) a general secret communication
strategy (s1, s2) and (b) the block-of-blocks strategy (s1, s′2) for the two-
sided interference channel of Figure 1.

chain W2Y2a—X2b—Y2b, implying

I(X2b;Y2b) ≥ I(W2,Y2a;Y2b) (8)

= I(Y2a;Y2b) + I(W2;Y2b|Y2a) (9)

≥ I(W2;Y2b|Y2a). (10)

It follows that

I(W2;Y2a,Y2b) = I(W2;Y2a) + I(W2;Y2b|Y2a) (11)

≤ I(W2;Y2a) + I(X2b;Y2b). (12)

We will show that user 2’s information rate can achieve

the upper bound (12) under a strategy s′2, that employs

independent inputs X2a and X2b with codebooks C2a and

C2b. Codebook C2a has 2mR2a codewords of the form Wm
2 =

[W2(1), . . . ,W2(m)], each consisting of m iid samples of

W2. The message W̃2a, an iid sequence of mR2a bits repre-

senting the binary expansion of an index w̃2a, is communicated

by selecting a codeword w̃2a from C2a. This results in the

transmission of the block of blocks input signal Xm
2a =

[X2a(1), . . . ,X2a(m)] where the kth block is given by the

stochastic mapping X2a[k] = f2a(W2[k], ω2[k]).

On the X2b channel, we observe that the original strategy

s2 defines a PMF P2b(x) = P{X2b = x} on length n input

vectors X2b. The C2b codebook has 2mR2b codewords of the

form Xm
2b = [X2b(1), . . . ,X2b(m)], each consisting of m iid

samples of X2b drawn from the PMF P2b(x). Now under

strategy s′2, user 2 sends the message W̃2b, an iid sequence of

mR2b bits representing the binary expansion of an index w̃2b,

is communicated by sending a codeword w̃2b from C2b. The

properties of the new strategy s′ = (s1, s
′
2) are summarized

in the following lemma. The proof appears in the appendix.

Lemma 1: Under strategy s′ = (s1, s
′
2):

(a) User 1 communicates reliably: ε1(s) = ε1(s′).

(b) User 2 achieves reliable communication at rate R̃2 ≥
R2 − ε for arbitrarily small ε.

(c) The leakage rate from user 2 to user 1 is unchanged:

L2→1(s′) = L2→1(s).

(d) For any δ > 0, there exists block length n such that

the leakage from user 1 to user 2 satisfies

L1→2(s′) ≥ I(W1;X1a)/n − δ (13)

The key in Lemma 1 is the lower bound (13). As robust

secrecy requires user 1 adopt a policy s1 such that L1→2(s′) ≤
ε for all s′2, (13) implies for all ε, δ > 0 that

I(W1;X1a)
n

≤ ε + δ. (14)

By using a deterministic encoder for the input X2b, receiver 2
can decode the message W̃2b, and then learn and subtract the

b-level input Xm
2b and thus get a clean look at Xm

1a. Thus, the

information communicated by user 1 through the X1a input

must be arbitrarily small. That is, under robust secrecy, the

signal X1a that is “above the noise floor” at the eavesdropper

is rendered useless.

By the symmetry of the communication channels, we ob-

serve that a semi-secret strategy (s1, s2) also allows user 1
to switch to a strategy s′1 that matches the s′2 strategy of

user 2. Under s′1, inputs X1a and X1b are independent with

a deterministic encoder used for the b-level input. It follows

receiver 1 gets a clean look at X2a and that the input X2a is

similarly rendered useless for user 2 under robust secrecy.

It then follows straightforwardly that robustly-secret rates

must satisfy Ri ≤ 1 for i = 1, 2. Moreover, the strategy

(s1, s2) in which each user i transmit zeroes on the a-level

input and uncoded secret information bits on the b-level input

is a robustly-secret strategy that achieves rates R1 = R2 = 1.

These facts imply the following.

Theorem 1: The robustly-secret capacity region for the de-

terministic interference channel of Figure 1 is

Rrobust = {(r1, r2)|0 ≤ r1 ≤ 1, 0 ≤ r2 ≤ 1} . (15)

While the reader may view Theorem 1 as the “expected result,”

this example does suggest that semi-secret formulations of

multiuser secret communication problems are perhaps overly

optimistic. This work also demonstrates that it may well be

possible to identify meaningful outer bounds to robustly-secret

rate regions in the absence of a single-letter characterization

of the semi-secret capacity region.
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formulation for interference channels that also appears in [13],

which studies strategic games on interference channels.

APPENDIX

Proof: Lemma 1

(a) The marginal joint distribution of the user 1 signals

X1a,X1b and Y1a,Y1b remains unchanged by the switch

to strategy s′ = (s1, s
′
2). As the error probability for

user 1 depends only on this marginal joint distribution,

ε1(s) = ε1(s′).
(b) The codebook construction implies that message W̃2a

can be transmitted reliably at rate R2a = I(W2;Y2a)−ε
for arbitrarily small ε > 0. Similarly, the message W̃2b

can be transmitted reliably at rate R2b = I(X2b;Y2b)−ε.

We note that rates R2a and R2b are in bits per n-symbol

block. Hence the strategy s′ can communicate reliably at

a rate

R̃2 =
R2a + R2b

n
(16)

=
I(W2;Y2a) + I(X2b;Y2b) − 2ε

n
(17)

bits per channel use. It follows from (12) and (7) that

under strategy s′, user 2 achieves the rate

R̃2 ≥ I(W2;Y2a,Y2b) − 2ε

n
(18)

≥ R2(1 − ε) − 1 + 2ε

n
(19)

As ε → 0 with increasing block length n, s′ is a rate

R = (R1, R2 − ε) reliable strategy.

(c) Under strategy s′, we observe that independence of

W̃2b and the collection (W̃2a,Ym
1a,Ym

1b) implies that

I(W̃2b;Ym
1aY

m
1b|W̃2a) = 0 and thus by the chain rule,

L2→1(s′) = I(W̃2a,W̃2b;Ym
1a,Ym

1b)/(nm) (20)

= I(W̃2a;Ym
1a,Ym

1b)/(nm) (21)

= I(Wm
2 ;Ym

1a,Ym
1b)/(nm) (22)

= I(W2;Y1a,Y1b)/n (23)

= L2→1(s1, s2). (24)

Note that (22) is an equality because of the deterministic

bijective mapping from W̃2a to the codeword in C2a.

(d) Lastly we consider the leakage from user 1 under m
block channel uses. As user 1 has transmitted m messages

Wm
1 = [W1(1), . . . ,W1(m)], the leakage is

L1→2(s′) =
I(Wm

1 ;Ym
2a,Ym

2b)
nm

≥ I(Wm
1 ;Ym

2b)
nm

. (25)

Applying the chain rule both ways to I(Wm
1 ;W̃2bYm

2b)
and noting the independence of Wm

1 and W̃2b implies

I(Wm
1 ;W̃2b) = 0 yields

I(Wm
1 ;Ym

2b) = I(Wm
1 ;Ym

2b|W̃2b)

− I(Wm
1 ;W̃2b|Ym

2b). (26)

The deterministic mapping from W̃2b to Xm
2b implies

I(Wm
1 ;Ym

2b|W̃2b)

= I(Wm
1 ;Ym

2b|W̃2bXm
2b) (27)

= H(Ym
2b|W̃2bXm

2b) − H(Ym
2b|W1W̃2bXm

2b). (28)

Substituting Ym
2b = Xm

1a + Xm
2b in (28), we obtain

I(Wm
1 ;Ym

2b|W̃2b) = H(Xm
1a|W̃2bXm

2b)

− H(Xm
1a|Wm

1 W̃2bXm
2b). (29)

Note that H(Xm
1a|W̃2bXm

2b) = H(Xm
1a) by independence

of Xm
1a and W̃2b,Xm

2b. Further, as conditioning reduces

entropy, we can write

I(Wm
1 ;Ym

2b|W̃2b) ≥ H(Xm
1a) − H(Xm

1a|Wm
1 ) (30)

= I(Wm
1 ;Xm

1a) (31)

= mI(W1;X1a). (32)

Next we observe that reliable decoding of the message

W̃2b via Ym
2b implies by the Fano bound that

I(Wm
1 ;W̃2b|Ym

2b) ≤ H(W̃2b|Ym
2b) ≤ 1+mεR2b. (33)

Combining (25), (26), (32) and (33), we obtain

L1→2(s′) ≥ mI(W1;X1a) − (1 + mεR2b)
nm

. (34)

This completes the proof of the lemma. �
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