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Secrecy in the2-User Symmetric Deterministic
Interference Channel with Transmitter Cooperation

Parthajit Mohapatra and Chandra R. Murthy

Abstract—This work presents novel achievable schemes for
the 2-user symmetric linear deterministic interference channel
with limited-rate transmitter cooperation and perfect secrecy
constraints at the receivers. The proposed achievable scheme
consists of a combination of interference cancelation, relaying
of the other user’s data bits, time sharing, and transmission of
random bits, depending on the rate of the cooperative link and
the relative strengths of the signal and the interference. The
results show, for example, that the proposed scheme achieves the
same rate as the capacity without the secrecy constraints, in the
initial part of the weak interference regime. Also, sharingrandom
bits through the cooperative link can achieve a higher secrecy
rate compared to sharing data bits, in the very high interference
regime. The results highlight the importance of limited transmit-
ter cooperation in facilitating secure communications over 2-user
interference channels.

Index Terms—Physical layer security, interference channel,
deterministic model, transmitter cooperation.

I. I NTRODUCTION

In multiuser wireless communications, users experience
interference due to the broadcast and superposition natureof
the medium. Interference not only limits the performance of
the system, but also allows users to eavesdrop on the other
users’ messages. For example, in a cellular network, when
users have subscribed to different contents, it is important for
the service provider to support high throughput, as well as
secure its transmissions, in order to maximize its own revenue.
In these scenarios, the transmitters (e.g., base stations)are
not completely isolated from each other, and cooperation
among them is possible. Such cooperation can potentially
provide significant gains in the achievable throughput in the
presence of interference, while simultaneously guaranteeing
security. In this work, we investigate the effectiveness of
limited transmitter cooperation in a2-user symmetric linear
deterministic interference channel (SLDIC) on interference
management and secrecy.

Information theoretic secrecy in the interference channel
(IC) with K ≥ 2 users and different eavesdropper settings
have been analyzed in [1], [2]. In [1], the secrecy in2-
user IC is considered in the presence of an eavesdropper. In
[2], the broadcast and the IC with independent confidential
messages are considered, and optimality is established in some
special cases. The frequency/time selectiveK-user Gaussian
IC (GIC) with secrecy constraints is considered in [3]. The
effect of cooperation on secrecy has been explored in [4]–
[6]. A linear deterministic model for relay network was
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introduced in [7], which led to insights on the achievable
schemes in Gaussian relay networks. The deterministic model
has subsequently been used for studying the achievable rates
with the secrecy constraints in [8]–[10]. However, the effect
of limited transmitter-side cooperation on secrecy in an IChas
not been explored in literature, and is the focus of this work.

In this paper, novel transmission schemes for the2-user
SLDIC with limited transmitter cooperation and secrecy con-
straints at the receivers are proposed, and their achievable
secrecy rates are derived. The transmission scheme dependson
the capacity of the cooperative link (denoted byC) and value
of α , n

m
, wherem , (⌊logSNR⌋)+ andn , (⌊log INR⌋)+.

The key features of the proposed schemes are:

1) In the weak interference regime1 (0 < α ≤ 2
3 ), the

scheme involves precoding of a user’s own data bits with
the bits received through cooperation, to simultaneously
cancel the interference and ensure secrecy.

2) In the moderate interference regime(23 < α < 1),
the scheme uses interference cancelation, random bit
transmission, or both. The novel idea behind the random
bit transmission scheme is explained in Sec. III-B.

3) In the high interference regime(1 < α < 2), the scheme
involves relaying of the other user’s data bits obtained at
the transmitters through the cooperative links, in addition
to the techniques used for(23 < α < 1).

4) In the very high interference regime(α ≥ 2), the scheme
uses time sharing, along with the techniques used for
(1 < α < 2). Unlike the other interference regimes, when
α ≥ 2 and for small values ofC, sharing random bits
along with the data bits is strictly better that sharing only
data bits, in terms of the achievable secrecy rate.

To the best of the authors’ knowledge, the transmission
schemes proposed in this work have not hitherto been studied
in the literature. Further, the secrecy rate achievable by the
proposed schemes is derived. It is shown that it is possible
to achieve a nonzero secrecy rate in almost all cases, with
limited transmitter cooperation. In some cases, the achievable
secrecy rate equals the capacity of the same system without
the secrecy constraints. Thus, the proposed schemes allow one
to get secure communications for free, in these cases.

Due to lack of space, the proposed transmission schemes
and the corresponding achievable rates are stated only for
some specific interference regimes. The complete details will

1Note that the definition of the weak interference regime hereis different
from the more typical(0 < α ≤ 1

2
) [11]. It will turn out that (0 < α ≤ 2

3
)

is more appropriate for the discussion in this paper.
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be provided in the extended version of this work [12].
Notation: Lower case or upper case letters are used to

represent scalars. Small boldface letters represent vectors,
whereas capital boldface letters represent matrices.

II. SYSTEM MODEL

Consider a two user Gaussian symmetric IC (GSIC) with
cooperating transmitters. The signals at the receivers are
modeled as

y1 = hdx1 + hcx2 + z1; y2 = hdx2 + hcx1 + z2, (1)

where zj (j = 1, 2) is complex Gaussian, distributed as
zj ∼ CN (0, 1). Here,hd andhc are the channel gains of the
direct and cross links, respectively. The transmitters cooperate
through a noiseless link of finite rate(CG). The equivalent
deterministic model of (1) at high SNR is as follows [13]:

y1 = Dq−mx1 ⊕Dq−nx2; y2 = Dq−mx2 ⊕Dq−nx1, (2)

wherexi andyi are binary vectors of lengthq , max{m,n},
D is a q × q downshift matrix with elementsdj,k = 1 if
2 ≤ j = k + 1 ≤ q and dj,k = 0 otherwise, and⊕ stands
for modulo-2 addition (XOR operation). The parametersm
andn are related to the GSIC asm = (⌊log |hd|2⌋)+, n =
(⌊log |hc|

2⌋)+, while the capacity of the cooperative link is
C = ⌊CG⌋ [13]. The quantityα , n

m
captures the amount

of coupling between the signal and the interference, and is
central to characterizing the achievable rates of the LDIC.

The convention followed for the LDIC is the same as
that presented in [13]. The bitsai, bi ∈ {0, 1} denote the
information bits of transmitters1 and2, respectively, sent on
theith level,with the levels numbered starting from the bottom-
most entry. The bits transmitted on the different levels of the
LDIC are chosen to be equiprobable Bernoulli distributed,
denoted byBern

(

1
2

)

. The bits di, ei ∈ {0, 1} denote the
random bits generated by transmitters1 and 2, respectively,
and sent on theith level. The random bits are independent of
the data bits, and are generated from theBern

(

1
2

)

distribution.
The transmitteri has a messageWi, which should be

decodable at the intended receiveri, but needs to be kept
perfectly secret from the other, unintended receiverj, j 6= i.
The encoded message is a function of its own data bits,
the bits received through the cooperative link, and possibly
some random data bits. The encoding at the transmitter should
satisfy the causality constraint, i.e., it cannot depend onfuture
cooperative bits. The decoding is based on solving the linear
equation in (2) at each receiver. Also, it is assumed that the
transmitters trust each other completely and that they do not
deviate from the agreed scheme. For secrecy, it is required to
satisfy I(Wi,yj) = 0, i, j ∈ {1, 2} and i 6= j [14].

III. A CHIEVABLE SCHEMES

A. Weak interference regime (0 ≤ α ≤ 2
3 ):

When0 ≤ α ≤ 2
3 , bits transmitted on the lowerm−n levels

[1 : m−n] do not cause interference at the unintended receiver,
and data bits transmitted on these levels will remain secure.
But, the bits transmitted on the topn levels[m−n+1 : m] will
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Fig. 1. LDIC with m = 4 andn = 2: (a) C = 0, RS = 2 and (b)C = 2,
RS = 4.

cause interference at the unintended receiver at the bottomn
levels[1 : n]. Without transmitter cooperation, if all the bottom
m− n levels are used for transmission, it is easy to see that
transmitting on the remainingn levels either reduces the rate
or violates secrecy. Hence, it is possible to transmitm−n bits
securely, whenC = 0.

With transmitter cooperation (C > 0), it is possible to
transmit on the top levels by appropriately xoring the data bits
with the cooperative bits in the lower levels prior to trans-
mission, as follows. The transmitters exchangemin{n,C}
bits, which are the bits they intend to transmit on the levels
[m − n + 1 : m − n + min{n,C}], through the cooperative
link. These cooperative bits are precoded with the data bits
at the levels[1 : min{n,C}] to cancel interference caused
by the data bits sent by the other transmitter. This scheme is
illustrated forC = 0 and 2 in Fig. 1. Mathematically, when
C ≤ n, the message of transmitter1 is encoded as follows:

x1 =

[

0(m−(r+C))+×1

a(r+C)×1

]

⊕

[

0(m−C)×1

bc
C×1

]

, (3)

wherea , [ar+C , ar+C−1, . . . , a1]
T are the own data bits,

bc , [br+C , br+C−1, . . . , br+1]
T are the cooperative data bits,

and r , m − n. The message of transmitter2 is encoded in
an analogous fashion. WhenC = n, it can be shown that
the proposed scheme achievesmax{m,n}, the maximum rate
possible in the LDIC. WhenC > n, C − n bits can be
discarded andn cooperative bits can be used for encoding.
Hence, in the sequel, it will not be explicitly mentioned that
C ≤ n. The proposed encoding scheme achieves the following
symmetric secrecy rate:

RS = m− n+min{n,C}. (4)

B. Moderate interference regime (23 < α < 1):

First, note that the links in the LDIC can be classified into
three categories: Type I, Type II, and Type III, as shown in Fig.
2(a). The classification is based on whether the data bits are
received cleanly or with interference at the intended receiver,
and whether or not they cause interference at the unintended
receiver. The number(r1) of Type I and(r2) of Type II links
arer1 = r2 = m−l

2 = m− n, wherel is the number of Type
III links, which is given byl = 2n−m.



First considerC = 0. As the bits transmitted on the Type II
links [1 : m−n] are not received at the unintended receiver, it
is possible to transmit at leastr2 bits securely. Data bits trans-
mitted on the Type III/I links (levels[m−n+1 : n]/[n+1 : m])
will cause interference at the unintended receiver, and it is not
possible to ensure secrecy with uncoded data transmission on
these levels. As the Type II links are already used up for data
transmission, the remainingg , {n− (r2 + C)}+ levels2 can
be used for transmission with the help of random bits sent by
each transmitter. Transmitteri sends the random bits in such
a way that they superimpose with the data bits sent by the
other transmitter, at receiveri. Note that, the receiver does not
require the knowledge of these random bits in order to decode
its own message.

Now, it is required to determine the number of levels of
Type I/III links that can be used for data transmission. Notice
that bits transmitted on any level get shifted down bym− n
levels at the unintended receiver. In the proposed scheme,
transmission occurs in blocks of size3(m − n) levels, with
each block consisting of a sequence of data bits, random
bits and zero-bits of sizem − n each, sent on consecutive
levels. Such a scheme ensures that the intended data bits are
received cleanly at the desired receiver, and, data received at
the unintended receiver remains secure. The total number of
blocks of size3(m − n) that can be sent isB ,

⌊

g

3(m−n)

⌋

.

The remainingt , g%{3(m − n)} levels may or may not
be usable for data transmission depending on the number of
levels remaining for random bit transmission. The quantity
q = min {(t− r2)

+, r2} is the number of data bits that
can be securely sent on the remainingt levels. With a little
bookkeeping, it can be shown that, forC = 0, the proposed
scheme achieves the following symmetric secrecy rate:

RS = m− n+B(m− n) + q. (5)

When C > 0, the achievable scheme uses interference
cancelation in addition to random bit transmission. Bits trans-
mitted on the levels[r2 + 1 : r2 + C] at transmitteri
will interfere with the levels[1 : C] of receiver j. The
interference can be eliminated by precoding the data bits at
levels [1 : C] at transmitterj with the data bits of transmitter
i, received through cooperation. The remainingg levels can
be used for data transmission with random bit transmission,
exactly as in theC = 0 case. The achievable scheme is
illustrated for different values ofC in Figs. 2(b), 2(c) and 2(d).
Mathematically, the messagex1 of transmitter1 is encoded as
follows:
Case 1 (q = 0):

x1 =

[

0(m−(r2+C))+×1

a(r2+C)×1

]

⊕

[

0(m−C)×1

bc
C×1

]

⊕

[

aup×1

0p′×1

]

,

(6)

wherea , [ar2+C , ar2+C−1, . . . , a1]
T , bc , [br2+C ,

br2+C−1, . . . , br2+1]
T , au , [u1,d2, z3,u4,d5, z6, . . . ,

2Although C = 0 here, the expressions are written includingC for use in
the sequel.
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Fig. 2. LDIC withm = 5 andn = 4: (a) Different types of links, (b)C = 0,
RS = 2 (c) C = 1, RS = 3, and (d)C = 4, RS = 5.

u3B−2,d3B−1, z3B , ]
T , ul ,

[

am−(l−1)r2 , am−(l−1)r2−1,

. . . , am−lr2+1], dl ,
[

dm−(l−1)r2 , dm−(l−1)r2−1, . . . ,

dm−lr2+1], zl is a zero vector of size1× r2, p , 3B(m−n)
andp′ , m− p. The encoding at transmitter2 is similar.
Case 2 (q 6= 0): The number of data bits that can be sent on
the remainingt levels isq = min{(t− r2)

+, r2}. In this case,
the message of transmitter1 is encoded as follows.

xmod
1 = x1 ⊕





0p×1

a′t×1

0(m−(p+t))×1



 (7)

wherex1 is as defined in (6),a′ , [u11,u12,d11,d12, z]
T ,

u11 = [am−p, am−p−1, . . . , am−p−q+1], d11 , [dm−w,
dm−w−1, . . . , dm−w−q+1]. Also, u12, d12 and z are zero
vectors of size1 × v, 1 × f , and1 × v′, respectively. Here,
v , (r2 − q), f , (t − (r2 + q))+, w , p + r2 and
v′ , (t− 2r2)

+.
The proposed encoding scheme achieves the following

symmetric secrecy rate:

RS = m− n+B(m− n) + q +min{n,C}. (8)

C. Interference is as strong as the signal (α = 1):

In this case, from (2),y1 = y2 = x1 ⊕ x2. Hence, it may
not be possible to achieve a nonzero secrecy rate, as both the
receivers see the same signal.

D. Very high interference regime (α ≥ 2):

Due to lack of space, the achievable scheme is presented
in detail only forα = 2, even valuedm, and m

2 < C < 3m
2 .

Details of the achievable scheme for the other cases will be
provided in [12].



Now, whenC = 0, links corresponding to levels[1 : m]
cannot be used for transmitting a user’s own data, as they
are not present at its receiver. Only the links corresponding to
levels[m+1 : n] can be used for transmission. Bits transmitted
on these upper levels will be received cleanly at the unintended
receiver. Hence, whenC = 0, it may not be possible to achieve
a nonzero secrecy rate. However, whenC > 0, it is possible
to achieve a nonzero secrecy rate, as explained below for the
case wherem is even.

When m
2 < C < 3m

2 , the achievable scheme uses transmis-
sion of random bits, interference cancelation and time sharing.
The transmitters share a combination of random bits and data
bits through the cooperative links. More specifically, boththe
transmitters sharem2 random bits along withC1 = C − m

2
data bits. In the first time slot, transmitter1 sends them
random bits (di and ei) on alternate levels in[1 : m]. In
order to eliminate the interference caused by these random
bits at receiver2, the data bits of transmitter2 are precoded
(xored) with thesem random bits and transmitted on the
levels from [m + 1 : 2m] from transmitter2. The random
bits are not canceled at receiver1. Further, receiver1 has no
knowledge of these random bits. Hence, it cannot decode the
bits intended to receiver2. Also, the data bits of transmitter
2 received through the cooperative link are transmitted at the
upper levels[n − C1 + 1 : n] from transmitter1. Again, in
order to ensure secrecy at receiver1, transmitter2 sends the
same data bits at levels[m− C1 + 1 : m] along with theC1

data bits of transmitter1, also received through cooperation.
This not only cancels the interference due to the bits sent on
levels[n−C1+1 : n] at receiver1, but also enables transmitter
2 to relay the data bits of transmitter1.

In the remaining upper levels[m+ 1 : n−C1], transmitter
1 sends its own data bits xored with random bits. Transmitter
2 transmits the same random bits on levels[1 : C1] to cancel
the random bits at receiver1. In this way, transmitter1 sends
m − C1 data bits of its own andC1 data bits of transmitter
2, in the first time slot. Simultaneously, transmitter2 is able
to sendm data bits of its own andC1 data bits of transmitter
1. In the second time slot, the roles of transmitters1 and 2
are reversed. Figures 3(a) and 3(b) illustrate the scheme for
m = 2 andn = 4, with C = 2 bits. It can be observed that, in
this case, it is possible to securely transmit2.5 bits per user.

When 0 < C ≤ m
2 , interestingly, transmitters share only

random bits through the cooperative links. The achievable
scheme involves transmitting the data bits xored with the
random bits. The same random bits are transmitted by the other
transmitter, so as to cancel them out at the desired receiver.
When 3m

2 ≤ C ≤ n, the achievable scheme uses interference
cancelation, and transmitters share only data bits throughthe
cooperative links. The details are omitted due to lack of space.

IV. D ISCUSSION

A. Numerical Examples

Now, some examples presented to illustrate the optimality of
the proposed achievable scheme for differentm,n andC. The
achievable secrecy rate per user is plotted against the capacity

Tx − 1 Rx − 1

Rx − 2Tx − 2

e1

e1

d1

e1 b1

a2

a1

b2

b2⊕e1

b1⊕d1

e1

C = 2

b4

a1⊕

e1

b4
a1⊕

b4⊕a2

b1⊕

b2⊕

d1

(a) First slot:(R1, R2) = (2, 3).

Tx − 1 Rx − 1

Rx − 2Tx − 2

e1

d1

b1

a2

a1

b2

b1⊕d1

e1

C = 2

a1⊕d1b1⊕

a1⊕

a4⊕b2

a4

d1a2⊕

a2⊕d1

a4

d1

e1

(b) Second slot:(R1, R2) = (3, 2).

Fig. 3. LDIC with m = 2 andn = 4: C = 2 andRS = 2.5.

of the cooperative link for different values ofm andn. Also
plotted is the per user capacity of the SLDIC with transmitter
cooperation, but without the secrecy constraints [13].

In Fig. 4, the achievable secrecy rate in (4) is plotted for the
m = 4, n = 2 case. It can be seen that the proposed scheme
meets the capacity without the secrecy constraint for all values
of C. Hence, the proposed scheme is optimal form = 4
and n = 2, and, interestingly, one obtains secrecy for free.
In this case, the achievable scheme is based on interference
cancelation. Whenm = 6 andn = 5, the achievable rate in
(8) is plotted in Fig. 5. Here, the scheme is optimal forC ≥ 5.
There is a gap between the achievable rate and the capacity
without the secrecy constraint whenC < 5. This could,
perhaps, be due to the secrecy constraint itself. The derivation
of outer bounds on the achievable rate, that would settle this
question, is work in progress. In Fig. 6, the achievable secrecy
rate is plotted as a function ofC, with m = 2 and n = 4.
It can be observed that the proposed scheme is optimal when
C ≥ 4.

It is interesting to note that although the users are not
allowed to decode the other user’s message, it is possible to
achieve nonzero secrecy rate with cooperation, even in the
very high interference regime(α ≥ 2). Thus, with cooperation
(C > 0), it is possible to achieve nonzero secrecy rate in
almost all cases. Also, whenC = n, the proposed scheme
achieves the maximum possible rate, i.e.,max{m,n}.

B. Further Remarks

1) When (0 < α ≤ 1
2 ), the proposed scheme is optimal

for all values ofC. In this case, interference cancelation
suffices to achieve the optimal rate.

2) In the moderate interference regime(23 < α < 1), the
proposed scheme achieves nonzero secrecy rate for all
values ofC. It is possible to transmit data bits securely in
the higher levels by intelligently choosing the placement
of data and random bits, in addition to interference
cancelation.

3) Unlike in the weak interference regime, the achievable
scheme in the moderate and high interference regimes
uses random bit transmission, whenC = 0.

4) In the very high interference regime(α ≥ 2), it is not
possible to ensure secrecy with random bit transmission
without cooperation. However, with cooperation, it is
possible to achieve nonzero secrecy rate. Further, the
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Fig. 4. Achievable rate of the LDIC withm = 4 andn = 2.
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Fig. 5. Achievable rate of the LDIC withm = 6 andn = 5.

scheme may use the sharing of random bits and/or data
bits, depending onm, n, andC.

5) In all the interference regimes, the presented scheme
always achieves nonzero secrecy rate with cooperation,
except for theα = 1 case.

6) When C = n and α 6= 1, i.e., when the cooperative
link is as strong as the strength of the interference, the
proposed scheme achieves the maximum possible rate
of max{m,n}.

V. CONCLUSIONS

This work proposed novel achievable schemes for the2-user
symmetric deterministic interference channel with transmitter
cooperation. The achievable scheme used a combination of
interference cancelation, random bit transmission, relaying of
the other user’s data bits, and time sharing, depending on the
values ofα andC. Several interesting results were obtained
from the proposed achievable schemes. For example, when
2
3 < α < 1 and 1 < α < 2, random bit transmission helps
ensure secrecy. With further increase in the strength of the
interference(α ≥ 2), random bit transmission is rendered
ineffective. But, with cooperation, it is possible to achieve
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Fig. 6. Achievable rate of the LDIC withm = 2 andn = 4.

a nonzero secrecy rate, even when the interference is very
strong. Finally, when0 < α ≤ 1

2 , the achievable scheme is
found to be optimal for all values ofC. Whenα ≥ 2, sharing
random bits, or data bits, or both, outperforms sharing only
data bits through the cooperative links. Finding outer bounds
and extending the results to the Gaussian setup are interesting
avenues for future work.
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