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1 Introduction

A necessary condition for building modern cryptographic primitives, including secure
encryption schemes and digital signatures, is the existence of one-way functions. Loosely
speaking, a one-way function f is easy to compute but hard to invert (in an average-case
sense). More formally,

• there is a polynomial-time algorithm that computes f (x) given x ,

• no probabilistic polynomial-time algorithm can compute a preimage of y under f
with non-negligible probability (over the random choice of y and the algorithm’s
random coins).

There are generic constructions from one-way functions to powerful cryptographic prim-
itives. One-way functions imply pseudorandom generators or pseudorandom functions
which can further be used to construct even more powerful tools like CCA-secure private-
key encryption. In contrast, for the public key setting the onewayness alone is not suffi-
cient. More specifically, one often requires f to be injective and, as a further restriction,
one needs to embed a trapdoor. Such a trapdoor allows the legitimate user to invert
f efficiently while preserving the onewayness when the trapdoor is not known. Using
generic transformations, e.g. hardcore predicates, one obtains CPA-secure public-key en-
cryption in the standard model. If f is even a trapdoor permutation one can additionally
construct CCA-secure public-key encryption and digital signatures in the random oracle
model [BR93].

In summary, (trapdoor) one-way functions (and permutations) belong to the most
important objects in cryptography. Consequently, the fact that we do not know how
to prove the existence of one-way functions, even when making rather strong assump-
tions such as P ≠ NP, has led cryptographers to establish a list of candidate one-way
functions whose conjectured hardness is supported by extensive research in finding effi-
cient inverting algorithms. Many of those candidates rely on number theoretic problems,
namely:

• The well-known RSA function f (x) = x e mod N or the Rabin Function f (x) = x 2

mod N rely on the hardness of the factorisation problem. In fact, both functions
provide a trapdoor and can be made bijective by picking appropriate e and N thus
providing trapdoor one-way permuations (cf. Chapter 9).

5



1 Introduction

• The discrete exponentiation function f (x) = gx mod p relies on the hardness of
the discrete logarithm problem in the underlying cyclic group.

Unfortunately, both the factorisation and the discrete logarithm problem are known to
be broken by quantum algorithms due to Shor [Sho97]. Although it is uncertain whether
large-scale quantum computers will ever exist, the mere possibility must be considered
a serious threat to many cryptographic primitives or protocols. Thus, a challenging
task in cryptography is to come up with alternative candidate one-way function based
on different, possibly quantum-resistant, assumptions. Besides the recently emerged
field of lattice-based cryptography (cf. [MR08] for an introductory survey), the most
serious proposals are related to the hardness of decoding random linear codes. For some
modified code-based constructions it has not only been impossible to design efficient
quantum algorithms thus far, but also there are serious indications that it will not be
possible by using powerful techniques, e.g. quantum Fourier sampling, in the future
[HMR11]. This renders code-based cryptography to one of the most promising research
fields in post-quantum cryptography.

The most simple construction of a code-based one-way function uses random binary
codes and can be described as follows (we assume that the reader is familiar with the
basic coding-theoretic vocabulary and refer to Chapter 2 and 3 for clarification). For
a random generator matrix G ∈ Fk×n

2 , simply define a function fG that maps a tuple
(m,e) ∈ Fk

2 × Fn
2 to a vector c ∈ Fn

2 by first computing a codeword m⊺G and by then
adding an appropriately chosen error vector e ∈ Fn

2 of Hamming weight ω. Given such
a vector c = m⊺G + e, recovering the error vector e is sufficient in order to invert the
function fG. Once e is known, the first part m of the input can easily be revealed
by linear algebra. By elementary facts from coding theory (see Chapter 2 and 3), the
problem of inverting fG is equivalent to the (average case) hardness of the following
computational problem.

Definition 1.0.1 (Computational Syndrome Decoding problem (CSD), infor-
mal). Given a binary (n − k) × n-matrix H, a target weight ω ∈ N and a vector
s ∈ Fn−k

2 , find a vector e of Hamming weight ω with He = s (if such e exists).

Thus, the CSD problem can be seen as a purely combinatorial problem (we restate the
problem in Definition 3.1.1 in its common coding-theoretic formulation) and the most
näıve algorithm could simply enumerate all (n

ω
) potential solutions. For an appropriate

choice of the parameters n, k and ω, the CSD problem is hard and the most efficient
algorithms run in time exponential in n (when k and ω are appropriately parametrised
in n). Besides its relevance to the security of code-based cryptographic constructions,
the average-case hardness of the CSD problem, or equivalently the hardness of decoding
random binary codes, has been of great interest in coding theory in general. This
sufficiently motivates the main objective of this work.

Goal: The design of asymptotically fastest generic decoding algo-
rithms for random binary codes.
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The major part of this work (Chapter 3 to 6) is devoted to achieving this goal and
to discuss the practical impact of our improved algorithms to cryptography (Chapter 7
and 8). In the second (significantly) shorter part of this work (Chapter 9), we address
a relatively unrelated question. We study the so-called noisy integer factorisation
problem and thus turn back to one of the most important classical number theoretic
computational problem used in cryptography, the factorisation problem. In simple terms,
the noisy integer factorisation problem can be described as follows. Given a random
RSA modulus N = pq and two noisy copies p̃, q̃ of the unknown factorisation p, q ,
the task is to recover the prime factors p, q efficiently. The noise model in our work
is simply the binary symmetric channel, i.e. each single bit of p, q is independently
disturbed by a Bernoulli-distributed error e where Pr [e = 1] = δ for some fixed noise rate
0 < δ < 1

2
. The study of this problem is practically motivated by so-called side-channel

attacks where one obtains additional information in order to solve a theoretically hard
computational problem. For example, such information is often gained from the physical
implementation of a cryptosystem. As we will see, the noisy factorisation problem can
be seen as the problem of decoding a particular (non-linear and highly non-random)
code which allows to integrate the following second objective into the coding-theoretic
framework of this thesis.

Goal: The construction of an efficient algorithm for the noisy in-
teger factorisation problem.

Main Part: Improved Generic Decoding Algorithms

We turn back to the major problem of our work which is to improve the performance
of generic decoding algorithms. A very important class of generic decoding algorithms
originates from the work of Prange in 1962 [Pra62], called information set decoding.
These algorithms have attracted a lot of interest from coding theorists over the last
50 years. In this work, we will present improved variants of information set decoding.
All improvements presented in this work are based on a generic technique that can be
applied to a variety of combinatorial search problems. This technique, to which refer
as the representation technique, was introduced by Howgrave-Graham and Joux at
Eurocrypt 2010 [HGJ10] who presented improved generic algorithms for the well-known
subset sum problem.

The Representation Technique

To understand the main idea behind the representation technique, let us first consider
the following elementary algorithm for the CSD problem (which does not fit into the
information set decoding framework). For simplicity, let us assume that ω is divisible by
2 and that there exists a unique solution e that can be written as e = (e1∣∣e2) where each
vector ei has length n

2
and Hamming weight ω

2
(by x∣∣y we denote the concatenation of

the vectors x and y). By similarly splitting H into two halves H1 and H2 (which are
both binary matrices of dimension (n−k)× n

2
) we can simply rewrite the equation He = s

7



1 Introduction

as H1e1 =H2e2 + s. In order to find the solution e, we first compute a list L1 containing
all candidates e1 of length n

2
and Hamming weight ω

2
and order the list according to the

values H1e1. We then proceed by searching for collisions in L1 for every candidate vector
e2. That is, for every e2 we compute the value H2e2 + s and check whether there is an
element e1 ∈ L1 with H1e1 = H2e2 + s. Clearly, every collision (e1,e2) yields a solution
to He = s and has the correct Hamming weight ω. Neglecting polynomial factors, the
complexity of creating and sorting the list L1 is given by the number of possible e1 which
is (n/2

ω/2
). Similarly, the (worst-case) complexity of searching a collision can be estimated

by the number of possible e2. We thus obtain an algorithm for the CSD problem with

complexity (n/2
ω/2
) ≈ (n

ω
)1/2 and we have reduced the complexity of the näıve enumeration

by almost a square-root factor.
Let us now see how the representation technique can be applied to obtain an improved

algorithm. For this purpose, let us introduce the following notation. By Wn,ω we denote
the discrete Hamming sphere in Fn

2 of radius ω centred around 0. Note that the above
algorithm solved the CSD problem by writing Wn,ω as a “direct sum” Wn,ω =W1 ⊕W2

with appropriately defined sets W1 and W2. In particular, every element e ∈Wn,ω can be
written uniquely as the sum of an element in W1 with an element of W2 and the above
algorithm recovers a solution e by treating the set W1 and W2 “separately”. As opposed
to this, the representation technique chooses a different decomposition of Wn,ω ⊂W1+W2

into W1 and W2 such that every element e ∈Wn,ω can be written in many different ways
as the sum of an element in W1 with an element of W2. This simple modification yields
to the following central definition.

Definition 1.0.2. Let W1,W2 ⊂ Wn,ω with Wn,ω ⊂ W1 +W2 and e ∈ Wn,ω.
Every pair (e1,e2) ∈W1 ×W2 with e = e1 + e2 is called a representation of e.

For example, one can define W1 ∶= W2 ∶= Wn,ω/2. Since ∣W1∣ = ∣W2∣ = ( n

ω/2
) ≫ (n/2

ω/2
)

this might look useless at a first sight. We significantly increased the size of the two
separate search spaces Wi compared to the former “direct sum” construction. However,
choosing W1 and W2 in this way introduces exactly ρ ∶= ( ω

ω/2
) different representations

of the unique solution e. The main idea of the representation technique is now very
simple. In order to solve the original CSD problem, it is sufficient to find only one of
the representations of the solution e and the main algorithmic problem is to find such
a representation as efficiently as possible. More precisely, we aim to compute two lists
L1 ⊂W1 and L2 ⊂W2 such that there exists at least one representation of e in L1 × L2

with good probability. Since the number of representations is ρ and there is no additional
structure to exploit, such lists can not be significantly smaller than

∣Wi ∣
ρ
=
( n

ω/2)
( ω

ω/2
) . (1.1)

For the sake of argument, let us assume that we have access to an oracle that magically
creates the lists Li of minimal size (1.1). Given these lists, eventually finding a rep-
resentation of e can be implemented by a straightforward collision search as explained
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above. Neglecting polynomial factors again, the resulting algorithm would solve the
CSD problem with complexity ∣Li ∣. Altogether, this would improve upon the preceding
algorithm if ( n

ω/2
)

( ω

ω/2
) ≤ (

n/2
ω/2)

which holds for all 2 ≤ ω ≤ n. As we will see, this simplified description hides some
important technical caveats. Most importantly, assuming the existence of an oracle that
creates the lists Li appears to be a very strong assumption. In fact, the main algorithmic
contribution of our work is to present a recursive procedure that implements a slightly
suboptimal oracle.

Our main result: Improved Information Set Decoding

So far, we did not tell how to employ the representation technique in the information
set decoding framework. From a high-level perspective, an information set decoding al-
gorithm transforms the original CSD instance H,e with parameters n, k , ω into another,
related CSD instance H̃, ẽ with decreased parameters ñ, k̃ , ω̃. One then solves the easier
instance H̃, ẽ and tries to back transform the resulting solution(s) into a solution for
the original problem. More precisely, the transformation is a randomised procedure that
will mostly result in instances H̃, ẽ that do not provide any solution suitable to solve the
original problem H,e. One resolves this problem by simply repeating the randomised
transformation sufficiently many times.

0.1019

BJMM

0.1115

MMT

0.1163

BCD

0.1166

Stern

0.1208

Prange

0.5

Brute Force

F (R)
Figure 1.1: Recent development for “worst-case” complexity coefficients of information set

decoding variants. MMT and BJMM have been published in [MMT11] and
[BJMM12], respectively.

Over the last fifty years, many researches proposed different instantiations within this
general framework. The first one is due to Prange [Pra62] who introduced the concept
of information set decoding in 1962. Almost 30 years later, Lee and Brickell [LB88] and
Leon [Leo88] showed how to improve upon Prange’s algorithm by polynomial factors.
Shortly after, Stern [Ste89] presented the first algorithm that offered an exponential im-
provement over Prange’s original work. In the next twenty years, a variety of algorithms
have been proposed that significantly improved the practical performance of information
set decoding. However, none of these algorithms provided an exponential improvement
over Stern’s algorithm. More than twenty years later at Crypto 2011, Bernstein et al.
presented a new method, called ball-collision decoding, that actually improved upon
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1 Introduction

Stern’s algorithm by a little exponential factor [BLP11a]. As we will see in later chap-
ters, there exist two alternative earlier proposals [Dum91] (due to Dumer) and [FS09]
(due to Finiasz and Sendrier) that allow to achieve the same efficiency (but there ex-
isted no formal proof for this equivalence in the literature before our work). In this line
of research, we presented two different improved information set decoding algorithms
at Asiacrypt 2011 [MMT11] and Eurocrypt 2012 [BJMM12]. Both methods apply the
representation technique, albeit to different extents, in order to solve the transformed
problem H̃, ẽ more efficiently.

Let us conclude this first introductory part by emphasizing the quantitative improve-
ment of our work. As we will explain in Chapter 3, it is possible to express the asymptotic
running time of generic decoding algorithms as 2F(R)n+o(n) where F (R) is constant that
only depends on the rate R ∶= k

n
of the input code (where 0 < R < 1). The constant

F (R) is often called the complexity coefficient and allows to compare the exponential
behaviour of the respective algorithms. In Figure1.1 we compare the different complexity
coefficients for the most important information set decoding algorithms.

Overview of Results and Thesis Organisation

We conclude the introduction with a more detailed overview of our results. We also
explain the organisation of our work.

Chapter 2 and 3

The contribution of these two introductory chapters is twofold: We present the necessary
basic concepts from coding theory and provide some useful technical tools from proba-
bility theory (Chapter 2). We further discuss some basic properties of the computational
syndrome decoding problem and explain its use in cryptography (Chapter 3).

Chapter 4

We introduce the general concept of information set decoding and also discuss some
alternative approaches for generic decoding algorithms. More specifically:

• We introduce Prange’s original algorithm and use it as an example to discuss some
technical caveats that arise in the analysis of information set decoding algorithms.

• We provide a general framework that covers the recent ball-collision decoding al-
gorithm of Bernstein, Lange and Peters. This includes an extensive numerical
optimisation of the algorithm parameters which will be used to (informally) com-
pare BCD with our improved algorithms.

Chapter 5

For the sake of a formal competitive analysis of our improved algorithms, we present a
generalised framework for information set decoding that serves the following purposes.

10



• The model yields a simplified version of Ball-collision decoding.

• It generalizes another ISD framework introduced by Finiasz and Sendrier in [FS09].

• It allows to relate different existing decoding methods.

• We instantiate a basic variant of our new algorithm within the framework.

In particular, embedding our improved algorithm into the general framework will be
helpful in order to formally prove its superiority over BCD. The main technical result of
this chapter is a running-time preserving parameter transformation that allows to turn
optimal parameters of (a variant of) BCD into valid parameters of (a simplified variant
of) our algorithm (Theorem 5.2.26).

Parts of this chapter appeared at Asiacrypt 2011 [MMT11] in a joint work with Alexander
May and Enrico Thomae.

Chapter 6

This part contains the most important algorithmic contribution of this thesis. We pro-
pose different variants of information set decoding for random binary codes. All these
variants are based on the representation technique and cover the algorithms presented in
[MMT11] and [BJMM12]. We first provide a simplified variant of our algorithm that can
easily be related to the general ISD framework of Chapter 5. We introduce this interme-
diate step in order to obtain a formal proof of superiority of our method over BCD. More
specifically, one of our main results (Theorem6.3.1) shows that our method achieves a
strictly smaller complexity coefficient F (R) than BCD for any code rate 0 < R < 1. Such
a proof was completely missing in the original publication [BJMM12] and can be seen
as one of the major theoretical contributions of our work. We then show how to further
improve the simple variant by a recursive application of the representation technique
which eventually yields the most efficient ISD algorithm to date (our presentation of
the algorithm can be seen as a generalised description of the algorithm presented in
[BJMM12] that allows for a simplified analysis).

Parts of this chapter appeared at Eurocrypt 2012 [BJMM12] in a joint work with Anja
Becker, Antoine Joux and Alexander May.

Chapter 7 and 8

We provide a straightforward generalisation of the improved algorithm to larger base
fields Fq and show that the improvement over more simple variants vanishes for growing
q (Chapter 7). That is, the advantage of any generalised improved ISD algorithm over
Prange’s basic algorithm becomes arbitrarily small for large enough q . Moreover, in
Chapter 8, we provide the first practical (heuristic) analysis for our improved algorithm.
More specifically, we present a concrete simplified implementation of our algorithm that
also takes into account several standard optimisations that reduce the running time

11



1 Introduction

by polynomial factors. Altogether, we are able to derive a manageable formula for
the binary work factor of our algorithm. We will then use this refined analysis in
order to estimate the practical impact of our work for some interesting cryptographic
assumptions. Namely, we show that:

• Long-term security levels of the McEliece OWF are noticeably affected by our
work.

• Almost all low-noise instances of the computational LPN problem can be broken
efficiently by ISD algorithms.

Chapter 9

We present a (heuristic) polynomial time algorithm for the noisy integer factorisation
problem for noise rates δ < 0.0837. Compared to [HMM10], where we presented a similar
algorithm for a more general scenario related to the RSA trapdoor one-way permutation,
the main focus in this work lies on the following two points.

• We point out a technical caveat of our original analysis in [HMM10] and provide
an extended analysis that fixes the problem.

• We discuss a recently discovered coding-theoretic interpretation of the noisy fac-
torisation problem that was introduced by Paterson et al. at Asiacrypt 2012
[PPS12].

The coding-theoretic link allows to derive heuristic upper bounds on the noise rate δ.
For a particular class of list-decoding algorithms, one can not recover the factorisation
when the error exceeds δ > 0.111.

Parts of this chapter appeared at Crypto 2010 [HMM10] in a joint work with Wilko
Henecka and Alexander May.

To summarize, in this work we study different coding-theoretic tools and discuss their
applicability to various cryptographically motivated problems. Note that the major
part of this work, the study of the hardness of the CSD problem, is related to one of
the most promising candidates for post-quantum cryptography. However, we restrict our
attention to the design of classical algorithms and completely ignore the question whether
efficient quantum attacks on coding-theoretic problems exist. For example, studying
the applicability of recent quantum techniques (e.g. quantum random walks) to known
decoding algorithms is a promising (and already initiated) direction for future research
that goes beyond the scope of this work.
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2 Preliminaries

In this chapter, we will introduce some general notation (Section 2.1) and give basic defi-
nitions and results from probability theory (Section 2.2) and coding theory (Section 2.4)
with a strong focus on properties of random linear codes.

2.1 Notation

Throughout the whole thesis, Fq denotes a finite field with q elements, i.e. q = pr is a
prime power. We will mostly consider the binary case, i.e. q = 2. To clarify notation, we
denote matrices and vectors by bold face letters, e.g. G ∈ Fk×n

q or m ∈ Fk
q , and we write

all vectors as column vectors for convenience, i.e. m ∈ Fk×1
q =∶ Fk

q . By m⊺ ∈ F1×k
q and

G⊺ ∈ Fn×k
q we denote the transpose of a vector m ∈ Fk

q and matrix G ∈ Fk×n
q , respectively.

By d(x,y) ∶= ∣{i ∈ [n] ∶ xi ≠ yi}∣ we denote the Hamming distance of x,y ∈ Fn
q . The

Hamming distance can be extended to sets in the usual way, i.e. d(x,S) ∶=miny∈S d(x,y)
for an arbitrary set S ⊂ Fn

q . Moreover, let

Bq(n, r) ∶= {e ∈ F
n
q ∶ wt(e) ≤ r} (2.1)

denote the n-dimensional (Hamming) ball of radius r where wt(e) ∶= d(e,0) is the
Hamming weight. Sometimes we also make use of the n-dimensional (Hamming)
sphere

W q
n,r ∶= {e ∈ F

n
q ∶ wt(e) = r} , (2.2)

i.e. the set containing all vectors of length n and Hamming weight exactly r . We will
write B(n, r) and Wn,r for the binary case (the unconventional notation Wn,r is fre-
quently used in the code-based cryptography literature). The volume of Bq(n, r) is
denoted by volq(n, r) which is defined as

volq(n, r) ∶= ∑
0≤i≤r

(n
i
)(q − 1)i . (2.3)

An appropriate asymptotic estimate for the volume of such balls helps to study properties
of random linear codes and allows to analyse the running time of many of the proposed
decoding algorithms. We provide such an estimate based on the q-ary entropy function
in Section 2.3.

With logq(x) we denote the logarithm to base q and we write log(x) ∶= log2(x) and
ln(x) ∶= loge(x) (where e is Euler’s number) for convenience.

13



2 Preliminaries

2.2 Probability Theory

Almost all algorithms presented in this thesis are probabilistic or their performance is
studied on randomly chosen input instances of a particular computational problem. In
both cases, the analysis requires some basic tools from probability theory. For this
purpose, let Ω = {ω1, . . . , ωm} be a finite sample space with probability function p ∶
Ω → [0,1], i.e. ∑m

i=1 p(ωi) = 1. This implicitly defines a probability space (Ω,P) with
probability measure P ∶ 2Ω → [0,1], P(A) ∶= ∑ω∈A p(ω) over the trivial σ-algebra 2Ω ∶={A ∶ A ⊂ Ω}. Let X ∶ Ω → R denote a (discrete) random variable on (Ω,P) with range{x1, . . . , xn}, i.e. pi ∶= Pr [X = xi] ∶= P(X −1(xi)) where X −1(xi) = {ω ∈ Ω ∶ X (ω) = xi} is
the preimage of xi under X . As usual, we define the first two moments of X as

E [X ] ∶= n∑
i=1

pixi (2.4)

and

Var [X ] ∶= E [(X −E [X ])2] = E [X 2] −E [X ]2 ≥ 0 . (2.5)

We will often make use of the linearity of expectation, i.e. for two random variables X ,
Y and a ∈ R it holds

E [aX +Y ] = aE [X ] +E [Y ] . (2.6)

In particular, E [∑n
i=1 Xi] = ∑n

i=1 E [Xi] for n random variables X1, . . . ,Xn . Computing
the variance of a sum of random variables is slightly more complicated due to depen-
dencies amongst the Xi , i.e

Var [ n∑
i=1

Xi] = n∑
i ,j=1

Cov [Xi ,Xj ] = n∑
i=1

Var [Xi] +∑
i≠j

Cov [Xi ,Xj ] (2.7)

where Cov [X ,Y ] ∶= E [XY ] − E [X ]E [Y ]. Note that Var [∑n
i=1 Xi] = ∑n

i=1 Var [Xi] for
pairwise independent Xi , i.e. E [XiXj ] = E [Xi]E [Xj ] for all i ≠ j . A useful (rough)
upper bound for the variance of a sum of random variables is given by the next lemma.

Lemma 2.2.1.

Var [ n∑
i=1

Xi] ≤ n2 max
i

Var [Xi]
Proof. Applying the Cauchy-Schwartz inequality ∣Cov [X ,Y ] ∣2 ≤ Var [X ]Var [Y ] yields

Var [ n∑
i=1

Xi] = n∑
i ,j=1

Cov [Xi ,Xj ]
≤

n∑
i ,j=1

√
Var [Xi]Var [Xj ] ≤ n2 max

i
Var [Xi] .

14



2.3 The q-ary Entropy Function

When analyzing probabilistic algorithms, one often needs to upper bound a certain
number of elements that have to be processed at a particular step of the respective
algorithm. This number might depend on the algorithm’s randomness or the randomly
chosen input instance and can appropriately be modelled by a random variable X . The
following tail inequalities provide upper bounds on the probability that X exceeds a
certain value. We omit all proofs which can be found in almost every standard textbook
about probability theory, e.g. [Bau96].

Theorem 2.2.2 (Markov’s inequality). For any random variable X and a > 0 it holds

Pr [∣X ∣ ≥ a] ≤ E [∣X ∣]
a

. (2.8)

By applying Markov’s inequality to the random variable ∣X −E [X ] ∣2 one obtains the
following

Theorem 2.2.3 (Chebychev’s inequality). For any random variable X and a > 0 it
holds

Pr [∣X −E [X ] ∣ ≥ a] ≤ Var [X ]
a2

. (2.9)

In order to bound the success or failure probability of probabilistic algorithms, sums of
indicator random variables Xi are particularly interesting. That is, the range of the Xi

is {0,1} (indicating success or failure in a particular step of the algorithm) and we have
pi ∶= Pr [Xi = 1] = E [Xi]. When all Xi are independent Bernoulli trials with identical
success probability p ∶= Pr [Xi = i], their sum X ∶= ∑n

i=1 Xi fulfils E [X ] = np and the
following important tail inequality gives an upper bound (exponentially decreasing in
n) on the probability that X deviates from its expectation.

Theorem 2.2.4 (Hoeffding’s inequality). Let X1, . . . ,Xn be a sequence of independent
Bernoulli trials with identical success probability Pr [Xi = 1] = p for all i . Define X ∶=∑n

i=1 Xi . Then for every 0 < γ < 1 we have

i) Pr [X ≥ n(p + γ)] ≤ e−2nγ2
,

ii) Pr [X ≤ n(p − γ)] ≤ e−2nγ2
.

2.3 The q-ary Entropy Function

The main goal of this section is to obtain an asymptotically tight estimate for volq(n, r)
as defined in Eq.(2.3). The appropriate technical tool for this purpose is the q-ary
entropy function as defined next.

15



2 Preliminaries

Definition 2.3.1. For q ≥ 2 we define the q-ary entropy function Hq ∶ [0,1]→ R as

Hq(x) ∶= x logq(q − 1) − x logq x − (1 − x) logq(1 − x) .

Particularly interesting is the binary entropy function

H(x) ∶= H2(x) = −x log x − (1 − x) log(1 − x) .

Note that we implicitly extend expressions of the form x log x continuously (but not
differentiably) to 0 at x = 0, i.e. we obtain H(0) = H(1) = Hq(0) = 0 and Hq(1) =
logq(q−1). The binary entropy function is thus continuous and symmetric around x = 1

2
,

i.e. H(1
2
+ x) = H(1

2
− x) for x ∈ [0, 1

2
]. The q-ary entropy function is also continuous and

monotone increasing for x ∈ [0,1 − 1
q
] with Hq(0) = 0 and Hq(1 − 1

q
) = 1, see Figure 2.3

for an illustration.

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

HqHxL

Figure 2.1: q-ary entropy function Hq(x) for q = 2 (thick curve), q = 3 (thin curve) and q = 5
(dashed curve)

If necessary, we can define the inverse of Hq by setting H−1q (y) to the unique x ∈ [0,1− 1
q
]

satisfying Hq(x) = y , for y ∈ [0,1). Furthermore observe that

Hq(x) = x logq(q − 1) +H(x) logq 2 . (2.10)

H is differentiable for all x ∈ (0,1) and its first derivative is given by

d H

dx
= log(1 − x) − log(x) . (2.11)

Another useful fact is that the entropy function is strictly concave, i.e.

λHq(x) + (1 − λ)Hq(y) < Hq(λx + (1 − λ)y) (2.12)

for all 0 ≤ x < y ≤ 1 and λ ∈ (0,1). An immediate consequence is the next lemma which
turns out to be very useful in many proofs of subsequent chapters. It can be seen as a
q-ary asymptotic version of Vandermonde’s identity.
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2.3 The q-ary Entropy Function

Lemma 2.3.2 (Vandermonde’s identity). Let R,L > 0. For 0 ≤ P ≤ R and 0 ≤ Q ≤ L it
holds

R Hq (P
R
) + LHq (Q

L
) ≤ (R +L)Hq (P +Q

R + L
) . (2.13)

Furthermore, equality holds iff P
R
= Q

L
.

Proof. W.l.o.g. P
R
≤ Q

L
. Consider Eq.(2.12) for x = P

R
, y = Q

L
and λ = R

R+L . Multiplying
both sides of the resulting equation with R +L gives Eq.(2.13). Obviously x = y implies
equality. On the other hand, R,L > 0 implies λ ∈ (0,1) and thus x ≠ y implies strict
inequality.

In all the asymptotic analysis we will make heavy use of the following approximation
formulas.

Theorem 2.3.3 (Stirling’s formula).

logn! = (n − 1

2
) logn − n +

1

2
log(2π) + o(1)

= n logn − n +O(logn)
for n →∞.

Corollary 2.3.4. For α ∈ [0,1] it holds

1

n
log( n⌊αn⌋) = H(α) + o(1) (2.14)

for n →∞.

Proof. Denote m ∶= ⌊αn⌋ and observe m = αn +O(1) for n →∞. Using Theorem 2.3.3
yields

1

n
log (n

m
) = 1

n
[n logn −m logm − (n −m) log(n −m) + o(n)]

= logn −α log(αn) − (1 − α) log((1 − α)n) + o(1) = H(α) + o(1) .

Analogously it follows

1

n
log(⌊αn⌋⌊βn⌋) = αH(β/α) + o(1) (2.15)

for sufficiently large n where α ∈ [0,1] and β ∈ [0, α].
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2 Preliminaries

Using Eq.(2.14) we can now give a sharp asymptotic estimate for volq(n, r) as defined
in Eq.(2.3).

Lemma 2.3.5. Let q ≥ 2 be an integer and r ∈ [0,1 − 1
q
]. Then

volq(n, rn) = qHq(r)n+o(n) (2.16)

for n →∞.

Proof. One computes

volq(n, rn)
qHq(r)n

= ∑
0≤i≤rn

(n
i
)(q − 1)i(1 − r)n ( r(q − 1)(1 − r))

rn

.

Since r ≤ 1 − 1
q
, it follows r

q−1 ≤
1
q
≤ 1 − r which implies r

(q−1)(1−r) ≤ 1. Thus the above
expression can be upper bounded by

∑
0≤i≤rn

(n
i
)(q − 1)i(1 − r)n ( r

(q − 1)(1 − r))
i

= ∑
0≤i≤rn

(n
i
)(1 − r)n−ir i ≤ 1

according to the binomial theorem which already gives volq(n, rn) ≤ qHq(r)n . The re-
maining direction follows by using Eqs.(2.10) and (2.14) since

volq(n, rn) ≥ ( n⌊rn⌋)(q − 1)rn = 2H(r)n+o(n)q r logq(q−1)

= q [H(r) logq 2+r logq(q−1)]n+o(n) = qHq(r)n+o(n) .

2.4 Coding Theory

In the introduction, we stated the CSD problem as a purely combinatorial problem.
Given a (binary) matrix H ∈ F

(n−k)×n
2 , a (binary) vector s ∈ Fn−k

2 and a target weight
ω ∈ N, find a solution e to He = s of Hamming weight ω. In this section, we highlight its
relation to coding theory. Therefore, we first provide basic definitions for linear codes
and introduce the minimum distance decoding problem which can easily be related to
the CSD problem. We then study some fundamental properties of random linear codes
which will help to understand the hardness of the CSD problem for random linear codes
in relation to the parameters of the underlying code. The key ingredient is to study
the distribution of the number of codewords of a particular Hamming weight in random
linear codes. Moreover, we provide some helpful results that will simplify the later
analysis of our algorithms.
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2.4 Coding Theory

2.4.1 Linear Codes: Basic Definitions

We will now recall some basic definitions for linear codes. For a more in-depth presen-
tation we refer to [vL98] or [Bar98]. The latter is an excellent reference for complexity
issues in coding theory. We start with the following simple definition.

Definition 2.4.1 (Linear code). A q-ary linear code C is a linear subspace of the
vector space Fn

q . If C has dimension k , we call C an [n, k] code. The ratio R ∶= k
n

is
called the (information) rate of C.

One usually specifies a linear code by the row-space of a k ×n generator matrix G,
i.e. C = {m⊺G ∶ m ∈ Fk

q}, or as the kernel of an (n − k) × n parity check matrix H,
i.e. C = {c ∈ Fn

q ∶ Hc = 0}. By applying Gaussian elimination to the rows of G, one can
always transform a generator matrix into standard form, i.e.

G = (Ik Q) (2.17)

where Ik is the k -dimensional identity matrix and Q ∈ F
k×(n−k)
q . It is easy to see that

G in standard form directly gives a parity check matrix H = (−Q⊺ In−k) since (2.17)
implies GH⊺ = 0. Thus we obtain the following simple statement.

Lemma 2.4.2. A generator matrix of an [n, k]-code can be transformed into a parity
check matrix in time O(n3), and vice versa.

Every [n, k]-code C trivially gives an injective encoding Encode ∶ Fk
q → Fn

q defined by
m ↦ m⊺G which can be efficiently computed in time O(n2). The crucial question in
coding theory is how to define an efficient decoding function Decode ∶ Fn

q → C such that

d(x,Decode(x)) = d(x,C)
for all x ∈ Fn

q . That is, the decoding function should assign a closest codeword to a given
word x ∈ Fn

q . Clearly, finding a closest codeword to x can be equivalently formulated as
follows:

i) Find a minimal weight representative of the coset x + C (such an element is often
called a coset leader).

ii) Find a minimal weight solution e to the equation He = s where s ∶= Hx is called
the syndrome of x.

The problem of finding the closest codeword to x is called the complete or minimum
distance decoding problem (MDD for short). Note that ii) already indicates its con-
nection to the CSD problem. In the next definition, we will introduce two fundamental
parameters of linear codes which are related to the decoding problem.
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2 Preliminaries

Definition 2.4.3. (Minimum distance, Covering radius) The minimum distance d of
a linear [n, k] code C is defined as the minimum Hamming-distance between every two
distinct codewords, i.e.

d ∶= d(C) ∶= min
x≠y∈C

d(x,y) = min
c∈C∖{0}

wt(c) .

The covering radius ρ(C) of C is

ρ ∶= ρ(C) ∶=max
x∈Fn

q

d(x,C) .

We call a decoding function ω-error correcting, if for all error patterns e ∈ Bq(n, ω)
and all c ∈ C it holds Decode(c + e) = c. This means one can correctly decode any
codeword that is perturbed by arbitrary error vectors of weight ≤ ω. Note that ω ∶= ⌊d−1

2
⌋

is the largest radius such that the balls c + Bq(n, ω) centered around all codewords are
disjoint. Consequently, all error patterns in Bq(n, ω) can uniquely be decoded and
thus ω is the error capability of the code (by maximality of ω there are at least two
distinct codewords with intersecting Hamming balls of radius ω + 1 and decoding will
fail for some elements in the intersection). Similarly, the covering radius ρ resembles
the smallest possible radius such that Fn

q = ⋃c∈C{c+Bq(n, ρ)}, i.e. the Hamming balls of
radius ρ centered around the codewords cover the entire space. Knowing the covering
radius of a code helps to understand the complexity of the complete decoding problem
due to the following trivial observation which relates the maximal weight of a coset
leader to ρ(C ).
Lemma 2.4.4.

ρ(C) =max
x∈Fn

q

min
y∈x+C

wt(y)
Proof. Follows immediately from minc∈C wt(x + c) = d(x,C).
2.4.2 Properties of Random Linear Codes

Since we will later compare the asymptotic complexity of decoding algorithms, we need to
study the typical behaviour of long codes, namely families {Cn}n∈N of codes with growing
length n and dimension k ∶= k(n) (where we consider q to be constant independent of
n). Particularly interesting is the ensemble of random linear codes of constant rate

0 < R < 1, i.e. the ensemble of codes given by parity check matrices H ∈R F
(n−k(n))×n
q

with limn→∞
k(n)
n
= R whose entries are chosen uniformly at random. Note that R > 0

implies that a random matrix of dimension (n − k(n)) × n will have full (row) rank
n − k with probability 1 − e−Ω(n) for sufficiently large n. In this work, we will study the
probability that a certain property is satisfied by a randomly chosen [n, k]-code. We
will say that almost all codes satisfy a certain property if this probability converges to
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2.4 Coding Theory

1 exponentially in n for n →∞. For simplicity we will stick to codes with constant rate
and constant minimum distance, i.e. codes where limn→∞

k(n)
n
= R and limn→∞

d(n)
n
= D

for some non-zero R,D ∈ R, respectively. We will abusively call R and D the rate and
minimum distance of {Cn}n∈N.

Remark 2.4.5. In coding theory, it is standard to study the asymptotic properties of
families {Cn}n∈N with constant rate and minimum distance. We point out that this is
not exactly compatible with the study of many codes used in code-based cryptography,
e.g. binary Goppa codes provide D = 1−R

logn
and thus D slowly decreases to 0 as n → ∞.

Nevertheless, our algorithms will also provide better running times for such families.

Let C denote a randomly chosen code of length n and dimension k with parity check
matrix H. We start with a very simple observation about random linear codes: For a
fixed vector x ∈ Fn

q and syndrome s ∈ Fn−k
q we have

Pr [Hx = s] = 1

qn−k
(2.18)

where the probability space is defined over the random choice H ∈R F
(n−k)×n
q . A single

equation ⟨hi ,x⟩ = si holds with probability 1
q

and all n − k equations are independent.

In particular, we have Pr [x ∈ C] = 1
qn−k .

We now formulate the main technical lemma that gives the first two moments of the
following random variable: Let S ⊂ Fn

q and define N (S) ∶= ∣S ∩ C∣, i.e. the number of
codewords contained in S . Clearly N (S) is a random variable (over the random choice
of C). Using Eq.(2.18) the following statement is easy to prove.

Lemma 2.4.6. Suppose 0 ∉ S. Then

i) E [N (S)] = ∣S ∣
qn−k

ii) Var [N (S)] ≤ (q−1)∣S ∣
qn−k ≤ (q − 1)E [N (S)] .

Proof. Set σ ∶= ∣S ∣ and arbitrarily order the elements of S = {x1, . . . ,xσ}. Define {0,1}-
variables χi where χi = 1 iff xi ∈ C, i.e. N (S) = ∑χi . Clearly, E [χi] = q−(n−k) and i)
follows by linearity of expectation. For ii) we need to deal with dependencies amongst
the χi . One computes

Var [N (S)] = σ∑
i=1

Var [χi] +∑
i≠j

Cov [χi , χj ] (2.19)

and further expands the first sum into

σ∑
i=1

E [χi] −E [χi]2 = σ

qn−k
(1 − 1

qn−k
) (2.20)
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2 Preliminaries

using χ2
i = χi . If xi and xj are linearly independent then χi and χj are independent

random variables and thus Cov [χi , χj ] = 0. To upper bound the second sum in Eq.(2.19)
we can simply assume the worst-case, i.e. for every x ∈ S we also have λx ∈ S for all
λ ∈ F∗q . For those xi = λxj we further have χi = χj and thus Cov [χi , χj ] = Var [χi] which
gives

∑
i≠j

Cov [χi , χj ] ≤ σ(q − 2)Var [χi] = σ(q − 2) 1

qn−k
(1 − 1

qn−k
) . (2.21)

Combining Eqs.(2.19)-(2.21) finally proves ii).

Remark 2.4.7. A similar analysis can be done for the case 0 ∈ S and yields

i) E [N (S)] = ∣S ∣−1
qn−k + 1

ii) Var [N (S)] ≤ (q−1)(∣S ∣−1)
qn−k ≤ (q − 1)E [N (S)] .

Also note that Lemma 2.4.6 can be easily generalised to the random variable N (S) ∶=∣S ∩ (x + C)∣ for any x ∈ C, i.e. we can obtain similar estimates for the expected number
of elements in S that are contained in a fixed coset of C.

Moreover, Lemma 2.4.6 allows to study another random variable related to the mini-
mum distance d(C) and the covering radius ρ(C): Consider the ball Bq(n, ω) and define

Nω ∶= N (Bq(n, ω)) (2.22)

as the number of codewords of weight ≤ ω. Clearly, Nω is monotone increasing in ω and
one expects Nω to become exponentially large in n as soon as ω exceeds a particular
value. Depending on the code rate R, this particular value is exactly given by the relative
Gilbert-Varshamov distance as defined next.

Definition 2.4.8 (Relative GV distance). Let 0 < R < 1. The relative Gilbert-
Varshamov distance DGV(R) ∈ R is the unique solution in 0 ≤ x ≤ 1 − 1

q
of the

equation

Hq(x) = 1 −R . (2.23)

Combining Lemma 2.4.6 with the tail inequalities presented in Section 2.2 allows to
prove the following important theorem.

Theorem 2.4.9. Almost all linear codes meet the relative Gilbert-Varshamov
distance, i.e. for almost all linear codes C of rate R it holds

d(C) ≥ ⌊DGV(R)n⌋ .
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Proof. We consider the family {Cn}n∈N of random linear codes with fixed rate R, i.e.

limn→∞
k(n)
n
= R. Let ε > 0 and set ω ∶= ⌊(DGV(R) − ε)n⌋. Due to Lemma 2.3.5 we know

volq(n, ω) = qHq(ω/n)n+o(n). By definition of DGV(R) and by monotonicity of Hq it holds

Hq(ω
n
) ≤ Hq(DGV(R) − ε) = 1 −R − ε′

for some ε′ > 0. We can now apply Lemma 2.4.6 and obtain

E [Nω] = qn(Hq(ω/n)−(1−R))+o(n) = q−ε
′n+o(n) . (2.24)

Now the Markov inequality implies Pr [Nω ≥ 1] ≤ E [Nω] which decreases exponentially
in n for every fixed ε > 0. In other words, the fraction of codes with minimum distance
D ≤ DGV(R) − ε tends to zero.

Note that the proof of Theorem 2.4.9 also works for ω > ⌊DGV(R)n⌋ in which case
Eq.(2.24) becomes E [Nw ] = qεn+o(n) for some ε > 0. The Chebychev inequality then
guarantees

Pr [∣Nω −E [Nw ] ∣ ≥ 2E [Nw ]] ≤ q − 1

4
q−εn . (2.25)

We thus see that Nω is tightly concentrated around E [Nω] for almost all codes. Observe

that for very large ω ≥ (1 − 1
q
)n, Lemma 2.3.5 can no longer be applied and we do only

have the trivial estimate E [Nw ] = qnR−o(n), i.e. almost all codewords are contained in
Bq(n, ω). We summarize these findings in the following corollary.

Corollary 2.4.10. For almost all linear codes of rate R it holds

Nw =
⎧⎪⎪⎨⎪⎪⎩
qn(Hq(ω/n)−(1−R))+o(n), DGV(R)n < ω < (1 − 1

q
)n

qnR−o(n), (1 − 1
q
)n ≤ ω ≤ n .

(2.26)

In summary, Nω = 0 for all ω < DGV(R)n but Nω = 2O(n) for all ω > DGV(R)n with high
probability and for sufficiently large n. A similar but refined analysis allows to tightly
estimate the covering radius ρ(C) as stated in the next theorem whose proof is omitted.

Theorem 2.4.11 (Theorem 3.4 in [Bar98]). For almost all linear codes of rate
R it holds ρ(C) = DGV(R)n + o(n).
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As mentioned in the introduction, there is a dire need to construct candidate (trapdoor)
one-way functions based on assumptions other than the classical number theoretic ones.
The aim of this chapter is to explain how this can be achieved by using hard prob-
lems from coding theory. Namely, in Section 3.1, we will introduce the computational
syndrome decoding problem (CSD for short), which is the fundamental problem in code-
based cryptography, and we will show two classical constructions of (trapdoor) one-way
functions based on this problem in Section 3.2. For pure one-way functions (i.e. no
trapdoors), one can use random linear codes, i.e. codes without any particular mathe-
matical structure. For those codes, the most efficient algorithms for the CSD problem
belong to the class of information set decoding algorithms whose study is the main topic
of this thesis. For trapdoor one-way functions, one has to use particularly structured
codes that allow for efficient decoding. One then hopes that the public description of the
corresponding one-way function (which can be seen as a randomly transformed version
of the structured code) looks like a random code. If this is the case, the problem of
inverting the function becomes nearly as difficult as in the purely random setting. This
highly motivates the primary goal of this thesis:

Improving the efficiency of algorithms for the problem of
decoding random linear codes.

3.1 The Computational Syndrome Decoding Problem

The computational syndrome decoding problem is the standard computational problem
in the code-based cryptography literature. The security of essentially all code-based
cryptographic constructions relies on the intractability of the CSD problem for random
linear codes. Besides giving a formal definition of the CSD problem we will discuss

• basic useful properties,

• the significance of the parameter ω and

• the relation to the minimum distance decoding (MDD) problem.
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Definition 3.1.1 (CSD problem). The computational syndrome decod-
ing problem (CSD) is defined as follows: Given a parity check matrix

H ∈ F
(n−k)×n
q , a syndrome s ∈ Fn−k

q and a target weight ω ∈ N, find a vector
e ∈ Fn

q with He = s and wt(e) ≤ ω (if such e exists). We denote a particular
instance of this problem by CSDω(H, s).

The running time of an algorithm for the CSD problem clearly depends on the pa-
rameters n,k ,ω and q which we denote it by T (n, k , ω, q). Of course, the notion of
running time has to be defined with respect to some computational model: We assume
that the field operations +,× as well as the inversion of field elements can be carried out
in unit time and we define the running time of an algorithm to be the number of field
operations it executes. This is a reasonable model when q is bounded by a polynomial
in n: The simplest way to implement the field operations (in polynomial time in n)
is to use look-up tables of polynomial size and these polynomial factors will disappear
in our analysis in any case as we will discuss next. Moreover, most of the algorithms
presented in this work will be probabilistic and we are interested in their average-case
performance. That is, the actual running time of these algorithm is a random variable
defined over the random choice of the input instance and the internal random coins of
the algorithm. We refer to Remark 4.1.3 for a detailed discussion about how to analyse
these algorithms.

For an appropriate choice of the parameters, the CSD problem for random linear
codes is hard and all generic algorithms will have exponential running time in n. One
usually compares the performance of generic decoding algorithms for long codes of rate
0 < R < 1 where one additionally parametrizes ω = ⌊Wn⌋ for some W > 0. In this setting,
the standard metric to compare such algorithms is given by the so-called complexity
coefficient F (R,W , q) as introduced in [CG90], i.e.

F (R,W , q) ∶= lim
n→∞

1

n
logq T (n, ⌊Rn⌋, ⌊Wn⌋, q) , (3.1)

see also Chapter 7 for a short critical discussion for the case q > 2. As mentioned
above, this metric ignores polynomial factors p(n) as lim 1

n
log p(n) = 0. Through-

out this thesis, we will call two decoding algorithms with equal complexity coefficients
(asymptotically) equivalent. Some general remarks about the CSD problem are in
order.

Remark 3.1.2. 1. The above definition does not require to find a minimal weight
solution, every solution of weight ≤ ω is admissible.

2. Compared to other computational problems used in cryptography (e.g. the Diffie-
Hellman problem) the CSD problem is equivalent to its decisional variant: Let
O(H, s, ω) be an oracle that tells whether a solution e with He = s and wt(e) ≤ ω

exists or not. To determine e1, one simply invokes O on H′ ∶= H[2,n] (i.e. the
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3.1 The Computational Syndrome Decoding Problem

matrix consisting of all but the first column of H), s′ ∶= s − e1h1 (where h1 is the
first column of H) and ω′ ∶= ω−1 for all e1 = 1, . . . , q −1 (recall that q is constant).
If O gives a positive answer for some e1 ∈ F∗q , we fix e1 to that value and proceed
with H′, s′ and ω′. Otherwise, we set e1 ∶= 0 and continue with H′, s and ω.

The next lemma states a very useful property of the CSD problem, that is one can
always perform certain linear algebra transformations without changing the problem.
Specifically one can

• permute the columns of H (and the coordinates of e) or

• apply elementary row operations on H (and the syndrome s).
Lemma 3.1.3. Let P ∈ Fn×n

q be a permutation matrix and T ∈ F
(n−k)×(n−k)
q invertible.

Then

e solves CSD(H, s, ω) if and only if ẽ solves CSD(H̃, s̃, ω)
where ẽ = P−1e, H̃ = THP and s̃ = Ts.

Proof. Clearly, wt(e) = wt(ẽ) and

He = s⇔ THPP−1e = Ts⇔ H̃ẽ = s̃ .

On the one hand, this property enables us to transform H into standard form. On
the other hand, it allows to rerandomize the error positions of a CSD instance. Those
properties, as simple as the may be, lie at the heart of all ISD algorithms.

The Parameter ω

Let us now discuss the hardness of the CSD problem for long codes of rate R depending
on the choice of ω. Clearly, the problem is easy if

• ω is constant or

• ω is very large, namely for ω > (1 − 1
q
)n a randomly chosen preimage of s has

weight ≤ ω with good probability.

In the asymptotic setting for long codes of rate R and ω = ⌊Wn⌋, it is often heuris-
tically assumed that the CSD problem becomes hardest for fixed W = DGV(R). This
heuristic is justified as follows: Let us assume that at least one solution always exists
(this assumption is always true in cryptographic settings). For W < DGV(R) the proof
of Theorem 2.4.9 implies uniqueness of the solution with high probability whereas the
search space Bq(n, ω) clearly grows proportionally with ω (and exponentially in n). On
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     hard                                 easy

DGVHRL�2 DGVHRL H1-RL�2
W

FHR, WL

Figure 3.1: Complexity of ISD algorithms for varying 0 < W < 1
2

(binary case). The gray
region covers instances where W lies below the error capability of the code.

the other hand, Corollary 2.4.10 implies that there is an exponential number of solu-
tions for W > DGV(R) which renders the problem easier. Consequently, the hardest case
might be expected for W = DGV(R).

To support this argument, we could further consider the behaviour of the best known
algorithms for the CSD problem for fixed n and R and varying W . Principally, the best
known algorithms fall into the class of information set decoding algorithms. As we will
see in Chapter 4.1.1, the simplest ISD variant is due to Prange which, for the binary
case, has complexity coefficient

F (R,W ) = ⎧⎪⎪⎨⎪⎪⎩
H(W ) − (1 −R)H( W

1−R
) , W ≤ DGV(R)

1 −R − (1 −R)H( W
1−R
) , DGV(R) <W < 1−R

2
.

(3.2)

Note that this formula also distinguishes the cases “one solution” vs. “many solutions”.
As we will shortly see, all ISD algorithms will repeatedly try to recover error vectors e
with a particular weight distribution (e.g. e must have Hamming weight 0 on its first
k coordinates for Prange’s algorithm). For a fixed solution e, the success probability
of a single iteration of such an algorithm can easily be computed (e.g. the first case in
Eq.(3.2) exactly represents the expected number of iterations until the unique solution
is found). If there are (exponentially) many solutions, the expected number of iterations
can be divided by the number of solutions. In terms of complexity coefficients, the
second case of Eq.(3.2) is simply obtained from the first case by subtracting the number
of solutions (which is given by H(W ) − (1 −R) due to Corollary 2.4.10).

Note that F (R,W ) achieves its maximum value at W = DGV(R), as illustrated in
Figure 3.1, and that the problem becomes easy for W = 1−R

2
. In summary, the CSD

problem is most interesting for error weights 0 < W ≤ DGV(R) and we restrict to this
range for all asymptotic analysis of ISD algorithms presented in this work. The resulting
relation between W and R is illustrated in Figure 3.2.
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Figure 3.2: Range of error weights W below the relative GV bound in relation to R (shaded
area) and upper bound 1−R

2
(frequently used in proofs of subsequent chapters).

Relation to the MDD problem

We conclude this section by relating the CSD problem to the MDD problem. When
studying the complexity of the MDD problem from an asymptotic point of view it is
legitimate to restrict to decoding algorithms that can correct up to DGV(R)n errors
due to Theorem 2.4.11. Let A be an algorithm for the CSD problem with complexity
coefficient FA(R,W , q). For long codes, Theorem 2.4.11 implies that decoding errors up
to weight Ω ∶= ⌈(DGV(R) + ε)n⌉ is sufficient to solve the MDD problem (for any ε > 0).
Thus, repeatedly invoking A at most Ω times for growing values ω = 1,2, . . . allows to find
a minimum weight solution for the MDD problem As we have seen before, A’s running
time is likely to increase with ω. Consequently the overall complexity coefficient for the
resulting MDD algorithm can be upper bounded by FA(R,DGV(R)+ε, q). Similarly, we
can assume w.l.o.g. that the actual weight of the solution to a given CSD instance is
always known.

3.2 Code-based One-way Functions

For our purposes, a rather informal definition of one-way functions (OWF for short) is
sufficient. A one-way function is a mapping f ∶ X → Y with domain X and range Y
such that the following two properties are fulfilled:

i) f is efficiently computable (for all x ∈ X ).

ii) For almost all y ∈ Y it is (computationally) infeasible to find a preimage x ∈ f −1(y).
There are essentially two dual ways of building a one-way function based on the

hardness of the CSD problem. For simplicity we only consider the binary case from
now on. Recall that Wn,ω is the n-dimensional Hamming sphere of radius ω. The
first function, due to McEliece [McE78], is described by a generator matrix and simply
works by mapping a codeword c and an error vector e to c + e. The second one, due to
Niederreiter [Nie86], is described by a parity check matrix and simply maps error vectors
e to syndromes He, see Figure 3.3.
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fG ∶ Fk
2 × Wn,ω → Fn

2( m , e ) ↦ m⊺G + e⊺
fH ∶ Wn,ω → Fn−k

2

e ↦ He

Figure 3.3: The McEliece OWF (left) and the Niederreiter OWF (right)

Note that when choosing G or H at random, the hardness of inverting the resulting
OWFs actually requires the average-case hardness of the CSD. Clearly both functions
are equally hard to invert. If we employ random codes of length n and rate R, the
observation made in Section 3.1 suggests fixing W = DGV(R) (where ω ∶= ⌊Wn⌋). Note
that both functions will be

• injective if W = DGV(R)−ε
2

or,

• surjective if W = DGV(R) + ε

with high probability for arbitrary ε > 0 and sufficiently large n. Unfortunately, we
almost never get bijective functions. For example, the Niederreiter OWF can be used
to build the identification scheme due to Stern [Ste93]. Besides this, Fischer and Stern
[FS96] showed how to construct a pseudo-random generator based solely on the oneway-
ness of the Niederreiter OWF. To obtain more powerful tools, one needs to extend the
OWFs into injective trapdoor one-way functions (T-OWF for short). We will now show
how to turn the McEliece OWF into a T-OWF. A similar construction exists for the
Niederreiter OWF.

How to Embed a Trapdoor

In addition to an ordinary one-way function, a trapdoor one-way function allows for
efficient inversion by using some auxiliary trapdoor information. That is, one has to
efficiently generate a public description of a OWF f ∶ X → Y together with a secret
description of a function f −1 such that f −1(f (x)) = x for all x ∈ X .

Consequently, we can no longer use the class of random linear codes in order to
construct a T-OWF as we do not know how to generate f −1 (an efficient algorithm for
the CSD problem, for fG when G is a randomly chosen generator matrix). The basic
strategy to resolve this problem is simple:

• Take a secret code C which belongs to a family of codes equipped with an efficient
decoding algorithm Decode. The description of the decoding algorithm is publicly
known (but it needs the secret structured description of C as input).

• Randomly transform C into an equivalent code C̃ = Ψ(C), where Ψ is meant to
mask the structure of C.
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3.2 Code-based One-way Functions

• C̃ defines the public function f whereas C and Ψ allows one to efficiently compute
f −1.

More concretely, let C be an [n, k ,d]-code with a structured generator matrix Gsec and
assume Decode is ω-error correcting given Gsec, i.e. DecodeGsec

(m⊺Gsec + e⊺) = m⊺Gsec

for all e ∈ Wn,ω and all m ∈ Fk
2 . To generate an equivalent random-looking code, one

randomly permutes the columns of Gsec and applies a random change of basis, i.e.
one sets Gpub ∶= TGsecP for a randomly chosen permutation matrix P ∈ Fn×n

2 and an
invertible transformation matrix T ∈ Fk×k

2 . Then f is simply the usual McEliece OWF
fGpub

(with error weight ω). The trapdoor, i.e. the secret description of f −1, consists of
Gsec together with the secret transformation matrices T and P. Given y = fGpub

(m,e),
one first computes

ỹ = yP−1 = (m⊺T)Gsec + e⊺P−1 .

Since wt(e⊺P−1) = wt(e) = ω, it follows Decode(ỹ) =m⊺TGsec which eventually reveals
m and e and allows to successfully invert f .

In contrast to the pure OWF based on random linear codes, the onewayness of the
above construction is no longer equivalent to the average-case hardness of the CSD
problem for random linear codes. Clearly, an algorithm that solves the CSD probem can
still be used to invert f but the converse is no longer true. That is to say an inversion
algorithm for f merely solves the CSD problem for a particular class of codes (equivalent
to an efficiently decodable class).

Structural Attacks

One way to invert the McEliece T-OWF is to run a so-called structural attack which
means that one may try to recover Gsec from Gpub. A necessary condition to avoid
such attacks is to choose an exponentially large family of codes. The support split-
ting algorithm (SSA) [Sen00] allows to decide whether two linear codes C and C̃ are
permutation-equivalent, i.e. it determines whether the codewords of C̃ can be obtained
by permuting the coordinates of the codewords in C. If so, the algorithm also recovers
the permutation. Thus, given Gpub one could simply guess Gsec and run the SSA. If one
guesses correctly, the SSA outputs P (which also reveals T by linear algebra). Further-
more, there are many examples of families of codes that appeared to be vulnerable to
specific structural attacks, e.g.

• Generalised Reed-Solomon codes (broken by Sidelnikov and Shestakov in [SS92]),

• Reed-Muller Codes (broken by Minder and Shokrollahi in [MS07]),

• Quasi-cyclic alternant codes and quasi-dyadic Goppa codes (broken by Faugère et
al. in [FOPT10]).

Fortunately, the family of general binary Goppa codes, as originally proposed by
McEliece, resists all known structural attacks. Thus the following assumption is fre-
quently used in the literature (e.g. in [FS01] or [NIKM08]).
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3 Code-based Cryptography

Assumption 3.2.1 (Goppa-Code Indistinguishability, informal). A randomly
transformed generator matrix Gpub of a binary [n, k] Goppa code is computa-
tionally indistinguishable from a random generator matrix G ∈ Fk×n

2 .

Under this assumption, one can simply ignore the mathematical structure of the un-
derlying code when attacking the McEliece T-OWF. Consqeuently we do not need to
introduce Goppa codes and the central goal of this work can be reformulated as follows.

Find improved inversion algorithms for the McEliece T-OWF.

As an application of our work, we will give refined security estimates for practical
concrete parameter sets of the McEliece T-OWF (as proposed in [BLP08]) in Section 8.

n k ω Security Level
1632 1269 34 80 Bit
2960 2288 57 128 Bit
6624 5129 117 256 Bit

Table 3.1: Parameters for the McEliece T-OWF for binary Goppa codes.

Remark 3.2.2. 1. Historically, the McEliece T-OWF was introduced as a public-key
encryption scheme. However, the function does not fulfil any of the modern se-
curity notions for public-key encryption. Clearly, a McEliece “ciphertext” c =
m⊺Gpub + e⊺ is malleable. Adding arbitrary codewords m̃⊺Gpub to c gives a new
valid ciphertext c̃ which directly breaks the CCA-security of the scheme. Further-
emore, one does not even need a full decryption oracle. So-called reaction attacks
[HGS99] are easily possible: A server that rejects malformed ciphertexts (e.g. ci-
phertexts with false error weight) can be seen as an oracle for the decisional CSD
problem which allows to recover e (see Remark 3.1.2). Even worse, also the weaker
notion of CPA-security can be attacked as follows: Given a challenge ciphertext
c = m⊺

bGpub + e which is the encryption of one of two known messages m0 and
m1, one can determine the actual bit b: Simply add m⊺

0Gpub to c. If b = 0, the
resulting vector will have weight ω. Otherwise, the weight will be much larger .

2. There are several ways to transform the McEliece T-OWF into a real public-key
encryption scheme with strong security guarantees, e.g. the Kobara-Imai trans-
formation [KI01] which gives CCA2-security in the random oracle model or even
standard model variants like the proposal of Dowsley et al. [DMQN09] or the re-
cent work of Persichetti [Per12]. Moreover, the weaker notion of CPA-security in
the standard model can be achieved very easily: Pad the message m with a random
bit-string of appropriate length [NIKM08]. However, all proposals are based on the
hardness of inverting the McEliece T-OWF and are thus theoretically vulnerable
to the improved attacks presented in this thesis.
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4 Information Set Decoding

“A mathematical theory is not to be considered
complete until you have made it so clear that you can
explain it to the first man whom you meet on the
street.”

Carl Friedrich Gauss

4.1 Introduction

Information set decoding (ISD for short) can be seen as a class of generic decoding
algorithms for the CSD problem for random linear codes – or equivalently – for codes
without any particular structure. Throughout this chapter (and even the next two) we
will only consider the binary case and we will show how to generalise all our results to
arbitrary q-ary codes in a straightforward way in Chapter 7. Recall that we can assume
without loss of generality that the wanted error vector has weight exactly ω and we do
know the value ω.

Obviously, when designing decoding algorithms for random binary linear codes, there
is essentially no structure to exploit except

• the vector space characterisation of linear codes,

• the knowledge of the target weight ω of the error vector e.

Essentially, knowledge of ω merely allows to define the brute force search space as
the set Wn,ω and to restrict the search to particular error patterns that occur with a
certain probability (which can be easily computed). Exploiting the vector space structure
essentially corresponds to applying elementary transformations to H as explained in
Lemma 3.1.3, in particular permuting the columns of H allows one to randomly shuffle
the error positions of e. In summary, ISD simply provides a clever way to

Reduce the brute-force search space by linear algebra.
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In 1962, Prange introduced the first ISD algorithm [Pra62], which is often called plain
information set decoding, and thus created the basis for all the subsequent improve-
ments. Plain ISD simply repeatedly permutes the coordinates of e until all errors finally
occur in the last n − k positions only (which is rather restrictive). We will explain
Prange’s algorithm in full detail in the next section. As a precursor, we shall estimate
the brute-force complexity of the CSD problem for a long code of rate R and the worst-
case weight W = DGV(R), see Eq.(2.23). Clearly, this complexity serves as a trivial
benchmark for all ISD algorithms. Depending on R, a brute-force algorithm would

• either enumerate all error vectors e of weight ω (which costs 2H(W )n+o(n) opera-
tions, i.e. 2(1−R)n+o(n) operations for W = DGV(R))

• or search a minimum weight representative of the coset y + C for some y in the
preimage of s (which costs 2Rn+o(n) operations).

Therefore, the resulting complexity coefficient FBF(R) ∶= FBF(R,DGV(R)) is given by

FBF(R) = ⎧⎪⎪⎨⎪⎪⎩
R ,0 ≤ R ≤ 1

2

1 −R 1
2
< R ≤ 1

(4.1)

which is illustrated in Figure 4.1. Note that, in contrast to all ISD algorithms, the above
brute-force algorithm is deterministic and will always output a solution after at most
2FBF(R)n+o(n) steps.

Remark 4.1.1. In the above description, we ignored the costs of some operations that oc-
cur in the brute-force algorithm, e.g. for every error vector e one would have to compute
He and compare the result to the given syndrome s. Similarly, the costs for comput-
ing some y in the preimage of s have been neglected. Cleary, both operations can be
implemented in time polynomial in n and thus do not affect the complexity coefficient
at all. In most chapters, we will ignore such costs since we are mainly interested in the
asymptotic behaviour of the different ISD algorithms. This will significantly simplify
the runtime analysis for the more sophisticated algorithms. For practical applications,
it is actually important to take all these costs into account and we will give a refined
analysis of our new algorithm in Section 8.

Roadmap

The rest of this chapter is organised as follows: As already stated, we begin with a
description of Prange’s plain ISD in the next section. In Section 4.1.2 we will use plain
ISD as an example to treat the technical issue of defective permutations which slightly
complicates a rigorous runtime analysis of ISD algorithms. After the introductory section
we will sketch some alternative approaches to design generic decoding algorithms in
Section 4.2. Finally, we extend plain ISD to less restrictive error patterns in Section 4.3.
This generalised description will cover many known ISD algorithms like Stern’s ISD
algorithm [Ste89] or the recently proposed Ball-collision decoding [BLP11a] which was
considered to be the fastest ISD algorithm.
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4.1 Introduction - Plain Information Set Decoding

4.1.1 Prange’s Algorithm - Plain Information Set Decoding

The main idea of plain ISD is fairly simple:

• Compute the standard form H̃ of a randomly column-permuted version of H.

• Hope that no errors occur in the first k coordinates (in that case the syndrome s̃
will reveal the permuted version ẽ of e).

Thus, repeatedly computing such randomised standard forms until a solution is found
yields a a simple randomised Las-Vegas algorithm for the CSD problem.

0.2 0.4 0.6 0.8 1.0
R

0.1

0.2

0.3

0.4

0.5

FHRL

Figure 4.1: Brute-force complexity coefficients FBF (thick line) and FPra for Prange’s algorithm
(thin curve) where W = DGV(R) (complete decoding).

More precisely, we first compute

H̃ ∶= THP = (Q In−k) (4.2)

for a non-singular k × k -matrix T and a random, n × n permutation matrix P (and
similarly consider s̃ ∶= Ts according to Lemma 3.1.3). Let us now assume that the
corresponding permuted error vector ẽ ∶= P−1e exclusively contains errors in the last
n − k coordinates. Since H̃ is in standard form, i.e. H̃ = (Q In−k), it follows

s̃ = H̃ẽ = ẽ[k+1,n] . (4.3)

Thus s̃ will reveal ẽ = (0, s̃) (where 0 denotes the zero vector of length k) whenever
we picked a good permutation P, where a good permutation is one that maps all of
e’s non-zero positions to the last n − k coordinates. Moreover, it is easy to determine
whether we picked a good permutation by simply checking if s̃ has the correct weight,
i.e. if wt(s̃) = ω. The overall algorithm is summarised in Algorithm 1 (where Σn denotes
the symmetric group of n elements and x ←R X means “assign x to a random value from
X ”). Since the initial transformation H̃ = THP will be reused in later algorithms, we
denote the first three lines of the inner loop of Algorithm 1 by (H̃, s̃,P)← Init(H, s).
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Algorithm 1: Plain-ISD

input : Parity check matrix H, syndrome s and target weight ω.
output: Error vector e with He = s and wt(e) = ω.

found← false;
while not found do

P←R Σn ;
H̃← THP = (Q In−k);
s̃← Ts;
if wt(s̃) = ω then

ẽ ← (0∣∣s̃);
found← true;

return Pẽ;

Heuristically, the running time of Algorithm 1 can be estimated as follows: The prob-
ability of picking a good permutation is given by

(n−k
ω
)

(n
ω
) . (4.4)

Note that P−1e is a random word of length n and weight ω and amongst those, there
are exactly (n−k

ω
) good cases. Intuitively, the inverse of this probability, which we will

denote by

NPra(n, k , ω) ∶= (n
ω
)(n − k

w
)−1 , (4.5)

will give a good estimate for the necessary number of iterations, i.e. the number of
guessed permutations P until a good one is found. Thus, for long codes of rate R and
W ≤ DGV(R) (unique solution), one can estimate the complexity coefficient as

FPra(R,W ) = lim
n→∞

1

n
logNPra(n, ⌊Rn⌋, ⌊Wn⌋) (4.6)

= H(W ) − (1 −R)H( W

1 −R
) ,

which coincides with Eq.(3.2).

The main technical problem with this heuristic analysis stems from the fact that we
completely ignored the issue of a failed standard form computations. It will happen
(even with constant probability) that a random permutation P yields a column-permuted
parity-check matrix that contains a singular submatrix in its last n − k columns. Our
next goal is to prove a rigorous theorem as stated next.
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Theorem 4.1.2 (Plain ISD). Let 0 < R < 1 and 0 <W ≤ DGV(R). For almost
all binary [n, ⌊Rn⌋]-codes it holds: Plain information set decoding successfully
terminates after 2FPra(R,W )n+o(n) iterations for every error vector e ∈ Wn,⌊Wn⌋
with overwhelming probability.

Remark 4.1.3. Let us clarify the formulation of Theorem 4.1.2: In general, Plain ISD
(and all subsequent ISD algorithm) are Las Vegas algorithms. A Las Vegas algorithm is
a randomised algorithms that never errs and there are normally two ways of formalising
their definition: On the one hand, one may require that the algorithm always outputs
a correct solution if it terminates. In this case, the running time becomes a random
variable (over the algorithm’s randomness) and one naturally restricts to algorithms
with finite expected running time. On the other hand, one may prefer to define an
algorithm with bounded worst-case running time, e.g. by simply aborting computation
after a predefined number of steps and by outputting a failure message. In this case,
the quality of the algorithm is additionally measured by its failure probability (to avoid
confusion we point out that the term failure does not mean that the algorithm outputs a
false solution). With this in mind, the above theorem (and all subsequent theorems) shall
be understood as follows: First of all, we always need to exclude a particular (negligibly
small) set of “bad” input matrices. For those input matrices, we are not able to prove
rigorous bounds on the algorithm’s running time. In the case of Plain ISD, those input
matrices correspond to matrices containing submatrices of unnaturally high co-rank, see
Section 4.1.2. Secondly, when given a “good” input matrix and arbitrary error vector
e, we always give a worst-case bound on the algorithm’s running time and bound the
failure probability of the algorithm by some function that decreases exponentially in n.
Note that the pseudo code presentation of all algorithms in this thesis does not properly
cover the second point: To avoid an additional parameter that upper bounds the allowed
number of iterations, we stick to formulating all algorithms using while-loops. We point
out that one could easily fix this problem by replacing the while-loop by a for-loop that
is executed at most O(n ⋅ NA) times where NA denotes expected number of iterations
according to the probability of guessing a good permutation, compare Eq.(4.5) and
Lemma 4.1.4 for Plain ISD.

Let us now clarify the issue of “bad” input matrices. Imagine the following (very un-
likely) worst-case scenario: Assume that H contains ω linearly dependent columns. The
error vector whose error positions exactly match those columns will never be found by
Algorithm 1: Any good permutation yields a singular submatrix in H and the standard
form computation will always fail. We will show a simple solution (inspired by [CG90])
for plain ISD in the next section. Since all subsequent ISD algorithms will suffer from
the same problem, we will implicitly assume that a similar modification could easily be
carried out for the respective algorithms.
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4.1.2 Dealing with Defective Permutations

For a fixed generator matrix H, we call a permutation P defective if the submatrix(HP)[k+1,n] has rank < n −k . Our aim is to provide a way that still allows to carry out a
standard form computation for those defective permutations and to search for the vector
ẽ = P−1e in time comparable to Algorithm 1. Once such a procedure is found, the inner
loop of plain ISD will actually work for all permutations. In this setting, the number of
iterations can indeed be estimated by NPra(n, k , ω) as stated in the next lemma.

Lemma 4.1.4. Let e ∈Wn,ω and define f (n, k , ω) ∶= NPra(n, k , ω) ⋅n. Let P ⊂ Σn denote
a set of f (n, k , ω) randomly chosen permutations. Then there is a good permutation
P ∈ P (w.r.t. to e) with overwhelming probability.

Proof. The proof is straightforward. Define random variables Xi = 1 iff the i -th per-
mutation is good (w.r.t. e). Clearly, Pr [Xi = 1] = NPra(n, k , ω)−1. Now define X ∶=
∑f (n,k ,ω)

i=1 Xi . It holds

Pr [X = 0] = (1 −N −1Pra(n, k , ω))f (n,k ,ω)
≤ e−n

using (1 − 1
n
)n ≤ e−1 for all n ∈ N. Thus there will be at least one good P in P with

probability ≥ 1 − e−n .

The following procedure deals with a defective permutation P. Let H′ ∶= (HP)[k+1,n]
denote the corresponding singular submatrix for a fixed parity check matrix H.

• Add the next ℓ ∶= ℓ(n, k) columns to H′ until rank(H′) = n − k .

• Let I ⊂ [k − ℓ+1,n] denote a set of n −k linearly independent indices
and J ∶= [k −ℓ+1,n]∖I its complement. Transform the whole matrix
HP such that the submatrix (HP)I is the identity matrix (and let
T denote the corresponding transformation matrix).

• Enumerate all 2ℓ error patterns corresponding to indices in J : For
every E ⊂ J compute s′ ∶=∑i∈E(THP)i and check whether wt(s′+s̃) =
ω − ∣E ∣ (where s̃ = Ts according to the second step). If the weight
check succeeds, we set

ẽi ∶= 1 for all i ∈ E ,

ẽik ∶= 1 for all k with (s + s′)k = 1

where I = {i1, . . . , in−k}. Finally, we output e ∶= Pẽ as before.

Figure 4.2: Dealing with defective permuations.
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The above procedure outputs a correct solution, since

THPẽ =∑
i∈E

(THP)i + ∑
ik

(s̃+s′)k=1

(THP)ik = s′ + (s̃ + s′) = s̃ = Ts .

We used the fact (THP)ik is the k -th unit vector of length n − k .
To show that this procedure does not affect the asymptotic running time, it is sufficient

to show that 2ℓ(n,k) grows subexponential in n, i.e. the corank of (HP)I has to be small.
This is stated in the following lemma, whose proof is omitted.

Lemma 4.1.5 ([BKvT99, Lemma 3]). For almost all a random, binary (n − k) × n
matrices H it holds

corank(HI ) ≤
√

log ( n

n − k
)

for every I ⊂ [n] of size ∣I ∣ = n − k.

Thus for almost all codes we have ℓ(n, k) ≤√log ( n

n−k), i.e. 2ℓ(n,k) is indeed subexpo-
nential in n. Combining Lemma 4.1.4 and Lemma 4.1.5 eventually proves Theorem 4.1.2.

4.2 Alternative Approaches

There are four main concepts apart from ISD for designing generic decoding algorithms,
which we will describe very concisely. The first two approaches both employ precom-
puted test sets which depend on the input code. In many cases, the precomputation of
the test set is more expensive than a direct application of ISD algorithms. Nevertheless,
once a test set has been created, decoding can become very fast (and thus the algorithms
might be useful in settings where one has to decode the same code repeatedly). In the
following denote by x = c + e a received word with wt(e) = ω.

Statistical Decoding (SD). Let h be a parity check equation. The crucial observation,
made by Al Jabri in [AlJ01], is as follows: Assume ⟨h,x⟩ = 1. Since ⟨h,c⟩ = 0, the non-
zero positions of h reveal some information about the error positions (i.e. an odd number
of error positions coincides with non-zero entries of h). Collecting this information for
many different h’s may allow to recover e. In contrary to ISD algorithms, statistical
decoding gives a Monte-Carlo algorithm that might output false solutions with a certain
probability. This probability heavily depends on choice of the test set H = {h1,h2, . . .}.
Generally,

• H should provide a particular structure that allows to estimate the statistical
properties of the test,

• H should be large enough to guarantee sufficient reliability of the statistical test.
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Al Jabri proposed using HΩ ∶= Wn,Ω. That is one uses a large number of parity check
equations of fixed weight Ω for the statistical test. Clearly, computing such a test set
requires to compute codewords of fixed weight in the dual code (i.e. the code generated
by the parity check matrix H), which is a computationally hard problem. In contrary to
ISD algorithms, there exists no proper asymptotic analysis of SD and it remains open
how to choose Ω optimally and how to compute HΩ efficiently. In [Ove06], Overbeck
presents a concrete analysis for some McEliece parameters and concludes that there is no
choice of Ω that achieves both correct decoding with good probability and competitive
performance.

Gradient Decoding (GD). In [AB98], Ashikhmin and Barg proposed the following
general framework that is based on a test set H = {c1,c2, . . .} of codewords ci with the
following property: For every word x

• there is either a codeword c ∈H with wt(x + c) < wt(x)
• or x lies in the Voronoi region V(0), i.e. the closest codeword to x is 0.

Clearly, given such a test set H it is easy to design a decoding algorithm: Successively
update x by adding codewords from H as long as possible. Let us assume that the
procedure terminates after m steps, then x+ ci1 + . . . + cim ∈ V(0) and thus ci1 + . . . + cim

is the closest codeword to x. The running time of this method is given by O(n2∣H∣):
Every step cancels at least one additional coordinate and requires at most ∣H∣ Hamming
weight computations. Consequently, finding good test sets H, i.e. those that are both
small and efficiently computable, is the crucial point when implementing this approach.
There are essentially two concrete instantiations of gradient decoding, namely:

• Minimal vectors decoding [Hwa79]. A minimal vector is a codeword c whose sup-
port can not be properly covered by any other codeword, i.e. there is no c̃ with
supp(c̃) ⊊ supp(c). The set of all minimal vectors forms an appropriate test set.
According to [AB98], for long codes, minimal vectors decoding is not considered
to improve over the naive brute-force complexity.

• Zero neighbours decoding [LH85]. Loosely speaking, a zero neighbour is a codeword
c whose Voronoi region V(c) is adjacent to V(0). Given a word x ∉ V(0), consider
a sequence of words xi with x0 ∶= x and wt(xi) = wt(xi−1) − 1. For some index j
we will have xj+1 ∈ V(0) and xj ∈ V(c) ∖ V(0) for a zero neighbour c. It follows

wt(x + c) = d(x,c) ≤ d(x,xj ) + d(xj ,c) < d(x,xj ) + d(xj ,0) = wt(x)
which shows that the set of zero neighbours forms an appropriate test set. It was
shown in [LH85], that the complexity coefficient of zero neighbours decoding for
fixed W = DGV(R) is given by

FZN(R) = ⎧⎪⎪⎨⎪⎪⎩
R ,0 ≤ R ≤ 1 −H(1/4)
H(2DGV(R)) − (1 −R) ,1 −H(1/4) < R ≤ 1

(4.7)

as illustrated in Figure 4.3.
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Figure 4.3: Comparison between FZN (dashed line) and FSSD (dotted line) with brute-force
(thick line) and plain ISD (thin line). The right figure shows an enlarged view for
high code rates R ≥ 0.93.

Split Syndrome Decoding (SSD). In [Dum89], Dumer introduced a simple idea that
is based on the linearity of the equation He = s: Decompose H and e into two parts(H1∣∣H2) and (e1∣∣e2), respectively. Then split the equation into H1e1 = H2e2 + s and
build a list of all vectors e1 of a certain weight ω1 and store the corresponding H1e1

values. Do the same for e2 and eventually search for collisions in those lists. As we will
see in Section 4.3, a similar idea is used in improved ISD algorithms. Since SSD does
not transform H into standard form, it performs less efficient than those algorithms.
Intuitively, balancing the size of both lists gives the best performance and allows to
reduce the complexity of naive syndrome decoding by a square-root factor. This was
rigorously confirmed in [BKvT99, Theorem 6] which gives the corresponding complexity
coefficient as

FSSD(R) = 1 −R

2
. (4.8)

Observe that for R ≥ 0.954, SSD beats plain ISD as illustrated in Figure 4.3. This prop-
erty motivated Dumer to give an improved variant in [Dum91] which is called punctured
split syndrome decoding (PSSD). The name derives from the fact, that Dumer proposed
to puncture a given code C, so that the rate becomes large. For high-rate codes one can
gain in complexity by applying SSD. The algorithm is equipped with two parameters α

and β, i.e. the size of the punctured code is ⌊βn⌋ and the error weight that is assigned
to these coordinates is ⌊αn⌋ (see Section 5.2.2 for a deeper description). For the sake
of completeness, we give the corresponding complexity coefficient (cf. [Bar98, Theorem
3.25]):

FPSSD(R) =min
α,β

max{(1 − β) [1 −H(DGV(R) − α

1 − β
)] , (4.9)

1 −R −
β

2
H(α

β
) − (1 − β)H(DGV(R) − α

1 − β
)}

where the minimisation has to be done under the natural constraints R < β < 1 and
max{0,DGV(R) + β − 1} < α < min{DGV(R), β}.
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A small contribution of this work is to relate recent ISD algorithms to PSSD: Corol-
lary 5.2.17 proves that PSSD is asymptotically at least as efficient as Ball-collision
decoding, see Section 4.3.

Supercode Decoding (SCD). Barg et al. proposed a different and interesting ap-
proach in [BKvT99] that shares some similarities with our new algorithm as presented
in Chapters 5 and 6. Similarly to ISD algorithms, it works on the standard form of H
which is decomposed into σ equal-sized slices each containing ρ ∶= n−k

σ
rows. Note that

for every slice, the error vector e matches the respective slice of the syndrome. Further-
more, let us assume that the error vector has weight ω1 on its first k coordinates and
thus weight ω −ω1 on the remaining n − k coordinates. Every slice i of H is of the form

(Q 0 . . . 0 Iρ 0 . . . 0)
where Q is the appropriate (ρ×k) submatrix of H an Iρ is a ρ-dimensional identity matrix
block between coordinates k + iρ and k + (i + 1)ρ − 1. According to this decomposition
of slice i , we denote by (e1,e2) the respective decomposition of e, i.e. e2 contains the ρ

coordinates of e according to the Iρ block in the slice. Define ω2 ∶= ⌈ ω−ω1

σ−b+1⌉ and observe
that there must be at least one selection of b slices such that every e2 part in each slice
contains at most ω2 many errors (otherwise, there must be at least σ − b + 1 slices with
corresponding e2 parts of weight > ω2 which would imply a total weight > ω −ω1 of e on
its last n − k coordinates). Here, b is another constant, integer parameter of the SCD
algorithm.

In summary, for every slice i , SCD computes a set Ki of candidate vectors (e1,e2)
(matching the respective slice of the syndrome) with weight ω1 in the first k coordinates
and weight ≤ ω2 in coordinates k + iρ, . . . , k + (i + 1)ρ − 1. Afterwards, one computes
intersections of b candidate sets, where the intersection is computed w.r.t. the first k
coordinates e1. As we have seen, at least one of these intersections will contain the first
k coordinates of the wanted error vector e. Clearly, the first k error positions of the
received word x allows one to recover c by linear algebra.

The authors of [BKvT99] claimed that their method provides a better asymptotic
complexity than all other known decoding algorithms (including the former state of the
art ISD algorithms) but as indicated by Bernstein et al. in [BLP11a, Section 4], the
analysis of SCD is flawed. More precisely, the authors estimated the output size of the
intersections ⋂b

k=1Kik , see [BKvT99, Corollary 12], as

( k

ω1

)( ρ

ω2

)2−bρ . (4.10)

Note that every candidate (e1,e2) matches a given slice of the syndrome with probability
2−ρ and thus the sets Ki have expected size S ∶= ( k

ω1
)( ρ

ω2
)2−ρ. Since the intersection is

computed w.r.t. the first k coordinates, i.e. one only forces the e1 parts to intersect, the
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expected size of ⋂b
k=1Kik is given by

( k

ω1

)(S( k

ω1

)−1)b = ( k

ω1

)( ρ

ω2

)b2−bρ (4.11)

which deviates by an exponential factor ( ρ
ω2
)b−1 from Eq.(4.10). Note that this correction

is in accordance with the incidental remark made by Bernstein et al. in [BLP11a]. A
careful corrected numerical analysis of SCD shows that no further improvement upon
PSSD is possible.

We conclude this chapter with an interesting question for future research.

Is it possible to combine different generic decoding algorithms?

For example, we tried to use statistical decoding to precompute some information
about the error positions of the received word. We hoped that even for rather small
test sets, SD might yield some information about the error positions in a received word.
This information could, inter alia, be used to improve the probability of guessing a good
permutation in ISD algorithms. We tested this approach experimentally for rather small
random codes. Unfortunately, SD did not provide any useful information about the error
positions for reasonably sized test sets.

4.3 Stern’s Algorithm and Ball-collision Decoding

We will now extend plain ISD to a more general class of algorithms. This class will cover
both Stern’s algorithm [Ste89] and the recently proposed Ball-collision decoding (BCD
for short) [BLP11a]. Recall from plain ISD that we transformed H into standard form,
i.e. H̃ = (Q In−k). We extend plain ISD based on the following two observations.

1. It is very unlikely that the permuted vector ẽ exclusively contains non-zero
coordinates in its last n − k coordinates.

This observation was first made by Lee and Brickell in [LB88] and was improved by
Leon in [Leo88]. Lee and Brickell proposed an algorithm that simply assigns a certain
weight p to the first k coordinates, i.e. in every iteration of plain ISD one tests every
linear combination of exactly p columns of Q and computes its Hamming distance from
s̃. If this distance is exactly ω − p, we can add to our p columns of Q the ω − p unit
vectors from In−k that yield s̃. Peters showed in [Pet11] that the Lee-Brickell approach
improves upon plain ISD by a polynomial factor. Moreover, the optimal choice for p
only depends on R and W and is thus independent of the code length n. This implies
that both methods are asymptotically equivalent. To gain an exponential factor, Stern
was the first who additionally proposed to

2. Compute the colum sums in every iteration more efficiently by a “Meet-
in-the-Middle approach” .
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This idea shares some similarities with supercode decoding: We consider the supercode
given by the first ℓ rows of H̃, i.e. we consider the slice

(Q′ Iℓ 0) (4.12)

together with the projected syndrome s̃′ ∶= s̃[1,ℓ]. Analogously, we decompose the error
vector ẽ into (ẽ1∣∣ẽ2∣∣ẽ3) where each part corresponds to the respective block of Eq.(4.12).
Let us further assume that there occur exactly p errors in ẽ1 and q errors in ẽ2 (thus
there must be ω − p − q errors in ẽ3). Since the error vector fulfils the equation

Q′ẽ1 + ẽ2 = s̃′ (4.13)

one might compute all solutions (ẽ1, ẽ2) with wt(ẽ1) = p and wt(ẽ2) = q as a first step.
In contrast to a naive enumeration of all such vectors (as done by Leon for the case
q = 0), one can use the linearity of the equation as already discussed for split syndrome
decoding in Section 4.2, i.e. one splits both Q′ and Iℓ into two half-sized submatrices
and analogously decomposes ẽ1 and ẽ2 into two halves each containing half of the p and
q errors, respectively. More precisely:

• Decompose Q′ = (Q′1 Q′2) into two ℓ × k
2

submatrices and analogously split ẽ1 =(ẽ1,1 ẽ1,2).
• Decompose Iℓ = (J1∣∣J2) ∶= (Iℓ/2 0

0 Iℓ/2
) and analogously ẽ2 = (ẽ2,1 ẽ2,2).

• Compute two lists L1 and L2 containing elements

(Q′1ẽ1,1 + J1ẽ2,1 , ẽ1,1 , ẽ2,1) (4.14)

and

(Q′2ẽ1,2 + J2ẽ2,2 + s̃′ , ẽ1,2 , ẽ2,2) , (4.15)

where ẽ1,j ∈W k
2
,
p

2
and ẽ2,j ∈W ℓ

2
,
q

2
for j = 1,2.

• Search for elements in L1 ×L2 with matching first entries.

From now on, we will call the first entries of the respective list elements in L1 and L2

a label. By definition of the above labels, every collision between L1 and L2 gives rise
to a solution ẽ1 ∶= (ẽ1,1∣∣ẽ1,2) and ẽ2 ∶= (ẽ2,1∣∣ẽ2,2) of Eq.(4.13). For every such candidate
solution, we have to check whether one of them can be extended to all n − k rows of H̃:
We compute the Hamming distance from Qẽ1 + (ẽ2∣∣0) to s̃ over all n − k coordinates
(where ẽ2 has to be padded with n − k − ℓ zeros). If this distance is ω − p − q , we
can appropriately fill up the remaining error positions of ẽ3. The overall algorithm is
summarised in Algorithm 2 where Init is defined as in Algorithm 1 and Merge-Join is
a procedure that efficiently computes the matchings between L1 and L2, see Chapter 6
for a formal definition and runtime analysis.
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4.3 Stern’s Algorithm and Ball-collision Decoding

Algorithm 2: Ball-Collision Decoding

input : Parity check matrix H, syndrome s and target weight ω.
output : Error vector e with He = s and wt(e) = ω.
params: 0 ≤ ℓ ≤ n − k , 0 ≤ q ≤min{ℓ,ω},

max{0, k + ℓ + ω − q − n} ≤ p ≤ min{ω − q , k}.
found← false;
while not found do(H̃, s̃,P)← Init(H, s);

Compute L1 and L2 according to Eq.(4.14) and (4.15);
L ←Merge-Join(L1,L2);
forall (ẽ1, ẽ2) ∈ L do

if wt(Qẽ1 + (ẽ2∣∣0) + s̃) = ω − p − q then
ẽ← (ẽ1∣∣Qẽ1 + s̃);
found← true;

return Pẽ;

We point out that the algorithm is well-defined for some interesting special cases: For
p = q = ℓ = 0 the lists L1 and L2 will only contain the all-zero vector of length k

2
. In

this case, the weight check degenerates to wt(s̃) = ω and we exactly recover Plain ISD.
Moreover, the case q = 0 corresponds to Stern’s agorithm. In fact, the introduction of
the parameter q was the main contribution of [BLP11a].

Clearly, the algorithm outputs a correct solution: It holds that

H̃ẽ = (Q In−k)( ẽ1

Qẽ1 + s̃
) = s̃

which implies He = s. Note that Qẽ1 + (ẽ2∣∣0) + s̃ = 0 holds on the first ℓ coordinates
which implies

wt(Qẽ1 + s̃) = wt(Qẽ1 + (ẽ2∣∣0) + s̃) +wt(ẽ2) = ω − p − q + q = ω − p

and we finally obtain

wt(e) = wt(Pẽ) = wt(ẽ) = wt(ẽ1∣∣Qẽ1 + s̃) = p + ω − p = ω .

We now parametrize p = ⌊Pn⌋, q = ⌊Qn⌋ and ℓ = ⌊Ln⌋ in order to prove the following
asymptotic statement. We define 0 ⋅H( x

0
) ∶= 0 for convenience.
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Theorem 4.3.1 (Ball-collision Decoding). Let 0 < R < 1 and 0 <W ≤ DGV(R).
For almost all binary [n, ⌊Rn⌋]-codes it holds: Ball-collision decoding success-
fully terminates in time 2FBall(R,W )n+o(n) for every error vector e ∈Wn,⌊Wn⌋ with
overwhelming probability where

FBall(R,W ) = min
P ,Q ,L

{NBall(R,W ,P ,Q ,L) (4.16)

+max {ΛBall(R,W ,P ,Q),2ΛBall(R,W ,P ,Q) − L}} ,

NBall(R,W ,P ,Q ,L) = H(W ) −R H(P
R
) − LH(Q

L
) (4.17)

− (1 −R −L)H(W −P −Q

1 −R − L
) ,

ΛBall(R,W ,P ,Q) = R

2
H(P

R
) + L

2
H(Q

L
) (4.18)

with 0 ≤ L ≤ 1 − R, 0 ≤ Q ≤ min{L,W } and max{0,R + L +W −Q − 1} ≤ P ≤
min{R,W −Q}.

Remark 4.3.2. Since we defined 0 ⋅ H(x
0
) ∶= 0, the formulas in Theorem 4.3.1 are also

well-defined for parameters at the corners of the parameter space, e.g. for P = Q = L = 0
one recovers Plain ISD.

The proof of Theorem 4.3.1 is rather similar to the proof of Theorem 4.1.2. In
particular, one might treat defective permutations analogously to Section 4.1.2. We
further make use of the following proposition whose proof will follow from the generalised
Merge-Join procedure of Chapter 6.

Proposition 4.3.3. Merge-Join computes L in time O (max{∣Li ∣ log ∣Li ∣, ∣L∣}).
Proof of Theorem 4.3.1. The probability of guessing a good permutation is given by

(k/2
p/2)

2(ℓ/2
q/2)

2(n − k − ℓ

ω − p − q
)(n

ω
)−1 (4.19)

since the way we compute solutions to Eq.(4.13) puts the following restrictions on the
error distribution of ẽ. We enumerate only those ẽ1 that can be split into two vectors of
length k

2
and weight p

2
and similarly enumerate only those ẽ2 that split into two vectors

of length ℓ
2

and weight q

2
. Consequently, the remaining ω −p − q error positions must be

contained in the last n−k −ℓ coordinates. Thus, the above numerator exactly counts the
number of error patterns we can find. Using Eq.(2.15), the contribution of the number
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of iterations to FBall is given by

NBall(R,W ,P ,Q ,L) ∶= H(W ) −R H(P
R
) − LH(Q

L
) (4.20)

− (1 −R − L)H( W −P

1 −R − L
) .

It remains to estimate the complexity of one iteration. It holds ∣Li ∣ = (k/2p/2)(ℓ/2q/2). To

estimate ∣L∣, we need to upper bound the number of collisions between L1 and L2.

Clearly, the expected number of collisions is ∣L1∣⋅∣L2∣
2ℓ . In order to prove that the actual

number of collisions does not deviate significantly from this number, we adapt the proof
of Corollary 2.4.10: Consider the random [k + ℓ, k]-code C defined by the parity check
matrix H′ ∶= (Q′, Iℓ) according to Eq.(4.12) and define the set

S ∶=W k
2
,
p

2
×W k

2
,
p

2
×W ℓ

2
,
q

2
×W ℓ

2
,
q

2
,

i.e. ∣S ∣ = ∣L1∣⋅∣L2∣. Using the same notation as in Corollary 2.4.10, the number of collisions
is a random variable N (S) counting the number of elements in S that are contained in

the coset of C defined by s̃′. Thus, applying Lemma 2.4.6 gives E [N (S)] = ∣S ∣
2ℓ and

Var [N (S)] ≤ E [N (S)]. In the asymptotic setting, we have

ΛBall(R,W ,P ,Q ,L) ∶= lim
n→∞

1

n
log ∣Li ∣ = R

2
H(P

R
) + L

2
H(Q

L
) (4.21)

and thus E [N (S)] = 2(2Λ−L)n+o(n). If L < 2Λ, E [N (S)] is exponentially increasing in n
and by Chebychev’s inequality we get

Pr [∣N (S) −E [N (S)] ∣ ≥ E [N (S)]] ≤ 1

E [N (S)] ,

i.e. N (S) = 2(2Λ−L)n+o(n) for almost all codes. If L ≥ 2Λ, we fix some ε > 0 and obtain

Pr [∣N (S) −E [N (S)] ∣ ≥ 2εn] ≤ 2(2Λ−L−ε)n+o(n) = 2−ε
′n+o(n)

for some ε′ > 0, i.e. N (S) ≤ 2εn+o(n) for ε > 0 arbitrarily small. Altogether, we obtain

lim
n→∞

1

n
log ∣L∣ ≤ ⎧⎪⎪⎨⎪⎪⎩

2Λ −L L < 2Λ

ε L ≥ 2Λ
(4.22)

for ε > 0 arbitrarily small with probability 1−2−Ω(n) for a single iteration of the algorithm.
However, one normally repeats the inner loop of the algorithm exponentially many times.
It is thus conceivable that the expected number of bad iterations, in which the actual
value of N (S) exceeds E [N (S)] by an exponential factor, is large. Since a single bad
iteration is enough to contradict our “worst-case” statement about the running time,
we need to carry out the following artificial modification of the algorithm. Simply abort
every bad iteration as soon as the number of collisions grows to large. This clearly allows
to rigorously upper bound the (considered) number of collisions for all iterations.
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Unfortunately, this solution introduces another technical caveat. One might fail in
finding a fixed solution e due to an aborted iteration. However, for a fixed solution
e, this failure probability can be bounded as follows. Consider the first iteration that
originates from a good permutation (w.r.t. e). As we have seen before (see Lemma 4.1.4),
one picks at least one good permutation amongst 2(NBall+o(1))n iterations with probability
1 − 2−Ω(n). In order to apply the above concentration result for N (S) w.r.t. the code
C generated by the submatrix (Q′, Iℓ) in this specific iteration, it is sufficient to argue
that C is in fact a random code (independent from e). This holds since the submatrix(Q′, Iℓ) is generated from the uniform input matrix H as follows:

1. Pick a good permutation σ (w.r.t. e) and consider the submatrix H′ of H containing
columns σ(1), . . . , σ(k + ℓ). The distribution of this submatrix is clearly uniform
(and independent from e since all columns of H have been chosen independent
from e).

2. Consider the submatrix H′′ of H′ containing the first ℓ rows of H′ and transform
H′ into standard form (Q′, Iℓ). Since H′′ still generates a uniform random code
(independent from e), so does (Q′, Iℓ).

Altogether, this implies that the number of collisions in the first good iteration is
bounded by Eq.(4.22) with probability 1 − 2−Ω(n). Consequently, the first good itera-
tion (w.r.t. e) will almost never be aborted and the overall probability of finding a fixed
solution e is 1 − 2−Ω(n).

For the sake of completeness, we point out that the extra logarithmic factors log ∣Li ∣
that appear in the running time of Merge-Join due to Proposition 4.3.3 do not af-
fect the complexity coefficient of the algorithm. Combining Eq.(4.20)-(4.22) eventually
finishes the proof.

In contrast to plain ISD, the above proof shows that the extended algorithm has
exponential space complexity ΛBall. Note that the merged list L must not be entirely
stored since every candidate solution (ẽ1, ẽ2) can be checked on-the-fly.
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Comparison between Stern’s algorithm and BCD

Unfortunately, we do not know explicit formulas (depending on R and W ) for optimal
parameters P ,Q and L that occur in Theorem 4.3.1. Consequently, we can not give a
closed-form expression for the complexity coefficient. To compare different algorithms,
one usually runs a numerical optimisation and computes best parameters for different
code rates R. One then interpolates the complete complexity curve for all 0 < R < 1. In
Table 4.1 we present optimal parameter choices for Stern’s algorithm whose complexity
coefficient is denoted FSte and is obtained by fixing Q = 0 in Eq.(4.16).

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P .00368 .00598 .00763 .00863 .00923 .00929 .0088 .00758 .00516
L .01138 .01938 .02565 .03005 .03317 .03459 .0341 .03093 .02291

FSte .05742 .08923 .1075 .11569 .11547 .10771 .09279 .07064 .04056
ΛSte .01138 .01939 .02566 .03006 .03318 .0346 .0341 .03094 .02292

Table 4.1: Optimal parameters P ,L for Stern’s algorithm for W = DGV(R) and resulting time
and space complexities FSte and ΛSte respectively.

In the above table, the values for P and L are rounded to the nearest multiple of 10−5

whereas the time and space complexity coefficients are always rounded up to the next
multiple of 10−5. Note that, up to rounding differences, it always holds L = ΛSte which
perfectly balances the two arguments that occur in the maximum of Eq.(4.16). The
same holds for BCD as presented in the next table.

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P .00415 .0065 .00787 .00871 .00996 .01035 .00893 .00746 .00525
Q .00062 .00078 .00077 .00054 .00069 .00065 .00053 .00032 .00013
L .01432 .02315 .02884 .03224 .03771 .04011 .0365 .03179 .02384

FBall .05729 .089 .10721 .1154 .11516 .10743 .09255 .07047 .04048
ΛBall .01432 .02315 .02884 .03224 .03771 .04012 .0365 .0318 .02384

Table 4.2: Optimal parameters P ,L,Q for BCD for W = DGV(R).

Note that for all tested values of R it holds FBall(R) < FSte(R). Also note that this im-
provement comes at the cost of an increased space consumption, i.e. ΛBall(R) > ΛSte(R),
and one might ask the question whether Ball-Collision is merely a time-memory
trade-off for Stern’s algorithm. This issue will further be discussed in comparison to our
new algorithms in Chapter 6.

Clearly, the above numerical comparison does not provide any proof for the general
superiority of BCD over Stern’s algorithm. A formal proof for the suboptimality of
Q = 0 for all R was given by Bernstein et al. as subsumed in Theorem 4.3.4. Providing
a similar result for our new algorithm is one of the central goals of this work.
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Theorem 4.3.4 ([BLP11a, Theorem 7.1]). For every 0 < R < 1 and 0 <W ≤ DGV(R) it
holds

FBall(R,W ) < FSte(R,W ) .

In particular, for optimal BCD parameters (P∗,Q∗,L∗) it must always hold Q∗ > 0 (and
thus L∗ > 0).

We conclude this chapter with the following informative illustration.

0.2 0.4 0.6 0.8 1.0
R

0.02

0.04

0.06

0.08

0.10

0.12

FHRL

Figure 4.4: FPra (thick curve) and interpolated FBall (thin curve) for W = DGV(R).

We did not plot the interpolated curve for Stern’s algorithm which is almost identical
to the BCD curve. The respective maxima over all rates 0 < R < 1 are obtained for
slightly varying R as summarised in the table below.

Algorithm maxR F (R) argmaxF (R)
Prange .1208 .4540
Stern .1166 .4468
BCD .1163 .4466

Table 4.3: “Worst-case” complexities F(R) and corresponding rates R.
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Quick Reference to Notation

The next two pages serve as a quick reference that aims to facilitate the further reading
of this thesis. We summarize the notation that is used for the description and the
analysis of all subsequent algorithms. The particular intention of this compact overview
is to ease the understanding of the technical proofs in Chapter 5-7.

General Parameters

The first table shows absolute parameters (first column), relative parameters w.r.t. n
(second column) and their algorithmic meaning.

abs. rel. meaning
k R input code rate
ω W input target weight
ℓ L number of rows of submatrix Q′ (cf. Figure 5.1)
p P Hamming weight of partial solution ẽ1, see Eq.(5.2)
q Q Hamming weight amongst coordinates k + 1, . . . , k + ℓ (only for BCD)
- α controls the (relative) number of overlapping coordinates
δ ∆ controls the number of intersecting error positions within the overlap-

ping coordinates
δi ∆i controls the number of intersecting error positions on layer i (only

occurs in the recursive variant)

Ball-collision Decoding

• Number of iterations

NBall(R,W ,P ,Q ,L) = H(W ) −R H(P
R
) −LH(Q

L
) − (1 −R − L)H(W −P −Q

1 −R −L
)

• List size

ΛBall(R,W ,P ,Q) = R

2
H(P

R
) + L

2
H(Q

L
)

• Complexity

TBall(R,W ,P ,Q ,L) = NBall +max{ΛBall,2ΛBall − L}
= HW − (1 −R − L)H(W −P −Q

1 −R − L
) +max{−L,ΛBall}
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Generalised ISD framework

• Number of iterations

N (R,W ,L,P) = H(W ) − (R + L)H( P

R +L
) − (1 −R − L)H( W −P

1 −R − L
)

• Number of representations

P(R,L,P , α,∆) = 2α(P + (R + L −P)H( ∆

2α(R +L −P)))
• Size of the sets W1 and W2 (used to construct / sample base lists)

Σ(R,L,P , α,∆) = (1
2
+α) (R + L)H( P

2
+∆(1

2
+ α)(R + L))

FS-ISD α =∆ = 0

• List size

ΛFS−ISD(R,L,P) = R + L

2
H( P

R + L
)

• Complexity

TFS−ISD(R,W ,L,P) = N (R,W ,L,P) +max{ΛFS−ISD,2ΛFS−ISD −L}
= H(W ) − (1 −R − L)H( W −P

1 −R − L
) +max{−L,−ΛFS−ISD}

BasicReps α = 1
2
,∆ > 0

• Size of base lists
Σ

2
=

R + L

2
H( P

2
+∆

R + L
)

• Size of merged lists

Σ −P = (R + L)H( P
2
+∆

R +L
) − [P + (R +L −P)H( ∆

R + L −P
)]

• Number of collisions

2Λ − L = 2Σ −P − L = 2(R +L)H( P
2
+∆

R + L
) − [P + (R + L −P)H( ∆

R + L −P
)] −L

• Complexity

TBReps(R,W ,L,P ,∆) = N (R,W ,L,P) +max{Σ
2

,Σ −P,2Λ − L}

The reader is friendly advised
to leave a thumb (or another
more favourable finger) on
this page.
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5 A Generalised Model for

Information Set Decoding

“All generalisations are false, including this one.”

Marc Twain

Introduction

Let us recall the main principle of the ISD algorithms presented so far. Essentially, these
algorithms can be divided into three steps:

• Compute a randomly column-permuted standard form H̃.

• Consider the slice (Q′ Iℓ 0) containing the firs ℓ rows of H̃. Create a list L of
candidate solutions (ẽ1, ẽ2) to the equation Q′ẽ1 + ẽ2 = s̃′ where ẽ1 and ẽ2 have
weight p and q , respectively, and s̃′ is the syndrome projected onto the first ℓ

coordinates.

• Try to extend candidate solutions from L to all n − k coordinates.

Furthermore, all methods presented in Section 4.3 deterministically solved the second
step by splitting the ẽi into two disjoint halves, i.e. we decomposed ẽi = ẽi ,1 + ẽi ,2 with
supp(ẽi ,1) ∩ supp(ẽi ,2) = ∅. In this chapter, we will show how modifying the first two
steps yields a generalised ISD framework that offers the following advantages:

• The model yields a simplified version of Ball-collision decoding where the param-
eter q is removed.

• It generalizes another ISD framework introduced by Finiasz and Sendrier in [FS09].

• It allows to relate different decoding methods (e.g. we can proof the equivalence
of BCD and PSSD).

• We can instantiate a basic variant of our new algorithm within the framework, see
Chapter 6, and formally proof its superiority.
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5 A Generalised Model for Information Set Decoding

Let us now begin with a high-level overview of the main modifications of our gener-
alised ISD framework in comparison to the ISD algorithms presented thus far.

Quasi-standard form. As first observed by Finiasz and Sendrier in [FS09], it is not
necessary to transform H into diagonal form on coordinates k + 1, . . . , k + ℓ in order
to compute a list of candidate error vectors. More precisely, one might alternatively
consider a quasi-standard form

H̃ ∶= (Q′ 0
Q′′ In−k−ℓ

) , (5.1)

where Q′ is a ℓ×(k +ℓ) matrix, Q′′ is a (n−k −ℓ)×(k +ℓ) matrix and 0 is a ℓ×(n−k −ℓ)-
dimensional zero-matrix, and solve the equation

Q′ẽ1 = s̃′ (5.2)

where ẽ1 is a vector of length k + ℓ and weight p (and we analogously define ẽ2 as a(n − k − ℓ)-dimensional vector of weight ω − p), see Figure 5.1 for an illustration. For

ease of presentation, we will sometimes write Q = (Q′ Q′′)⊺.

H̃ =
0

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µk + ℓ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µn − k − ℓ ­

ℓ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

n − k − ℓ

²
p

±
ω − p

Q′

In−k−ℓQ′′

Figure 5.1: Parity check matrix H̃ in quasi-systematic form. The shaded area represents an
exemplary selection of p and ω − p columns according to ẽ1 and ẽ2, respectively.

Intuitively, this transformation allows to remove the BCD parameter q which can im-
plicitly be covered by a larger choice of p. More formally, in Section 5.2.2 we provide a
concrete instantiation and we prove that it achieves at least the same efficiency as BCD.
Given a quasi-standard form H̃, the main computational task is to compute the list of
candidate solutions L for Eq.(5.2). The remaining modifications have one goal only:

Find more efficient algorithms to compute L.

More precisely, we will allow for an arbitrary, possibly randomised procedure FindCan-
didates that may fail in finding a solution with a certain probability, even if we picked
a “good” permutation during the initial randomisation phase. This approach is based
on the following two points.
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More flexible decomposition of ẽ1: Introducing Representations. Instead of de-
composing ẽ1 into support-disjoint vectors ẽ1,i , we allow them to overlap in a 2α-fraction
of their coordinates, i.e. for some α ∈ [0, 1

2
] we fix

supp(ẽ1,1) ⊂ {1, . . . , ⌊(1/2 +α) (k + ℓ)⌋} (5.3)

supp(ẽ1,2) ⊂ {⌊(1/2 − α) (k + ℓ)⌋ + 1, . . . , k + ℓ} .

Remark 5.0.5. For the sake of a better readability, we drop all rounding operations from
now on and implicitly assume that all parameters can be chosen as integers if needed.

The main consequence of this modification is that one introduces an exponential num-
ber of representations of ẽ1 (see Definition 1.0.2). That is we obtain many ways to
represent ẽ1 as a sum ẽ1,1 + ẽ1,2. Loosely speaking, every 1 within the 2α(k + ℓ) over-
lapping coordinates can either be represented as 1 + 0 or 0 + 1, depending on whether
we assign the error to either ẽ1,1 or ẽ1,2. The general idea of introducing representations
can already be found in [FS09] but the proposed algorithm does not fully exploit their
existence. We point out that introducing the parameter α serves the purpose of embed-
ding different algorithms into the generalised framework that exploit representations to
different extents. The most important cases will be α = 0 (no representations) and α = 1

2

(maximal number of representations). In Section 5.2.4 we show that α = 0 is suboptimal
for sampling-based algorithms. Furthermore, it is not hard to see that α = 1

2
yields the

best results for all algorithms based on the representation technique.
In addition to this, we provide a way to increase the number of representations: We

introduce another parameter δ ∈ {0, . . . ,2α(k + ℓ− p)} and add δ many additional 1’s to
both ẽ1,i . If those additional 1’s occur amongst the overlapping coordinates of the ẽ1,i ,
they might cancel out in their sum ẽ1,1+ẽ1,2 and yield a vector ẽ1 of the correct Hamming
weight p. Put simply, the extra parameter δ allows to represent δ many 0’s within the
overlapping coordinates of ẽ1 as 0 = 1 + 1, which explains the title of [BJMM12]. A
precise statement about the number of representations can be found in Lemma 5.1.5.
Altogether, we require both ẽ1,i to have Hamming weight p

2
+ δ, namely:

ẽ1,1 ∈W1 ∶=W( 1
2
+α)(k+ℓ), p

2
+δ × {0}( 12−α)(k+ℓ) , (5.4)

ẽ1,2 ∈W2 ∶= {0}( 12−α)(k+ℓ) ×W( 1
2
+α)(k+ℓ), p

2
+δ ,

see Figure 5.2 for an illustration.

ẽ1 = 10100 00010000010010000000 00100

ẽ1,1 = 10100 00000010010000001000 00000

ẽ1,2 = 00000 00010010000010001000 00100

Figure 5.2: A possible representation ẽ1,1 + ẽ1,2 of ẽ1 for k + ℓ = 30, p = 6, δ = 2 and α = 1
3
.
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5 A Generalised Model for Information Set Decoding

For a given Q′ and s̃′ we are eventually interested in the corresponding set of candidate
solutions (where W ∶=Wk+ℓ,p)

S ∶= {ẽ1 ∈ (W1 +W2) ∩W ∶ Q′ẽ1 = s̃′} . (5.5)

Randomised construction of lists L1 and L2. Within the randomised procedure
FindCandidates, we allow for an arbitrary computation of the candidate lists L1 and
L2 whose entries will form an appropriately chosen subset of vectors ẽ1,i ∈ Wi . Of
particular interest are the following opposing approaches:

• Randomly sample λ(ℓ,p, α, δ) many vectors ẽ1,i (in Section 5.2.1 we explain how
to choose λ).

• Construct small, particularly structured lists L1 and L2. This is done by cleverly
exploiting the existence of the exponentially many representations.

To conclude this introductory section, we indicate how the generalised framework
relates to different ISD algorithms:

• For α = 1
2

(full overlap), δ = 0 (no extra representations) and sampling the Li , one
obtains the original description of the Finiasz-Sendrier framework, see Section 5.2.4
for a detailed discussion.

• For α = 0, δ = 0 (i.e. no representations) and constructing the Li we obtain a
variant comparable to BCD, see Section 5.2.2.

• α = 1
2

and δ = 0 and constructing the Li covers the algorithm presented in [MMT11].

• α = 1
2

and δ > 0 (i.e. full representations) yields the improved algorithm [BJMM12].

Roadmap

In the next section, we start with a formal definition of the generalised ISD framework
and make some basic observations about representations. In Section 5.2 we show how
to relate different ISD algorithms to the generalised framework. Of particular interest
is the BCD variant of Section 5.2.2. For the purpose of the superiority proof of our
new algorithm in Chapter 6, we provide basic properties of optimal parameters for the
BCD variant in Section 5.2.3. As a last preparatory step we introduce a sampling-based
algorithm in Section 5.2.5 that exploits representations in a suboptimal way.

5.1 Formal Definition and Basic Observations

We now formally introduce our generalised ISD framework. We denote by Init the
initial transformation that brings H into quasi-standard form with randomly permuted
columns as defined in Eq.(5.1) and illustrated in Figure 5.1. The crucial subroutine
of the framework is the procedure FindCandidates: As input, FindCandidates
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5.1 Formal Definition and Basic Observations

gets Q′ and s̃′ as well as the parameters p, α and δ. It outputs a list L of candidate
solutions for Eq.(5.2). Depending on α, most of the candidate solutions ẽ1 ∈ S will
have exponentially many representations since there will be exponentially many ways
of writing ẽ1 = ẽ1,1 + ẽ1,2 with ẽ1,i ∈ Wi . The main property of FindCandidates
is to exploit those representations in order to cleverly construct two lists L1 and L2.
Intuitively, it seems reasonable to pick rather small lists ∣Li ∣ < ∣Wi ∣ while keeping at least
one representation of each candidate solution with “good” probability. The smaller the
lists L1 and L2 get, the more efficient becomes the final merging procedure that yields
the output list L. The overall framework is summarised in Algorithm 3.

Algorithm 3: Generalised ISD

input : Parity check matrix H, syndrome s and target weight ω.
output : Error vector e with He = s and wt(e) = ω.
params: 0 ≤ ℓ ≤ n − k , max{0, k + ℓ + ω − n} ≤ p ≤max{k + ℓ,ω}, α ∈ [0, 1

2
] and

0 ≤ δ ≤ 2α(k + ℓ − p).
found← false;
while not found do(H̃, s̃,P)← Init(H, s);
L ← FindCandidates(p, α, δ,Q′, s̃′);
forall ẽ1 ∈ L do

if wt(Qẽ1 + s̃) = ω − p then
ẽ← (ẽ1∣∣(Qẽ1 + s̃)[ℓ+1,n−k]);
found← true;

return Pẽ;

Note that the algorithm always outputs a correct solution: It holds

H̃ẽ = (Q′ 0
Q′′ In−k−ℓ

)( ẽ1(Qẽ1 + s̃)[ℓ+1,n−k]
)

= (Q′ẽ1 ∣∣ Q′′ẽ1 + (Qẽ1 + s̃)[ℓ+1,n−k]) = (s̃′ ∣∣ s̃[ℓ+1,n−k]) = s̃

since s̃′ = s̃[1,ℓ] and (Qẽ1)[ℓ+1,n−k] = Q′′ẽ1 by definition. This implies He = s and e
obviously has the correct weight due to wt(e) = wt(Pẽ) = wt(ẽ) = p + ω − p = ω.

In order to estimate the running time, it is important to precisely estimate the number
of representations, as they heavily influence both the efficiency and success probability of
FindCandidates. Note that the number of representations for a given ẽ1 will depend on
its actual weight-distribution and we will call a vector (i , j )-distributed if it has Hamming
weight exactly i and j on its first and last (1

2
− α)(k + ℓ) coordinates, respectively.

Thus, if ẽ1 is (i , j )-distributed it has weight p − (i + j ) within the 2α(k + ℓ) overlapping
coordinates, see Figure 5.3 for an illustration. Note that in an extreme case, ẽ1 could be(p

2
, p

2
)-distributed, i.e. ẽ1 has weight 0 within the overlapping coordinates. Consequently,

for δ = 0, there would be no representations for this ẽ1 at all.
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5 A Generalised Model for Information Set Decoding

p − (i + j )i j
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(1

2
− α)(k + ℓ) ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ2α(k + ℓ)

ẽ1 =

Figure 5.3: Illustration of a (i , j )-distributed vector ẽ1 for α = 1
4

where the striped regions
present the error positions.

To simplify the later analysis, we will restrict to those solutions ẽ1 that come with a
natural weight distribution. If ẽ1 is a random vector of (large enough) length k + ℓ and
weight p and one considers a subset of (1

2
− α)(k + ℓ) coordinates. One expects ẽ1 to

have proportional weight (1
2
−α)p on the respective coordinates. This is covered by the

following definition.

Definition 5.1.1. A vector ẽ1 ∈Wk+ℓ,p is called balanced if it is ((1
2
− α)p, (1

2
− α)p)-

distributed.

Note that there are no unbalanced vectors for the most important case where α = 1
2

. For
α < 1

2
, restricting to balanced vectors further limits the set of “good” permutations. For

a balanced vector (and α > 0), there will be exponentially many representations and the
exact number is easy to compute. Both the probability of guessing “good” permutations
and the number of representations are independent of the concrete implementation of
FindCandidates and will be determined next.

“Good” Permutations and the Number of Representations.

To estimate the number of iterations, we need to compute the probability of guessing a
“good” permutation. In our generalised framework, a “good” permutation is defined as
follows.

Definition 5.1.2. A permutation P ∈ Fn×n
2 is called good (with respect to a fixed e) if

the permuted error vector ẽ = P−1e can be written as ẽ = (ẽ1, ẽ2) where ẽ1 is balanced
and ẽ2 ∈Wn−k−ℓ,ω−p , see Figure 5.4 for an illustration.

(1
2
− α)p (1

2
− α)p2αp ω − p

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(1
2
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2
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ẽ1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ẽ2

Figure 5.4: Weight distribution of a permuted error vector ẽ resulting from a good permutation
for α = 1

4
. Striped regions represent error positions.
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5.1 Formal Definition and Basic Observations

In our asymptotic analysis we parametrise k = ⌊Rn⌋, ω = ⌊Wn⌋, ℓ = ⌊Ln⌋, p = ⌊Pn⌋
and δ = ⌊∆n⌋. As in Section 4.1.1 we denote by N (R,W ,L,P) the contribution of the
number of iterations to the overall complexity coefficient. This number is given by the
next theorem.

Theorem 5.1.3. Let 0 < R < 1 and 0 <W ≤ DGV(R). For 0 ≤ L ≤ 1−R and max{0,R +

L +W − 1} ≤ P ≤min{R + L,W } it holds

lim
n→∞

1

n
logN (R,W ,L,P) = H(W ) − (R + L)H( P

R + L
) (5.6)

− (1 −R −L)H( W −P

1 −R −L
) .

Proof. A permutation is good with probability

(( 12−α)(k+ℓ)( 1
2
−α)p )2(2α(k+ℓ)

2αp
)(n−k−ℓ

ω−p
)

(n
ω
) (5.7)

and the results follows immediately from Corollary 2.3.4.

Remark 5.1.4. Theorem 5.1.3 implies that restricting to permutations that yield balanced
ẽ1 does not affect the asymptotic behaviour of the algorithm: The least restrictive notion
of a “good” permutation would be to only require wt(ẽ1) = p and wt(ẽ2) = ω − p. But
this weakened definition would yield the same N (up to polynomial factors).

Let us now consider a balanced vector ẽ1 and estimate the number of combinations(ẽ1,1, ẽ1,2) ∈W1×W2 with ẽ1 = ẽ1,1+ẽ1,2. This number will be a function of the parameters
k ,ℓ,p,α and δ and is denoted by ρ(k , ℓ,p, α, δ).

ẽ1 =

ẽ1,2 =
ẽ1,1 =

ẽ1,2 =
ẽ1,1 =

⋮

Figure 5.5: Different ways of decomposing a balanced ẽ1. The filled regions represent error
positions, the striped regions represent intersecting positions.
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5 A Generalised Model for Information Set Decoding

Lemma 5.1.5. Let ẽ1 ∈ (W1 +W2) ∩W be balanced. Then

ρ(k , ℓ,p, α, δ) = (2αp

αp
)(2α(k + ℓ − p)

δ
) . (5.8)

Proof. The proof follows from Figure 5.5: Clearly, the ẽ1,i must have exactly δ common
1-coordinates (otherwise wt(ẽ1,1 + ẽ1,2) ≠ p). Moreover, since ẽ1 is balanced, ẽ1,1 must
have weight (1

2
−α)p on its first (1

2
−α)(k + ℓ) coordinates (a similar statement holds for

ẽ1,2). Consequently, the ẽ1,i have weight αp + δ on the overlapping coordinates. Thus,
we can arbitrarily assign αp out of the 2αp many 1’s within the overlapping coordinates
of ẽ1 to ẽ1,1 (and the remaining 1’s to ẽ1,2). This explains the first binomial coefficient
in the above formula. Now, we can arbitrarily choose δ many intersecting positions
amongst the 2α(k + ℓ) − 2αp many 0-positions of ẽ1 within the overlapping coordinates
and assign a 1 to those coordinates in both ẽ1,1 and ẽ1,2.

Corollary 5.1.6. Let 0 < R < 1 and α ∈ [0, 1
2
]. For 0 ≤ P ≤ R + L and 0 ≤ ∆ ≤

2α(R + L −P) it holds

P(R,L,P , α,∆) ∶ = lim
n→∞

1

n
log ρ(⌊Rn⌋, ⌊Ln⌋, ⌊Pn⌋, α, ⌊∆n⌋) (5.9)

= 2α(P + (R + L −P)H( ∆

2α(R + L −P))) .

Basic Properties of FindCandidates.

Let B ∶= {ẽ1 ∈ S ∶ ẽ1 balanced} be the set of balanced candidate solutions to Eq.(5.2).
Unless α = 0, every ẽ1 ∈ B has exponentially many representations. For FindCandi-
dates, the probability of finding a fixed ẽ1 ∈ B is given by P(ẽ1) = Pr [ẽ1 ∈ L1 +L2].
This probability is only defined over the internal randomness of FindCandidates. In
particular, P(ẽ1) is the same for all ẽ1 and it is independent of the initial randomisa-
tion phase. Thus, instantiating the generalised ISD framework with FindCandidates
(approximately) increases the number of iterations by a factor P(ẽ1)−1. Conditioned on
the event of having picked a good permutation, i.e. the wanted solution ẽ1 is balanced,
FindCandidates succeeds in finding it with probability P(ẽ1). This motivates the
next definition.

Definition 5.1.7. We call FindCandidates τ-solution-preserving if

0 ≤ limsup
n→∞

1

n
logP(ẽ1)−1 = τ .

Remark 5.1.8. Asymptotically, we are only interested in sequences with {P(ẽ1)−1}n∈N ∈
2O(n). Thus 1

n
logP(ẽ1)−1 will be upper bounded and the above expression is well-

defined.
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5.2 Relations Between Recent Algorithms

Being τ -solution-preserving is thus an asymptotic property of FindCandidates. In-
stantiating the ISD framework with FindCandidates means that the overall coefficient
for the number of iterations is increased by τ . For many concrete instantiations of Find-
Candidates, e.g. all sampling-based variants of Section 5.2, we have τ = 0 due to a
constant failure probability. For technical reasons, the improved algorithms of Chap-
ter 6 will have τ > 0 but arbitrarily small. In any case, τ will be independent of the
parameters R,L,P , α and ∆.

Moreover, let c(k , ℓ,p, α, δ) denote the running time of FindCandidates (for almost
all codes) and set C (R,L,P , α,∆) ∶= limn→∞

1
n

log c(⌊Rn⌋, ⌊Ln⌋, ⌊Pn⌋, α, ⌊∆n⌋). The
next lemma immediately follows.

Lemma 5.1.9. Let 0 < R < 1, 0 <W ≤ DGV(R) and α ∈ [0, 1
2
]. Let FindCandidates

be τ -solution preserving. For almost all binary [n, ⌊Rn⌋]-codes it holds: Generalised ISD
instantiated with FindCandidates successfully terminates in time 2FgenISD(R,W )n+o(n) for
every error vector e ∈Wn,⌊Wn⌋ with overwhelming probability where

FgenISD(R,W , α) = min
L,P ,∆
{N (R,W ,L,P) +C (R,L,P , α,∆) + τ}

where the minimum is taken over all valid parameters L, P and ∆.

Clearly, this lemma merely tells how the different building blocks of the generalised ISD
framework contribute to the complexity coefficient, but remains completely meaningless
without further specifying FindCandidates (which determines C , τ and the notion of
being a valid parameter set). In the next section, we will present a purely sampling-based
instantiation of FindCandidates.

5.2 Relations Between Recent Algorithms

We will now provide a first concrete class of instantiations for the generalised ISD frame-
work serving the following purpose:

Goal: Relate the generalised ISD framework to Ball-collision De-
coding and lay the foundation for improved algorithms.

This will essentially be achieved by instantiating FindCandidates in the most näıve
way: Simply sample two lists L1 ∈R (W1)λ and L2 ∈R (W2)λ by independently picking λ

many random elements from W1 and W2, respectively (in particular we might pick some
elements repeatedly and there will be < λ distinct elements in the Li). The crucial point
is to choose the list size λ(k , ℓ,p, α, δ) appropriately as a function of the other algorithm
parameters in order to make FindCandidates 0-solution-preserving. Once L1 and L2

have been sampled, we need to find all collisions (ẽ1,1, ẽ1,2) ∈ L1×L2 with Q(ẽ1,1+ẽ1,2) = s̃′

and Hamming weight wt(ẽ1,1+ẽ1,2) = p. A collision that fulfils the extra weight condition
is called weight-consistent. In the case α = 0 (no overlap) a collision will always be
weight-consistent. For α > 0 and δ = 0 it might happen that some errors cancel out
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5 A Generalised Model for Information Set Decoding

which gives a resulting collision of weight < p. For the case δ > 0 it is even possible to
obtain vectors of weight > p. To obtain only weight-consistent collisions, we can still
employ the Merge-Join procedure as defined in Chapter 6 which simply filters out all
weight-inconsistent pairs (besides the lists L1 and L2 we also provide Merge-Join with
the target weight p as well as Q′ and s̃′ which will be needed to appropriately label and
further process the lists). As a consequence, the additional filtering might result in a
running time TMerge larger than the size of the merged output list L. This fact will be
considered in our analysis, see the next proposition.

Proposition 5.2.1. It holds TMerge = O (max{∣Li ∣ log ∣Li ∣,M }) where M denotes the
number of (not necessarily weight-consistent) matchings between L1 and L2.

Remark 5.2.2. One could in principle also define the generalised framework to work
for weight-inconsistent matchings. One can extend a weight-inconsistent matching ẽ1 =
ẽ1,1 + ẽ1,2 of weight p′ ≠ p to all n − k coordinates whenever the Hamming distance
of Qẽ1 to s̃ equals ω − p′. In fact, this would increase the number of suitable er-
ror patterns that can be recovered within one iteration, nevertheless, we stick with
weight-consistent matchings for the following reasons. First the beneficial effect of allow-
ing weight-inconsistent matchings is asymptotically negligible. Second it is compatible
with the Finiasz-Sendrier framework. Third, allowing for weight-inconsistent matchings
would unnecessarily complicate the subsequent analysis.

For the sake of completeness, we give a pseudo-code description in Algorithm 4 and
denote it by SampleLists. By Append we denote a function that appends an element
x to a list L (possibly multiple times).

Algorithm 4: SampleLists

input : Parameters p, α and δ. Matrix Q′ ∈ Fℓ×k+ℓ
2 and syndrome s̃′ ∈ Fℓ

2.
output : List L of candidate solutions to Eq.(5.2).
params: Number of samples λ ∶= λ(k , ℓ,p, α, δ).
L1 ← ∅; L2 ← ∅;
for i = 1 to λ do

ẽ1,1 ←R W1; L1 ←Append(L1, ẽ1,1);
ẽ1,2 ←R W2; L2 ←Append(L2, ẽ1,2);

L ←Merge-Join(L1,L2,p,Q′, s̃′);
return L;

In Section 5.2.1 we will formally prove, that setting

λ(k , ℓ,p, α, δ) ∶= ∣W1∣√
ρ(k , ℓ,p, α, δ) (5.10)

is sufficient to make SampleLists 0-solution-preserving by showing that a fixed bal-
anced solution will have at least one representation in L1 ×L2 with constant probability.
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5.2 Relations Between Recent Algorithms

Intuitively, one might justify this choice following the birthday paradox as follows: Write
L1 ∶= {ẽi

1,1 ∶ i = 1, . . . , λ} and L2 ∶= {ẽj
1,2 ∶ j = 1, . . . , λ} and set ρ ∶= ρ(k , ℓ,p, α, δ) and

σ ∶= ∣W1∣ = ∣W2∣. Let ẽ1 be a fixed, balanced solution. We define λ2 random variables

Xi ,j ∶=
⎧⎪⎪⎨⎪⎪⎩
1 if ẽ1 = ẽi

1,1 + ẽj
1,2

0 otherwise

and observe that Pr [Xi ,j = 1] = ρ
σ2 since there are exactly ρ choices for ẽi

1,1 and ẽj
1,2 is

uniquely determined by ẽ1 + ẽi
1,1 once ẽi

1,1 is fixed. Our final goal is to upper bound
the probability of the event X = 0 where X ∶= ∑Xi ,j . If the Xi ,j were independent, this
probability would be easy to compute as

Pr [X = 0] = Pr [Xi ,j = 0 ∀1 ≤ i , j ≤ λ] = (1 − ρ

σ2
)λ2

≤ e−1

which yields the desired upper bound (where we used 1 − x ≤ e−x for all x ∈ R). Unfor-
tunately, the Xi ,j are not independent as we will discuss next.

Definition 5.2.3. Let ẽ1 be balanced. We call an element ẽ1,1 consistent with ẽ1, if
ẽ1 + ẽ1,1 = 0 on the first (1

2
−α)(k + ℓ) coordinates (and thus wt(ẽ1 + ẽ1,1) = αp + δ on the

overlapping 2α(k + ℓ) middle coordinates), i.e.

ẽ1 + ẽ1,1 ∈W2 .

Thus only ẽi
1,1 that are consistent to ẽ1 can yield (the balanced) ẽ1 by adding elements

from L2. For j ≠ k it holds

Pr [Xi ,j = 1,Xi ,k = 1] = Pr [Xi ,j = 1∣Xi ,k = 1]Pr [Xi ,k = 1]
= Pr [ẽj

1,2 = ẽk
1,2] ρ

σ2
=

ρ

σ3
>

ρ2

σ4
= Pr [Xi ,j = 1]Pr [Xi ,k = 1]

where the second equality holds since Xi ,k = 1 implies that ẽi
1,1 must be consistent and

thus Xi ,j = 1 iff ẽj
1,2 = ẽk

1,2. We circumvent the obstacle of dependencies by first proving
that L1 contains a sufficient number of distinct, consistent elements for every fixed ẽ1

with some constant, non-zero probability. In this case, there will also be at least one
suitable element in L2 that matches at least one of the distinct, consistent elements in
L1 with constant, non-zero probability.

Remark 5.2.4. To the best of our knowledge, the dependency issue has not been properly
treated in the literature so far. In [FS09], which covers the special case α = 1

2
and δ = 0,

the authors analyse the choice of λ under the assumption that “all sums ẽi
1,1 + ẽj

1,2

are uniformly and independently distributed in Wk+ℓ,p”, cf. [FS09, Asmp.(I1)]. This
assumption is false because for fixed i and varying j = 1, . . . , λ, all the pairs (ẽi

1,1, ẽ
j
1,2)

share a lot of non-zero coordinates. Similarly, Peters provides a proof sketch in [Pet11,
Section5.3.2] which implicitly assumes independence of the random variables Xi ,j .
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5 A Generalised Model for Information Set Decoding

For the moment let us heuristically assume that the above analysis is valid. We will
employ SampleLists with λ as defined in Eq.(5.10) for different cases:

• Section 5.2.2 covers α = 0 and δ = 0. In this case every solution has a unique
representation, i.e. ρ = 1 which yields λ = ∣W1∣. Thus, sampling L1 might be
replaced by deterministically setting L1 =W1. We will show that this instantiation
is asymptotically as good as BCD and PSSD, as introduced in Section 4.2.

• Section 5.2.4 covers α > 0 and δ = 0. For the extreme case α = 1
2

this resembles the
algorithm of [FS09]. We will show that α > 0 is always suboptimal for δ = 0, see
Theorem 5.2.24.

• Section 5.2.5 extends to δ > 0. The extreme case α = 1
2

will serve as a starting point
for our new algorithm in Section 6.2. The main technical result is a parameter
transformation that maps parameters (p, ℓ) for α = 0 and δ = 0 to parameters(p′, ℓ′, δ′) for α = 1

2
while preserving the asymptotic complexity of the algorithm.

The above relations are summarized in Figure 5.6. Thus, we can start from optimal
parameters of SampleLists with α = δ = 0 and the resulting running time will always
be at least as good as the optimal running time for BCD due to Theorem 5.2.13. We
can then apply Theorem 5.2.26 yielding a sampling-based algorithm with parameters(p′, ℓ′, δ′) for α = 1

2
that achieves the same performance as SampleLists for α = δ = 0

and is thus at least as efficient as BCD. The same parameters can finally be used in
our new algorithm while preserving the running time. To prove the superiority of our
algorithm compared to BCD, it is then sufficient to slightly adapt these parameters.

Ball-Collision ≥
Theo.5.2.13

SampleLists
α > 0, δ = 0

< Theo.5.2.24

SampleLists
α = δ = 0

= Theo.5.2.16

Pssd

SampleLists
α = 1

2
, δ > 0

=
Theo.5.2.26

Figure 5.6: Relations between known algorithms and different ISD instantiations using Sam-
pleLists. The ≥ or = symbols together with the referenced theorems indicate the
asymptotic relationships.
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5.2 Relations Between Recent Algorithms

5.2.1 Choosing λ

Our aim is to prove that the heuristic choice of λ in Eq.(5.10) does indeed give a solution-
preserving instantiation of SampleLists. In the following we write ρ ∶= ρ(k , ℓ,p, α, δ)
for the number of representations as defined in Lemma 5.1.5 and

σ ∶= ∣W1∣ = ∣W2∣ = ((1
2
+ α) (k + ℓ)

p

2
+ δ

) . (5.11)

Theorem 5.2.10 (Informal). For sufficiently large ρ and σ and

λ ∶=
σ√
ρ

SampleLists is 0-solution-preserving.

The outline of the proof is as follows: Fix a balanced solution ẽ1 and first show that
there will be a sufficiently large number of distinct, consistent elements (for ẽ1) in L1

with good probability. Then upper bound the probability that none of the elements in
L2 matches any of those “good” elements in L1. The first part of the proof requires
some additional lemmata: We first provide a lower bound on the probability that L1

contains at least λ
2

many distinct elements. This follows from Theorem 5.2.6 which
gives a concentration result for the expected size of the image of a random function
f ∶ [n] → [m]. We define a random variable Xn,m ∶= ∣ im(f )∣ which is a function on the
product space [m]n (equipped with the uniform distribution), i.e. we identify a random
function f with its table of values (f (1), . . . , f (n)). The study of Xn,m is a typical
application of the Probabilistic Method [AS08].

Lemma 5.2.5. It holds

E [Xn,m] =m (1 − (1 − 1

m
)n) (5.12)

which is monotone increasing in n and m.

Proof. Xn,m can be written as the sum of m indicator variables Ij where Ij = 1 iff
j ∈ im(f ). It holds

E [Ij ] = Pr [Ij = 1] = 1 − (1 − 1

m
)n

which proves Eq.(5.12) by linearity of expectation. Clearly, E [Xn,m] is monotone in-
creasing in n. For m, consider the first partial derivative

∂E [Xn,m]
∂m

= 1 − (1 − 1

m
)n − n

m
(1 − 1

m
)n−1

= 1 − (1 − 1

m
)n (1 − n

m − 1
) .
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5 A Generalised Model for Information Set Decoding

Since (1− 1
m
)n ≥ 0 for all n,m ∈ N we can assume wlog that n <m − 1 (n ≥m − 1 implies

1 − n
m−1
≤ 0 and the right-hand side will always be > 0). Thus, it is sufficient to show

(1 − 1

m
)n < (1 − n

m − 1
)−1

for all m and n < m − 1: Note that (1 − 1
m
)n ≤ 1. Furthermore, 0 < n < m − 1 implies

0 < 1 − n
m−1
< 1 which yields (1 − n

m−1
)−1 > 1.

Theorem 5.2.6.

Pr [Xn,m ≤ E [Xn,m] −√n ] ≤ e−1/2 (5.13)

Proof. Follows from general concentrations results used in the Probabilistic Method, cf.
[AS08, Chapter7] or more concretely [MV08, Theorem 8.1.1].

To apply Theorem 5.2.6 to our setting, observe that uniformly independently picking
λ out of σ elements with replacement is equivalent to picking a random function f ∶[λ] → [σ], i.e. the number of distinct elements in L1 is exactly Xλ,σ and we obtain the
following result.

Lemma 5.2.7. For λ ≥ 58 it holds

Pr [∣L̃1∣ ≥ λ

2
] ≥ 1 − e−1/2 (5.14)

where L̃1 is the set that results from filtering out duplicate elements in L1.

Proof. For n = λ and m = σ, Theorem 5.2.6 gives

Pr [Xλ,σ ≥ E [Xλ,σ] −√λ] ≥ 1 − e−1/2 .

By definition of λ it always holds λ ≤ σ and by monotonicity of E [Xλ,σ] it follows, that
with probability at least 1 − e−1/2

∣L̃1∣ = Xλ,σ ≥ E [Xλ,σ] −√λ ≥ E [Xλ,λ] −√λ

= λ(1 − (1 − 1

λ
)λ) −√λ ≥ λ(1 − e−1) −√λ ≥

λ

2

where the last inequality holds for λ ≥ (1
2
− e−1)−2 = 57.29.

For a fixed, balanced solution ẽ1 we will now consider the corresponding set C of
distinct, consistent elements in L1, i.e.

C(ẽ1) ∶= {ẽ1,1 ∈ L̃1 ∶ ẽ1,1 + ẽ1 ∈W2} ,
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and study its cardinality C ∶= ∣C∣. Since the elements of L̃1 are still uniformly distributed
in W1, we expect C ≈ ρ

σ
∣L̃1∣ since a single element in L̃1 is consistent with ẽ1 with

probability ρ
σ
. Since L̃1 contains only distinct elements, the probability of two elements

being consistent to ẽ1 is not independent. Fortunately, their covariance will be negative
(if one element is consistent, the chance of being consistent for another, distinct element
decreases and vice versa). This will allow to prove that there are “enough” consistent
elements in L̃1 which eventually allows to show that there will be at least one matching
element in L2 with good probability. The formal statement and its proof is given next.

Lemma 5.2.8. Let ẽ1 be a balanced. For ρ ≥ 256, λ ≥ 58 and λ = σ√
ρ

it holds

Pr [ẽ1 ∈ L1 +L2] ≥ 1

2
(1 − e−1/4)(1 − e−1/2) ≥ 0.044 . (5.15)

Proof. Note that ẽ1 ∈ L1 + L2 iff ẽ1 ∈ C(ẽ1) + L2. Equivalently, there must be at least
one ẽ1,2 ∈ L2 that is contained in the set ẽ1 + C(ẽ1). Note that ẽ1 + C(ẽ1) is a subset of
W2 with cardinality C . Now, all the ẽj

1,2 are uniformly and independently drawn from
W2. This allows to bound the target probability as the product of the λ probabilities
Pr [ẽj

1,2 ∉ ẽ1 + C(ẽ1)] where we write L2 ∶= {ẽj
1,2 ∶ j = 1, . . . λ}. To lower bound these

probabilities we need to lower bound C .
By Lemma 5.2.7, we know that ∣L̃1∣ ≥ λ

2
for λ ≥ 58 with probability ≥ 1 − e−1/2. Let

us assume the worst-case ∣L̃1∣ = λ
2
. In this case, we write L̃1 ∶= {ẽi

1,1 ∶ i = 1, . . . , λ
2
} and

C = ∑Ci for the λ
2

indicator variables

Ci =
⎧⎪⎪⎨⎪⎪⎩
1 if ẽi

1,1 ∈ C(ẽ1)
0 otherwise .

Note that E [Ci] = Pr [Ci = 1] = ρ

σ
and thus E [C ] = λρ

2σ
=
√

ρ

2
by definition of λ. Further-

more, for i ≠ j we have

Cov [Ci ,Cj ] = E [CiCj ] −E [Ci]E [Cj ]
= Pr [Ci = 1∣Cj = 1]Pr [Cj = 1] −Pr [Ci = 1]2 = (ρ − 1

σ
) ρ

σ
−

ρ2

σ2
< 0

which implies

Var [C ] = λ/2∑
i=1

Var [Ci] + 2 ∑
1≤i<j≤λ

2

Cov [Ci ,Cj ] < λ/2∑
i=1

Var [Ci] ≤ E [C ] (5.16)

where the last inequality is due to the fact Var [Ci] = ρ

σ
(1 − ρ

σ
) ≤ E [Ci]. Using Cheby-

chev’s inequality, see Eq.(2.9), we obtain

Pr [C ≥ 1

2
E [C ]] ≥ 1 −Pr [∣C −E [C ] ∣ ≥ 1

2
E [C ]]

≥ 1 −
4Var [C ]
E [C ]2 ≥ 1 −

4

E [C ] = 1 −
8√
ρ
≥

1

2
(5.17)
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for ρ ≥ 256. Here, the second-last inequality holds due to Eq.(5.16) and the last equality
holds by definition of λ. Define the failure event F ∶= {L2 ∩ (ẽ1 + C(ẽ1)) = ∅} and the
success event S = ¬F. It holds

Pr [F] = (1 − C

σ
)λ ≤ exp(−λC

σ
)

and combining this with Lemma 5.2.7 and Eq.(5.17) finally yields

Pr [S] ≥ Pr [S ∣ C ≥
λρ

4σ
](1 − e−1/2

2
)

= (1 −Pr [F ∣ C ≥
λρ

4σ
])(1 − e−1/2

2
) ≥ (1 − e−1/4)(1 − e−1/2)

2

since exp (−λ2ρ

4σ2 ) ≤ e−1/4 by definition of λ.

Remark 5.2.9. The bound provided by Lemma 5.2.8 is rather loose and the conditions
on ρ and λ are quite restrictive yet sufficient for our purposes.

Being 0-solution-preserving is an asymptotic property of SampleLists and hence we
must translate the above lemma into the asymptotic setting. Define

Σ(R,L,P , α,∆) ∶= lim
n→∞

1

n
logσ(⌊Rn⌋, ⌊Ln⌋, ⌊Pn⌋, α, ⌊∆n⌋) (5.18)

= (1
2
+ α)(R + L)H( P

2
+∆(1

2
+ α)(R + L))

and the coefficient for the size of the sampled lists as

Λ(R,L,P , α,∆) ∶= lim
n→∞

1

n
logλ(⌊Rn⌋, ⌊Ln⌋, ⌊Pn⌋, α, ⌊∆n⌋) (5.19)

= Σ(R,L,P , α,∆) − 1

2
P(R,L,P , α,∆).

where P(R,L,P , α,∆) = limn→∞
1
n

log ρ denotes the coefficient for the number of repre-
sentations as defined in Corollary 5.1.6. Note that 1

2
P < Σ always holds and thus the

restrictions on λ and ρ in Lemma 5.2.8 can be simultaneously fulfilled for sufficiently
large n. Furthermore, any balanced ẽ1 ∈Wk+ℓ,p (and particularly any balanced solution
ẽ1 ∈ S) is contained in L1 +L2 even with constant probability. This allows to prove the
next theorem.

Theorem 5.2.10. Let 0 < R < 1 and α ∈ [0, 1
2
]. For 0 ≤ L ≤ 1−R, 0 ≤ P ≤ R+L,

0 ≤ ∆ ≤ 2α(R + L − P) and P, Σ and Λ as defined in Eq.(5.9), (5.18) and
(5.19), SampleLists is 0-solution-preserving. Moreover, for almost all binary[n, ⌊Rn⌋]-codes, SampleLists runs in time 2C (R,L,P ,α,∆)n+o(n) with

C (R,L,P , α,∆) =max{Λ(R,L,P , α,∆) , 2Λ(R,L,P , α,∆) − L} .
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As we will shortly see, the proof of Theorem 5.2.10 upper bounds the probability
of obtaining too many collisions between L1 and L2 by a standard argument about
the concentration of a particular random variable. As similarly done in the proof of
Theorem 4.3.1, we can simply abort SampleList whenever too many collisions occur.
We refrain from a detailed description. Altogether, combining Theorem 5.2.10 with
Lemma 5.1.9 allows to prove the following main result.

Main Theorem 5.2.1 (SampleLists). Let 0 < R < 1, 0 < W ≤ DGV(R)
and α ∈ [0, 1

2
]. For almost all binary [n, ⌊Rn⌋]-codes it holds: Gener-

alised ISD instantiated with SampleLists successfully terminates in time
2FSampling(R,W ,α,∆)n+o(n) for every error vector e ∈ Wn,⌊Wn⌋ with overwhelming
probability where

FSampling(R,W , α) = min
P ,L,∆

{N (R,W ,L,P)+ (5.20)

max{Λ(R,L,P , α,∆),2Λ(R,L,P , α,∆) −L}}
with 0 ≤ L ≤ 1 − R, max{0,R + L +W − 1} ≤ P ≤ min{R + L,W } and 0 ≤ ∆ ≤
2α(R + L −P).

Proof of Theorem 5.2.10. It only remains to prove the statement about the running time
C . By Proposition 5.2.1, we need to estimate the number of matchings M that occur
when merging L1 and L2, i.e. we need to estimate the number of pairs (ẽ1,1, ẽ1,2) ∈ L1×L2

with Q′(ẽ1,1 + ẽ1,2) = s̃′. We proceed similarly to the proof of Theorem 4.3.1 for BCD,
i.e. we apply Lemma 2.4.6 to obtain

E [M ] = 2(2Λ−L)n+o(n)

and Var [M ] ≤ E [M ]. Suppose L < 2Λ. Using Chebychev’s inequality, see Eq.(2.9), we
obtain

Pr [M ≥ 2E [M ]] ≤ Pr [∣M −E [M ] ∣ ≥ E [M ]] ≤ Var [M ]
E [M ]2 ≤ 1

E [M ] = 2−(2Λ−L)n+o(n) ,

which is exponentially decreasing in n, i.e. M ≤ 2E [M ] = 2(2Λ−L)n+o(n) with probability
1 − 2−Ω(n). Conversely, for L ≥ 2Λ we have E [M ] ≤ 2o(n) and the following very vague
estimation is sufficient: Let ǫ > 0 be arbitrarily small, it holds

Pr [M ≥ 2ǫn
+E [M ]] ≤ Pr [∣M −E [M ] ∣ ≥ 2ǫn] ≤ 2−2ǫn+o(n) ,

i.e. M ≤ 2ǫn+o(n) for ǫ > 0 arbitrarily small with probability 1 − 2−Ω(n). By Proposi-
tion 5.2.1 we finally obtain C =max{Λ,2Λ−L} for ǫ sufficiently small (in the case Λ = 0
there is nothing to prove).
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5.2.2 A Variant of Ball-collision Decoding

We now study the instantiation of the generalised ISD framework for α = δ = 0. We call
this variant FS-Isd since the only difference to Stern’s algorithm is to use the quasi-
standard form as first proposed by Finiasz and Sendrier in [FS09]. The main goal is to
prove that

FS-ISD is at least as efficient as BCD.

As mentioned before, for α = δ = 0 there are no representations involved. This gives ρ = 1
and we obtain λ = ∣W1∣. It is thus reasonable to replace SampleLists by a deterministic
procedure that simply computes L1 = W1 and L2 = W2. In this case, every balanced
vector ẽ1 ∈ Wk+ℓ,p is by definition in L1 + L2 = W1 +W2 and SampleLists is trivially
0-solution-preserving (with probability 1). In particular, Theorem 5.2.1 still holds for
the deterministic variant of SampleLists and we obtain an algorithm with complexity
coefficient

FFS−ISD(R,W ) =min
P ,L
{NFS−ISD +max{ΛFS−ISD , 2ΛFS−ISD − L}} (5.21)

where NFS−ISD ∶= N (R,W ,L,P) denotes the number of iterations as defined in Eq.(5.6)
and

ΛFS−ISD(R,L,P) = R + L

2
H( P

R + L
) (5.22)

denotes the space complexity given by the size of the lists L1 and L2. The parameter
space is restricted to

0 ≤ L ≤ 1 −R (5.23)

max{0,R + L +W − 1} ≤ P ≤ min{R + L,W } . (5.24)

Remark 5.2.11. The relation

N (R,W ,L,P) = H(W ) − (1 −R − L)H( W −P

1 −R − L
) − 2ΛFS−ISD(R,L,P) (5.25)

sometimes allows to simplify calculations, i.e. we may write

T (R,W ,L,P) = H(W ) − (1 −R − L)H( W −P

1 −R − L
) +max{−L,−ΛFS−ISD(R,L,P)}

for the running time of FS-ISD for arbitrary valid parameters (L,P).
Remark 5.2.12. Note that FFS−ISD > 0 for all 0 < W ≤ DGV(R) and 0 < R < 1: For
valid parameters (L,P) one has either N (R,W ,L,P) > 0 (and thus F > 0) or it holds
N (R,W ,L,P) = 0. In this case, P must be proportional to R + L, i.e. P = (R + L)W .
But this implies Λ(L,P) = R+L

2
H(W ) > 0.
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The following theorem, first presented in [MMT11] at Asiacrypt 2011, proves how to
transform (optimal) BCD parameters (P ,Q ,L) into valid parameters (P ′,L′) for FS-
ISD. In the remainder of this section, we will denote the running time coefficient of
BCD and FS-ISD by TBCD(P ,Q ,L) and TFS−ISD(P ′,L′), respectively. Here, (P ,Q ,L)
and (P ′,L′) denote some arbitrary valid (but not necessarily optimal) parameters for
BCD and FS-ISD. We drop the parameters R and W for ease of presentation.

Theorem 5.2.13. Let (P ,Q ,L) be a parameter set for the BCD algorithm.
Then (P +Q ,L) is a parameter set for FS-ISD and it holds

TBCD(P ,Q ,L) ≥ TFS−ISD(P +Q ,L) ,

i.e. FS-ISD is asymptotically at least as efficient as BCD.

Remark 5.2.14. In [BLP11a], the authors state “Our own assessment is that if param-
eters had been chosen more carefully then the algorithm of [32] would have led to an
exponential improvement over collision decoding, contrary to the conclusions in [32].”
where [32] is [FS09] and collision decoding refers to Stern’s algorithm. However, the
authors do not provide any further (formal) justification of this claim comparable to
Theorem 5.2.13.

Proof of Theorem 5.2.13. Let (P ,Q ,L) be a valid parameter set for BCD, i.e. 0 ≤ L ≤
1 −R, 0 ≤ Q ≤ min{L,W } and max{0,R + L +W −Q − 1} ≤ P ≤ min{R,W −Q}. Then(P ′,L′) ∶= (P +Q ,L) is a valid parameter set for FS-ISD since 0 ≤ L′ ≤ 1 −R and

P ′ = P +Q ≤min{R +L,W } = min{R + L′,W } ,

P ′ = P +Q ≥max{0,R +W + L − 1} =max{0,R +W +L′ − 1}
as required. First observe that the statement trivially holds (with equality) for L = 0
(since Q = 0 follows and both algorithms are the same). Recall from Section 4.3 that

TBCD(P ,Q ,L) = NBCD(P ,Q ,L) +max{ΛBCD(P ,Q ,L),2ΛBCD(P ,Q ,L) − L} (5.26)

where

NBCD(P ,Q ,L) = H(W ) −R H(P
R
) −LH(Q

L
) − (1 −R − L)H(W −P −Q

1 −R −L
)

and

ΛBCD(P ,Q ,L) = R

2
H(P

R
) + L

2
H(Q

L
) .

Let us first assume that the maximum in Eq.(5.26) is 2ΛBCD−L, i.e. L ≤ ΛBCD must hold.
Using Lemma 2.3.2 we obtain

ΛBCD(P ,Q ,L) ≤ R + L

2
H(P +Q

R + L
) = ΛFS−ISD(P +Q ,L)
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5 A Generalised Model for Information Set Decoding

by definition of ΛFS−ISD, see Eq.(5.22), and thus L ≤ ΛFS−ISD follows. Consequently, the
maximum in TFS−ISD, see Eq.(5.21), is also reached in the right component 2ΛFS−ISD −L.
By definition of NBCD and NFS−ISD we can now deduce

TFS−ISD(P +Q ,L) = NFS−ISD(P +Q ,L) + 2ΛFS−ISD(P +Q ,L) −L

= H(W ) − L − (1 −R −L)H(W − (P +Q)
1 −R − L

)
= NBCD(P ,Q ,L) + 2ΛBCD(P ,Q ,L) − L = TBCD(P ,Q ,L) .

It remains to consider the case where L > ΛBCD. Let us first assume L > ΛFS−ISD also
holds, i.e. the maximum in TFS−ISD is ΛFS−ISD. It follows

TFS−ISD(P +Q ,L) = NFS−ISD(P +Q ,L) +ΛFS−ISD(P +Q ,L)
= H(W ) − (1 −R −L)H(W − (P +Q)

1 −R −L
) − R +L

2
H(P +Q

R + L
)

≤ H(W ) − (1 −R −L)H(W −P −Q

1 −R − L
) − R

2
H(P

R
) − L

2
H(Q

L
)

= NBCD(P ,Q ,L) +ΛBCD(P ,Q ,L) = TBCD(P ,Q ,L)
where we used Lemma 2.3.2 for the inequality. Contrary, let L < ΛFS−ISD, i.e. the maxi-
mum in TFS−ISD is 2ΛFS−ISD −L. Since L > ΛBCD, we obtain

TFS−ISD(P +Q ,L) = NFS−ISD(P +Q ,L) + 2ΛFS−ISD(P +Q ,L) − L

= H(W ) − (1 −R − L)H(W − (P +Q)
1 −R − L

) − L

< H(W ) − (1 −R − L)H(W − (P +Q)
1 −R − L

) −ΛBCD(P ,Q ,L)
= NBCD(P ,Q ,L) +ΛBCD(P ,Q ,L) = TBCD(P ,Q ,L) .

Thus, in all cases we have TFS−ISD(P +Q ,L) ≤ TBCD(P ,Q ,L) as claimed.

Remark 5.2.15. We point out that the proof of Lemma C1 in the full version of [BLP11a]
implicitly shows that L∗ ≤ ΛBCD(L∗,P∗,Q∗) holds for optimal BCD parameters L∗,P∗

and Q∗. In this case, equality always holds in Theorem 5.2.13.

Relation to PSSD

As a side note, we will now relate FS-ISD to PSDD as defined in Section 4.2. First,
we give a more detailed description of PSSD and generalize its complexity coefficient to
arbitrary target weight W ≤ DGV(R). Recall the main idea of PSSD: Given a code C
of dimension n and rate R and vector x =m⊺G + e where e has Hamming weight Wn,
choose two parameters R ≤ β ≤ 1 and max{0,W + β − 1} ≤ α ≤ min{W , β} and consider
the punctured code C′ given by the first βn coordinates. If C has generator matrix
G = (G′ G′′) where G′ consists of the first βn columns of G, then C′ is generated by

G′. Clearly, C′ has length n ′ = βn and rate R′ = k
n′
= R

β
. Now, PSSD works as follows:
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• Find all codewords c′ ∈ C′ within distance αn from x′. Therefore compute all
solutions e′ of weight αn to the equation

H′e′ = s′

where s′ =H′x′ is the syndrome of the punctured received word x′ and H′ denotes
a parity check matrix of C′. This is done by splitting H′ and e′ into two disjoint
parts as in the basic SSD, see Section 4.2.

• If the extension c to all n coordinates of one of those codewords c′ is within
distance Wn from x, output it. Here, the extension can easily be computed by
solving m⊺G′ = c′ for m and computing c =m⊺G afterwards.

If the above procedure fails, one repeats it with permuted coordinates of C. We continue
with a rather informal analysis of PSSD, which is sufficient for our purposes, see [Bar98]
for a rigorous version. Clearly, a single iteration succeeds if e has Hamming weight αn
on the first βn and (W −α)n on the last (1−β)n coordinates, i.e. the coeffcient for the
number of iteration is

NPSSD(α,β) = H(W ) − β H(α
β
) − (1 − β)H(W − α

1 − β
) . (5.27)

The complexity of one iteration is the maximum between the number of vectors of length
β

2
n and weight α

2
n and the number of solutions to the equation H′e′ = s′. Since C′ has

rate R/β, the syndrome s′ has length (1 − R
β
)βn and the number of solutions can be

estimated as (βn

αn
)2−(β−R)n

which yields

TPSSD(α,β) = NPSSD(α,β) +max{ΛPSSD(α,β),2ΛPSSD(α,β) − (β −R)} (5.28)

where

ΛPSSD(α,β) = β

2
H(α

β
) . (5.29)

Given these formulas, the next theorem is trivial to prove.

Theorem 5.2.16. Let (P ,L) be a parameter set for the FS-ISD algorithm.
Then (P ,R + L) is a parameter set for PSSD and it holds

TFS−ISD(P ,L) = TPSSD(P ,R + L) ,

i.e. FS-ISD is asymptotically equivalent to PSSD.

Combining this with Theorem 5.2.13 gives the following
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Corollary 5.2.17. PSSD is asymptotically at least as efficient as BCD.

Proof of Theorem 5.2.16. Let (P ,L) be a valid parameter set for FS-ISD, i.e. 0 ≤ L ≤
1 − R and max{0,R + L + W − 1} ≤ P ≤ min{R + L,W }. Then (α,β) ∶= (P ,R + L)
is a valid parameter set for PSSD, i.e. β = R + L ≥ R and β = R + L ≤ 1 holds and
max{0, β +W − 1} ≤ α ≤ min{β,W } is obvious. It immediately follows NFS−ISD(P ,L) =
NPSSD(P ,R+L) and ΛFS−ISD(P ,L) = ΛPSSD(P ,R+L). Moreover, it holds L = β−R which
completes the proof.

5.2.3 Properties of Optimal FS-ISD Parameters (L∗,P∗)

For ease of presentation, we write T (L,P) ∶= TFS−ISD(L,P) for the running time coeffi-
cient of FS-ISD and Λ(L,P) ∶= ΛFS−ISD(L,P) for the space complexity coefficient. Also
recall the useful Eq.(5.25), i.e.

T (L,P) = H(W ) − (1 −R −L)H( W −P

1 −R − L
) +max{−L , −Λ(L,P)}

= H(W ) − (1 −R −L)H( W −P

1 −R − L
) +max{−L , −

R + L

2
H( P

R + L
)} .

In preparation for Section 6.3, where we prove the superiority of our new algorithm, we
will now establish some useful facts about optimal parameters (L∗,P∗) for the FS-ISD
algorithm, namely it always holds

• 0 < L∗ < 1 −R (see Lemma 5.2.18 and Lemma 5.2.19),

• 0 < P∗ <W (see Corollary 5.2.20),

• W −P∗ < 1−R−L∗

2
and P∗ < R+L∗

2
(see Lemma 5.2.21 and Lemma 5.2.22).

Recall that the complete parameter space of FS-ISD is defined by 0 ≤ L ≤ 1 − R and
max{0,R + L +W − 1} ≤ P ≤ min{R + L,W }. Essentially, we will show that optimal
parameters (L∗,P∗) are not located at the corners of the parameter space. Almost
all of the proofs will be constructive and we will show how to improve on parameters
that do not fulfil the respective conditions. The proofs are elementary (basic calculus)
but rather technical and can safely be skipped if one is only interested in the high-
level idea of our proof of superiority in Section 6.3. We will frequently compute the
Taylor series expansion of H where a term like (x + ǫ) log(x + ǫ) has series expansion
x log(x) + ǫ log(ex) +O(ǫ2) around ǫ = 0 (where one has to take care of x > 0 which is
necessary for log being differentiable).

Besides the above points, it will also follow that optimal parameters (L∗,P∗) always
fulfill Λ(L∗,P∗) ≤ L∗, or equivalently, 2Λ(L∗,P∗)−L∗ ≤ Λ(L∗,P∗). Put simply, merging
the lists L1 and L2 is at most as expensive as constructing (or sampling) them, see
Corollary 5.2.23.

Lemma 5.2.18. Let (L∗,P∗) be optimal parameters for FS-ISD, then 0 < L∗ holds.
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Proof. Fix 0 < R < 1 and 0 < W ≤ DGV(R). Assume L∗ = 0. We obtain max{−L∗,
−Λ(L∗,P∗)} = 0 and deduce

T (0,P∗) = H(W ) − (1 −R)H(W −P∗

1 −R
)

which is monotone increasing in P∗ since W ≤ DGV(R) ≤ 1−R
2

. Thus P∗ = 0 must hold for
optimal parameters (L∗,P∗) with L∗ = 0 and the FS-ISD algorithm degenerates to Plain
ISD. According to Theorem 5.2.13, we have FBall(R,W ) ≥ FFS−ISD(R,W ) = T (0,0).
Since Plain ISD can also be instantiated in the BCD framework (with P = Q = L = 0),
it follows FBall(R,W ) = T (0,0) and we have found optimal BCD parameters with Q =
L = 0. This contradicts Theorem 4.3.4 and thus L∗ = 0 must be false.

Lemma 5.2.19. Let (L∗,P∗) be optimal parameters for FS-ISD, then L∗ < 1−R holds.

Proof. Fix 0 < R < 1 and 0 <W ≤ DGV(R). Assume L∗ = 1 −R. The restriction (5.24)
implies P∗ = W . In this case, FS-ISD degenerates to Split Syndrome Decoding whose
complexity is given by T (1 −R,W ) = H(W )

2
. Note that W > 0 and R < 1 implies L∗ > 0

and P∗ > 0, thus there is space to decrease both parameters by some small amount.
More precisely, we define

L′ ∶= L∗ − ǫ and P ′ ∶= (1 − ǫ)P∗ = (1 − ǫ)W
which are valid parameters for some ǫ > 0: Restriction (5.23) on L∗ is trivially fulfilled
and restriction (5.24) holds since

R + L′ +W − 1 =W − ǫ ≤ (1 − ǫ)W ≤min{1 − ǫ,W } =min{R + L′,W }
is valid (we have W ≤ 1

2
< 1). Note that our choice of P ′ is proportional to R +L′ = 1− ǫ.

Intuitively, this reduces the number of iteration to a polynomial which can be verified
by computing

N (L′,P ′) = H(W ) − (1 −R − L′)H( W −P ′

1 −R − L′
) − (R +L′)H( P ′

R +L′
)

= H(W ) − ǫH(ǫW
ǫ
) − (1 − ǫ)H((1 − ǫ)W

1 − ǫ
) = 0 .

Furthermore we obtain Λ(L′,P ′) = 1−ǫ
2

H(W ) which yields

T (L′,P ′) =max{2Λ(L′,P ′) − L′,Λ(L′,P ′)}
=max{(1 − ǫ)H (W ) − (1 −R − ǫ), 1 − ǫ

2
H (W )} .

Clearly, the second argument of the maximum is smaller than T (1 −R,W ) = H(W )
2

for
ǫ > 0 and it remains to show

(1 − ǫ)H(W ) − (1 −R − ǫ) < 1

2
H(W ) (5.30)
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for all W ≤ DGV(R) and some ǫ > 0. Rearranging Eq.(5.30) yields the sufficient condition

ǫ <
1 −R −

1
2
H(W )

1 −H(W ) .

Since W ≤ DGV(R) = H(−1)(1 −R) it follows 1 −R −
H(W )

2
≥ 1−R

2
> 0 for all 0 < R < 1, i.e.

the right-hand side is strictly positive. This finally proves the existence of some suitable
ǫ > 0 with T (L′,P ′) < T (1 −R,W ) which contradicts the optimality of L∗ = 1 −R.

Corollary 5.2.20. For optimal FS-ISD parameters (L∗,P∗) it holds

max{0,R +L∗ +W − 1} < P∗ <W .

Proof. Let (L∗,P∗) be optimal parameters, i.e. by Lemma 5.2.18 and Lemma 5.2.19 we
have 0 < L∗ < 1 −R and we write L∗ = 1 −R − ǫ for some ǫ > 0. Note P∗ = 0 yields

T (L∗,P∗) = T (L∗,0) = H(W ) − (1 −R − L∗)H( W

1 −R − L∗
)

which is clearly minimal for L∗ = 0 in contradiction to L∗ > 0. Now consider the case
P∗ = R +L∗ +W − 1 =W − ǫ (i.e. ǫ <W ) and define P ′ ∶= (1 − ǫ)W . As in the preceding
proof, P ′ is valid and minimizes N (L∗,P ′) = 0. We obtain

T (L∗,P∗) = H(W ) +max{−1 − ǫ

2
H(W − ǫ

1 − ǫ
) , −(1 −R − ǫ)}

and

T (L∗,P ′) =max{1 − ǫ

2
H(W ) , (1 − ǫ)H(W ) − (1 −R − ǫ)} .

If the maximum in T (L∗,P∗) is −(1 − R − ǫ), then the maximum in T (L∗,P ′) is (1 −
ǫ)H(W ) − (1 −R − ǫ) since

(1 − ǫ)H(W ) − (1 −R − ǫ) ≥ (1 − ǫ)H(W ) − 1 − ǫ

2
H(W − ǫ

1 − ǫ
)

≥
1 − ǫ

2
H(W ) + 1 − ǫ

2
[H(W ) −H(W − ǫ

1 − ǫ
)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

>
1 − ǫ

2
H(W )

since W−ǫ
1−ǫ
< W < 1

2
. Thus, it follows T (L∗,P∗) − T (L∗,P ′) = ǫH(W ) > 0. Now, let

the maximum in T (L∗,P∗) be given by the left argument. Let us first assume that the
maximum in T (L∗,P ′) is also given by the left argument. As before, it follows

T (L∗,P∗) −T (L∗,P ′) = H(W ) − 1 − ǫ

2
H(W − ǫ

1 − ǫ
) − 1 − ǫ

2
H(W )

= ǫH(W ) + 1 − ǫ

2
[H(W ) −H(W − ǫ

1 − ǫ
)] > 0 .
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If the maximum in T (L∗,P ′) is given by the right argument, we need to show that

h(ǫ) ∶= T (L∗,P∗) −T (L∗,P ′) = ǫH(W ) − 1 − ǫ

2
H(W − ǫ

1 − ǫ
) + (1 −R − ǫ) > 0

for all 0 < ǫ <W and all 0 <W ≤ DGV(R) = H(−1)(1−R). Note that h(0) = 1−R−
H(W )

2
≥

1−R
2
> 0 for all 0 < R < 1. Moreover,

dh

dǫ
= H(W ) − 1 −

1

2
log (W − ǫ

1 − ǫ
) ≥ H(W ) − 1 −

1

2
logW > 0

for all 0 < W < 1
2
, i.e. h is monotone increasing for all W and thus h(ǫ) > 0 for all

0 < ǫ <W .
Let us finally assume P∗ =W . It follows

T (L∗,P∗) = T (L∗,W ) = H(W ) +max{−L∗ , −
R + L∗

2
H( W

R + L∗
)}

which is clearly minimised for the maximal choice L∗ = 1 − R (contradicting L∗ < 1 −
R).

The next lemma gives a stronger lower bound on P∗ than the preceding corollary. We
show that P∗ > W −

1−R−L∗

2
. This observation will play a crucial role in the proof of

superiority in Section 6.3.

Lemma 5.2.21. For optimal parameters (L∗,P∗) it holds

W −P∗ <
1 −R − L∗

2
.

Proof. Let (L∗,P∗) be optimal parameters, i.e. 0 < L∗ < 1−R and max{0,R+L∗+W −1} <
P∗ <W . Suppose that W −P∗ ≥ 1−R−L∗

2
. Then, P∗ < R+L∗

2
must hold (since P∗ ≥ R+L∗

2

would imply W = W − P∗ + P∗ ≥ 1
2

which is a contradiction because W ≤ DGV(R) < 1
2

for all 0 < R < 1). We distinguish two cases: First, let W − P∗ = 1−R−L∗

2
+ ǫ for some

ǫ > 0. Then define P ′ ∶= P∗ + δ for some 0 < δ < ǫ (note that P ′ remains valid, i.e.
P ′ ≤ min{R + L∗,W }, for small enough δ since P∗ < R+L∗

2
and P∗ <W ). Furthermore,

Λ(L∗,P) is a continuous function in P which implies Λ(L∗,P∗) < L∗ iff Λ(L∗,P ′) < L∗

for small enough δ, i.e. we obtain

T (L∗,P∗) −T (L∗,P ′) = (1 −R −L∗) [H( W −P ′

1 −R − L∗
) −H( W −P∗

1 −R − L∗
)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶A

+max{0 ,
R +L∗

2
[H( P ′

R + L∗
) −H( P∗

R + L∗
)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶B

} > 0
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5 A Generalised Model for Information Set Decoding

where the last inequality holds due to the following reasons: Note that

W −P ′

1 −R −L∗
=

W −P∗ − δ

1 −R − L∗
=

1

2
+

ǫ − δ

1 −R − L∗
<

1

2
+

ǫ

1 −R −L∗
=

W −P∗

1 −R − L∗

and thus A > 0 (clearly H(1
2
+y)−H(1

2
+x) > 0 for all 0 ≤ y < x ≤ 1

2
). Similarly, P∗ < R+L∗

2

implies

B = H(P∗ + δ

R +L∗
) −H( P∗

R +L∗
) > 0

for δ small enough. This implies T (L∗,P∗) > T (L∗,P ′) in contradiction to the optimality
of (L∗,P∗). Consequently, W − P∗ > 1−R−L∗

2
must be false. Thus, the case W − P∗ =

1−R−L∗

2
remains. Note, that H( W−P∗

1−R−L∗
) = 1 which yields

T (L∗,P∗) = H(W ) − (1 −R − L∗) +max{−L∗ , −
R +L∗

2
H( P∗

R + L∗
)} .

Now, we can exclude the case where the maximum is given by −L∗: If the maximum
were −L∗ then T (L∗,P∗) = H(W )−(1−R) would follow. But H(W )−(1−R) ≤ 0 for all
0 <W ≤ DGV(R) and 0 < R < 1 which is a contradiction to Remark 5.2.12. Consequently,
we have Λ(L∗,P∗) < L∗ which motivates to slightly decrease L∗ (note that there is space
to decrease L∗ for optimal (L∗,P∗) due to Corollary 5.2.20). Consider

T (L,P) = H(W ) − (1 −R − L)H( W −P

1 −R − L
) − R +L

2
H( P

R +L
)

and compute the Taylor series expansion of T (L − ǫ,P) around ǫ = 0 to obtain

T (L − ǫ,P) −T (L,P) = [− log(1 − P
L+R
) + 2 log(1−L−R−W +P

1−L−R
)

2
] ǫ +O(ǫ2)

which is negative if

(L +R)(1 − L −R −W +P)2(1 −L −R)2(L +R −P) < 1 .

Substituting W = P∗ + 1−R−L∗

2
yields the condition

L∗ +R

4(L∗ +R −P∗) < 1

which is always fulfilled because P∗ < R+L∗

2
. Thus changing L∗ to L∗ − ǫ will decrease T

in contradiction to the optimality of L∗ and we eventually excluded the remaining case
W −P∗ = 1−R−L∗

2
.

The next lemma gives a refined upper bound on P∗ which can be proven analogously
to Lemma 5.2.21 as before.
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Lemma 5.2.22. For optimal (L∗,P∗) it holds

P∗ <
R + L∗

2
.

Proof of Lemma 5.2.22. Let (L∗,P∗) be optimal parameters. Suppose P∗ = R+L∗

2
+ ǫ for

some ǫ > 0. Define P ′ ∶= P∗ − δ for some 0 < δ < ǫ (note that P ′ remains valid since there
is always space to decrease optimal P∗ due to Corollary 5.2.20). As in Lemma 5.2.21
we obtain

T (L∗,P∗) −T (L∗,P ′) = (1 −R −L∗) [H( W −P ′

1 −R − L∗
) −H( W −P∗

1 −R − L∗
)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶A

+max{0 ,
R +L∗

2
[H( P ′

R + L∗
) −H( P∗

R + L∗
)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶B

} > 0

since
P ′

R + L∗
=

P∗

R + L∗
−

δ

R + L∗
=

1

2
+

ǫ − δ

R + L∗
<

1

2
+

ǫ

R + L∗
=

P∗

R + L∗

which implies B > 0 and

W −P ′ =W −P∗ + δ >W −P∗

which implies A > 0 (recall that W − P∗ < 1−R−L∗

2
must hold). Altogether, T (L∗,P∗) −

T (L∗,P ′) > 0 in contradiction to the optimality of (L∗,P∗). It remains to consider the
case P∗ = R+L∗

2
. First, consider T (L∗,P) = H(W ) − (1 − R − L∗)H( W−P

1−R−L∗
) − L∗ as a

function in P and compute

dT

dP
= − log ( W −P

1 −L∗ −R
) + log (1 −L∗ −R −W +P

1 −L∗ −R
) .

Now, for P∗ = R+L∗

2
, the necessary condition dT

dP
= 0 yields

L∗ +R + 2W − 2

L∗ +R − 2W
= 1

which is equivalent to W = 1
2

(but this is never true for 0 <W ≤ DGV(R) and 0 < R < 1).

Analogously, consider T (L∗,P) = H(W ) − (1 −R −L∗)H( W −P
1−R−L∗

) − R+L∗

2
H( P

R+L∗
) which

gives

dT

dP
=

1

2
[log ( P

L∗ +R
) − log(1 − P

L∗ +R
)] + log( W −P

1 − L∗ −R
) − log(1 − L∗ −R −W +P

1 − L∗ −R
) .

Thus, for P∗ = R+L∗

2
we obtain the same unachievable condition as before. Consequently,

optimal parameters can not have P∗ = R+L∗

2
.
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We conclude with the following corollary which will later be used in the main proof
of Section 6.3.

Corollary 5.2.23. For optimal (L∗,P∗) it holds

Λ(L∗,P∗) ≤ L∗ .

Proof. Let (L∗,P∗) be optimal, i.e. in particular we have 0 < L∗ < 1 −R and W − P∗ <
1−R−L∗

2
. Suppose L∗ < Λ(L∗,P∗), i.e. consider

T (L,P) = H(W ) − (1 −R −L)H( W −P

1 −R − L
) − L

and compute the series expansion of T (L + ǫ,P) around ǫ = 0 to obtain

T (L + ǫ,P) −T (L,P) = [−1 + log ( 1 −R − L

1 −R − L −W +P
)] ǫ +O(ǫ2)

which is negative for (L∗,P∗) since W −P∗ < 1−R−L∗

2
implies 1−R −L∗ −W +P > 1−R−L∗

2

and thus

log( 1 −R − L∗

1 −R − L∗ −W +P∗
) < log 2 < 1 .

Consequently, slightly increasing L∗ yields a better running time, contradicting the op-
timality of L∗.

5.2.4 Sampling with α > 0 and ∆ = 0

Recall that the parameter α controls the size of the range of overlapping coordinates and
∆ controls the amount of intersecting coordinates within this range. Thus, α > 0 implies
the existence of representations. We will now study whether a sampling based algorithm
is capable of exploiting those representations effectively. The intuitive message of this
section is that

Sampling does not allow to exploit representations effectively.

More formally, we consider SampleLists for varying α ∈ [0, 1
2
] and ∆ = 0 and show

that the resulting algorithm will never beat the deterministic variant for α = 0 where
no representation exist at all. Recall that the running time of SampleLists for fixed
parameters (L,P) (and varying 0 ≤ α ≤ 1

2
and ∆ = 0) is given by

T (R,W ,L,P , α,0) = N (R,W ,L,P) +max{Λ(R,L,P , α,0) , 2Λ(R,L,P , α,0) −L} ,

which we will write as T (L,P , α) and Λ(L,P , α). Note that N is independent of α

which allows us to focus on the coefficient

Λ(L,P , α) = Σ(L,P , α) − 1

2
P(L,P , α)

= (1
2
+ α) (R + L)H( P(1 + 2α)(R + L)) − αP .
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5.2 Relations Between Recent Algorithms

For fixed P and L we will show that α = 0 minimizes Λ(L,P , α).
Theorem 5.2.24 (α > 0 is suboptimal). For fixed, valid parameters (L,P) and
for all 0 < α ≤ 1

2
it holds

T (L,P ,0,0) ≤ T (L,P , α,0)
where equality holds iff P = 0, i.e. α > 0 is suboptimal.

The proof is elementary but requires the following fact about the binary entropy
function.

Lemma 5.2.25. For all x ∈ (0,1] it holds 1
2
H(x) < H(x

2
) − x

2
.

Proof. Define h(x) ∶= H(x
2
) − x

2
−

1
2
H(x) = 1−x

2
log(1 − x) − (1 − x

2
) log(1 − x

2
) and observe

that

dh

dx
=

log(1 − x
2
) − log(1 − x)

2
> 0

for all x ∈ (0,1) since log(x) is monotone increasing. Thus h(x) is also monotone
increasing and limx→0 h(x) = 0, consequently h(x) > 0 for all x ∈ (0,1].
Proof of Theorem 5.2.24. It suffices to consider Λ(L,P , α). There is nothing to prove
for P = 0 and we focus on P > 0. Note that

∂Λ

∂α
= −

2(R + L)P
ln(2)(1 + 2α)[(1 + 2α)(R +L) −P] < 0

since (1+2α)(R+L)−P > R+L−P ≥ 0 for valid P and any α ∈ (0, 1
2
). This implies that

there can not be a local minimum in the interior of [0, 1
2
] and it suffices to compare the

boundaries (note that Λ is a continuous function in α defined over the compact interval[0, 1
2
], thus there must be a minimum in [0, 1

2
]). We obtain

Λ(L,P ,0) = R + L

2
H( P

R + L
) < (R +L)H( P

2(R + L)) − P

2
= Λ(L,P ,

1

2
)

where we applied Lemma 5.2.25 for x = P
R+L

. Note that optimal parameters (L∗,P∗) for
α = 0 always fulfil P∗ > 0 and in this case we obtain a strict inequality T (L∗,P∗,0,0) <
T (L∗,P∗, α,0), i.e. α > 0 is indeed suboptimal.

In the next section, we will also allow for ∆ > 0 which further increases the number of
representations. In this case, there exists a sampling based algorithm that achieves the
same performance as its deterministic variant.
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5 A Generalised Model for Information Set Decoding

5.2.5 Sampling with α > 0 and ∆ > 0

In this section we achieve an important goal, namely we

Lay the foundations for improved ISD algorithms (using
representations).

This will be done by proving that sampling for α = 1
2

and appropriate ∆ > 0 is equivalent
to FS-ISD. That is, we can use sampling for α = 1

2
and some ∆ > 0 (where we can exploit

representations in a maximal way) as a starting point for the improved algorithm of the
next section. We will now extend the FS-ISD algorithm to the setting α = 1

2
and ∆ > 0:

In contrary to the preceding section (where ∆ = 0) we give a transformation φ that maps
valid parameters (L,P) (for α = ∆ = 0) to valid parameters (L,P) and ∆ = φ(L,P) (for
α = 1

2
) while preserving the running time of the algorithm.

Theorem 5.2.26. Let (L,P) be valid FS-ISD parameters (α = ∆ = 0) with
P ≤ R+L

2
. Then (L,P) and ∆ ∶= φ(L,P) with

φ(L,P) = 1

2
[R +L −P −

√(R + L)(R +L − 2P)] (5.31)

are valid parameters for α = 1
2

and it holds

T (L,P ,0,0) = T (L,P ,
1

2
,∆) .

Remark 5.2.27. Note that the condition P ≤ R+L
2

is required to guarantee that φ(L,P) is
well-defined (φ(L,P) ∈ R). Due to Lemma 5.2.22 this condition will always be fulfilled for
optimal FS-ISD parameters. In the proof of superiority in Section 6.3 we will start from
optimal FS-ISD parameters and extend them to α = 1

2
. Eventually, these parameters can

be modified to further improve the running time of our new algorithm by an exponential
factor.

Proof of Theorem 5.2.26. Let (L,P) be valid parameters for FS-ISD with P ≤ R+L
2

.
Since L and P remain unchanged, it is sufficient to show 0 ≤ ∆ ≤ R + L − P in order
to prove the validity w.r.t. α = 1

2
. This follows immediately since ∆ = 1

2
(R + L − P −√(R + L)(R + L − 2P)) ≤ R+L−P

2
. Recall that

T (L,P , α,∆) = N (L,P) +max{2Λ(L,P , α,∆) − L , Λ(L,P , α,∆)} ,

i.e. N (L,P) is independent of α and ∆ and it suffices to show Λ(L,P ,0,0) = Λ(L,P , 1
2
,∆)

in order to prove T (L,P ,0,0) = T (L,P , 1
2
,∆). For ease of presentation we define x ∶=
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R + L and consider two functions

f (x ,P) ∶= x

2
H(P

x
) = Λ(L,P ,0,0) ,

g(x ,P ,∆) ∶= x H( P
2
+∆

x
) − 1

2
[P + (x −P)H( ∆

x −P
)] = Λ(L,P ,

1

2
,∆) .

Thus, we aim to prove f (x ,P) − g(x ,P ,∆) = 0 for ∆ = 1
2
(x − P −

√
x(x − 2P)). Now,

consider the change of variables

P̃ ∶=
P

x
and ∆̃ ∶=

1
2
(x −P) −∆

x

and note that f (x ,P)−g(x ,P ,∆)
x

= 0 iff f̃ (P̃) − g̃(P̃ , ∆̃) = 0 where

f̃ (P̃) = 1

2
H(P̃) ,

g̃(P̃ , ∆̃) = H(1
2
+ ∆̃) − 1

2
[P̃ + (1 − P̃)H(1

2
+

∆̃

1 − P̃
)] .

Moreover, ∆ = 1
2
(x −P −

√
x(x − 2P)) yields the relation P̃ = 1

2
− 2∆̃2. As a reward for

this transformation, we now obtain a much simpler equation in one single variable ∆̃.
We compute

f̃ (P̃) − g̃(P̃ , ∆̃) = f̃ (1
2
− 2∆̃2) − g̃(1

2
− 2∆̃2, ∆̃)

=
1

2
H(1

2
+ 2∆̃2) −H(∆̃ +

1

2
) + 1

2
(1
2
− 2∆̃2) + (1

4
+ ∆̃2)H((∆̃ +

1
2
)2

1
2
+ 2∆̃2

)
= − (1

4
+ ∆̃2) log(1

2
+ 2∆̃2) − (1

4
− ∆̃2) log (1

2
− 2∆̃2)

+ (1
2
+ ∆̃) log (1

2
+ ∆̃) + (1

2
− ∆̃) log (1

2
− ∆̃) + 1

2
(1
2
− 2∆̃2)

−
�����(1

4
+ ∆̃2)(12 + ∆̃)2

�����1
2
+ 2∆̃2 �2 log(1

2
+ ∆̃) + 1

2
(1
2
+ ∆̃)2 log (1

2
+ 2∆̃2)

− (1
2
− ∆̃)2 log(1

2
− d) + 1

2
(1
2
− ∆̃)2 log(1

2
+ 2∆̃2)
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5 A Generalised Model for Information Set Decoding

and grouping together the last three lines according to the different logarithms yields

f̃ (P̃) − g̃(P̃ , ∆̃) =
(((((((((((((
−(1

4
+ ∆̃2) log(1

2
+ 2∆̃2) − (1

4
− ∆̃2) log (1

2
− 2∆̃2) + 1

2
(1
2
− 2∆̃2)

+ ((1
2
+ ∆̃) − (1

2
+ ∆̃)2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

4
−∆̃2

log (1
2
+ ∆̃) + ((1

2
− ∆̃) − (1

2
− ∆̃)2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

4
−∆̃2

log (1
2
− ∆̃)

(((((((((((((
+(1

4
+ ∆̃2) log(1

2
+ 2∆̃2)

=
1

2
(1
2
− 2∆̃2) − (1

4
− ∆̃2) log(1

2
− 2∆̃2) + (1

4
− ∆̃2) log ((1

2
+ ∆̃)(1

2
− ∆̃))

=(1
4
− ∆̃2)[1 + log((12 + ∆̃)(1

2
− ∆̃)

1
2
− 2∆̃2

)] = 0

since the argument of the last logarithm simplifies to 1
2
.

We conclude this chapter with some final remarks.

Remark 5.2.28. 1. The above proof implicitly shows that φ preserves the size of the
lists L1 and L2 and we will exploit this property in the superiority proof of Sec-
tion 6.3.

2. The formula for φ(L,P) was obtained by computing local extrema of Λ(L,P ,∆)
when viewed as function of ∆ for fixed L and P . In doing so, one obtains two
(symmetric) local minima at ∆ = 1

2
(R + L − P) ±√(R + L)(R +L − 2P). In par-

ticular, this proves that φ(L,P) picks the best possible ∆ for any fixed L,P , i.e.
there is no way to outperform the deterministic variant with α =∆ = 0.
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6 Improved ISD Algorithms

“A person who never made a mistake never tried
anything new.”

Albert Einstein

This chapter contains the main algorithmic contribution of this thesis, namely

The design of asymptotically fastest ISD algorithms.

All subsequent algorithms are based on the so-called Representation Technique that
was originally introduced by Howgrave-Graham and Joux in the context of generic algo-
rithms for the subset-sum problem [HGJ10]. It was subsequently improved by Becker,
Coron and Joux in [BCJ11]. In contrary to the sampling-based algorithms of Chapter 5,
the goal is to exploit the exponentially many representations ẽ1+ ẽ2 = ẽ in a randomised,
constructive way. Recall that the parameters α and δ in the generalised framework
control the amount of representations and yield different algorithms:

• The first algorithm was published in [MMT11] and deals with α = 1
2

and δ = 0.

• The second algorithm generalises to δ > 0 and was published in [BJMM12].

In this thesis, we will focus on the latter (as the former can be seen as a special case).

Roadmap

First, we formally introduce and analyse Merge-Join, which has already been used as
an important building block in Chapter 4 and 5, and will further be used in all improved
algorithms. We will then proceed to a simple variant of our improved ISD algorithm in
Section 6.2. The full algorithm, as presented in [BJMM12] can be found in Section 6.4.
In contrary to [BJMM12], where the superiority of the algorithm was solely supported by
numerical optimisation, we will give a formal proof of superiority for the simple variant
in Section 6.3 based on the results of the preceding chapter. We also present extensive
numerical data for optimal parameter choices and compare the different algorithms also
with respect to their time and space complexity, see Section 6.4.2 and 6.4.3. We finally
conclude with some interesting open problems.
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6 Improved ISD Algorithms

6.1 The Merge-Join Building Block

Given a matrix Q ∈ F
r×(k+ℓ)
2 and two lists L1 and L2 containing binary vectors x1, . . . ,x∣L1∣

and y1, . . . ,y∣L2∣ of length k + ℓ, we aim to join those elements xi and yj into a new list
L = L1 ⋈ L2 whose sum has weight p, i.e. wt(xi + yj ) = p. Furthermore, we require
that the corresponding column-sum of Q already matches a given target t ∈ Fr

2, i.e.
Q(xi + yj ) = t.

Searching for matching vectors Qyj + t and Qxi accomplishes this task. We already
discussed the issue of weight-inconsistent matchings, i.e. matchings with wt(xi +yj ) ≠ p.
Notice that we may also obtain the same vector sum from two different pairs of vectors
from L1,L2. In this case we obtain a matched vector that we already have, which we
call a duplicate. During our matching process we filter out all inconsistent solutions
and duplicates.

The matching process is illustrated in Figure 6.1. The elementary algorithm is given as
Algorithm 5 and realizes the collision search as follows. Sort the first list lexicographically
according to the r -bit labels L1(xi) ∶= Qxi and the second list according to the labels
L2(yj ) ∶=Qyj + t. We add t to the labels of the second list to guarantee Q(xi +yj ) = t.

L1

000110

010100i0 →

010100

i1 →
010100

110110

L2

010001

010100 ← j0

← j1

010100

100110

111000

r

⋈

L

Figure 6.1: Illustration of the Merge-Join algorithm.

To detect all collisions, one now initializes two counters i and j starting at the beginning
of the lists L1 and L2 and pointing at elements xi and yj . As long as those elements
do not yield a collision, either i or j is increased depending on the relative order of
the labels L1(xi) and L2(yj ). Once a collision L1(xi) = L2(yj ) occurs, four auxiliary
counters i0, i1 and j0, j1 are initialised with i and j , respectively. Then i1 and j1 can
further be incremented as long as the list elements retain the same labels, while i0
and j0 mark the first collision (i0, j0) between labels L1(xi0) and L2(yj0). Obviously,
this procedure defines two sets C1 = {xi0 , . . . ,xi1} and C2 = {yj0 , . . . ,yj1} such that all
possible combinations yield a collision, i.e. the set C1 ×C2 can be added to the output
list L.

This procedure is then continued with i ← i1 and j ← j1 until one of the counters i , j
arrives at the end of a list. As mentioned before, we remove inconsistent solutions with
incorrect weight wt(xi + yj ) ≠ p and duplicate elements xi + yj = xk + yℓ on the fly.
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6.2 Beating Ball-Collision Decoding - A New ISD Algorithm

Algorithm 5: Merge-Join

input : Matrix Q ∈ F
r×(k+ℓ)
2 , lists L1,L2, weight p and target vector t ∈ Fr

2.
output : List L = L1 ⋈L2.

Lexicographically sort L1 and L2 according to the labels L1(xi) and L2(yj );
Set matching counter M ← 0 and L = ∅. Let i ← 0 and j ← 0;
while i < ∣L1∣ and j < ∣L2∣ do

if L1(xi) <lex L2(yj ) then i + +;
if L1(xi) >lex L2(yj ) then j + +;
if L1(xi) = L2(yj ) then

Let i0, i1 ← i and j0, j1 ← j ;
while i1 < ∣L1∣ and L1(xi1) = L1(xi0) do i1 + +;
while j1 < ∣L2∣ and L2(yj1) = L2(yj0) do j1 + +;
for i ← i0 to i1 − 1 do

for j ← j0 to j1 − 1 do
M + +;
Insert xi + yj into L (unless filtered out);

Set i ← i1 and j ← j1;

return L,M ;

Note that we introduced a matching counter M which allows us to take into account the
time that is spent for removing weight-inconsistent and duplicate matchings. Neglecting
the costs for computing and comparing the labels L1(xi) and L2(yj ) (which is reasonable
in the asymptotic setting), the total running time of merge-join is easy to compute.

Lemma 6.1.1. Merge-Join runs in time

O (max{∣L1∣ log ∣L1∣, ∣L2∣ log ∣L2∣,M logM }) .

Proof. Sorting both lists can be done in time O(∣Li ∣ log ∣Li ∣) and the while-loop obviously
terminates after at most O(max{∣Li ∣}) steps. The search for duplicates can also be done
in time O(M logM ) in the worst-case. Moreover, the whole execution of the algorithm
yields exactly M matchings.

6.2 Beating Ball-Collision Decoding - A New ISD

Algorithm

In the following we fix α = 1
2

and ∆ > 0 in our generalised ISD framework (for ∆ = 0
one can recover a simple variant of the improved algorithms presented in [MMT11]). In
particular we have W1 = W2 = Wk+ℓ,p1

where we define p1 ∶= p

2
+ δ. Recall that Wk+ℓ,p1

is the Hamming sphere of dimension k + ℓ and radius p1 centered around 0, that is
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W1 and W1 contain all k + ℓ-dimensional binary vectors of Hamming weight exactly p1.
Moreover, note that every element in W =Wk+ℓ,p is balanced since α = 1

2
. As before, we

set σ ∶= ∣W1∣ = ∣W2∣ where

∣W1∣ = ∣W2∣ = (k + ℓ

p1

)
and ρ as the number of representations, i.e.

ρ = (pp
2

)(k + ℓ − p

δ
) .

Recall that we aim to solve the equation

Qe = s (6.1)

where Q is a ℓ × (k + ℓ) matrix, s has length ℓ and e should have Hamming weight p.
For ease of presentation, we omit all ˜ and ′ symbols from here on in. In contrast to
the sampling-based algorithms we have presented thus far, the main idea underlying the
improved ISD algorithm of this section is to

Construct structured, size-reduced lists L1 and L2 that contain at
least one representation with good probability.

This will be achieved by defining some appropriate constraint that has to be fulfilled by
all elements in L1 and L2 with the following properties:

• The constraint shrinks the lists by a significant amount.

• At least one representation fulfils the constraint with good probability.

• It is possible to efficiently compute all elements that fulfil the constraint.

That is, we aim to define a small, structured subset of W1 ×W2 that is likely to contain
a representation and that can be efficiently computed. Moreover, both components ei

of a pair (e1,e2) that is not a representation must independently fulfil the respective
constraint. Such a pair is thus eliminated with much higher probability than a represen-
tation. A natural way to implement this idea, which goes back to Wagner’s algorithm
for the generalised birthday problem [Wag02], is as follows: Choose a random target
vector t of length r ≤ ℓ (where r has to be specified) and define

L1 ∶= {e1 ∈W1 ∶ (Qe1)[r] = t} . (6.2)

Simply speaking, L1 contains all vectors of length k + ℓ and weight p1 = p

2
+ δ such that

their corresponding column-sum (Qe1)[r] (projected to the first r coordiantes) matches
the random target t. Similarly, define

L2 ∶= {e2 ∈W2 ∶ (Qe2)[r] = t + s[r]} (6.3)
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and note that by definition every element in L1+L2 already matches the target syndrome
s on the first r coordinates by construction, i.e. (Q(e1+e2))[r] = s[r]. Since Q is a random
matrix, (Qe1)[r] and (Qe2)[r] are random vectors of length r . Thus, we expect L1 and
L2 to have size ≈ σ

2r and for large enough r the first condition, shrinking the lists, can
be achieved. Moreover, let e = e1 + e2 be a solution to Eq.(6.1). If (Qe1)[r] = t then(Qe2)[r] = s+ t also holds. This means that a single representation fulfils the constraint
with probability 1

2r . Since there are exactly ρ different representations (e1,e2) of e,
one expects ρ

2r surviving representations in L1 × L2. Consequently, for r = ⌊log ρ⌋ the
expected number of surviving representations is ≥ 1 for every solution e. This gives us
confidence in achieving the second condition, keeping at least one representation with
good probability, although it will take some effort to turn this argument into a rigorous
proof. Also note that this choice of r yields an expected list size ≈ σ

ρ
which might be

considerably smaller than σ√
ρ

(which represents the list size for FS-ISD). Once L1 and

L2 have been created, the (weight-consistent) solutions to Eq.(6.1) can be computed
by invoking Merge-Join (with target weight p). The expected number of (possibly
weight-inconsistent) matchings is ≈ (σ

ρ
)2 ρ

2ℓ since every pair already matches s on the
first r coordinates. It remains to provide a way to efficiently compute L1 and L2 which
will be done next.

Creating L1 and L2.

We explain how to create L1. The other list can be constructed analogously. We apply
a classical Meet-in-the-middle collision search by decomposing e1 into e1 = y + z by two
non-overlapping vectors y and z of length k + ℓ. To be more precise, we first choose a
random partition of [k + ℓ] into two equal sized sets P1 and P2, i.e. [k + ℓ] = P1 ⊍P2 with∣P1∣ = ∣P2∣ = k+ℓ

2
, and force y to have its p1

2
1-entries in P1 and z to have its p1

2
1-entries

in P2. That is we construct two base lists

B1(P1) ∶= {y ∈ F
k+ℓ
2 ∣ wt(y) = p1

2
and supp(y) ⊂ P1}

and

B2(P2) ∶= {z ∈ F
k+ℓ
2 ∣ wt(z) = p1

2
and supp(z) ⊂ P2}

where supp(x) denotes the support, i.e. the set of all non-zero coordinates, of a vector
x. We then invoke Merge-Join to compute

L1 =Merge-Join(B1(P1),B2(P2),p1,Q[r], t) .

Recall that Merge-Join gets as input the base lists B1 and B2 as well as the target vector
t and computes all matchings (y,z) with Q[r](y + z) = t and wt(y + z) = p1 as desired.
The complete algorithm, which will be called BasicReps, is given in Algorithm 6.

Remark 6.2.1. Note that decomposing e1 into y and z from fixed, disjoint sets P1 and P2

introduces a probability of loosing the vector e1 and hence the representation e = e1+e2.
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For a randomly chosen partition P1,P2, the probability that e1 has the same number of
1-entries in P1 and P2 is given by

Psplit =
((k+ℓ)/2

p1/2 )2(k+ℓ
p1
)

which is asymptotically inverse-polynomial in n. Choosing independent partitions Pi ,1

and Pi ,2 and appropriate base lists Bi ,1 and Bi ,2 for the two lists Li , we can guarantee
independent splitting conditions for both e1 and e2 yielding a total splitting probability of
PSplit = (Psplit)2 (which is still inverse-polynomial in n). We acknowledge Dan Bernstein
for proposing to chose independent splitting conditions.

Algorithm 6: BasicReps

input : Parameters p and δ. Matrix Q ∈ F
ℓ×(k+ℓ)
2 and syndrome s ∈ Fℓ

2.
output : List L of candidate solutions for Eq.(6.1).
params: Number of representations ρ according to Eq.(5.8) and r = ⌊log ρ⌋ ≤ ℓ.

Weight p1 = p

2
+ δ.

Choose random target t1 ∈R Fr
2 and set t2 = s[r] + t1;

for i = 1 to 2 do
Choose random partition Pi ,1 ⊍Pi ,2 = [k + ℓ];
Compute base lists Bi ,1 and Bi ,2;
Li ←Merge-Join(Bi ,1(Pi ,1),Bi ,2(Pi ,2),p1,Q[r], ti);

L ←Merge-Join(L1,L2,p,Q, s);
return L;

The crucial point in the analysis of BasicReps is to deal with a certain class of mal-
formed input matrices Q: For example, imagine Q being the all-zero matrix. Clearly,
no target vector t ≠ 0 will be hit by any e1 ∈W1 and thus L1 = ∅ which implies L = ∅,
i.e. no candidate solution will be found. Of course, for long codes, Q = 0 is very un-
likely. Simply speaking, we will now prove that almost all matrices Q are good. For a
fixed solution e there is a “good” chance that at least one consistent e1 hits a randomly
chosen target vector t. The proof follows the basic strategy proposed in [BCJ11] for
the subset-sum scenario and a proof sketch for the case of decoding already appeared in
[BJMM12].

Treating Bad Matrices Q.

The following theorem is a generalisation of [NSS01, Theorem3.2] which only covers the
case m = 1. We give an entirely different, self-contained combinatorial proof which is
completely missing in [BJMM12].
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Theorem 6.2.2. For a fixed matrix Q ∈ Fm×n
2 , a target vector t ∈ Fm

2 and an arbitrary
set B ⊂ Fn

2 , ∅ ≠ B we define

PQ(B, t) ∶= 1∣B∣ ∣{x ∈ B ∶ Qx = t}∣ .

It holds

∑
Q∈Fm×n

2

∑
t∈Fm

2

(PQ(B, t) − 1

2m
)2 = 2mn 2m − 1

2m ∣B∣ . (6.4)

Note that for fixed Q, one can view PQ(B, t) as a probability distribution over the
t’s, in particular it holds

∑
t∈Fm

2

PQ(B, t) = 1 (6.5)

In this light, Eq.(6.4) can be seen as the expected deviation of PQ(B, t) from the uniform
distribution over Fm

2 averaged over all Q. Intuitively, for almost all Q, the distribution
PQ(B, t) is close to uniform and thus only a small fraction of target values t can be bad,
i.e. not hit by any element in B. This is formalised in Lemma 6.2.3.

Proof of Theorem 6.2.2. We write NQ(B, t) ∶= ∣{x ∈ B ∶ Qx = t}∣. Thus PQ(B, t) =
NQ(B,t)
∣B∣ and ∑t NQ(B, t) = ∣B∣ holds. One computes

∑
Q

∑
t

(PQ(B, t) − 1

2m
)2 =∑

Q

∑
t

[PQ(B, t)2 − 2PQ(B, t)
2m

+
1

22m
]

and Eq.(6.5) gives ∑Q∑t PQ(B, t) = 2mn , i.e. it remains to prove

∑
Q

∑
t

PQ(B, t)2 = 2mn (2m − 1

2m ∣B∣ + 1

2m
) .

We rewrite the left-hand side as

∑
Q

∑
t

PQ(B, t)2 =∑
Q

⎡⎢⎢⎢⎢⎣(∑t PQ(B, t))2

−∑
t

∑
t′≠t

PQ(B, t)PQ(B, t′)⎤⎥⎥⎥⎥⎦
= 2mn

−∑
Q

∑
t

∑
t′≠t

PQ(B, t)PQ(B, t′)
where we used Eq.(6.5) again. We now switch from PQ(B, t) to NQ(B, t) and it remains
to prove

∑
Q

∑
t

∑
t′≠t

NQ(B, t)NQ(B, t′) = 2mn ∣B∣2 (1 − 1

2m
−

2m − 1

2m ∣B∣ )
= 2mn (2m − 1)∣B∣(∣B∣ − 1)

2m
.
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This can be done by induction over the size of B.
For ∣B∣ = 1, it holds NQ(B, t) ⋅ NQ(B, t′) = 0 for t ≠ t′ which proves the initial step.

Define B̃ ∶= {x1, . . . ,xk+1} and B ∶= B̃ ∖ {x} where x ∶= xk+1. Our goal is to prove

∑
Q

∑
t

∑
t′≠t

NQ(B̃, t)NQ(B̃, t′) = 2mn (2m − 1)∣B̃∣(∣B̃∣ − 1)
2m

(6.6)

and we start by manipulating the left-hand side as follows: Note that for fixed t, either
Qx = t (which gives NQ(B̃, t) = NQ(B, t) + 1) or Qx ≠ t (which gives NQ(B̃, t′) =
NQ(B, t′) + 1 for exactly one t′ ≠ t). This yields

∑
Q

∑
t

NQ(B̃, t)∑
t′≠t

NQ(B̃, t′)
=∑

t

∑
Q

Qx=t

(NQ(B, t) + 1)∑
t′≠t

NQ(B, t′) +∑
t

∑
Q

Qx≠t

NQ(B, t)[(∑
t′≠t

NQ(B, t′)) + 1]
=∑

t

∑
Q

∑
t′≠t

NQ(B, t)NQ(B, t′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=2mn (2
m−1)∣B∣(∣B∣−1)

2m

+∑
t

∑
Q

Qx=t

∑
t′≠t

NQ(B, t′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣B∣−NQ(B,t)

+∑
t

∑
Q

Qx≠t

NQ(B, t)

= 2mn (∣B∣ + (2m − 1)∣B∣(∣B∣ − 1)
2m

) +∑
t

( ∑
Q

Qx≠t

NQ(B, t) − ∑
Q

Qx=t

NQ(B, t))

by induction hypothesis on B. By substituting ∣B∣ + 1 = ∣B̃∣ in Eq.(6.6) we must finally
show

∑
t

( ∑
Q

Qx≠t

NQ(B, t) − ∑
Q

Qx=t

NQ(B, t)) = 2mn ∣B∣(2m − 2)
2m

. (6.7)

The left-hand side can be written as

∑
t

∑
Q

NQ(B, t) − 2∑
t

∑
Q

Qx=t

NQ(B, t) = 2mn ∣B∣ − 2∑
t

∑
Q

Qx=t

NQ(B, t) . (6.8)

Moreover,

∑
t

∑
Q

Qx=t

NQ(B, t) = ∑̃
x∈B

∑
t

∑
Q

Qx=t
Qx̃=t

1 = ∣B∣2mn

2m
(6.9)

and using this in Eq.(6.8) yields Eq.(6.7) which finishes the proof. The last equality in
Eq.(6.9) holds due to the following reasoning: For fixed x ≠ x̃ consider the equivalence
relation

Q ≡Q′ ∶⇔Qx =Q′x and Qx̃ =Q′x̃ ,
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i.e. every equivalence class [Q] is characterised by Qx and Qx̃ for some representative Q.
Consequently, there are 22m distinct equivalence classes each containing 2mn

22m elements.
Thus, the expression ∑

t

∑
Q

Qx=t
Qx̃=t

1

gives the cardinality of exactly 2m different equivalence classes which is 2mn

2m .

Lemma 6.2.3. Let m ≤ n and ∣B∣ ≥ 2m . Let Γ ∈ N. For all but a 1
Γ−1

fraction of all
Q ∈ Fm×n

2 it holds

Pr [PQ(B, t) = 0] ≤ 1 −
1

Γ
where the probability is over the random choice of t ∈ Fm

2 .

Proof. Let NQ(B, t) be defined as in the preceding proof, i.e. for a fixed matrix Q,
a target t is not hit iff NQ(B, t) = 0. We call Q bad if NQ(B, t) = 0 for at least
2m(1 − 1

Γ
) many t’s, i.e. at most 2m

Γ
targets are hit for bad Q. Note that PQ(B, t) = 0

iff NQ(B, t) = 0. Consequently, if Q is not bad, there are at least 2m

Γ
targets t with

NQ(B, t) > 0 and thus

Pr [PQ(B, t) > 0] ≥ 1

Γ

for every good Q, i.e. Pr [PQ(B, t) = 0] ≤ 1 − 1
Γ
. Denote by χ(Γ) the number of bad

Q’s, i.e. it remains to show χ(Γ) ≤ 2mn

Γ−1
. Note that the more PQ(B, t) deviates from the

uniform distribution, the larger ∑t∈Fm
2
(PQ(B, t) − 1

m
)2 becomes which yields the lower

bound

∑
t∈Fm

2

(PQ(B, t) − 1

2m
)2 ≥ 2m (1 − 1

Γ
) 1

22m
+

2m

Γ
(Γ − 1

2m
)2 = Γ − 1

2m
(6.10)

for bad Q: At least 2m(1 − 1
Γ
) many t are bad, i.e. PQ(B, t) = 0, and we may assume

that exactly 2m(1 − 1
Γ
) many t are bad (the more t are bad, the larger becomes the

sum). This explains the first summand. For the remaining 2m

Γ
good t, the sum is clearly

minimised if they are uniformly distributed, i.e. PQ(B, t) = Γ
2m . This explains the second

summand. Combining Eq.(6.10) with Eq.(6.4) eventually gives

2mn(2m − 1)
2m ∣B∣ ≥ χ(Γ)Γ − 1

2m

and ∣B∣ ≥ 2m yields χ(Γ) ≤ 2mn

Γ−1
as desired.

We can now use Lemma 6.2.3 to prove that BasicReps is τ -solution-preserving for
some fixed, arbitrarily small τ > 0.

Lemma 6.2.4. For almost all input matrices Q, BasicReps is τ -solution-preserving
for arbitrary τ > 0.
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Proof. Let e be a fixed solution to Eq.(6.1). Define C(e) as the set of all e1 ∈ Wk+ℓ,p1

consistent to e, i.e. ∣C(e)∣ = ρ. Note that a single representation (e1,e2) is contained in
L1 ×L2 if the following three independent events occur:

E1: (Qe1)[r] = t1 (where t1 is the random target vector corresponding to list L1).

E2: e1 splits according to P1,1 and P1,2, i.e. e1 = y + z such that supp(y) ⊂ P1,1 and
supp(z) ⊂ P1,2.

E3: e2 splits according to P2,1 and P2,2.

Here, E1 depends on the random choice of t1 and the Ei for i = 2,3 depend on the
random choice of the partition Pi ,1 ⊍ Pi ,2, respectively (thus the Ei are independent).
First consider E1 and apply Lemma 6.2.3 with B ∶= C(e), m ∶= r = ⌊log ρ⌋ and n ∶= k + ℓ

(note that ∣C(e)∣ = ρ ≥ 2r). It follows

Pr [E1 = 1] = Pr [PQ(C(e), t) > 0] ≥ 1

Γ

for all but a 1
Γ−1

fraction of all Q’s (and some Γ ∈ N). According to Remark 6.2.1 it
further holds

Pr [E2 = 1] = Pr [E3 = 1] = Psplit =
((k+ℓ)/2

p1/2 )2(k+ℓ
p1
) .

Consequently, e will be found by BasicReps if at least one representation (e1,e2) fulfils
all Ei . This probability can easily be lower bounded by combining the preceding steps,
i.e.

P(e) ∶= Pr [e ∈ L1 +L2] ≥ Pr [E1 = E2 = E3 = 1] ≥ ⎛⎜⎝
((k+ℓ)/2

p1/2 )2(k+ℓ
p1
)
⎞⎟⎠

2

Γ−1 .

For the asymptotics, simply set Γ ∶= 2τn for some arbitrary τ > 0. By using the standard
approximation Eq.(2.15), it is easy to see that

lim
n→∞

1

n
log
⎛⎜⎝
((R+L)n/2

P1n/2 )2((R+L)n
P1n
)
⎞⎟⎠ = 0 .

We eventually obtain

lim
n→∞

1

n
log(P(e)−1) ≥ τ

for all but a 1
2τn−1

= 2−τn+o(n) fraction of input matrices Q, i.e. BasicReps is τ -solution
preserving for almost all Q.
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Remark 6.2.5 (Choice of r). Note that the proof of Lemma 6.2.4 requires ∣C(e)∣ = ρ ≥ 2r

in order to apply Lemma 6.2.3. Since the running time of a single iteration is clearly
decreasing in r and it is superfluous to let more than one representation survive, one
should always choose r = ⌊log ρ⌋ maximal. However, choosing r ≫ log ρ further decreases
the workload per iteration and might allow for better running times. To adapt the
proof of Lemma 6.2.4, one has to modify the choice of Γ to Γ = 2τn+r−log ρ (note that
Lemma 6.2.3 can also be applied for ∣B∣ = 2cm for some c < 1 yielding a similar statement

that holds for a 2(1−c)m

Γ−1
fraction of input matrices). With P = lim 1

n
log ρ and r ∶= P̂n for

some P̂ >P the resulting variant of BasicReps becomes (τ+P̂−P)-solution preserving.
As further discussed in Remark 6.2.7, choosing r ≫ log ρ does not improve the overall
running time (yet might allow for a better time-memory trade-off).

Runtime Analysis and Main Theorem

It remains to analyse the runtime of BasicReps which can be done in a straightforward
way, similarly to the proof of Theorem 5.2.10 and Theorem 4.3.1 for BCD. Recall that
for α = 1

2

Σ(R,L,P ,∆) = (R +L)H( P
2
+∆

R + L
) (6.11)

can be used to define the size of the base lists as Σ
2

and the number of representation is
given by

P(R,L,P ,∆) = P + (R + L −P)H( ∆

R + L −P
) . (6.12)

Since BasicReps is only well-defined for P ≤ L and both P and Σ are symmetric in ∆
(around R+L−P

2
), we may always assume

∆ <
R +L −P

2
. (6.13)

Note that the strict inequality holds since ∆ = R+L−P
2

implies P = R+L (in contradiction
to P ≤ L and 0 < R < 1). Also recall from Section 5.2 that the size of the merged list is
given by

Λ(R,L,P ,∆) = Σ(R,L,P ,∆) − 1

2
P(R,L,P ,∆) . (6.14)

Lemma 6.2.6. Let 0 < R < 1. For 0 ≤ L ≤ 1 − R, 0 ≤ P ≤ R + L, 0 ≤ ∆ < R+L−P
2

and
P(L,P ,∆) ≤ L with Σ, P and Λ as defined in Eq.(6.11), (6.12) and (6.14) the following
holds: For almost all Q, BasicReps runs in time 2C (R,L,P ,∆)n+o(n) where

C (R,L,P ,∆) =max{Σ
2

,Σ −P,2Λ − L} .
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Proof. According to Proposition 5.2.1 we need to bound the size of the lists Bi ,j and Li

and the number of collisions between L1 and L2, denoted by M (note that the number
of matchings between the Bi ,j does not differ from the size of the merged lists Li due to
the support-disjoint splitting). Obviously it holds

lim
n→∞

1

n
log ∣Bi ,j ∣ = R + L

2
H( P

2
+∆

R + L
) = Σ

2
.

Moreover, similarly to Lemma 2.4.6, one computes

E [∣Li ∣] = ∣Bi ,1 × Bi ,2∣
2r

and Var [∣Li ∣] ≤ E [∣Li ∣]. Asymptotically, this gives E [∣Li ∣] = 2(Σ−P)n+o(n). Apply Van-
dermonde’s identity, see Lemma 2.3.2, which yields

Σ = (R + L)H( P
2
+∆

R +L
) > P − (R + L −P)H( ∆

R + L −P
) =P (6.15)

where the strict inequality holds due to Eq.(6.13). Thus, E [∣Li ∣] is exponentially in-
creasing in n and we obtain

Pr [∣Li ∣ ≥ 2E [∣Li ∣]] ≤ 1

E [∣Li ∣]
by Chebychev’s inequality. In other words, limn→∞

1
n

log ∣Li ∣ = Σ − P with probability
1 − 2−Ω(n). From know on let us assume ∣Li ∣ = 2(Σ−P)n+o(n). Now, by construction of the
lists Li , every pair (e1,e2) ∈ L1×L2 already matches s on r coordinates. Thus every pair
yields a matching on all ℓ coordinates with probability 2r−ℓ and the expected number of
matchings becomes

E [M ] = ∣L1 ×L2∣
2ℓ−r

= 2(2(Σ−P)−L+P)n+o(n) = 2(2Λ−L)n+o(n)

since P ≤ L. Analogously to the proof of Theorem 5.2.10 one obtains limn→∞
1
n

logM =
max{2Λ − L, ǫ} for ǫ > 0 arbitrarily small with probability 1 − 2−Ω(n) (by distinguishing
the cases L < 2Λ and L ≥ 2Λ). This finishes the proof by Proposition 5.2.1.

By modifying the overall algorithm in the same way as presented in the proof of The-
orem 4.3.1, that is by simply aborting BasicReps in every bad iteration where too
many collisions occur, the proof of the next important result immediately follows from
Lemma 5.1.9, Lemma 6.2.4 and Lemma 6.2.6.
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6.2 Beating Ball-Collision Decoding - A New ISD Algorithm

Main Theorem 6.2.1 (BasicReps). Let 0 < R < 1, 0 < W ≤ DGV(R) and
α = 1

2
. For almost all binary [n, ⌊Rn⌋]-codes it holds: generalised ISD instanti-

ated with BasicReps successfully terminates in time 2FBReps(R,W )n+o(n) for every
error vector e ∈Wn,⌊Wn⌋ with overwhelming probability where

FBReps(R,W ) = min
P ,L,∆
{N (R,W ,L,P) + τ+

max{Σ(L,P ,∆)
2

,Σ(L,P ,∆) −P(L,P ,∆),2Λ(L,P ,∆) − L}}
with 0 ≤ L ≤ 1−R, max{0,R +L+W − 1} ≤ P ≤ min{R +L,W }, 0 ≤∆ < R+L−P

2
,

0 ≤P ≤ L and τ > 0 arbitrarily small.

Note that the resulting algorithm has space complexity SBReps =max{Σ
2

, Σ −P} since
the final list L must not be entirely stored within the overall framework, i.e. every single
candidate solution can be extended on the fly.

Remark 6.2.7. In Remark 6.2.5 we discussed the possibility of choosing r ≫ log ρ yielding
a (τ + P̂ − P)-solution preserving variant of BasicReps. Using larger r affects the
second and third term in the maximum of FBReps, i.e. Σ−P becomes Σ− P̂ and 2Λ−L =
2Σ−P−L becomes 2Σ−P̂−L. Altogether, the workload per iteration can maximally be
decreased by a factor P̂−P which will always be compensated by the increased number
of iterations, thus fixing r = log ρ is reasonable without loss of generality. However, the
space complexity might be reduced for different choices of r .

Numerical Optimisation and Comparison

Since the proof of superiority in the following section gives no indication about the
quantitative improvement of BasicReps over Ball-Collision, we additionally provide
numerically optimised parameters (see Table 6.2) and conclude with the interpolated
complexity curve (see Figure 6.2) whose worst-case complexity maxR F (R) = 0.1054 is
achieved for R = 0.4277.

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L .0463 .0862 .1099 .1249 .1361 .1346 .1251 .1006 .0603
P .0148 .0268 .0323 .0347 .0359 .0333 .0287 .0207 .0103
∆ .0010 .0019 .0026 .0032 .0036 .0038 .0037 .0031 .0019

FBreps .0545 .0832 .0989 .1051 .1035 .0952 .0807 .0602 .0337
SBreps .0232 .0432 .0553 .0626 .0681 .0674 .0628 .0505 .0302

Table 6.1: Optimal parameters L,P ,∆ for BasicReps for W = DGV(R) and resulting time
and space complexities.
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Figure 6.2: FPra (thick curve), interpolated FBall (thin curve) and FBReps (dashed curve) for
W = DGV(R).

6.3 A Formal Proof of Superiority

In this section we finally prove that BasicReps offers an exponential speed-up over
BCD for all rates 0 < R < 1. The outline of the proof is as follows: we start from
optimal parameters for FS-ISD which offer at least the same performance as BCD by
Theorem 5.2.13. We can then apply the parameter transformation of Theorem 5.2.26
yielding a sampling-based algorithm with the same performance. The same parameters
can be used for BasicReps and achieve at least the same performance. In fact, they will
predominately achieve the exact same running time, but in this case slightly increasing
the parameter L allows to further improve the running time of BasicReps.

Main Theorem 6.3.1. For all 0 < R < 1, all 0 <W ≤ DGV(R) and almost all
binary [n, ⌊Rn⌋]-codes it holds:

FBReps(R,W ) < FBall(R,W ) .

Proof. Let (L̃, P̃ , Q̃) be optimal BCD parameters. By Theorem 5.2.13, there must be
optimal FS-ISD parameters (L∗,P∗) with

TFS−ISD(L∗,P∗) ≤ TBall(L̃, P̃ , Q̃) (6.16)

and it holds

0 < L∗ < 1 −R , (6.17)

W −P∗ <
1 −R −L∗

2
, (6.18)

0 < P∗ <
R + L∗

2
(6.19)
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due to the results from Section 5.2.3. Applying the transformation φ from Theo-
rem 5.2.26 yields

∆∗ ∶= φ(L∗,P∗) = 1

2
(R + L∗ −P∗ −

√(R + L∗)(R + L∗ − 2P∗) > 0

which is well-defined due to Eq.(6.19). We denote the running time of the resulting
sampling-based algorithm and BasicReps by TSam and TBReps, respectively, i.e.

TSam(L,P ,∆) = N (L,P) +max{Λ(L,P ,∆),2Λ(L,P ,∆) − L}
and

TBReps(L,P ,∆, τ) =N (L,P)
+max{Σ(L,P ,∆)

2
,Σ(L,P ,∆) −P(L,P ,∆),2Λ(L,P ,∆) −L} + τ

with Λ(L,P ,∆) = Σ(L,P ,∆)− 1
2
P(L,P ,∆) and τ > 0 arbitrarily small. In the following,

we assume τ = 0 for ease of presentation: For every parameter set (L′,P ′,∆′) with
TBreps(L′,P ′,∆′,0) < TSam(L∗,P∗,∆∗) there will be some small enough τ preserving
the strict inequality. Since N (L,P) is identical for both algorithms, we focus on the
respective maxima in TSam and TBReps. Also recall that the parameter space for both
algorithms is defined by the constraints

0 ≤ L ≤ 1 −R

max{0,R +L +W − 1} ≤ P ≤min{W ,R + L}
0 ≤ ∆ <

R +L −P

2

and by the additional constraint 0 ≤ P(L,P ,∆) ≤ L for BasicReps. Clearly, since(L∗,P∗) are valid FS-ISD parameters and remain unchanged, the first two constraints
are always fulfilled. Moreover, it holds ∆∗ < 1

2
(R + L∗ −P∗) due to Eq.(6.19). The only

critical point is that the constraint P(L∗,P∗,∆∗) ≤ L∗ might be violated yielding an
invalid parameter set for BasicReps. We show how to deal with this problem at the
end of this proof. For the moment, suppose P(L∗,P∗,∆∗) ≤ L∗. Since φ preserves the
list size, i.e. ΛFS−ISD(L∗,P∗) = Λ(L∗,P∗,∆∗), we can apply Corollary 5.2.23 to obtain
Λ(L∗,P∗,∆∗) ≤ L∗, i.e. the maximum in TSam becomes Λ(L∗,P∗,∆∗). Moreover, 0 < P∗

implies P(L∗,P∗,∆∗) > 0 and thus

Σ(L∗,P∗,∆∗) −P(L∗,P∗,∆∗) < Σ(L∗,P∗,∆∗) − P(L∗,P∗,∆∗)
2

= Λ(L∗,P∗,∆∗) .

Consequently, we do not need to care about the second argument of the maximum in
TBReps. As shown in the proof of Lemma 6.2.6, see Eq.(6.15), it holds Σ(L∗,P∗,∆∗) >
P(L∗,P∗,∆∗) which implies

Σ(L∗,P∗,∆∗)
2

< Σ(L∗,P∗,∆∗) − P(L∗,P∗,∆∗)
2

= Λ(L∗,P∗,∆∗) .
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Thus, we must not be concerned about the first argument of the maximum in TBReps

either. Let us assume that the maximum in TBReps is actually 2Λ(L∗,P∗,∆∗)−L∗. Note
that TBReps(L∗,P∗,∆∗) = N (L∗,P∗) + 2Λ(L∗,P∗,∆∗) − L∗ which motivates to define a
slightly increased parameter L′ = L∗+ǫ for some ǫ > 0 in order to get an improved running
time: By continuity of Σ and P, the maximum in TBReps is still 2Λ−L′ for small enough
ǫ. More formally, one computes

∂T

∂L
(L∗,P∗,∆∗) = −1 − 2 log(2(R +L∗ −∆∗) −P∗

2(L∗ +R) ) + log(1 − P∗

L∗ +R
)

+ log(1 − ∆∗

L∗ +R −P∗
) − log(1 −R − L∗ −W +P∗

1 − L∗ −R
)

which is negative if

4(L∗ +R −P∗ −∆∗)(1 −L∗ −R)(L∗ +R)[2(R + L∗ −∆∗) −P∗]2(1 − L∗ −R +P∗ −W ) < 2 .

By definition of ∆∗ this is equivalent to

1 −R − L∗

1 −R −L∗ −W +P∗
< 2

which holds for optimal FS-ISD parameters due to Eq.(6.18). Thus (L∗,P∗,∆∗) can not
be optimal and changing L∗ to L′ = L∗ + ǫ for ǫ > 0 small enough yields a parameter set(L′,P∗,∆∗) with

FBReps(R,W ) ≤ TBReps(L′,P∗,∆∗) < TSam(L∗,P∗,∆∗)
= TFS−ISD(L∗,P∗) ≤ FBall(R,W ) .

It remains to deal with the case where P(L∗,P∗,∆∗) > L∗. Loosely speaking, this
means that the parameter L∗ does not offer sufficient space for BasicReps to eliminate
as much representations (in a constructive way) as possible. Clearly, one could still run
BasicReps with an adjusted choice r = ℓ, i.e. one eliminates as much representations as
allowed by L∗, but this would result in a larger complexity for merging the two lists L1

and L2, i.e. every pair in L1 ×L2 would yield a matching. More formally the maximum
in TBReps would become

max{Σ(L,P ,∆)
2

,Σ(L,P ,∆) − L,2Σ(L,P ,∆) − 2L}
and 2Λ−L = 2Σ−P−L < 2Σ−2L implies that the third expression might become larger
than the maximum in TSam which would completely destroy the above proof (slightly
increasing L∗ might become insufficient). To fix this problem, consider the following
variant of BasicReps: Let δ > 0 be the gap between P and L∗, i.e. P(L∗,P∗,∆∗)+δ = L∗.

• Construct the lists L1 and L2 with constraints of size ℓ = ⌊L∗n⌋.
• Randomly discard a 1

2
⌊ δ
2
⌋n

-fraction of both lists.
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Note that the lists constructed in the first step will have 2(P−L
∗)n+o(n) = 2δn+o(n) remaining

representations in L1 × L2 for every candidate solutions (on average), thus randomly

eliminating a 2
δ
2
n+o(n)-fraction independently in both lists keeps one representation with

good probability (this argument could be turned into a rigorous proof analogously to
Section 5.2.1 where we explained how to choose the size of the lists for a purely sampling-
based approach). This variant offers the same complexity for constructing the lists L1

and L2. Since we eliminate additional elements, the size coefficient of these lists becomes
Σ−L∗− δ

2
which reduces the number of matchings to 2Σ−2L∗−δ = 2Σ−P−L∗ = 2Λ−L∗,

i.e. the third expression in the maximum of TBReps has the desired form. This finally
allows to establish exactly the same proof for the modified BasicReps algorithm as for
the regular version.

Remark 6.3.1. The special case P(L∗,P∗,∆∗) > L∗ might be completely excluded by a
refined analysis of the space of optimal parameters (L∗,P∗). In particular, we computed
optimal FS-ISD parameters (L∗,P∗) for various 0 < R < 1 and checked the resulting
values for ∆∗ = φ(L∗,P∗) which never violated the condition P(L∗,P∗,∆∗) ≤ L∗.

6.4 Using Representations Iteratively

It is possible to further improve our ISD algorithm by recursively using BasicReps to
compute the intermediate lists L1 and L2: Recall that these intermediate lists are defined
to contain all e1 and e2 of weight p1 = p

2
+ δ whose Q-column-sum matches the random

target vector t1 and t2 = s+t1, respectively, and we computed those lists by merging ap-
propriate support-disjoint base lists. Alternatively, one could simply view the problem of
computing L1 (and similarly L2) as the initial problem of solving Eq.(6.1) with input ma-
trix Q ∶=Q[r] ∈ Fr×k+ℓ

2 , “syndrome” s ∶= t1 and target weight p1. Thus, one might invoke
BasicReps to solve this problem, i.e. one computes L1 ← BasicReps(Q[r], t1,p1, δ2)
and similarly L2 by replacing t1 with t2. This implicitly means to introduce another
level of representations and there will be

ρ2(k , ℓ,p1, δ2) = (p1
p1

2

)(k + ℓ − p1

δ2

)
many representations (e1,1,e1,2) for every representation e1 of e. Here, δ2 ≤ k+ℓ−p1

2
is a

new parameter that allows to control the number of representations on the second level.
Unravelling BasicReps yields an algorithm that can be described as a computation tree
of depth three as illustrated in Figure 6.3.

We enumerate the layers from bottom to top, i.e. the third layer identifies the initial
computation of disjoint base lists B1 and B2 (as implicitly done by BasicReps) and
the zero layer identifies the final output list L. Note that BasicReps computes the list
L
(1)
1 by merging the two intermediate lists L

(2)
1 and L

(2)
2 whose elements already match

randomly chosen target vectors t
(2)
1 and t

(2)
2 = t1 + t

(2)
1 on r2 = ⌊log ρ2⌋ coordinates, as

illustrated below.
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. . .

Disjoint base lists Bi ,1 and Bi ,2 for i = 1, . . . ,4Layer 3
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Figure 6.3: Unravelled computation tree of the ColumnMatch algorithm. The gray area
and the parameter in the bottom right corner of a list represent the amount of
matched coordinates. The framed second and third layer belong to the recursive
call of BasicReps.

We call the resulting algorithm Column-Match since it resembles the eponymous
algorithm presented in [BJMM12]. Its formal description is given in Algorithm 7. Com-
pared to [BJMM12], where the algorithm is constructed in a direct way without initially
defining BasicReps, the approach presented in this thesis offers a simplified analysis
(based on the preceding results) and is easier to extend to more levels, see Section 6.5.

Algorithm 7: Column-Match

input : Parameters p, δ1 and δ2. Matrix Q ∈ F
ℓ×(k+ℓ)
2 and syndrome s ∈ Fℓ

2.
output : List L of candidate solutions for Eq.(6.1).
params: Number of representations ρ1 ∶= ρ(k , ℓ,p, δ1) (and ρ2 ∶= ρ(k , ℓ,p1, δ2)

implicit in BasicReps) according to Eq.(5.8), ri ∶= ⌊log ρi⌋ such that
0 ≤ r2 ≤ r1 ≤ ℓ. Weight p1 ∶= p

2
+ δ1 (and p2 = p1

2
+ δ2 implicit in

BasicReps).

Choose random target t1 ∈R F
r1
2 and set t2 = s[r1] + t1;

for i = 1 to 2 do
Li ← BasicReps(Q[r1], ti ,p1, δ2)

L ←Merge-Join(L1,L2,p,Q, s);
return L;
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The analysis of Column-Match is similar to the analysis of BasicReps and is based
on the following two statements.

Lemma 6.4.1. For almost all input matrices Q, Column-Match is τ -solution pre-
serving for arbitrary τ > 0.

Proof. Let e be a fixed solution to Eq.(6.1). Define C(e) as the set of all e1 ∈ Wk+ℓ,p1

consistent to e, i.e. ∣C(e)∣ = ρ1 = ρ(k , ℓ,p, δ1). Note that a single representation (e1,e2)
is contained in L1 ×L2 if the following three independent events occur:

E1: (Qe1)[r] = t1 (where t1 is the random target vector corresponding to list L1).

E2: e1 is found by BasicReps.

E3: e2 is found by BasicReps.

Note, that E1 only depends on the random choice of t1 and both E2 and E3 depend
on the independent random choices of BasicReps (i.e. the choice of additional random
target vectors and partitions). Similarly to the proof of Lemma 6.2.4, we can apply
Lemma 6.2.3 to obtain

lim
n→∞

1

n
logPr [E1 = 1]−1 ≥ τ ′

for some arbitrarily small τ ′ > 0 and almost all Q. Moreover, Lemma 6.2.4 guarantees
that BasicReps is τ ′′-solution preserving, i.e.

lim
n→∞

1

n
logPr [Ei = 1]−1 ≥ τ ′′

for i = 2,3, some arbitrarily small τ ′′ and almost all Q. Now, the claim follows by
independence of the events Ei for τ ∶= τ ′ + 2τ ′′ arbitrarily small.

For the runtime analysis, it is important to estimate the actual size of the intermediate
lists L

(1)
1 and L

(1)
2 on the first layer within the computation tree. Recall that these lists

are output by BasicReps which filters out weight-inconsistent and duplicate matchings.
Thus, the size of these lists differs exponentially from the number of matchings that occur
during their creation. We have

∣L(1)i ∣ ≪ ∣L(2)2i−1 ×L
(2)
2i ∣

2r2−r1
.

Since the lists L
(1)
i contain vectors of length k + ℓ and weight p1 that fulfil a random

constraint on r1 coordinates, we have the following upper bound

E [∣L(1)i ∣] ≤ (
k+ℓ

p1
)

2r1
(6.20)
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which will be used to prove the next lemma. Note that this is bound is asymptotically
tight when r1 and r2 are fixed to the respective number of representations, see below for
a more detailed discussion about how to choose r1 and r2. For ease of presentation we
define P0 ∶= P , P1 ∶= P

2
+∆1 and

Pi ∶=P(L,Pi−1,∆i) ,

Σi ∶= Σ(L,Pi−1,∆i)
where Σ and P are as defined in Eq.(6.11) and (6.12).

Lemma 6.4.2. Let 0 < R < 1. For 0 ≤ L ≤ 1 − R, 0 ≤ P ≤ R + L, 0 ≤ ∆i < R+L−Pi

2
and

0 ≤ P2 ≤ P1 ≤ L the following holds: For almost all Q, Column-Match runs in time
2C (R,L,P ,∆1,∆2)n+o(n) where

C (R,L,P ,∆1,∆2) = max{Σ2

2
,Σ2 −P2,2Σ2 −P2 −P1,2Σ1 −P1 −L} .

Proof. The first three arguments of the maximum follow immediately from Lemma 6.2.6
since we applied BasicReps with P ′ = P1 and ∆′ = ∆2. Note that the parame-
ter L in the last expression of the maximum in Lemma 6.2.6 has to be replaced by
P1 since the input matrix and the target vector consist of r1 rows, i.e. we obtain
2Σ(L,P1,∆2)−P(L,P1,∆2)−P(L,P ,∆1) as claimed. By approximating Eq.(6.20) (and
by the standard argument about the concentration of the actual list size around its ex-
pectation as similarly done in the preceding proofs, e.g. Lemma 6.2.6 for BasicReps or
Theorem 4.3.1 for BCD) we obtain

Λ ∶= lim
n→∞

1

n
log ∣L(1)i ∣ = (R + L)H( P1

R + L
) −P1 = Σ1 −P1

with probability 1 − 2−Ω(n) (note that Λ is smaller than 2Σ2 −P2 −P1 which represents
all matchings that occur within BasicReps, i.e. Λ does not need to occur in C ). Now,
similarly to the proof of Lemma 6.2.6, the coefficient for the number of matchings when
merging L

(1)
1 and L

(2)
1 is given by

2Λ +P1 −L = 2Σ1 −P1 −L

with probability 1 − 2Ω(n). This finishes the proof by Lemma 6.1.1.

The main result follows as usual by simply aborting the computation of Column-
Match in every bad iteration and by combining the above two lemmata together with
Lemma 5.1.9. In contrast to the preceding algorithms, there are two abort criteria for
every invocation of Column-Match. Namely, either the size of the lists on level one
(or equivalently: the number of collisions that occur when merging two different lists on

the second level) or the number of collision between L
(1)
1 and L

(1)
2 becomes too large. As

the proof of Lemma 6.4.2 shows, both events occur with negligible probability 2−Ω(n).
Consequently, a single iteration (and thus the first good iterations w.r.t. a fixed solution
e) succeeds with probability 1 − 2−Ω(n).
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Main Theorem 6.4.1 (Column-Match). Let 0 < R < 1, 0 < W ≤ DGV(R)
and α = 1

2
. For almost all binary [n, ⌊Rn⌋]-codes it holds: generalised ISD in-

stantiated with Column-Match successfully terminates in time 2F(R,W )n+o(n)

for every error vector e ∈Wn,⌊Wn⌋ with overwhelming probability where

F (R,W ) = min
P ,L,∆1,∆2

{N (R,W ,L,P) + τ+

max{Σ2

2
, Σ2 −P2 , 2Σ2 −P2 −P1 , 2Σ1 −P1 −L}}

with 0 ≤ L ≤ 1−R, max{0,R+L+W −1} ≤ P ≤min{R+L,W }, 0 ≤ ∆i < R+L−Pi

2
,

0 ≤P2 ≤P1 ≤ L and τ > 0 arbitrarily small.

The size of the intermediate lists Li has been estimated in the proof of Lemma 6.4.2 and
the overall algorithm has space complexity S = max{Σ2

2
,Σ2 −P2,Σ1 −P1}.

6.4.1 Choice of r1 and r2

In our description of the improved algorithm, we fixed the parameters r1 and r2 naturally
according to the respective number of representations ρ1 and ρ2 which enabled us to
rigorously prove that Column-Match is τ -solution preserving.

However, it is in principle possible to phrase the algorithm for any choice of r1 and r2

under the natural constraint 0 ≤ r2 ≤ r1 ≤ ℓ. Put differently, one can define an extended
parameter space which might even allow to find an improved complexity coefficient. Let
us first exclude some special cases:

• As explained in Remark 6.2.5 it is always suboptimal to choose r2 ≪ log ρ2 (keeping
one representation on the second layer for every representation contained in the
first layer is sufficient).

• Without loss of generality r1 ≤ log ρ1 according to Remark 6.2.7 (choosing r1 =
log(ρ1) + ε for some ε > 0 increases τ ′ in the proof of Lemma 6.4.1 and thus
the number of iterations by ε whereas the workload per iteration is maximally
decreased by the same factor).

It remains to consider the case logρ2 ≪ r2 ≤ r1 ≪ log ρ1. Unfortunately, allowing for
such parameters complicates the algorithm’s analysis in two aspects:

1. The estimate for the size of the merged lists L
(1)
i on the first layer according to

Eq.(6.20) is no longer tight. Recall that these lists are computed by invoking
BasicReps which implicitly removes weight-inconsistent solutions. In order to
compute the actual size of L

(1)
1 (and similarly the size of L

(1)
2 ) one has to consider

the probability that a matching (e1,e2) ∈ L(2)1 × L
(2)
2 is weight-consistent, i.e. one

has to compute the probability that two random vectors e1 and e2 of length k + ℓ

105



6 Improved ISD Algorithms

and weight p2 = p1

2
+ δ2 have a sum e1 + e2 of weight p1. This probability is given

by

π1 ∶=
(k+ℓ

p1
)( p1

p1/2)(k+ℓ−p1

δ2
)

(k+ℓ
p2
)2 (6.21)

since we can first choose p1 positions for the sum and then choose p1

2
positions for

ẽ1 within the sum and δ2 positions for ẽ1 outside the sum (which determines ẽ2).
This gives the alternative estimate

E [∣L(1)1 ∣] = π1

∣L(2)1 ∣ ⋅ ∣L(2)2 ∣
2r1+r2

=
(k+ℓ

p1
)

2r1+r2
( p1

p1/2)(k + ℓ − p1

δ2

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=ρ2

(6.22)

which coincides with Eq.(6.20) if r2 = log ρ2 and shrinks the list size by an expo-
nential factor if r2 ≫ log ρ2.

2. The proof of Lemma 6.4.1 collapses, i.e. we do not know how to (rigorously) prove
that Column-Match is τ -solution preserving. Heuristically, one might argue as
follows: Let t1 be the random target vector chosen in a fixed iteration. Consider a
fixed solution e and denote its set of first-layer-representations as R(e), i.e. R(e)
contains pairs of vectors (e1,e2) with e = e1 + e2, wt(ei) = p1 and (Qe1)[r1] = t1.
Since r1 ≪ log(ρ1), one expects R(e) to have exponential size σ ∶= ρ1

2r1
. In order

to find a single pair (e1,e2), both e1 and e2 must be output by Basic-Reps.

Since r2 ≫ log ρ2, this happens with exponentially small probability π2 ∶= ( ρ2

2r2
)2.

If the probabilities π2 for different pairs (e1,e2) were independent, the probability
of finding at least one of them would be

1 − (1 − π2)σ ≥ 1 − exp(− ρ1ρ
2
2

2r1+2r2
) (6.23)

which can be made constant, e.g. by requiring r1 + 2r2 = log ρ1 + 2 log ρ2. How-
ever, the independence property is not fulfilled: Different representations e1 ≠
ẽ1 on the first layer may share a large number of representations on the sec-
ond layer. For example set k + ℓ = 10, p = 4, δ1 = 2 and δ2 = 1 and con-
sider a solution e = (1,1,1,1,0,0,0,0,0,0). Suppose that the representations
e1 = (1,1,0,0,0,0,0,0,1,1) and ẽ1 = (1,0,0,1,0,0,0,0,1,1) (with appropriate e2

and ẽ2) are both contained in R(e). Now, e1 and ẽ1 share the same representation
e1,1 = ẽ1,1 = (0,1,0,1,0,0,0,0,1,0) (with corresponding distinct counterparts e1,2

and ẽ1,2) on the second layer.

Despite these difficulties, we numerically examined a variant of our algorithm where
we fixed r1 + 2r2 = log ρ1 + 2 log ρ2 according to Eq.(6.23), i.e. it suffices to additionally
optimize either r1 or r2. Taking Eq.(6.22) into account, the maximum in the complexity
coefficient as given in Theorem 6.4.1 becomes max{Σ2

2
,Σ2 −P2 − ε,2Σ2 − P2 − P1 + ε,
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6.4 Using Representations Iteratively

2Σ1 −P1 − L} where 0 ≤ ε ≤ P2 is a new parameter representing the difference between
r2 and logρ2. We did not obtain any improvement over the original variant with fixed
r1 and r2 which further justifies our initial choice of parameters.
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Figure 6.4: Interpolated FBall (thick curve), FBReps (thin curve) and F (dashed curve).

6.4.2 Numerical Results and Comparison

For the sake of completeness we provide optimal parameter choices for different rates
0 < R < 1 in Table 6.4.2 and the corresponding interpolated complexity coefficient in
Figure 6.4. This yields an interpolated worst-case complexity of maxR F (R) = 0.1019
for R = 0.4263.

R 0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.9
L .1023 .1672 .1929 .2085 .2055 .2058 .1971 .1646 .1259 .0704
P .0351 .0527 .0560 .0564 .0538 .0520 .0461 .0350 .0238 .0112
∆1 .0052 .0091 .0101 .0109 .0103 .0103 .0098 .0078 .0057 .003
∆2 .0013 .0023 .0020 .0018 .0014 .0013 .0011 .0006 .0003 .0001
F .0532 .0808 .0958 .1017 .1017 .1000 .0920 .0779 .0583 .0328
S .0345 .0570 .0690 .0767 .0777 .0786 .0767 .0665 .0524 .0306

Table 6.2: Optimal parameters L,P ,∆1,∆2 for Column-Match for W = DGV(R) and re-
sulting time and space complexities.

6.4.3 Time-Memory Trade-offs

Compared to Prange’s algorithm, all improved ISD algorithms come at the cost of an
exponential space complexity. Clearly, a large space complexity might be considered
as a serious drawback, in particular for many practical applications. However, the
space complexity issue has not been discussed in the literature at all. The main (and
only) goal for designers of generic decoding algorithms is to reduce the running time
as much as possible. In this section, we give a short comparison of the presented ISD

107



6 Improved ISD Algorithms

algorithms with respect to their time and space complexity. For this purpose, let T
and S denote the time and space complexity coefficients of some ISD algorithm. Now,
a natural measure might be to consider the product of time and space complexity, or
in terms of complexity coefficients, to consider T +S and to ask for optimal parameters
minimizing this expression. Answering this question for various ISD algorithms is rather
disillusioning: In general,

Prange’s plain ISD yields the best time-space complexity product.

We only justify this statement for Ball-collision decoding: Recall that for BCD

T (L,P ,Q) = N (L,P ,Q) +max{Λ(L,P ,Q),2Λ(L,P ,Q) − L}
by Eq.(5.26). This yields

T (L,P ,Q) +Λ(L,P ,Q) = N (L,P ,Q) +max{2Λ(L,P ,Q),3Λ(L,P ,Q) −L}.
Thus we always have

T (L,P ,Q) +Λ(L,P ,Q) ≥ N (L,P ,Q) + 2Λ(L,P ,Q)
= H(W ) − (1 −R − L)H(W −P −Q

1 −R −L
)

which is clearly minimal for L = P = Q = 0 (where BCD degenerates to Plain ISD).
Consequently, comparing the improved algorithms with respect to minimal T +S = T +Λ
is meaningless. Even worse, it is conceivable that the improved algorithms might turn
out to be “equivalent” in the following sense: If A and B are two ISD algorithms such
that A’s optimal running time coefficient is TA (with corresponding space complexity
SA), do there exist parameters for B with TB + SB < TA + SA? For example, if one
compares T + S for the optimal values of Stern’s algorithm, BCD and the improved
algorithm of this section (which we will call BJMM in reference to [BJMM12]) for rate
R = 0.5, see Table 4.1, 4.2 and 6.4.2, one obtains

TStern + SStern = 0.14856

TBCD + SBCD = 0.15287

TBJMM + SBJMM = 0.1786 .

Note that Stern’s algorithm seems to outperform all recent algorithms (and is itself
clearly dominated by Prange’s algorithm with coefficient 0.119865). Fortunately, both
BCD and BJMM offer a lot of flexibility with respect to their memory consumption due
to their large parameter spaces. Moreover, it is easy to search for optimal parameters
while restricting the space complexity of the respective algorithm to a fixed upper bound,
e.g. we computed optimal BCD or BJMM parameters that guarantee the same (or
smaller) space complexity as Stern’s algorithm. The resulting time-space complexity
products and their interpolated curves can be found below.
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R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prange .0585 .0914 .1106 .1196 .1199 .1125 .0977 .0753 .0443
Stern .0688 .1087 .1332 .1458 .1487 .1423 .1269 .1016 .0635
BCD .0687 .1084 .1329 .1455 .1484 .1421 .1267 .1014 .0634

BJMM .0674 .1055 .1283 .1395 .1412 .1340 .1183 .0934 .0573

Table 6.3: Time-space complexity products for different ISD algorithms where parameters for
Stern’s algorithm are optimal w.r.t to the running time and BCD and BJMM
parameters are optimal w.r.t. the running time with bounded (e.g. Stern’s) space
complexity.

We would like to stress that the above numerical approach only leads to results of no
great significance. Note that optimal parameters for Stern’s algorithm are not necessarily
unique and there might be different optima with decreased space complexity (although
we were unable to find such parameters numerically). In summary, we strongly conjec-
ture that the recent algorithms indeed improve over Stern’s algorithm, but a deeper the-
oretical analysis seems superfluous (in particular with the general superiority of Prange’s
algorithm in mind).
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Figure 6.5: Interpolated T + S -curves for Stern’s algorithm (thick curve), and BJMM (thin
curve). Optimal time-space complexity of Prange’s algorithm (dashed curve).

6.5 Discussion and Open Problems

We conclude this chapter with some open questions. The first one is not restricted to
ISD algorithms and concerns the optimality of the representation technique in general.
Note that one could easily generalise the Column-Match algorithm to more layers: On
input Q, s and p, recursively define algorithms Reps[i] with parameters p and δ1, . . . , δi

by first computing

Lj ←Reps[i − 1](Q[r1], tj ,p1, δ2, . . . , δi)
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6 Improved ISD Algorithms

for j = 1,2 (where tj are random target vectors of dimension r1) and by outputting
L ← Merge-Join(L1,L2,p,Q, s) where Reps[1] ∶= BasicReps. The parameters are

restricted as usual, i.e. we have 0 ≤ δj+1 <
k+ℓ−pj

2
where pj+1 =

pj

2
+ δj+1 for j = 0, . . . , i − 1

with p0 ∶= p. This implicitly defines different numbers of representations ρj on layers
j = 1, . . . , i and corresponding parameters rj = log ρj . Analogously to Theorem 6.4.1, the
resulting complexity coefficient is given by

F (R,W , i) = min
P ,L,∆1,...,∆i

{N (R,W ,L,P) + τ+

max
j=i ,...,2

{Σi

2
, Σi −Pi , 2Σj −Pj −Pj−1 , 2Σ1 −P1 − L}}

with 0 ≤ L ≤ 1 − R, max{0,R + L + W − 1} ≤ P ≤ min{R + L,W }, 0 ≤ ∆i < R+L−Pi

2
,

0 ≤Pi ≤Pi−1 ≤ . . .P1 ≤ L and τ > 0 arbitrarily small. It is thus very natural to ask:

Is the Column-Match algorithm optimal - or - is further
improvement possible by adding additional recursion layers?

Unfortunately, we were not able to answer this question theoretically. The question
of determining the optimal recursion depth is also unsolved for all other applications
of the representation technique, e.g. the generic subset-sum algorithm of [BCJ11]. We
believe that an entirely different modelling and analysis is needed to answer this question.
However, numerical experiments (both for the decoding and the subset-sum scenario)
indicate that a depth of two already yields the best results.

Moreover, motivated by the lack of fast space-efficient algorithms as discussed in
Section 6.4.3, it might be interesting to

Design space-efficient ISD algorithm’s (different from Plain ISD).

For example, it is possible to apply generic techniques for space-efficient Meet-in-the-
Middle attacks as presented in [vOW99] to Stern’s algorithm: Finding weight-p solutions
e to Qe = s can be phrased as finding collisions for two mappings fb ∶ D → R with domain
D ∶=W k

2
,
p

2
and range R = Fℓ

2 defined by

fb(e) ∶=Qbe + b ⋅ s

where b ∈ {0,1} and Q = (Q0∣∣Q1). By construction, a collision f0(e0) = f1(e1) yields
the solution (e0∣∣e1). Now, our goal is to define another function f ∶ S → S that behaves
like a random function and has a collision that is related to the above collision (e0,e1).
For such f , the techniques of [vOW99] can be used to find collisions in time ≈ ∣S ∣3/2
using only constant memory (this also works when a particular efficiently recognisable
“golden collision” is searched). A (heuristic) way to define f is to make use of a constant-
weight embedding φ. A constant-weight embedding φ is simply a function that maps
ℓ-bit strings to words of length k

2
and weight p

2
. Using φ (see [FS96] for a simple
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implementation) together with some function g ∶ R → {0,1}, e.g. g(x) =∑ xi mod 2, we
obtain a function f ∶ {0,1} ×D → {0,1} ×D via

f (b,e) ∶= (g(fb(e)), φ(fb(e))) .

Since Q is a random binary matrix, applying fb yields uniform vectors of length ℓ, i.e.
g also yields a uniform Bit b, and it is reasonable to (heuristically) assume that f be-

haves like a random function. Thus, since ∣S ∣ ≈ (k/2
p/2), we obtain a (heuristic) variant

of Stern’s algorithm with slightly increased time complexity and constant space com-

plexity (to be more precise, the running time is increased by a
√(k/2

p/2)-factor assuming

ℓ = log (k/2
p/2)). However, the sketched algorithm is heuristic and does not improve over

Prange’s algorithm with respect to the time-space complexity product. We leave it as
an open question to find more efficient, rigorous algorithms (one possibility is to apply
the recently proposed dissection technique, see [DDKS12]).
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7 Improved Information Set

Decoding over Fq

“To be is to do.”

Immanuel Kant

Introduction

From a practical point of view, the central goal in code-based cryptography is to find
more efficient constructions with a particular focus on reducing the key sizes. For exam-
ple, the public description of the McEliece T-OWF f is a (k ×n)-dimensional “random”
generator matrix of the underlying Goppa code. When using f in order to obtain a
CCA2-secure public key encryption scheme, by applying the Kobara-Imai transform
[KI01] for example, it is possible to use a public generator matrix in standard form.
This allows one to fully describe f by the redundancy part of size (n − k)k only. In the
binary case, the currently proposed parameters for 128-Bit security are n = 2960 and
k = 2288 yielding a public key of size ≈ 188 KB.

Besides using particularly structured codes, e.g. the recent proposal of Misozcki et al.
based on moderate-density parity-check codes [MTSB12], some authors proposed to use
larger base fields Fq in order to improve the efficiency and in particular to decrease the
key sizes. Put simply, some specific q-ary codes offer better decoding capabilities which
allow to add errors of large weight in the McEliece T-OWF f for codes of relatively
small length. Thus, one obtains smaller descriptions of f while (hopefully) preserving
the hardness of inverting f .

For example, the recent proposals [BLP10, BLP11b] by Bernstein et al. introduced
so-called “wild Goppa codes”, which are essentially subfield codes over small Fq , together
with improved list-decoding algorithms. The notion of list decoding was introduced by
Elias [Eli57] and considers decoding algorithms that work beyond the error-correction
capability of the code by outputting a polynomial size list of candidate codewords.
Interestingly, those codes offer an increased error-correction capability by a factor of
≈ q/(q − 1). Thus, even for relatively small q , one can decode a rather large number
of errors for codes of much smaller length. The seemingly best choice in [BLP10] is
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7 Improved Information Set Decoding over Fq

q = 31, n = 851 and k = 611 yielding a significantly reduced public key size of ≈ 89
KB. An important open question is to properly study the security of these alternative
constructions.

As in the binary case, ISD algorithms offer the best complexity for the q-ary syndrome
decoding problem. Consequently, understanding the complexity of ISD algorithms over
Fq , and in particular estimating the effect of using representations, is important to eval-
uate the security of the respective cryptographic schemes. The following two questions
are of particular interest:

1. How can the known algorithms be generalised and what complexity coefficients do
we obtain?

2. How do the algorithms perform for growing q , i.e. how do the complexity coef-
ficients F (R,W , q) behave as a function of q? Do they converge to (possibly
distinct) F (R,W ) and, if so, do they converge at different speeds?

General remarks. Let us first make some general observations towards the impact of
larger base fields to ISD algorithms. Recall that the running time of all ISD algorithms
is determined by

1. the (expected) number of iterations and

2. the workload of a single iteration.

We have seen that the first only depends on the notion of a “good” permutation which
in turn is determined by the particular weight distribution that will be recovered within
a single iteration. Note that this particular weight distribution only concerns the error
positions of the hidden error vector and completely ignores the respective error symbols.
Consequently, the number of iterations is independent of the size of the base field. How-
ever, the workload per iteration is heavily influenced by the size of the base field: When
enumerating a set of candidate error vectors of a certain length n and weight ω, we can
not only choose ω out of n many error positions but we also need to try all possible
q −1 different error symbols per error position. Compared to the binary case, where the
search space has size (n

ω
), we obtain an expanded search space of size (n

ω
)(q − 1)ω.

Impact on Minimum Distance Decoding. As explained in Chapter 3, it is sufficient
to solve the CSD problem for errors of weight W = DGV(R, q) + o(1) in order to solve
the MDD problem (in the asymptotic setting). Recall that the relative GV distance is
defined as DGV(R, q) = H−1q (1 − R) which is monotone increasing in q . In particular, it
holds

lim
q→∞

H−1q (1 −R) = 1 −R , (7.1)

see [CG90, Theorem 7]. In summary, for larger values of q we need to solve the CSD
problem for larger error weights in order to solve the MDD problem. Put simply, the
complexity of MDD increases with q .
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Plain ISD over Fq

An initial study of ISD over Fq was given by Coffey and Goodman in [CG90] who
provided the first rigorous asymptotic analysis for Prange’s plain ISD. Recall that a
single iteration in Plain ISD comes (asymptotically) for free which in turn means that
the running time of Plain ISD is essentially independent of the base field by our initial
observation. Thus, we obtain exactly the same complexity coefficient as defined in
Eq.(4.6). When using Plain ISD to solve the q-ary MDD problem, we need to find
errors of weight W = DGV(R, q) and obtain the complexity coefficient

F (R, q)Pra = [H(H−1q (1 −R)) − (1 −R)H(H−1q (1 −R)
1 −R

)] logq 2 ,

see Figure 7.1 for an illustration for varying q . Using Eq.(7.1) it follows F (R, q)Pra →
H(1 − R) logq 2 → 0 for large q and the complexity coefficient tends towards zero with
increasing q . Therefore the complexity becomes subexponential in the symbol size q for
large base fields.

Remark 7.0.1. Note that the above argument first uses n → ∞. The resulting com-
plexity coefficient is then viewed as a function of q and further analysed for q → ∞.
This implicitly means that n must grow much faster than q . We point out that some
interesting cryptographic problems, e.g. the LWE-problem, are connected to decoding
problems in random q-ary codes of length n with q = poly(n) or even q = 2O(n). These
scenarios are not covered by the analysis presented in this chapter.
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Figure 7.1: Complexity coefficient (left) and binary work factor (right) for different q = 2i ,
i = 1, . . . ,6 in decreasing (left) and increasing order (right), respectively.

An immediate consequence of F (R, q)Pra → 0 is that the difference between any of the
improved algorithms and Plain ISD becomes arbitrarily small with growing q : Since any
algorithm A contains Plain ISD as a special case, we have F (R, q)A ≤ F (R, q)Pra and
thus F (R, q)A → 0 which implies FPra −FA → 0. However, the convergence of Plain ISD
towards 0 is caused by the (somehow arbitrary) choice of the base q in the logarithm that
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occurs in the definition of F (R,W , q). Note that the binary work factor F(R,q)Pra

logq 2
tends

to H(1 −R) = H(R) with q →∞, see Figure 7.1. Furthermore, there might be different
algorithms A and B with FA − FB → 0 for large q but distinct binary work factors
(for example consider F (R, q)A = H(R) logq 2 and F (R, q)B = H(R)

2
logq 2 with binary

work factor H(R) ≠ H(R)
2

, respectively). This shows that it is questionable whether the
complexity coefficient is the appropriate metric to compare ISD algorithms for q > 2.
However, we will shortly see that the improved algorithms “converge” to Plain ISD even
with respect to their binary work factors.

Related Work. In contrast to the binary case, the study of ISD algorithms over Fq

has not attracted much attention within the last years: The most recent work is due
to Peters who presented a straightforward modification of Stern’s algorithm in [Pet10].
Shortly after, Niebuhr et al. in [NCBB10] showed how to gain a

√
q − 1 factor by

exploiting the field structure. Essentially, the improvement of [NCBB10] is based on
the following simple observation: Multiplying the given syndrome s with α ∈ Fq ∖ {0,1}
gives rise to q − 2 additional syndromes, each of them revealing a related error vector
αe. In order to find the original e it is thus sufficient to decode at least one out of
the q − 1 many different syndromes. Consequently, the authors of [NCBB10] designed
a specific algorithm exploiting so-called “normalised” vectors (as introduced by Minder
and Sinclair in [MS12]). However, for q = poly(n), a

√
q − 1 improvement does not

change the complexity coefficient at all and we omit a deeper description.

Roadmap

Except for Plain ISD, no asymptotic analysis of ISD algorithms over Fq exist so far.
Thus, we initiate our study by restating Stern’s algorithm over Fq and by providing
its complexity coefficient in Section 7.1 (in a rather informal way). We then show how
to generalise our improved algorithm to Fq in Section 7.2 and obtain an exponential
improvement. However, for both algorithms, the improvement over Plain ISD becomes
vanishingly small for large enough q .
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7.1 Stern’s Algorithm

7.1 Stern’s Algorithm

As in the preceding chapters, we focus on finding weight-p solutions e ∈ Fk
q to the

equation Qe = s ∈ Fℓ
q . For simplicity we only describe how to modify a single iteration of

Stern’s algorithm (the remaining algorithm stays the same). Recall that we decompose
Q = (Q1∣∣Q2) into two ℓ × k

2
matrices Qi and analogously split e = (e1∣∣e2) where both

ei have Hamming weight p

2
. Now, the efficiency of a straightforward generalisation of

Stern’s algorithm is clearly affected by the size of the base field: In every single iteration
we enumerate all vectors ei of length k

2
and weight p

2
. More precisely, we need to

compute the two base lists

L1 ∶= {(Q1e1,e1) ∶ e1 ∈W q
k
2
,
p

2

} , L2 ∶= {(s −Q2e2,e2) ∶ e2 ∈W q
k
2
,
p

2

}

where W q
n,ω is the set of all e ∈ Fn

q with weight ω. Obviously, both lists contain

( k
2
p

2

)(q − 1) p

2 (7.2)

elements. These list are finally scanned for matching elements (with respect to the first

entry). As usual, the expected number of matchings is given by (k/2
p/2)2(q − 1)pq−ℓ.

As already mentioned, the notion of a “good” permutation only depends on the error
positions and is thus not affected by the size of the base field. Consequently, the prob-
ability of guessing a good permutation and therefore the expected number of iterations
is identical to the binary case, see Eq.(4.17). We refrain from giving a more detailed
description and analysis of the complete algorithm and merely state the main result. A
formal proof could be immediately obtained by copying the proof of Theorem 4.3.1 and
by using Lemma 2.3.5 to approximate Eq.(7.2) with

Λ(R,P , q) ∶= lim
n→∞

1

n
logq volq(⌊R

2
n⌋, ⌊P

2
n⌋) = R

2
Hq (P

R
) (7.3)

=
R

2
H(P

R
) logq 2 +

P

2
logq(q − 1)

and the number of matchings with 2Λ(R,P , q) − L.
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Theorem 7.1.1 (Stern’s algorithm over Fq). Let 0 < R < 1 and 0 < W ≤
DGV(R, q). For almost all q-ary [n, ⌊Rn⌋]-codes it holds: Stern’s algorithm suc-
cessfully terminates in time qFSte(R,W ,q)n+o(n) for every error vector e ∈W q

n,⌊Wn⌋
with overwhelming probability where

FSte(R,W , q) =min
P ,L
{N (R,W ,P ,L)

+max{Λ(R,P , q),2Λ(R,P , q) − L}} ,

N (R,W ,P ,L) = [H(W ) −R H(P
R
) − (1 −R −L)H( W −P

1 −R −L
)] logq 2

and Λ as defined in Eq.(7.3) with 0 ≤ L ≤ 1 − R and max{0,R + L +W − 1} ≤
P ≤min{R,W }.

Optimised interpolated curves for FSte(R,W , q) for different q and fixed W = DGV(R, q)
are presented in Figure 7.1.
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Figure 7.2: Comparison of F(R,W , q) for Plain ISD (solid curves) and Stern’s algorithm
(dashed curves) for q = 2,4, . . . ,64 in decreasing order.

As already mentioned and illustrated by Figure 7.1, the larger q , the smaller the
difference between Plain ISD and Stern’s algorithm. Intuitively, this it not very surpris-
ing. For large q , the running time of the algorithm is dominated by the enumeration
of all (q − 1)p/2 error symbols which forces smaller and smaller p. This observation is
formalised (w.r.t. the binary work factor) in the next theorem where we prove that a
sequence P∗q of optimal P -parameters for Stern’s algorithm fulfils 1

2
P∗q log2(q − 1) → 0

for q →∞. Put differently, Stern’s algorithm “converges” to Plain ISD. Let

∆(R,W , q) ∶= FPra(R,W , q) −FSte(R,W , q)
logq 2

denote the (binary work factor) difference between Plain ISD and Stern’s algorithm. In
particular it holds ∆(R,W , q) ≥ 0 for all q (we can always set P = L = 0).
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7.1 Stern’s Algorithm

Theorem 7.1.2. For every 0 < R < 1 and 0 < W < 1 − R it holds
limq ∆(R,W , q) = 0.

Proof. For fixed W let Q∗ be large enough such that W ≤ DGV(R, q). Let P∗q ∶={P∗(R,W , q)}q≥Q∗ denote a sequence of optimal P -parameters for Stern’s algorithm.
According to Eq.(7.3) it holds

FSte(R,W , q)
logq 2

≥
Λ(R,P∗q , q)

logq 2
≥

P∗q
2

log2(q − 1) .

This implies that the sequence αq ∶=
P∗q
2

log2(q −1) is bounded (it is always possible to set

P∗q = 0 for all q which transforms Stern’s algorithm into Plain ISD, thus FSte

logq 2
≤ FPra

logq 2
≤ 1

always holds). Thus
τ ∶= limsup

q
αq <∞

exists. Suppose that τ > 0 and consider a subsequence αq̂ with limq̂ αq̂ = τ . Note that
τ <∞ implies limq̂ P∗q̂ = 0. Using

FSte(R,W , q̂)
logq̂ 2

≥ H(W ) − R

2
H(P∗q̂

R
) − (1 −R)H(W −P∗q̂

1 −R
) +αq̂

we obtain

−∆(R,W , q̂) ≥ (1 −R)[H( W

1 −R
) −H(W −P∗q̂

1 −R
)] − R

2
H(P∗q̂

R
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶βq̂

+αq̂ .

Note that limq̂ βq̂ = 0 since limq̂ P∗q̂ = 0. Thus for fixed εα > 0, there is some Qα with
αq̂ > τ −εα for all q̂ ≥ Qα and for εβ ∶= τ−εα we will find some Qβ with βq̂ > −εβ = εα−τ for
all q̂ ≥ Qβ. This yields −∆(R,W , q̂) > 0 for all q̂ ≥ max{Qα,Qβ} which is a contradiction

(to ∆ ≥ 0). Consequently we have τ = 0 which implies limq
P∗q
2

log2(q − 1) = 0. Thus
limq Λ(R,P∗q , q) = 0 and limq L∗q = 0 follows (where L∗q is a sequence of optimal L-
parameters) and we eventually obtain limq ∆(R,W , q) = 0.

The above theorem essentially states that Plain ISD is the best choice when q becomes
large due to its comparably simple implementation and low memory consumption. Nev-
ertheless, for rather small q (as frequently used in cryptography, e.g. q = 31 in [BLP10])
the more sophisticated algorithms might still be interesting.
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7 Improved Information Set Decoding over Fq

7.2 Using Representations over Fq

Note that within a single iteration of all improved ISD algorithms presented in Chapter 6
one starts with the enumeration of a certain number of base lists each containing all
vectors of length k+ℓ

2
and appropriate weight t (to avoid confusion we point out that

t is a function depending on the parameters p and δi where the maximal value of i is
determined by the number of recursion layers of the algorithm). Thus, when generalising
these algorithms to larger base fields, the asymptotic size of the respective base lists is
given by R+L

2
Hq( T

R+L
). An argument similar to the proof of Theorem 7.1.2 shows that

T ∗q → 0 must hold for every possible sequence of optimal parameters T ∗q (which implies
that sequences of optimal parameters P∗q and (∆∗i )q tend to zero with growing q).
Stated simply, for large enough q , any improved algorithm degenerates to Plain ISD.
Consequently, the question of finding the asymptotically optimal algorithm becomes less
significant for growing q . Thus, we will only give a simplified description of the improved
algorithm in the following sense:

• We only provide a lower bound on the number of representations in the asymptotic
setting. The actual number of representations might differ by an exponential
factor. However, we indicate how a tight estimate can be obtained numerically
and discuss the resulting improvement on the algorithm’s running time.

• We only present a generalisation of the simple BasicReps algorithm, i.e. we refrain
from using representations recursively. This is justified by numerical optimisation
which failed to provide improved results for the recursive variant for q > 3.

In order to generalise BasicReps, it is merely necessary to study the effect of larger
base fields on the number of representations. Fortunately, larger q increase the number
of representations by a remarkable amount. Recall that in the binary case, a vector e of
length k + ℓ and weight p has ( p

p/2)(k+ℓ−pδ
) many representations of the form e = e1 + e2

where both ei have Hamming weight p

2
+ δ. Also, recall that the first factor counts the

possible ways of picking half of e’s non-zero coordinates and the second factor counts
the possible ways of choosing δ many overlapping coordinates in e1 and e2. Over Fq ,
we obviously gain extra freedom in picking the overlapping coordinates. Every of the δ

picked 0’s in e can be written in q − 1 ways. At first sight, this seems to be the only
gain (since there is still only one way to write one out of the p error symbols x as either
x + 0 or 0 + x ) and one might estimate the number of representations by

( p

p/2)(k + ℓ − p

δ
)(q − 1)δ .

However, some of the δ overlapping coordinates might also occur within the error po-
sitions of e: In this case, the error symbol x can be written in q − 2 different ways as
x = y + z where y ∉ {0, x}. The overall effect is summarised in the next lemma.
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7.2 Using Representations over Fq

Lemma 7.2.1. Let e ∈ Fk+ℓ
q with wt(e) = p. For 0 ≤ δ ≤ k + ℓ − p denote ρ(k , ℓ,p, δ, q)

the number of pairs (e1,e2) with wt(ei) = p

2
+ δ and e = e1 + e2. It holds

ρ(k , ℓ,p, δ, q) = min{ p

2
,δ}∑

i=0

(p − 2i
p

2
− i
)( p

2i
)(q − 2)2i(k + ℓ − p

δ − i
)(q − 1)δ−i . (7.4)

Proof. Let us assume wlog that the errors of e occur in the first p positions. Let p1

denote the Hamming weight of e1 on these positions, i.e. p

2
≤ p1 ≤ min{p, p

2
+ δ}. Set

i ∶= p1 −
p

2
, i.e. 0 ≤ i ≤ min{p

2
, δ}. Since e1 has total Hamming weight p

2
+ δ, it has

Hamming weight δ − i on the last k + ℓ − p positions. Since e = e1 + e2, e1 and e2 must
overlap on these δ − i positions and there are exactly (k+ℓ−p

δ−i
)(q − 1)δ−i ways of choosing

these overlaps. Moreover, e1 and e2 must overlap on 2p1 − p = 2i out of the first p error
positions of e, i.e. there are 2i error symbols x ≠ 0 in e that can be written as x = y + z
with y , z ≠ 0 (i.e. we can freely choose y ∉ {0, x}). There are exactly ( p

2i
)(q − 2)2i ways

of choosing these overlaps. Finally, we can arbitrarily assign half of the remaining p −2i
error symbols of e to e1 (which also determines the remaining non-zero symbols of e2).
This explains the (p−2ip

2
−i
) factor in the above formula.

Note that Lemma 7.2.1 generalises Lemma 5.1.5 for the binary case: The only non-
vanishing summand is ( p

p/2)(k+ℓ−pδ
) for i = 0. Knowing the number of representations

immediately enables us to generalise the BasicReps algorithm from Chapter 6 in a
very straightforward way: We define ρ ∶= ρ(k , ℓ,p, δ, q) and we need to compute two
intermediate lists

L1 ∶= {e1 ∈W q

k+ℓ,
p

2
+δ

∶ (Qe1)[r] = t} ,

L2 ∶= {e2 ∈W q

k+ℓ,
p

2
+δ

∶ (Qe2)[r] = s[r] − t}
where t ∈R Fr

q is a random target vector with r ∶= ⌊logq ρ⌋. As usual, one computes the
final candidate list L containing all solutions e ∈W q

k+ℓ,p with Qe = s by invoking Merge-
Join, i.e. L ← Merge-Join(L1,L2,p,Q, s). Obviously, Merge-Join also works over
arbitrary base fields with exactly the same performance by simply using the respective
lexicographic order over Fq .

Clearly, the intermediate lists L1 and L2 can be computed analogously to the binary
case: For L1, choose a random partition [k + ℓ] = P1 ⊍P2, ∣P1∣ = ∣P2∣ = k+ℓ

2
and construct

two support-disjoint base lists

B1(P1) ∶= {y ∈W q

k+ℓ,
p

4
+

δ
2

and supp(y) ⊂ P1} ,

B2(P2) ∶= {z ∈W q

k+ℓ,
p

4
+

δ
2

and supp(z) ⊂ P2}
which can them be merged into L1 ← Merge-Join(B1(P1),B2(P2), p

2
+ δ,Q[r], t). We

omit the identical description for L2. Altogether, we obtain exactly the same algorithm
as presented in Algorithm 6 with adapted choice of the parameter ρ and expanded lists
as described above. To obtain the usual asymptotic statement about the running time,
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7 Improved Information Set Decoding over Fq

it is necessary to generalise Theorem 6.2.2 and Lemma 6.2.3 to Fq which can easily be
done by substituting 2 with q . Consequently, BasicReps is τ -solution preserving over
Fq which can be proven analogously to Lemma 6.2.4.

Theorem 7.2.2. For a fixed matrix Q ∈ Fm×n
q , a target vector t ∈ Fm

q and an arbitrary
set B ⊂ Fn

q , ∅ ≠ B we define

PQ(B, t) ∶= 1∣B∣ ∣{x ∈ B ∶ Qx = t}∣ .

It holds

∑
Q∈Fm×n

q

∑
t∈Fm

q

(PQ(B, t) − 1

qm
)2 = qmn qm − 1

qm ∣B∣ . (7.5)

Lemma 7.2.3. Let m ≤ n and ∣B∣ ≥ qm. Let Γ ∈ N. For all but a 1
Γ−1

fraction of all
Q ∈ Fm×n

q it holds

Pr [PQ(B, t) = 0] ≤ 1 −
1

Γ
where the probability is over the random choice of t ∈ Fm

q .

Lemma 7.2.4. For almost all input matrices Q, BasicReps is τ -solution-preserving
for arbitrary τ > 0.

Runtime Analysis and Main Theorem

According to Chapter 6 we define

Σ(R,L,P ,∆, q) ∶= (R +L)Hq ( P
2
+∆

R + L
) (7.6)

and

P(R,L,P ,∆, q) ∶= P logq 2 + (R + L −P)Hq ( ∆

R + L −P
) . (7.7)

Note that in Eq.(7.7) we implicitly lower bound ρ ≥ ( p

p/2)(k+ℓ−pδ
)(q−1)δ in the asymptotic

setting. Using Vandermonde’s inequality, see Lemma 2.3.2, together with logq 2 < Hq(12)
for q > 2 yields

P(R,L,P ,∆, q) = P logq 2 + (R + L −P)Hq ( ∆

R +L −P
) (7.8)

< P Hq ( P
2

P
) + (R + L −P)Hq ( ∆

R +L −P
) ≤ (R + L)Hq ( P

2
+∆

R + L
) = Σ(R,L,P ,∆, q)

for q > 2. This is sufficient to obtain the following estimate for the running time of
BasicReps which is similar to Lemma 6.2.6.
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7.2 Using Representations over Fq

Lemma 7.2.5. Let 0 < R < 1. For 0 ≤ L ≤ 1 −R, 0 ≤ P ≤ R + L, 0 ≤ ∆ < R + L −P and
P(L,P ,∆, q) ≤ L with Σ and P as defined in Eq.(7.6) and (7.7) the following holds: For
almost all Q, BasicReps runs in time qC (R,L,P ,∆,q)n+o(n) where

C (R,L,P ,∆, q) = max{Σ
2

,Σ −P,2Σ −P −L} .

Proof. We only indicate the differences to the proof of Lemma 6.2.6. We need to bound
the size of the lists Bi and Li and the number of matchings between L1 and L2, denoted
by M . It holds

lim
n→∞

1

n
logq ∣Bi ∣ = Σ

2

and

lim
n→∞

1

n
logq ∣Li ∣ = Σ −P

for almost all Q (this follows from Chebychev’s inequality since E [∣Li ∣] = q(Σ−P)n+o(n),
which is exponentially increasing in n due to Eq.(7.8), and Var [∣Li ∣] ≤ E [∣Li ∣] by 2.4.6).
By construction of the lists Li , every pair yields a matching on all ℓ coordinates with
probability q r−ℓ and we obtain

E [M ] = ∣L1 ×L2∣
q ℓ−r

= q(2Σ−P−L)n+o(n)

since P ≤ L. Using standard arguments it follows limn→∞
1
n

logq M = max{2Σ−P−L, ǫ}
for ǫ > 0 arbitrarily small.

As usual, the main result follows by aborting BasicReps in every bad iteration and
by combining Lemma 5.1.9 with Lemma 7.2.4 and Lemma 7.2.5.

Main Theorem 7.2.1 (BasicReps over Fq). Let 0 < R < 1 and 0 < W ≤
DGV(R, q). For almost all q-ary [n, ⌊Rn⌋]-codes it holds: Generalised ISD in-
stantiated with BasicReps successfully terminates in time qFBReps(R,W ,q)n+o(n)

for every error vector e ∈W q

n,⌊Wn⌋ with overwhelming probability where

FBReps(R,W , q) = min
P ,L,∆
{N (R,W ,L,P , q) + τ+

max{Σ
2

,Σ −P,2Σ −P −L}}
with N (R,W ,L,P , q) is as defined in Theorem 7.2.1, 0 ≤ L ≤ 1−R, max{0,R+

L +W − 1} ≤ P ≤ min{R + L,W }, 0 ≤ ∆ ≤ R + L − P, 0 ≤ P ≤ L and τ > 0
arbitrarily small.
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7 Improved Information Set Decoding over Fq

We conclude by providing the interpolated complexity curves (see Figure 7.3) and
worst-case running times (see Table 7.1) for Plain ISD, Stern’s ISD and two variants
using representations for different q ∈ {2,4,8,16,32,64}: The first variant corresponds
to the coefficient FBReps as given in the above theorem and is denoted BReps. In
contrast to the first variant, the second, extended variant (denoted xBReps) makes use
of a tight asymptotic estimate for the number of representations. According to Eq.(7.4)
we numerically computed the maximal number of representations for fixed P ,L,∆ as
the local (real) maximum of the function

f (x) ∶= logq 2 [(P − 2x) +P H(2x
P
) + 2x log(q − 2)] + (R + L −P)Hq ( ∆ − x

R + L −P
) .

Plain ISD Stern BReps xBReps
q maxR F(R) argmaxF(R) maxR F(R) arg maxF(R) maxR F(R) argmaxF(R) maxR F(R) argmaxF(R)

2 .1208 .4539 .1166 .4468 .1053 .4282
4 .1115 .4543 .1090 .4494 .1033 .4346 .1014 .4355
8 .1029 .4554 .1014 .4521 .0989 .4442 .0969 .4417
16 .0950 .4569 .0941 .4549 .0929 .4508 .0918 .4468
32 .0878 .4587 .0873 .4575 .0867 .4555 .0863 .4525
64 .0813 .4607 .0811 .4600 .0808 .4589 .0806 .4576

Table 7.1: Worst-case complexities F(R) and corresponding rates R for different q and all
algorithms. For q = 128 and q = 256 the difference between Plain ISD and xBReps
becomes 0.003 and 0.001, respectively.

7.3 Conclusion and Open Problems

The main lesson of this chapter is that

Sophisticated algorithms become less powerful for large q.

Moreover, the numerical data indicates that Plain ISD already performs surprisingly
good for rather small q ≈ 100. To confirm this claim from a practical point of view, a
finer analysis, as initiated for the binary case in Chapter 8, is needed. As we have seen,
enumerating the error symbols is the main reason for the inefficiency of the improved
algorithms. In some cryptographically motivated settings, the error symbols are likely
to be contained in a rather small subset E ⊂ Fq . Clearly, this can immediately be used
in order to decrease the size of the intermediate lists in all algorithms.
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Figure 7.3: Complexity coefficients between q = 2 (top left corner) and q = 64 (bottom right
corner) from left to right. Complexity curves are given for Plain ISD, Stern’s
algorithm, BReps and xBReps. Note that for q = 2 Eq.(7.4) is tight and there is
no difference between BReps and xBReps
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8 Applications

So far, we exclusively carried out a very rough asymptotic analysis of all ISD algo-
rithms. As a consequence, it remains absolutely unclear whether our new algorithms
have any practical impact. Compared to all known ISD algorithms, our improved algo-
rithm requires the implementation of a rather complex computation tree where different
expensive operations occur when merging two lists of one layer into a new list of the
next layer (like sorting lists, eliminating weight-inconsistent solutions, updating labels of
list elements, and so on and so forth). In this chapter we will resolve this unsatisfactory
situation by answering the following question:

Are there codes of practical interest for which our algorithm
performs better than Ball-collision decoding?

More precisely, we aim to give a (acceptably simple) concrete implementation of our
algorithm (which we call BJMM for short) and compare its binary work factor, see
Definition 8.1.1, with the one of BCD. For this purpose, we proceed as follows:

• We give a thorough analysis of BJMM and BCD, see Section 8.1.

• We present optimal parameters and the resulting work factors for some interesting
codes arising from cryptographic applications, see Section 8.2.

From a practical point of view, the main result of this chapter is a revised security
analysis of concrete McEliece parameter sets which shows that

high security levels are notably affected by our work.

We present a very simple implementation of BJMM (using only one layer of representa-
tions) that reduces the running time for the best generic attack by a factor 4, 26 and 220

for the 80 Bit, 128 Bit and 256 Bit security level, respectively (Section 8.2.1). Another
interesting application of our algorithm is a refined security analysis for the so-called
LPN problem (see Definition 8.2.1). The LPN assumption is widely used in many re-
cent cryptographic constructions. Although there is a well-known link between the LPN
problem and coding theory, no cryptanalyst evaluated the concrete hardness of the LPN
problem when attacked with ISD thus far. Consequently, we present the first concrete
security analysis for different LPN parameters of practical interest. In Section 8.2.2 we
show that

almost all low-noise instances of the LPN problem can be
efficiently attacked with ISD algorithms.
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8.1 Refined Complexity Analysis for F2

For the sake of optimal comparability with BCD, our analysis follows the analysis of
Bernstein et al. in [BLP11a]. This analysis is based on the following assumptions:

• Memory allocation and computing Hamming weights comes for free (this might be
worth discussing).

• A collision search between two lists L1 and L2 can be implemented in time linear
in max ∣Li ∣ via hash tables (without sorting).

• We estimate the complexity as the expected number of field additions (ignoring the
costs of field multiplications is only reasonable for F2 where computing a matrix-
vector product He can be seen as first selecting and then adding a particular subset
of columns of H).

Under these assumptions, we make the following definition.

Definition 8.1.1. Let A be an algorithm for the binary CSD problem with parameter
space PA(n, k , ω). By TA(n, k , ω, π) we denote the expected number of additions re-
quired by A for a random CSD instance where π ∈ PA(n, k , ω) is some valid parameter
set for A. The binary work factor of A is given by

WFA(n, k , ω) ∶= min
π∈PA(n,k ,ω)

TA(n, k , ω, π) .

The following analysis will make use of some folklore complexity estimates and opti-
misation techniques for the three basic steps of general ISD algorithms.

Standard form computation. In every iteration, the (quasi-)standard form of the
randomly column-permuted input matrix H has to be computed. In the last two decades,
many researches invented variants of ISD algorithms with the only goal to reduce the
workload of this task. The most famous proposal is due to Canteaut and Chabaud
[CC98]. Instead of choosing a completely random permutation in every single iteration,
one merely swaps a random column of the identity matrix part of H with a random col-
umn of the non-identity part of H. Consequently, one merely needs to transform a single
column into an appropriate unit vector (if this step fails one simply swaps the column
again). Unfortunately, this modification completely destroys the independence between
the different iterations and one needs to carry out a technical analysis based on Markov
chains in order to evaluate the actual number of iterations. For small code parameters,
this optimisation is worth considering. In particular, it has been further optimised by
Bernstein et al. in the first practical attack on McEliece in [BLP08]) by introducing
another optimisation parameter c > 0 representing a flexible number of columns to be
swapped in each round. However, the most recent parameters sets used in cryptography
are so large that the standard form computation consumes negligible time compared to
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8.1 Refined Complexity Analysis for F2

all other steps. Thus, we only consider a näıve implementation of Gaussian elimina-
tion whose running time (in terms of the expected number of binary additions) can be
estimated as

(n − k)2(n + k)
2

(8.1)

when applied to a (n − k) × n-dimensional binary matrix.

Building the base lists. Recall that every iteration of both BCD and BJMM starts
with the computation of particular base lists. Let us assume that such a base list contains
all binary vectors e of length n and weight p together with the respective label Qe+t of
length ℓ where t is some appropriately chosen randomised target vector (alternatively,
when using hash tables, every pair (e,Qe + t) is stored at the position defined by its
label Qe+t). A naive implementation of this step requires to compute (n

p
) matrix-vector

products Qe+t, i.e. every single label requires the addition of p columns of Q (of length
ℓ) plus one extra addition for t. This results in a total number of (n

p
)pℓ additions.

In [BLP08] the authors propose to use the following simple strategy which reuses
intermediate sums and allows to reduce the workload by almost a factor of p: First
compute all (n

2
) sums of two columns of Q where each sum costs one addition in Fℓ

2

and add the target vector t. After this step, one has computed all labels Qe + t with
wt(e) = 2. Continue by computing all (n

3
) sums of columns of Q by adding one extra

column to appropriate sums Qe + t precomputed in the first step. Again, each single
sum requires one addition in Fℓ

2 and we end up with a lists of all labels Qe + t with
wt(e) = 3. Proceed similarly until all (n

p
) sums of p columns are obtained. The resulting

number of additions is given by ℓ ⋅ L(n,p) where

L(n,p) ∶= (n
2
) + p∑

i=2

(n
i
) . (8.2)

The first extra summand in Eq.(8.2) is due to adding t in the first step. Altogether one
gains a (n

p
) ⋅ p ⋅ L(n,p)−1 factor over the naive method. Note that (n

p
) ⋅ L(n,p)−1 is very

close to 1 for typically small values of p. For simplicity, we will assume that all sums of
p out of n columns of length ℓ can be computed using exactly

(n
p
)ℓ (8.3)

additions. We thus slightly underestimate the complexity of all attacks (by roughly the
same factor) which results in a conservative security analysis of the proposed crypto-
graphic constructions (see Section 8.2). For comparison, we also refer to the recently
published non-asymptotic analysis of Hamdaoui and Sendrier [HS13] which offers slightly
better results under additional (heuristic) assumptions.

Extending solutions. Every candidate solution e found in a single iteration has to
be checked for correctness by computing wt(Qe + s) = ω − p (assuming that all candi-
date solutions have weight p). Since candidate solutions match the syndrome s on ℓ
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coordinates by construction, a naive implementation of the weight check would require
the addition of p columns of Q (ignoring the first ℓ rows) plus one extra addition for s.
This results in a total number of p ⋅ (n − k − ℓ) additions per candidate solution. Since
a candidate solution can safely be discarded as soon as the weight becomes > ω − p, one
only has to compute the first 2(ω − p + 1) coordinates of Qe+ s on average. Thus, using
this “early abort” strategy the expected number of additions per candidate solution is
given by

2p(ω − p + 1) . (8.4)

The main difference in the following analysis of BCD and BJMM stems from the fact
that the BJMM algorithm requires one additional computation layer. We start with
BCD following the lines of [BLP11a].

8.1.1 Refined Analysis for BCD

The probability of guessing a good permutation for BCD is given by Eq.(4.19) which
yields the expected number of iterations

NBCD(n, k , ω, ℓ,p, q) = (n
ω
)

(k/2
p/2)2(ℓ/2q/2)2(n−k−ℓω−p−q

) . (8.5)

Recall that for BCD, the base list L1 contains all pairs (e1,1,e2,1) where e1,1 is of length
k
2

and weight p

2
and e2,1 is of length ℓ

2
and weight q

2
, respectively. Moreover, the corre-

sponding labels are given by Q1e1,1+J1e2,1 where Q1 is the left submatrix (of dimension
ℓ× k

2
) of Q and J1 is the left submatrix (of dimension ℓ× ℓ

2
) of the identity matrix Iℓ, see

Section 4.3. The best way to compute L1 is to use intermediate sums for both e1,1 and

e2,1: One first computes all labels Q1e1,1 using (k/2
p/2)ℓ additions and then adds all possible

vectors J1e2,1 using (ℓ/2
q/2) extra additions per e1,1 (note that only a single bit has to be

added for different e2,1 since all columns of J1 have Hamming weight 1). Altogether, L1

can be computed using

(k/2
p/2)[ℓ +min{1, q}(ℓ/2

q/2)] (8.6)

additions (for q = 0 this covers Stern’s algorithm as well). A similar statement holds for
L2.

Since both L1 and L2 contain (k/2
p/2)(ℓ/2q/2) elements, one expects a total number of

(k/2
p/2)2(ℓ/2q/2)22−ℓ collisions. Using early abort, testing for correct solutions can be imple-

mented using

2p(ω − p − q + 1)(k/2p/2)2(ℓ/2q/2)2
2ℓ

(8.7)
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additions. Recall that the final weight check for BCD is given by wt(Qe1 + (e2∣∣0)+ s) =
ω − p − q where e1 = (e1,1∣∣e1,2), e2 = (e2,1∣∣e2,2) with (e1,i ,e2,i) ∈ Li . Since e2 is of length
ℓ, it does not affect Qe1 + (e2∣∣0) + s outside the first ℓ coordinates. This explains why
the first factor in Eq.(8.7) is only p instead of p + q . Combing Eq.(8.6) and (8.7) with
Eq.(8.1) allows to estimate the workload per iteration by

CBCD(n, k , ω, ℓ,p, q) = (n − k)2(n + k)
2

+ 2(k/2
p/2)[ℓ +min{1, q}(ℓ/2

q/2)] (8.8)

+ 2p(ω − p − q + 1)(k/2p/2)2(ℓ/2q/2)2
2ℓ

and we obtain the following result.

Theorem 8.1.2. It holds

WFBCD(n, k , ω) = min
ℓ,p,q

NBCD(n, k , ω, ℓ,p, q) ⋅CBCD(n, k , ω, ℓ,p, q)
where 0 ≤ ℓ ≤ n−k, 0 ≤ q ≤min{ℓ,ω}, max{0, k+ℓ+ω−q−n} ≤ p ≤min{ω−q , k}.

Remark 8.1.3. The space complexity of BCD is given by

SBCD(n, k , ω, ℓ,p, q) = n(n − k) + k + ℓ ⋅min{1, q}
2

(k/2
p/2)(ℓ/2q/2) .

The first term accounts for the size of the parity check matrix. The second term repre-
sents the size of one of the base lists (as usual, storing one list and checking for collisions
on-the-fly is sufficient). When using hash tables, the list entries are pairs (e1,1,e2,1)
where e1,1 and e2,1 are of length k

2
and ℓ

2
, respectively. In particular, there is no need to

store the labels Q1e1,1 + J1e2,1.

8.1.2 Refined analysis for BJMM

The BJMM algorithm considered in this section is a simplified variant of the algorithms
presented in Chapter 6 in the following sense:

• We only employ one layer of representations, i.e. we only analyse the generalised
ISD framework instantiated with Basic-Reps. Thus the algorithm depends on the
three parameters ℓ, p and δ with a fixed number of ρ1 = ( p

p/2)(k+ℓ−pδ
) representations.

• We omit all duplicate checks when merging different lists.

• We check all candidate solutions for correctness, i.e. even those with weight ≠ p
(see Remark 5.2.2).
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The first point implies that the resulting computation tree will consist of three layers,
starting with the computation of the base lists on layer two and ending with the final
output list on layer zero. This simple structure eventually allows to derive a manageable
formula for the workload per iteration.

Obviously, the second point simplifies the cost analysis for all merging steps. Moreover,
it does not affect the original analysis for the merging between layer two and one at all.
Due to the disjoint construction of the four base lists, no duplicate matchings occur.
Omitting the duplicate check between layer one and zero only affects the number of
candidate solutions that have to be processed in the final extension step which implies
that some candidate solutions might appear several times. However, when fixing r =⌊log ρ⌋, the number of duplicate solutions, and thus the additional workload, is very
small (according to Section 6.4.1).

The third point is motivated as follows. Let (e1,e2) be a collision in L1×L2. Checking
whether this collision is weight-consistent requires one vector addition e1 + e2 in Fk+ℓ

2 .
Once the Hamming weight of e1 +e2 is known, it is very simple to check for correctness,
even if wt(e1 + e2) = p′ ≠ p, using only 2p′(ω − p′ + 1) ≈ 2p(ω − p + 1) extra additions
on average. Keeping weight-inconsistent solutions in the final candidate list prevents a
cumbersome computation of the actual expected number of weight-consistent candidate
solutions. The negative effect on the running time turns out to be insignificant for all
parameters under consideration.

Let us now analyse the cost of all steps in the BJMM algorithm. Recall that the base
lists contain all vectors x of length k+ℓ

2
(or more precisely all vectors of length k +ℓ whose

support is contained in a randomly chosen subset in {1, . . . , k +ℓ} of size k+ℓ
2

) and weight
p

4
+

δ
2
.

Workload per iteration

Building and merging base lists. Using intermediate sums, each of the four base
lists can be computed using

( k+ℓ
2

p

4
+

δ
2

)ℓ (8.9)

additions when computing the labels Qx+t on all ℓ coordinates for every initial vector x.
Since the first merge between layer two and one only considers the first r coordinates,
one could alternatively compute Qx + t on r coordinates only. However, computing
the label on all ℓ coordinates allows to update the labels for all collisions (x,y) that
occur between layer two and one using only one addition of the precomputed vectors
Qx and Qy on ℓ − r coordinates (instead of p

2
+ δ vector additions in Fℓ−r

2 without the

precomputation on the bottom layer). Clearly, all base lists contain ((k+ℓ)/2
p/4+δ/2) elements

and one expects ((k+ℓ)/2
p/4+δ/2)22−r collisions where r = ⌊log ρ⌋ is fixed. Thus, both L1 and L2
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can be computed with an expected number of

( k+ℓ
2

p

4
+

δ
2

)2
2r
(ℓ − r) (8.10)

additions.

Computing and checking candidate solutions. The expected number of collision
between the intermediate lists L1 and L2 is given by

∣L1∣ ⋅ ∣L2∣
2ℓ−r

=
( k+ℓ

2
p

4
+

δ
2

)4
2ℓ+r

.

Every collision (e1,e2) can be checked for correctness by computing p′ = wt(e1 + e2)
and checking wt(Q(e1 + e2) + s) = ω − p′ on the remaining n − k − ℓ coordinates. The
first step requires k + ℓ additions whereas the second can be done with 2p′(ω − p′ + 1) ≈
2p(ω − p + 1) additions on average using early abort. Thus, computing and checking
candidate solutions can implemented with

( k+ℓ
2

p

4
+

δ
2

)4
2ℓ+r

[k + ℓ + 2p(ω − p + 1)] (8.11)

additions on average.

Computing quasi standard forms. Computing a quasi standard form

(Q 0
Q′ In−k−ℓ

)
can naively be done by first computing the partial standard form (Q′ In−k−ℓ) and

then creating the upper half (Q 0) by adding appropriate rows from the lower half.

According to Eq.(8.1), the first step costs (n−k−ℓ)
2(n+k+ℓ)
2

additions and the second step

requires ℓ(k+ℓ)
2

extra additions on average. The overall number of additions is thus given
by

(n − k − ℓ)2(n + k + ℓ) + ℓ(k + ℓ)
2

. (8.12)

Combining Eq.(8.9)-(8.12) allows to estimate the overall (average) workload per iteration
as

CBJMM(n, k , ω, ℓ,p, δ) = 4( k+ℓ
2

p

4
+

δ
2

)ℓ + 2
( k+ℓ

2
p

4
+

δ
2

)2
2r
(ℓ − r) (8.13)

+

( k+ℓ
2

p

4
+

δ
2

)4
2ℓ+r

[k + ℓ + 2p(ω − p + 1)] + (n − k − ℓ)2(n + k + ℓ) + ℓ(k + ℓ)
2

.
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Number of iterations

Recall that a single iteration of the BJMM algorithm is successful if the following two
independent events occur:

• A good permutation is picked.

• At least one representation of the wanted solution is contained in the list of can-
didate solutions.

The first event occurs with probability

(k+ℓ
p
)(n−k−ℓ

ω−p
)

(n
ω
) (8.14)

and the second event occurs with probability

[1 − exp(−2−rρ)](
k+ℓ
2

p

4
+

δ
2

)4
(k+ℓp

2
+δ
)2 . (8.15)

Here, the first factor represents the probability that at least one representation (e1,e2)
matches a randomly chosen target vector t, i.e. Qe1 = t (neglecting dependencies
amongst different e1). The second factor takes into account that one needs to choose
a good partition when constructing the base lists for both e1 and e2. Altogether, the
expected number of iterations is given by

NBJMM(n, k , ω, ℓ,p, δ) = (n
ω
)(k+ℓp

2
+δ
)2

[1 − exp(−2−rρ)] (k+ℓ
p
)(n−k−ℓ

ω−p
)( k+ℓ

2
p

4
+

δ
4

)4 . (8.16)

Combining Eq.(8.13) and (8.16) proves the next result.

Theorem 8.1.4. It holds

WFBJMM(n, k , ω) =min
ℓ,p,δ

NBJMM(n, k , ω, ℓ,p, δ) ⋅CBJMM(n, k , ω, ℓ,p, δ)
where 0 ≤ ℓ ≤ n − k, max{0, k + ℓ + ω − n} ≤ p ≤ min{ω, k} and 0 ≤ δ ≤ k+ℓ−p

2
.

Remark 8.1.5. The space complexity of the simplified BJMM algorithm is given by

SBJMM(n, k , ω, ℓ,p, δ) = n(n − k) + (k + ℓ

2
+ ℓ)( k+ℓ

2
p

4
+

δ
2

) + (k + ℓ)(
k+ℓ
2

p

4
+

δ
2

)2
2r
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where r = ⌊log ρ⌋. The second term represents the size of a base lists. Every list entry
consists of a binary vector of length k+ℓ

2
and its label of length ℓ (the label is needed in

order to benefit from intermediate sums when computing the labels of collisions on the
next layer of the algorithm). The third term accounts for the expected size of a merged
list on the first layer. Here, every list element only consists of a binary vector of length
k + ℓ since no label needs to be stored when using hash maps. Note that only one base
list and one merged list need to be stored at the same time.

8.2 Applications in Cryptanalysis

With the formulas presented in the preceding section, we can now estimate concrete se-
curity levels of different cryptographic assumptions related to the CSD problem, namely
we study

• the hardness of inverting the McEliece T-OWF as introduced in Chapter 3.2,

• the hardness of the (computational) Learning Parities with Noise (LPN) problem,
see Definition 8.2.1.

8.2.1 McEliece OWF and Variants

We revisit the parameters of Bernstein et al. as proposed in [BLP08] and presented
in Table 3.1 for three security levels (i.e. 80 Bit, 128 Bit and 256 Bit). In Table 8.1
we compare the binary work factors (column logWF) of Stern’s algorithm, BCD and
BJMM and also give the resulting space complexity. For all algorithms, we restricted to
parameters that would actually allow for a straightforward implementation, namely:

• p must be even in Stern’s algorithm,

• p, q and ℓ must be even in BCD and

• k + ℓ and p

2
+ δ must be even in BJMM.

Note that allowing for arbitrary parameters is also possible by allowing for unbalanced
lists (this would complicate the analysis but might allow for slightly improved results).
If the code parameter k is odd, one needs to implement unbalanced base list both in
Stern’s algorithm and BCD.

sec. level
Stern BCD BJMM

ℓ p log WF space ℓ p q log WF space ℓ p δ log WF space

80 Bit 30 6 80.5 34.7 30 6 0 80.5 34.7 73 12 2 77.9 47.4
128 Bit 33 6 128.1 38.1 52 8 2 127.9 51.0 126 20 4 121.6 73.1
256 Bit 74 14 255.9 78.3 94 16 2 254.2 92.2 285 46 9 235.9 153.8

Table 8.1: Binary work factors for generic attacks on the McEliece T-OWF.
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Note that BCD does not improve over Stern’s algorithm for the lowest security level
(and even its effect on higher security levels is marginal). In contrary, BJMM “breaks” all
three security levels but uses significantly more memory. For example, even the attack
against 128-Bit security requires ≈ 273 ≈ 1.2 ⋅ 109 TB (Terabyte) of memory which is
totally out of scope. For a better comparison, we also computed optimal parameters with
restricted memory capacity: We defined the memory consumption of Stern’s algorithm
as a limit for both BCD and BJMM, i.e. we only allowed for a space complexity of 240

for the first two security levels and 280 for the highest security level, see Table 8.2. In
summary, BJMM still performs faster by a factor 210 for the highest security but does
no longer threaten lower security levels.

security level
BCD BJMM

ℓ p q logWF space ℓ p δ logWF space

80 Bit 30 6 0 80.5 34.7 43 8 0 79.8 39.8
128 Bit 33 6 0 128.1 38.1 46 6 1 127.8 35.0
256 Bit 76 12 2 254.6 75.1 127 18 3 245.5 79.7

Table 8.2: Binary work factors for generic attacks on the McEliece T-OWF with restricted
memory.

8.2.2 Learning Parities with Noise

In this section, we study the hardness of the computational Learning Parities with Noise
(LPN) problem as defined below. In the sequel, Berη denotes the Bernoulli distribu-
tion with noise parameter η ∈ (0, 1

2
). More precisely, e ← Berη means that the er-

ror bit e ∈ F2 is distributed according to a random variable with Pr [e = 1] = η (and
Pr [e = 0] = 1 − η). Similarly, Binη(n) denotes the binomial distribution with pa-
rameters n ∈ N and η ∈ (0, 1

2
). Thus, e ← Binη(n) describes an error vector of length

n whose coordinates are independently drawn from Berη. The LPN oracle Πm,η with
secret m ∈ Fk

2 and noise ratio η returns independent noisy inner products of m, i.e. it
outputs pairs (g,m⊺ ⋅ g + e) where g ∈R Fk

2 and e ← Berη are independently chosen for
every oracle query. Alternatively, querying the LPN oracle n times and arranging the
single samples gi as column vectors in a (k × n)-matrix G gives the distribution

(G,m⊺G + e) (8.17)

with e ← Binη(n). Note that recovering m in Eq.(8.17) is exactly the problem of
decoding a random code with generator matrix G where the error vector has expected
Hamming weight ηn. The computational LPN problem is to recover m given access to
the LPN oracle Πm,η as formalised next.

Definition 8.2.1 (LPN problem). Let k ∈ N be fixed. We say that an algorithm A(q, t,m, θ)-solves the LPN problem with noise parameter η ∈ (0, 1
2
) if A has binary work
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factor ≤ t, requires at most m bits of memory, makes at most q oracle queries and
succeeds with probability θ, i.e. for every m ∈ Fk

2 it holds

Pr [AΠm,η(1k) =m] ≥ θ

where the probability space is defined over the random coins of Πm,η and A.

Thus, LPN algorithms might be compared to the following (possibly opposing) criteria.

• Time complexity: The best known algorithm is due to Blum, Kalai and Wasserman
[BKW03]. The BKW algorithm offers slightly subexponential time complexity
2O(k/ ln k) for every fixed noise rate η and requires 2O(k/ ln k) oracle queries. A more
practical variant of the BKW algorithm is due to Levieil and Fouque [LF06] as
briefly described in Section 8.2.2.

• Oracle complexity: The BKW algorithm inherently relies on the availability of
2O(k/ ln k) samples. In [Lyu05], Lyubashevsky presented a method to apply the
BKW algorithm when only k 1+ε samples (for some ε > 0) are available at the cost
of a slightly increased running time of 2O(k/ ln ln k).

• Memory complexity: All known algorithms require 2O(k/ ln k) memory.

As indicated by Eq.(8.17), the LPN problem can be phrased as the problem of decoding
random binary codes of dimension k where the attacker can freely choose the code length
n (thus the code rate R = k

n
can be made arbitrarily small). Although this connection is

obvious (and well-known in the cryptographic community), it has not been concretely
exploited in cryptanalysis (in [FMICM06], Fossorier et al. formulate the LPN problem
as a decoding problem but do not use ISD algorithms for their attack). While ISD
algorithms have inferior time complexity of 2O(k) compared to the BKW algorithm,
studying the concrete hardness of the LPN problem in terms of a decoding problem
might be interesting due to the following reasons:

• For small noise rates η, ISD algorithms have actual running time 2c(η)k for a small
constant c(η) ≪ 1. Consequently, ISD algorithms might outperform the BKW
algorithm for moderate dimensions k .

• ISD algorithms need a remarkably smaller number of oracle queries (in fact, per-
muting error positions can be seen as a way of recycling oracle queries).

• ISD algorithms allow for a reduced memory consumption.

The above points are very relevant for some interesting cryptographic applications: For
example, the HB authentication protocol [HB01] and its variants, e.g. [JW05, KPCJV11]
to name a few, are most efficient for rather small noise rates η. In a nutshell, a large noise
rate results in a rather high probability of rejecting an honest identity (in a single round
of the protocol). Consequently, one needs a larger number of rounds in order to keep the
overall completeness error small. Moreover, the number of oracle queries available to a
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potential attacker depends on the number of observable protocol executions (in many
practical applications, this number will be much smaller than the required number of
oracle queries for the BKW algorithm). These two facts motivate the following central
question:

Is the hardness of concrete LPN instances affected by ISD
algorithms?

We will answer this question in the affirmative for all practical instances k ∈ {128, . . . ,
1024} with low noise rates η ≤ 0.05. Even for larger noise rates η = 0.125 the ISD
attacks compare reasonably well with the BKW algorithm (in particular when taking
the number of oracle queries into account). We actually break the parameter set k = 768
and η = 0.05 that has been recommended in [LF06] for actual use in the HB protocol
with 272 binary operations (cf. Table 8.6) opposed to the estimated ≈ 100 Bit security
in [LF06] (see Table 8.3). Besides this, we initiate an asymptotic study of the resulting
algorithms and leave some interesting open questions for future research.

The BKW algorithm

A detailed description of the BKW algorithm goes beyond the scope of this thesis. The
main idea of the original BKW algorithm is to obtain different unit vectors u by adding
a small number of ν LPN samples gi . By adding the corresponding labels m⊺gi + ei ,
one obtains a label for u with increased noise 1+δν

2
where δ ∶= 1 − 2η for convenience.

Now, the i -th unit vector ui leaks information about the i -th bit of the secret m due
to m⊺ ⋅ui =mi . If ν is “small enough” this information might be sufficient to determine
mi with high probability from an appropriately large set S(i) of labeled unit vectors
ui . The main idea to compute the sets S(i) is to apply Wagner’s generalised birthday
algorithm [Wag02]. Therefore, every sample gj is thought as a vector of a blocks of
length b (i.e. k = ab) and one proceeds as follows:

1. Start from a large set S0 of samples gj and partition this set according to the first
b bits in block one. For every set in this partition, randomly choose a sample gj

which is added to all other samples gk in the same partition. All sums gj + gk are
added to the set S1 (i.e. all samples in S1 are zero on the first b bits).

2. Proceed similarly for the next a − 2 blocks.

3. Look for unit vectors in the final set Sa−1.

In [BKW03], the authors show how to choose a and b and the initial number of sam-
ples in order to recover m with high probability in time 2O(k/ ln k). In [LF06], Levieil
and Fouque proposed some slight modifications in order to increase the practical perfor-
mance of the BKW algorithm. The most important modification concerns the final step
of the algorithm: Restricting to unit vectors in Sa−1 unnecessarily ignores a lot of infor-
mation. Instead, one can directly compute the maximum-likelihood candidate solution
for m on the respective b bits (which can be done efficiently using the Walsh-Hadamard
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transform). We refrain from a deeper description - which can be found in [LF06] - and
merely state their main theorem which allows to estimate the concrete complexity of the
BKW algorithm for different LPN instances, see Table 8.3.

Theorem 8.2.2 (Theorem2 in [LF06]). For k = ab, the BKW algorithm (q,m, t, θ)-
solves the LPN problem with noise η where

q = (8b + 200)δ−2a

+ (a − 1)2b ,

t = kaq ,

m = kq + b2b ,

θ = 1/2
and δ = 1 − 2η.

Optimal parameters a ∈ N with respect to a minimal running time t can be found
in Table 8.3. We generously ignored rounding issues for b. The resulting (optimistic)
performance of the BKW algorithm will serve as a benchmark for our decoding-based ap-
proach. In Table 8.3, the values q,m, t can be found in the form a log q logm log t

for different pairs (k , η).
@

@
@k
η 1

100
1
20

1
8

1
4

128 8 18 26 28 6 23 30 33 5 27 34 36 4 33 40 42

256 9 31 39 42 7 39 47 49 6 44 53 55 5 53 61 63

512 10 54 63 66 8 66 75 78 7 75 84 87 6 87 96 99

768 11 73 82 86 9 89 98 101 7 112 121 124 6 130 139 142

1024 11 96 106 109 9 116 126 129 8 130 140 143 7 148 158 161

Table 8.3: Attacking LPN with the BKW algorithm.

Of particular interest is the parameter set (k , η) = (768, 1
20
) that has been suggested

for actual use in the HB protocol by the authors of [LF06] (for at least 80 Bit security).
Will shortly see that ISD allows to break the claimed security level.

Solving LPN via Syndrome Decoding

From now on, G denotes the generator matrix obtained from n LPN samples, c =m⊺G+e
denotes the corresponding erroneous label vector, H denotes a parity check matrix for
the code generated by G and s = Hc = He is the syndrome of c. When transforming
the LPN problem into a decoding problem, the attacker has free choice over the code
length n and the target weight ω of the wanted error vector e (recall that ISD algorithms
require ω as an input).

Choosing the code length n. Intuitively, when phrasing the LPN problem as a
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decoding problem, an attacker might be tempted to choose a large code dimension n.
This allows for unique decoding even for large noise rates η. Moreover, it allows for
a favourable parameter choice in ISD algorithms: Very large n increases the chance of
guessing a good permutation even for relatively small values of p (and q and δ in BCD
and BJMM, respectively).

More precisely, depending on the actual choice of n and ω, the equation He = s will
have i) no solution, ii) a unique solution or iii) multiple solutions with high probability.
The first case occurs for ω ≪ ηn and makes recovery of the wanted error vector e
impossible. As indicated by Proposition 8.2.3, choosing ω = ⌈ηn⌉ gives a decoding
instance that contains the wanted error vector e with probability ≥ 1

2
.

Proposition 8.2.3. Let η ∈ (0, 1
2
) and e← Binη(n). It holds

Pr [wt(e) ≤ ⌈ηn⌉] ≥ 1

2
. (8.18)

We thus fix ω = ⌈ηn⌉ in all attacks. Alternatively, choosing ω slightly larger would
allow to push the probability in Eq.(8.18) close to 1.

Remark 8.2.4. In order to apply Proposition 8.2.3, we need to modify all ISD algorithms
(in a straightforward way) to search for all solutions of He = s with weight ≤ ω (instead
of weight = ω).

Let us now discuss the case where n is chosen too small, i.e. He = s has multiple
solutions with high probability. Thus, every “successful iteration” of the respective ISD
algorithm might yield multiple candidate error vectors ẽ (or candidate secrets m̃) for the
LPN problem. Since we expect a rather large number of iterations, we will eventually
be faced with a possibly large set M of candidate solutions. In order to determine the
correct m, one thus has to carry out an additional statistical test. Therefore, one queries
the LPN oracle for another sample (G′,c′) and simply outputs m̃ ∈M which minimizes
wt(m̃⊺G′+c′). Depending on the noise rate η and the size ofM, the required number of
additional oracle queries can become very large. We thus prefer to chose n large enough
in order to avoid multiple solutions: There are N (n, η) ∶= ∑⌈ηn⌉i=0 (ni ) − 1 vectors ẽ ≠ e of
length n and weight ≤ ⌈ηn⌉. Every single vector fulfils Hẽ = s with probability 1

2n−k . By
the union bound it follows

Pr [Hẽ ≠ s∀ẽ ≠ e] = 1 −Pr[⋁̃
e≠e

{Hẽ = s}] ≥ 1 − ∑̃
e≠e

Pr [Hẽ = s] ≥ 1 −
N

2n−k
. (8.19)

Requiring N (n, η) ≤ 2n−k+1 thus guarantees a unique solution with probability ≥ 1
2
. In

summary, according to these observations, we will now study the applicability of Plain
ISD, BCD and BJMM to the LPN problem under the constraints

ω = ⌈ηn⌉ (8.20)

N (η,n) ≤ 2n−k+1 .
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Consequently, the algorithms will succeed in solving the LPN problem with probability

θ ≥
1

2
(1 − N (n, η)

2n−k
) ≥ 1

4
. (8.21)

Attacking LPN via Plain ISD. In every iteration of Plain ISD one needs to
check wt(Ts) = ω where T denotes the transformation matrix that brings the column-
permuted parity check matrix into standard form. Note that we do not need to compute
the corresponding standard form explicitly and the costs for computing T is simply given
by the cost of inverting the corresponding (n − k)-dimensional submatrix of H (which

is (n−k)
3

2
on average). By adapting Eq.(4.5) to the case where Plain ISD is modified in

order to find all e with wt(e) ≤ ω (instead of wt(e) = ω), the binary work factor of Plain
ISD can be estimated as

WFPlain(n, k , ω) = ∑ω
i=0 (ni )

∑ω
i=0 (n−ki ) ⋅

(n − k)3
2

. (8.22)

Thus, when attacking an LPN instance with parameters k and η, we need to compute n ∈
N that minimizes WFPlain(n, k , ⌈ηn⌉) under the additional constraint N (η,n) ≤ 2n−k+1,
see Eq.(8.20). In Table 8.4 we present optimal values for n (with fixed ω = ⌈ηn⌉) and the
resulting number of oracle queries logq, memory consumption logm, binary work factor
log t and success probability θ according to Eq.(8.21). The data is ordered as described
in Figure 8.1.

n
log q logm log t θ

ω

Figure 8.1: Legend for table entries of Table 8.4.

@
@

@k
η 1

100
1
20

1
8

1
4

128
143 180

8 15 33 0.53
312

9 16 54 0.54
748

10 17 86 0.52
2

8 15 18 0.57
9 39 187

256
279

9 17 24 0.39
478

9 17 50 0.56
1056

11 19 85 0.52
3476

12 20 145 0.51
3 24 132 869

512
583

10 19 36 0.63
1680

11 20 75 0.53
4600

13 22 140 0.51
7032

13 22 259 0.51
6 84 575 1758

768
996

10 20 44 0.59
4840

13 22 97 0.52
7256

13 23 194 0.51
11392

14 24 371 0.51
10 242 907 2848

1024
1700

11 21 50 0.56
6280

13 23 119 0.52
12272

14 24 246 0.51
15056

14 24 483 0.5
17 314 1534 3764

Table 8.4: Attacking LPN via Plain ISD.
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In comparison to the BKW algorithm, Plain ISD improves by almost a square-root
factor for the smallest noise rate η = 1

100
and all k . For the next noise level η = 1

20
, the

binary work factor of the Plain ISD attack is roughly the same as for BKW but can be
achieved with a much smaller number of oracle queries and a drastically reduced memory
consumption. For example, the parameter set (k , η) = (256, 1

20
) must be considered

practically broken by ISD algorithms whereas the huge memory consumption of ≈ 18
TB makes the application of the BKW algorithm much more expensive. For larger noise
rates, one should prefer the BKW algorithm over ISD.

Attacking LPN via BCD. Similarly to Plain ISD, we need to find an optimal code
length n ∈ N that minimizes the binary work factor WFBCD(n, k , ⌈ηn⌉) as defined in
Theorem 8.1.2. Note that WFBCD is implicitly defined for optimal algorithm parameters
p and q . A completely accurate analysis requires to modify all formulas to the case, where
BCD recovers error vectors of weight ≤ ω, e.g. Eq.(8.6) must be replaced by ∑p/2

i=0 (k/2i )+
min{1, q}∑q/2

j=0 (ℓ/2j ). We omit a full description for ease of presentation. Nevertheless, the
data presented in Table 8.5 has been computed using exact formulas. In Table 8.5 one
finds optimal n (and fixed ω = ⌈ηn⌉) and optimal algorithm parameters ℓ,p, q together
with the resulting number of oracle queries q, memory and time complexities m and t

for different pairs (k , η) as explained in Figure 8.2.

n ℓ p q
ω log q logm log t

Figure 8.2: Legend for table entries of Table 8.5.

In contrary to Table 8.4, we omit the θ values which are all in the range (1
4
, 3

4
) for

simplicity.

@
@

@k
η 1

100
1
20

1
8

1
4

128
143 2 2 0 178 10 4 0 504 32 8 2 1824 42 10 4
2 8 15 17 9 8 19 27 63 9 31 41 456 11 38 67

256
279 2 2 0 519 22 6 0 2880 44 10 2 3700 42 10 2
3 9 17 21 26 10 27 38 360 12 41 64 925 12 41 120

512
594 16 4 0 2704 34 8 0 5868 50 10 2 7628 62 12 4
6 10 25 27 136 12 37 57 734 13 47 112 1907 13 57 227

768
885 18 4 0 6236 36 8 0 8800 54 10 2 11592 90 20 4
9 10 26 35 312 13 40 75 1100 14 51 161 2898 14 84 335

1024
1590 30 6 0 10508 38 8 0 11928 58 10 2 15528 106 24 4
16 11 35 39 526 14 42 93 1491 14 54 211 3882 14 100 443

Table 8.5: Attacking LPN via BCD.

Compared to Plain ISD, the BCD attack requires a slightly increased number of
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8.2 Applications in Cryptanalysis

oracle queries but additionally allows to break the 80 Bit security of the parameter sets(768, 1
20
), (256, 1

8
) and (128, 1

4
). In particular, the claimed 80 Bit security level of the

suggested parameter set (768, 1
20
) of [LF06] is broken by a factor of 25.

Attacking LPN via BJMM. Analogously to BCD, we now present optimal values for
n and the BJMM parameters ℓ, p and δ minimizing WFBJMM(n, k , ⌈ηn⌉) (when adapted
to the case where we actually search for all vectors of weight ≤ ⌈ηn⌉) in Table 8.6 below.
Although the efficiency for solving almost all instances can be improved (compared with
BCD), we did not manage to break the 80 Bit security of any additional parameter
set. However, breaking the parameter set (k , η) = (1024, 1

20
) is now within the range of

possibility (we sketch some ideas for improved attacks that further reduce the security
of this parameter set in the concluding section below).

n ℓ p δ

ω log q logm log t

Figure 8.3: Legend for table entries of Table 8.6.

@
@

@k
η 1

100
1
20

1
8

1
4

128
149 20 2 1 179 26 6 1 448 26 8 0 2496 58 18 1
2 8 14 16 9 8 21 26 56 9 25 41 624 12 38 67

256
279 14 2 1 533 32 8 0 3928 56 14 1 4988 68 18 1
3 9 15 22 27 10 29 38 491 12 39 63 1247 13 46 118

512
559 22 4 0 2636 50 10 1 9984 64 14 1 15104 110 26 3
6 10 24 28 132 12 36 55 1248 14 46 109 3776 14 64 220

768
886 40 6 1 9596 68 12 2 45696 86 16 2 61248 178 44 4
9 10 30 34 480 14 43 72 5712 16 52 153 15312 16 101 317

1024
1298 42 6 1 19288 72 12 2 40704 100 18 3 42736 314 84 8
13 11 31 39 965 15 45 89 5088 16 58 201 10684 16 165 416

Table 8.6: Attacking LPN via BJMM.

Asymptotic Analysis

We only present an asymptotic analysis for the LPN attack based on Plain ISD. For
this purpose, we parametrise n = ν ⋅ k for some ν > 1. The simple structure of Plain ISD
allows to express the attack’s running time as 2c(η)k+o(k) for large enough k and ν due
to the next lemma.
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Lemma 8.2.5. Let η ∈ (0, 1
2
) and ν > 1. For n = ⌈νk⌉ and ω = ⌈ηn⌉ it holds

c(η, ν) ∶= lim
k→∞

1

k
logWFPlain(n, k , ω) = ν [H(η) −H(η ν

ν − 1
)] +H(η ν

ν − 1
) (8.23)

and

lim
ν→∞

c(η, ν) = − log(1 − η) . (8.24)

Proof. Eq.(8.23) directly follows from Eq.(8.22) and the standard approximations for
binomial coefficients, i.e. Eq.(2.14) and Eq.(2.15). For the second claim, we write the

first summand ν [H(η) −H(η ν
ν−1
)] of c(η, ν) as f (η,ν)

g(η,ν) with f (η, ν) = H(η)−H(η ν
ν−1
) and

g(η, ν) = 1
ν
. Since limν→∞ f (η, ν) = 0 = limν→∞ g(η, ν), L’Hôpital’s rule gives

lim
ν→∞

c(η, ν) = lim
ν→∞

f ′(η, ν)
g ′(η, ν) + lim

ν→∞
H(η ν

ν − 1
)

= lim
ν→∞

ν2

(ν − 1)2η [log (η ν

ν − 1
) − log (1 − η

ν

ν − 1
)] +H(η)

= η[log η − log(1 − η)] +H(η) = − log(1 − η)
as claimed.

In Figure 8.4 we compare the theoretical complexity of the Plain ISD attack on LPN
given by Lemma 8.2.5 with the real attack cost as presented in Table 8.4 for different
η. When neglecting the costs for the Gaussian Elimination in Plain ISD, the theoretical
estimate is fairly accurate (although we used rather small values for n, or equivalently
small values for ν, in practice).

200 400 600 800 1000
k

100

200

300

400

logHWFL

Figure 8.4: Comparison of − log(1 − η)k (thick lines), log WFPlain (thin lines) and log WFPlain

without costs of Gaussian elimination (dotted lines) for η ∈ { 1
20

, 1
8
, 1

4
} (from bottom

to top).
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8.2 Applications in Cryptanalysis

Clearly, the BKW algorithm will eventually outperform all ISD algorithms for large
enough k(η) due to its asymptotic superiority. For fixed η, the break-even point between
Plain ISD and BKW is (asymptotically) given by the smallest k such that − log(1−η) >
1/ ln(k), i.e.

log k(η) = ( −1

log(1 − η))
log(e)

(8.25)

where e = exp(1) is Euler’s number, see Figure 8.5 for an illustration. We did not find
similar closed formulas for the attack cost when using BCD and BJMM and leave the
asymptotic study of those attacks as an open question.

Plain ISD

BKW

0.1 0.2 0.3 0.4 0.5
Η

10

20

30

40

log kHΗL

Figure 8.5: Break-even code dimension k(η).

For η = 1
20

we have log k(η) ≈ 42, i.e. even in a long-term decoding attacks will be
more efficient than BKW.

Conclusion and Open Questions

We have seen that ISD algorithms allow to solve many practically relevant instances of
the LPN problem more efficiently than the asymptotically faster BKW algorithm. In
Table 8.7 we summarise our findings: For every parameter pair (k , η) we present the
most efficient attack and indicate the actual security level (if two attacks are equally
time efficient we choose the one with lower oracle complexity).

Altogether, almost all low-noise instances (η ≤ 0.05) must be considered insecure.
Moreover, for such low-noise instances, we expect that ISD algorithms are considerably
faster than the BKW algorithm even for large k ≈ 240 due to Eq.(8.25). Thus, every
serious parameter proposal for cryptographic constructions based on the hardness of the
LPN assumption has to take ISD algorithms into account.

Open Questions. We conclude this chapter with some observations that might stimu-
late future research. A way to improve the ISD attacks is to reduce the code dimension
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HHHHHHk
η 1

100
1
20

1
8

1
4

128
BJMM BJMM BKW BKW

16 26 36 42

256
BCD BCD BKW BKW
21 38 55 63

512
BCD BJMM BKW BKW
27 38 87 99

768
BJMM BJMM BKW BKW

34 72 124 142

1024
BJMM BJMM BKW BKW

37 89 143 161

Table 8.7: Best known attacks and their binary work factors log t. Gray shaded cells mark
insecure parameter sets (i.e. log t ≤ 80). Pale green cells are broken more efficiently
due to our work, full green cells were considered secure before our work.

k when phrasing the LPN problem as a decoding problem. For example, when building
the generator matrix G, one could only use those LPN samples whose first b bits vanish.
In this case, the resulting code is of dimension k − b and does not depend on the first b
bits of the secret m at all. Thus, applying an ISD algorithm to the dimension-reduced
code can recover all but the first b bits of m. Once the first k − b bits of m are known,
the remaining b bits can either be guessed or computed by solving another LPN problem
of dimension b (in any case, the overall attack cost will be dominated by the first step).
For example, when using this idea together with BJMM, the overall complexity can be
estimated as

min
b,n

2b
⋅ n +WFBJMM(n, k − b, ⌈ηn⌉)

where WFBJMM is implicitly defined for optimal BJMM parameters ℓ,p, q . Here, the term
2bn accounts for the expected number of oracle queries needed in order to construct a
code of length n and dimension k −b. This approach might speed up ISD attacks at the
cost of an increased oracle complexity.

As a proof of concept, we applied this idea to the parameter set (k , η) = (1024, 1
20
)

(our hope was to actually break the 80 Bit security of these parameters). As a result,
we further reduced the binary work factor from 289 (see Table 8.7) to 285 by setting
n = 12032, ℓ = 70, p = 12, δ = 2 and b = 62. This requires an increased number of
n2b ≈ 276 oracle queries.

Alternatively, it is possible to view the initial blockwise elimination of the BKW algo-
rithm as a way to reduce the code dimension yielding the following interesting question:

Can we obtain more efficient attacks by combining the BKW
algorithm with ideas from ISD?
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9 Noisy Integer Factorisation

“We can see the point where the chip is unhappy if a
wrong bit is sent and consumes more power from the
environment.”

Adi Shamir

Introduction

The RSA trapdoor one-way permutation f(N ,e) is probably the most widely de-
ployed cryptographic primitive in practice. It is defined as follows:

• Pick a random RSA modulus N = pq where p and q are random prime numbers
of bit length n

2
.

• Generate a key pair (e,d) ∈ Z∗
φ(N ) such that ed = 1 mod φ(N ) where φ(N ) is

Euler’s totient function. The tuple (N , e) serves as the public description of the
function whereas d represents the trapdoor that allows for efficient inversion.

• Define f(N ,e) ∶ ZN → ZN via f(N ,e)(x) ∶= x e mod N .

Note that the key pair (e,d) can be efficiently computed via the Extended Euclidean
algorithm when the factorisation of N and thus φ(N ) = (p − 1)(q − 1) is known. Since
x ed = x mod N one can efficiently invert f(N ,e) using the trapdoor d . Clearly, a neces-
sary condition for the onewayness of f(N ,e) is the average-case hardness of the factori-
sation problem, i.e. given a random RSA moduls N it must be hard to compute the
prime factors p, q in polynomial time poly(logN ) with non-negligible probability. It is
a long-standing open problem whether the hardness of the factorisation problem is also
sufficient for the onewayness of f(N ,e). At Crypto 2004, May proved the equivalence of
computing d from (N , e) and factoring N [May04]. However, it is not clear whether
it is actually necessary to compute d in order to invert f(N ,e). Despite the existence
of efficient quantum algorithms for the factorisation problem due to Shor [Sho97], no
classical polynomial time factorisation algorithm is known.

Motivated by side-channel attacks, where an attacker might obtain auxiliary infor-
mation about p and q , the framework of oracle-assisted factorisation algorithms was

147



9 Noisy Integer Factorisation

introduced by Rivest and Shamir in 1985 [RS85]: They used an oracle that allowed for
querying bits of p in chosen positions and showed that 3

5
log p queries are sufficient to

factor N in polynomial time. This was later improved by Coppersmith [Cop97] to only
1
2
log p queries. In 1992, Maurer [Mau92] showed that for stronger oracles, which allow

for any type of oracle queries with YES/NO answers, ǫ log p queries are sufficient for any
ǫ > 0.

In this oracle-based line of research, the goal is to minimise both the power of the oracle
and the number of queries to the oracle. At Crypto 2009, Heninger and Shacham [HS09]
presented a (heuristic) polynomial time factorisation algorithm that works whenever a
0.57-fraction of the bits of p and q is given, provided that the given bits are uniformly
spread over the whole bits of p and q . So as opposed to the oracle used by Rivest,
Shamir and Coppersmith, the attacker has no control about the positions in which he
receives some of the bits, but he knows the positions and on expectation the erasure
intervals between two known bits are never too large.

In contrast to the aforementioned attacks which all require a limited number of fault-
free information provided by the oracles - mostly in the form of secret key bits - we now
consider a different scenario where erroneous copies p̃ and q̃ are provided by the oracle:

Noisy Integer Factorisation Problem. Let N = pq be an RSA modulus
with balanced prime factors p and q of bit-length n

2
. Given N and noisy copies

p̃, q̃ for some noise rate 0 < δ < 1
2
, i.e.

p̃i = pi +Ber(δ) mod 2 (9.1)

q̃i = qi +Ber(δ) mod 2 (9.2)

independently for every bit i = 0, . . . , n
2
− 1 (where Ber(δ) is the Bernoulli dis-

tribution with probability δ), the task is to recover the factorisation p, q .

Clearly, the efficiency of an algorithm for the Noisy Integer Factorisation problem will
depend on the noise rate δ. In particular, the noisy copies p̃, q̃ will not provide any
helpful information for δ → 1

2
. The main goal of this chapter is to introduce a heuris-

tic polynomial-time algorithm that recovers p, q from N , p̃, q̃ for all δ < 0.0837. This
algorithm was published as a special case in a more general work [HMM10] at Crypto
2010. In [HMM10], we presented a similar algorithm for a slightly generalised scenario
where the attacker is given a fully redundant erroneous RSA secret key (p, q ,d ,dp ,dq),
i.e. dp = d mod p − 1 and dq = d mod q − 1 are the CRT exponents as specified in the
PKCS#1 standard [PKCS#1]. In this case, we were able to recover the whole secret
key for a much larger noise rates δ < 0.237 by further exploiting the redundancy in the
secret key. Compared to [HMM10], the main contribution of this chapter is two-fold:
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• We provide a link to coding theory that was recently discovered in a follow-up
work of Paterson et al. [PPS12]. In particular, this link allows to (heuristically)
derive an upper bound on δ: For list-decoding algorithms, recovering p, q with
good probability is only possible for δ < 0.111. This also allows to evaluate the
optimality of our approach (which has not been answered in [HMM10]).

• We extend the original analysis of [HMM10] in the following sense: We originally
proved that our algorithm has expected running time O (n2+c(δ)) where c(δ) is a
constant depending on the error rate δ. In this analysis, we computed an upper
bound for the expected number of “partial solutions” processed by the algorithm
but we ignored a conceivably large deviation of the actual number of partial solu-
tions. In this work, we provide a rather technical proof that fixes this problem at
the cost of a slightly increased upper bound O (n3+c(δ)) for the algorithm’s running
time.

In particular, the first point allows to integrate this chapter into the coding-theoretic
framework of this thesis. We point out that restricting to the special case of factorisation
allows for a much cleaner presentation of the algorithm compared to [HMM10]. Since
both algorithms are very similar, the above points can easily be adapted to the general
setup of [HMM10] as indicated in the conclusion.

Roadmap

The remainder of this chapter is organised as follows: Based on Hensel’s lemma, we first
provide a “dyadic” exponential time algorithm for the classical noise-free factorisation
problem in Section 9.1. This algorithm grows a large binary computation tree whose
leaves are candidate solutions to the factorisation problem. Moreover, this algorithm can
easily be adapted to the erasure scenario of the HS algorithm. By viewing the leaves of
the computation tree as a code, the aforementioned link to coding theory already follows.
In this setup, the erasure scenario of the HS algorithm can be seen as transmitting the leaf
corresponding to the correct factorisation (p, q) over a binary erasure channel with some
erasure probability ρ. Analogously, the erroneous factorisation (p̃, q̃) in our scenario can
be modelled by transmitting the codeword (p, q) over the binary symmetric channel with
some crossover probability δ. Recently, Paterson et al. presented a different algorithm
for the non-symmetric binary channel in [PPS12]. In Section 9.3 we will formally exploit
the coding-theoretic link and show how the converse of Shannon’s noisy-channel coding
theorem [Sha48] yields a theoretical limit for the maximal error rate that allows for
reliable recovery of (p, q). In Section 9.2, we present our factorisation algorithm and its
corrected runtime analysis and we end with some concluding remarks in Section 9.4.
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9 Noisy Integer Factorisation

9.1 A Dyadic Factorisation Algorithm

In the sequel, we denote the binary representation of an n-bit integer x by (xn−1, . . . , x0)
where x0 is the least significant bit. We start by rephrasing the factorisation problem as
the problem of computing integer roots of a bivariate polynomial f (X ,Y ) ∈ Z[X ,Y ]:
For a given N , the polynomial

fN (x ,y) ∶= N − xy

has the unknown integer root (p, q). The idea is to compute a large set of candidate roots
by iteratively lifting roots mod 2i to roots mod 2i+1, i.e. by revealing the factorisation
bit-by-bit. Starting from the initial root fN (1,1) = 0 mod 2, the bivariate version of
Hensel’s lemma provides an efficient procedure to implement the lifting.

Lemma 9.1.1 (Hensel’s lemma). Let f ∈ Z[X ,Y ] be a polynomial with root f (x ,y) = 0
mod 2i . Then f (x + xi2i ,y + yi2i) = 0 mod 2i+1 iff

f (x ,y) = xi2
i∂X f (x ,y) + yi2

i∂Y f (x ,y) mod 2i+1

where ∂X and ∂Y is the formal partial derivative of f w.r.t. X and Y , respectively.

Proof. Consider f as a polynomial in X − x and Y − y , i.e.

f =∑
k ,l

fk ,l(X − x)k(Y − y)l
and observe that f (x ,y) = f0,0, ∂X f (x ,y) = f1,0 and ∂Y f (x ,y) = f0,1. It follows

f (x + xi2
i ,y + yi2

i) =∑
k ,l

fk ,l(xi2
i)k(yi2

i)l
= f (x ,y) + xi2

i∂X f (x ,y) + yi2
i∂Y f (x ,y) + xiyi2

2i ∑
k ,l≥1

fk ,l(xi2
i)k−1(yi2

i)l−1
which gives f (x +xi2i ,y +yi2i) = 0 mod 2i+1 iff 0 = f (x ,y)+xi2i∂X f (x ,y)+yi2i∂Y f (x ,y)
mod 2i+1.

Given a candidate root (p′, q ′) of fN for the first i bits, application of Hensel’s lemma
yields the lifting equation

q ′i + p′i = (N − p′q ′)i mod 2 (9.3)

that has to be fulfilled by the next two bits of p′ and q ′. More precisely, every candidate
root (p′, q ′) of fN modulo 2i gives rise to two additional candidate roots

(0∣∣p′, (N − p′q ′)i ∣∣q ′) and (1∣∣p′, (N − p′q ′)i ∣∣q ′)
modulo 2i+1 (where x = 1⊕ x denotes complementing the bit x ). This immediately gives
the following inefficient factorisation algorithm for N = pq with balanced prime factors
p, q of bit length n

2
.
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9.1 A Dyadic Factorisation Algorithm

Algorithm 8: Factoring

input : N
output: p, q

L0 = {(1,1)};
for i = 1 to n

2
− 1 do

forall (p′, q ′) ∈ Li−1 do
b ← (N − p′q ′)i ;
Li = Li ∪ {(0∣∣p′, b∣∣q ′), (1∣∣p′, b ∣∣q ′)};

forall (p′, q ′) ∈ L n
2
−1 do

if N = p′q ′ then
return p, q

This algorithm computes a complete binary tree of depth n
2

whose leaves represent
candidate factorisations for N that have to be checked for correctness. Clearly, the
running time of the algorithm is exponential in n as substantiated next.

Theorem 9.1.2. On input N = pq with ⌈log p⌉ = ⌈log q⌉ = n
2
, Factoring outputs p, q

in time O(n2n/2).
Proof. When keeping track of the values (N − p′q ′) for preceding levels, the right-hand
side of Eq.(9.3) for each lifting can be obtained with a constant number of additions of
n-bit integers, i.e. every lifting can be done in time O(n). The total number of liftings
is clearly O(2n/2). Similarly, using the precomputed values (N − p′q ′) allows to check
correctness of each candidate solution in the final list L n

2
−1 in time O(n).

Remark 9.1.3. By a results of Coppersmith [Cop97] an amount of n
4

bits of p (or q)
would suffice for factoring N in polynomial time. Thus, running the above algorithm
(and all subsequent algorithms) for only n

4
iterations is sufficient in order to factor N .

For simplicity, we omit this optimisation in the above and all subsequent descriptions of
algorithms.

Since w.l.o.g. p <
√

N , this algorithm does not even improve over a trivial enumeration
of all possible prime factors. Nevertheless, it lays the foundation for the HS erasure
correction algorithm: In the HS scenario, the attacker is given a certain fraction of bits
of the correct factorisation (in random positions). This auxiliary information can directly
be used to exclude (large) subtrees with inconsistent roots from the computation tree. As
long as a sufficiently large number of bits is known, this will result in a search tree whose
total number of leaves can be bounded by a polynomial. By a straightforward heuristic
analysis based on estimating the first two moments of the number of candidate solutions
examined by the algorithm, Heninger and Shacham proved the following theorem.
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9 Noisy Integer Factorisation

Theorem 9.1.4 (HS Erasure Correction, cf. [HS09, Theorem1]). Given a
δ = 0.59 fraction of the bits of p and q, one can (heuristically) recover the fac-
torisation of an n-bit RSA modulus N in time O(n2) with probability 1− 1

Ω(n2) .

We point out that this theorem is stated ambiguously; The proof implicitly assumes
that the algorithm knows every single bit of p and q independently with probability
δ (which can be different from knowing a δ fraction of the bits). Note that the HS
algorithm itself is deterministic. The probability in the above theorem is defined over
the random choice of the prime factors p and q and the erasure positions. In particular,
the algorithm will fail in recovering the factorisation within the O(n2) time-bound for
a vanishing fraction of inputs. We would like to stress that the HS algorithm will never
discard the correct solution from the computation tree, since the correct partial solution
will always agree with the given incomplete key material.

The analysis of our algorithm shares some similarities with the analysis of Heninger
and Shacham, in particular it is based on the same heuristic assumption, and it is thus
instructive to take a closer look at it. The overall running time of the HS algorithm is
dominated by the total number of bad partial solutions that have to be processed. These
bad partial solutions can be of the following two different types:

• Either a bad partial solution originates from lifting the correct partial solution to
the next two bits of p and q

• or it originates from lifting a bad partial solution.

Let us first consider the case when the good partial solution is lifted: Denote Zg ∈ {0,1}
the number of bad solutions that arise from lifting the good solution at step i of the
algorithm: Since the lifting equation (9.3) has a unique solution as soon as one of the
bits pi or qi is known, a bad partial solution can only be generated when both positions
are erased, i.e. E [Zg] = (1 − δ)2.

For the second case, a similar analysis for the random variable Wb ∈ {0,1,2} (that
counts the number of bad solutions generated from a single bad solution at step i) can
be done based on the following heuristic assumption (cf. [HS09, Conj.1]).

Heuristic 9.1.5. For random p, q and for p′, q ′ with fN (p′, q ′) = 0 mod 2i with
pj ≠ p′j or qj ≠ q ′j for at least one j = 0, . . . , i − 1 it holds

Pr [(N − p′q ′)i = (N − pq)i] = 1

2
. (9.4)

That is, the right hand side of the lifting equation of a bad partial solution is equal
to the right hand side of the lifting equation of the correct solution with probability 1

2
.

Under this assumption it is easy to estimate E [Wb] at step i as follows: If both bits pi
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9.1 A Dyadic Factorisation Algorithm

and qi are erased, a bad partial solution generates two additional bad partial solutions,
i.e. Pr [Wb = 2] = (1 − δ)2. If either pi or qi is known, the lifting equation provides a
unique solution and thus generates a single bad partial solution. If both pi and qi are
known, the lifting equation is fulfilled iff (N − p′q ′)i = pi + qi = (N − pq)i which happens

with probability 1
2
, i.e. Pr [Wb = 1] = 2δ(1 − δ) + δ2

2
. This finally gives

E [Wb] = (2 − δ)2
2

(9.5)

where the expectation is over the randomness of p, q and the erasure positions. Using
similar arguments, Heninger and Shacham also give formulas for E [Z 2

g ] and E [W 2
b
]

which allows to compute the respective variances.
Once Zg and Wb are known, it is possible to compute the first two moments of another

random variable Xi that counts the overall number of bad partial solutions that occur
at step i of the algorithm due to the following important theorems.

Theorem 9.1.6 (cf. [HS09, Theorem2]). It holds

E [Xi] = E [Zg]
1 −E [Wb] (1 −E [Wb]i) . (9.6)

Theorem 9.1.7 (cf. [HS09, Theorem3]). It holds

Var [Xi] = α1 + α2E [Wb]i + α3E [Wb]2i (9.7)

with

α1 =
E [Zg]Var [Wb] + (1 −E [Wb])Var [Zg](1 −E [Wb]2)(1 −E [Wb]) , (9.8)

α2 =
E [W 2

b
] +E [Wb] − 2E [Wb]E [Zg] −E [Zg]

1 −E [Wb] + 2( E [Zg]
1 −E [Wb])

2

, (9.9)

α3 = −(α1 + α2) . (9.10)

Now define X ∶= ∑n/2−1
i=1 Xi as the total number of bad partial solutions that occur in

all iterations. According to Eq.(9.16) it holds E [Wb] < 1 if δ > 2 −
√

2 > 0.59 (which
gives the lower bound on δ or equivalently the upper bound 1 − δ < 0.41 on the erasure
probability). By the above theorems, this implies that E [Xi] in Eq.(9.6) and Var [Xi] in
Eq.(9.7) can be upper bounded by two constants dependent on δ but not on i . We thus
upper bound the expected total number of bad partial solutions by E [X ] = O(n) and
also Var [X ] = O(n2) by Lemma 2.2.1. By Chebychev’s inequality it eventually follows

Pr [X ≥ Θ(n2)] ≤ 1 −
1

Ω(n2)
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as stated in Theorem 9.1.4. We conclude with the following observation which is impor-
tant for the analysis in the next section.

Remark 9.1.8. The proof of Theorem 9.1.6 and Theorem 9.1.7 (see AppendixA in [HS09])
is based on probability generating functions, i.e. the distribution of a discrete random
variable X can be represented by its generating function F (s) ∶=∑Pr [X = k] sk (e.g.
dF(1)

ds
= E [X ] reveals the expectation of X ). If Gi(s) denotes the generating function

for the above random variable Xi and w(s) and z(s) denote the respective generating
functions for Wb and Zg , the proof is solely based on the recurrence

Gi+1(s) = Gi(w(s))z(s) . (9.11)

This results from the fact that the number of bad solutions at step i + 1 equals the
number of bad solutions lifted from bad solutions at step i plus the number of bad
solutions lifted from the good solution at step i (the generating function for the sum
of two independent random variables is given by the convolution of their generating
functions). Moreover, it uses G0(s) = 1 (which holds since there is no bad solution in
the initial step of the algorithm).

The analysis of our algorithm uses similar random variables Zg , Wb and Xi sharing the
same recurrence relation for their respective generating functions (although the actual
definition of Zg and Wb will be slightly different in our analysis). Consequently, we can
apply Theorem 9.1.6 and Theorem 9.1.7 in our setting (but computing and bounding
the first two moments of Zg and Wb will be more complicated).

9.2 A Noisy Integer Factorisation Algorithm

Clearly, the Heninger-Shacham comparison of partial solutions with the given fault-
free information about p and q cannot naively been transferred to the error correction
scenario. The reason is that a disagreement of a partial solution may originate from a
bad partial solution or from faulty bits in the noisy input p̃,q̃ . Thus, in our construction
we do no longer compare bit by bit but we compare larger blocks of bits. More precisely,
we run t successive liftings without eliminating any solution, i.e. we grow subtrees of
depth t for each partial solution p′, q ′. For every partial solution p′, q ′ in step i , this
results in 2t new partial solutions for step i + 1 which we all compare with our noisy
input p̃,q̃ . More precisely, every new partial solution p′, q ′ (corresponding to a leaf in
the subtree) consists of 2t fresh bits (t fresh bits for p′ and q ′) and we compare those 2t
bits with the respective bits in the noisy input p̃, q̃ . If the bit agreement in these 2t bits
is above some threshold parameter C we keep the candidate, otherwise we discard it.
Put simply, the i -th iteration of our algorithm consists of an expansion phase (that
generates 2t new partial solutions from every partial solution that survived the preceding
iteration) combined with a pruning phase (that eliminates all candidate solutions that
differ from the noisy input by some threshold value C ).

Clearly, we obtain a trade-off for the choice t of the depth of our subtrees. On the one
hand, t cannot be chosen too large since in each iteration we grow our search tree by
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9.2 A Noisy Integer Factorisation Algorithm

at least 2t candidates. Thus, t must be bounded by O(log logN ) in order to guarantee
a polynomial size of the search tree. On the other hand, depending on the error rate, t
has to be chosen sufficiently large to guarantee that the correct partial solution has large
agreement with our noisy input in each 2t successive bit positions, such that the correct
candidate will never be discarded during the execution of our algorithm. Moreover, t
has to be large enough such that the distribution corresponding to the correct candidate
and the distribution derived from an incorrect candidate are separable by some threshold
parameter C . If this property does not hold, we obtain too many faulty candidates for
the next iteration.

We show that the above trade-off restrictions can be fulfilled whenever we have an
error rate δ < 0.0837− ǫ for some fixed ǫ > 0. That is, if we choose t of size polynomial in
log logN and 1

ǫ
, we are able to define a threshold parameter C such that the following

holds.

1. With probability close to 1 the correct factorisation will never be discarded during
the execution of the algorithm.

2. For fixed ǫ > 0, our algorithm will consider no more than a total number of
poly(logN ) key candidates (with high probability over the random choice of p
and q and the error distribution), giving our our algorithm a running time poly-
nomial in the bit-size of N (with high probability).

We would like to point that one needs to know the error δ for a proper choice of the
parameters t and C . In practical side-channel attacks, where δ might be unknown to
an attacker, one can apply an additional search step which successively increases the
value of δ until a solution is found. Moreover, our algorithm comes with a one-sided
error. Whenever it outputs a solution the output is the correct factorisation p, q . The
description of the algorithm is elementary and the main work that has to be done is to
carefully choose the subtree depth t and the threshold parameter C , such that all trade-
off restrictions hold. We achieve this goal by using a statistical analysis via Hoeffding
bounds, cf. Theorem 2.2.4.

Some Remarks on the Heuristic Assumption. Our analysis is based on the same
heuristic assumption (Assumption 9.1.5) as introduced and experimentally verified by
Heninger and Shacham in [HS09]. In our setting, this assumption implies that a single
path in a subtree that is generated from a bad partial solution consists of 2t bits where
every single bit matches the respective bit of the correct factorisation independently with
probability 1

2
. In particular, the 2t bits of a fixed path in such a subtree will match the

respective bits in p̃, q̃ independently with probability 1
2

as well. This property is sufficient
in order to apply Hoeffing’s inequality to upper bound a particular random variable W i

b

counting the number of matching bits of the i -th leaf in a subtree generated from a bad
partial solution with the noisy bits in p̃ and q̃ , see Section 9.2.1 for details. We would
like to stress that we do not need to assume independence of the random variables W i

b

(which is clearly not the case: every neighboured leaves in the same subtree share all
but the last two bits). As in the HS proof, we merely need to upper bound E [Wb] < 1
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which can be done by linearity of expectation (and does not require independent W i
b ).

The dependencies amongst the W i
b only complicate the study of Var [Wb] which can

still be appropriately upper bounded for carefully chosen parameters t and C .

Algorithm Description

In every iteration, the error correction algorithm recovers t more bits of p and q . Thus,
repeating the expansion and pruning phase ⌈n/2−1

t
⌉ times allows to recover p, q . In the

sequel, we write τ(n, t) ∶= ⌈n/2−1
t
⌉ for ease of presentation.

Algorithm 9: Noisy-Factoring

input : N , erroneous p̃ and q̃ , error rate δ.
output: p, q or failure symbol ⊥.

Initialisation:
• Compute parameters t(δ) and C (δ), cf. Theorem 9.2.1
• L0 ∶= {(1,1)}

For i = 1 to τ(n, t)
Expansion phase: For every partial solution (p′, q ′) ∈ Li−1, i.e.
p′ and q ′ are candidates solutions for the first (i − 1)t + 1 bits,
compute a subtree T (p′, q ′) by t successive liftings, i.e. each of
the 2t leaves in T (p′, q ′) is a partial solution for the first it+1 bits.

Pruning phase: For every subtree T and all candidates(p′, q ′) ∈ T count the number of matchings between the 2t bits
it , . . . , (i − 1)t + 1 of p′, q ′ and p̃, q̃ . If this number is below some
threshold parameter C , discard the solution. Otherwise add(p′, q ′) to list Li .

Finalisation phase: Test every (p′, q ′) ∈ Lτ(n,t), i.e. output p′, q ′

if N = p′q ′.

In the subsequent section, we will analyse the probability that our algorithm succeeds
in computing the factorisation p, q . We will show that a choice of t = Θ( lnn

ǫ2
) will be

sufficient for error rates δ < 0.0837 − ǫ. The threshold parameter C will be chosen such
that the correct partial solution will survive each pruning phase with probability close
to 1 and such that we expect that the number of candidates per iteration is bounded by
2t+1. For every fixed ǫ > 0, this leads to a running time that is polynomial in n (with
high probability).
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9.2.1 Choice of Parameters and Runtime Analysis

We now give a detailed analysis for algorithm Noisy-Factoring from the previous
section. Remember that in every iteration, we count the number of matching bits be-
tween 2t-bit blocks of p̃, q̃ and every partial candidate solution p′, q ′. Let us define a
random variable Mc for the number of matching bits between p̃, q̃ and the correct partial
solution. The distribution of Mc is clearly the binomial distribution with parameters 2t
and probability (1−δ), denoted by Mc ∼ Bin(2t ,1−δ). The expected number of matches
is thus E [Mc] = 2t(1 − δ).

Similarly, let Mb be a random variable representing the number of matching bits of
p̃, q̃ with a partial solution that was generated by expanding a bad partial solution. As
explained above, under Heuristic 9.1.5, it holds Mb ∼ Bin(2t , 1

2
) and thus E [Mb] = t .

Now, we basically have to choose our threshold C such that the two distributions are
sufficiently separated. The remainder of this section is devoted to the proof of our main
result.

Main Theorem 9.2.1. Under Heuristic 9.1.5 for every fixed ǫ > 0 the fol-
lowing holds. Let N = pq be a n-bit RSA modulus with balanced p and q. We
choose

t = ⌈ lnn
4ǫ2
⌉, γ0 =

√(1 + 1
t
) ⋅ ln 2

4
and C = 2t(1

2
+ γ0).

Further, let p̃, q̃ be an erroneous copy of p, q with noise rate

δ ≤
1

2
− γ0 − ǫ.

Then algorithm Noisy-Factoring reveals p, q in time O (n3+ ln 2

2ǫ2 ) with success

probability at least 1 − ( 2ǫ2

lnn
+

1
n
+

1
Ω(n2)).

Remark 9.2.1. Notice that for sufficiently large n, t converges to infinity and thus γ0

converges to
√

ln(2)/4 > 0.4163. This means that Noisy-Factoring asymptotically
allows for error rates 1

2
− γ0 − ǫ < 0.0837 − ǫ and succeeds with probability close to 1.

Proof of Main Theorem 9.2.1. The proof is organised as follows:

1. Upper bound the total number X of bad solutions examined by the algorithm
(with high probability).

2. Upper bound the probability of eliminating the correct solution.

Let us start with the simpler second part and recall that τ(n, t) ∶= ⌈n/2−1
t
⌉.
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9 Noisy Integer Factorisation

Lemma 9.2.2. The correct solution is eliminated with probability at most

2ǫ2

lnn
+

1

n
. (9.12)

Proof. The probability of pruning the correct solution at one single round is given by
Pr [Mc < C ], where Mc ∼ Bin(2t ,1− δ). Using 1

2
+γ0 ≤ 1− δ − ǫ and applying Hoeffding’s

bound (Theorem 2.2.4) yields

Pr [Mc < C ] = Pr [Mc < 2t (1
2
+ γ0)] ≤ Pr [Mc < 2t(1 − δ − ǫ)] ≤ exp(−4tǫ2) ≤ 1

n
.

Now, let Ei ∈ {0,1} be a random variable with Ei = 1 iff the correct solution is eliminated
in the i -th iteration, i.e. Pr [Ei = 1] ≤ 1

n
. Clearly, the algorithm fails in finding the correct

solution iff E ∶= ∑τ(n,t)
i=1 Ei ≥ 1. By applying the union bound and using τ(n, t) ≤ n

2t
+ 1

we finally obtain

Pr [E ≥ 1] = Pr [τ(n,t)⋁
i=1

{Ei = 1}] ≤ τ(n, t)
n

≤
1

2t
+

1

n
≤

2ǫ2

lnn
+

1

n
(9.13)

by definition of t .

Let us no proceed with the first part of the proof of our main theorem. Similarly to
the HS analysis we define the following random variables.

• Zg ∈ {0, . . . ,2t − 1} counts the number of bad partial solutions generated from the
good partial solution in one iteration.

• Wb ∈ {0, . . . ,2t} counts the number of bad partial solutions generated from a single
bad partial solution in one iteration.

• Xi counts the overall number of bad partial solutions that occur in the i -th itera-
tion.

Our final goal is to upper bound the random variable X ∶=∑τ(n,t)
i=1 Xi counting the total

number of bad solutions examined by the algorithm. Obviously, we have the following
rough upper bounds

E [Zg] < 2t = O(n ln2

4ǫ2 ) (9.14)

and

Var [Zg] ≤ E [Z 2
g ] = 2t−1∑

i=0

Pr [Zg = i] i2 < 22t = O(n ln2

2ǫ2 ) . (9.15)

By applying Hoeffding’s inequality again, we obtain a similar statement for Wb .
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Lemma 9.2.3. It holds

E [Wb] ≤ 1

2
(9.16)

and

Var [Wb] < 2t = O(n ln2

4ǫ2 ) . (9.17)

Proof. Write Wb ∶=∑2t

i=1 W i
b where

W i
b =
⎧⎪⎪⎨⎪⎪⎩
1 i -th bad candidate passes,

0 otherwise.

Since all the W i
b are identically distributed, we can simplify E [Wb] = 2tE [W i

b
] and

upper bound E [W i
b
] for some fixed i . Note, that W i

b = 1 iff at least C out of 2t bits of
the i -th bad partial solution match the corresponding bits of p̃, q̃ , i.e.

E [W i
b ] = Pr [W i

b = 1] = Pr [Mb ≥ C ] ,
where Mb ∼ Bin(2t , 1

2
). Applying Hoeffding’s bound (Theorem 2.2.4) directly yields

Pr [Mb ≥ C ] = Pr [Mb ≥ 2t (1
2
+ γ0)]

≤ exp(−4tγ2
0) = 2−(1+

1
t
)t ≤ 2−(t+1)

which implies E [Wb] ≤ 1
2
. By Lemma 2.2.1 we also obtain

Var [Wb] = Var [ 2t∑
i=1

W i
b ] ≤ 22t maxVar [W i

b ] ≤ 22t
E [W i

b ] < 2t

where the second last inequality holds since W i
b is a {0,1}-variable, i.e. E [(W i

b )2] =
E [W i

b
].

The next lemma upper bounds the total number X of bad partial solutions using the
preceding results.

Lemma 9.2.4. It holds

Pr [X ≥ Θ(n2+ ln 2

4ǫ2 )] ≤ 1

Ω(n2) . (9.18)

Proof. Recall X = ∑τ(n,t)
i=1 Xi . Due to Lemma 9.2.3 we have E [Wb] ≤ 1

2
. Combing this

with Eq.(9.14) and Theorem 9.1.6 gives

E [Xi] < E [Zg]
1 −E [Wb] < 2t+1 = O(n ln2

4ǫ2 )
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and thus

E [X ] = O(n1+ ln 2

4ǫ2 )
since τ(n, t) ≤ n. Moreover, E [Wb] < 1 and Theorem 9.1.7 yields

Var [Xi] = ∣Var [Xi] ∣ ≤ ∣α1∣ + ∣α2∣ + ∣α3∣
where the αi are defined by Eq.(9.8)-(9.10). The dominating terms in α1 are Var [Zg]
and E [Zg] ⋅Var [Wb] and and by Eq.(9.17), (9.14) and (9.15) it holds

∣α1∣ = O(n ln2

2ǫ2 ) .

Since E [W 2
b
] = Var [Wb] + E [Wb]2 < 2t +

1
4
= O(n ln2

4ǫ2 ), the dominating term in α2 is

E [Zg]2 and thus

∣α2∣ = O(n ln2

2ǫ2 ) .

This directly implies ∣α3∣ = O(n ln2

2ǫ2 ) and we finally obtain

Var [Xi] = O(n ln2

2ǫ2 ) . (9.19)

Now, we can apply Chebychev’s inequality (Theorem 2.2.3) which yields

Pr [∣X −E [X ] ∣ ≥ αn] ≤ Var [X ](αn)2 ≤ maxVar [Xi]
α2

=
1

Ω(n2) (9.20)

for α = Θ(n1+ ln 2

4ǫ2 ).
To finish the proof of our main theorem, we first define the following failure event: We

say that Noisy-Factoring fails if the correct solution is eliminated or the actual total

number of bad candidate solutions is ω(n2+ ln2

4ǫ2 ) (we artificially abort the computation
if the computation tree exceeds a certain bound and output the failure symbol ⊥). By
Lemma 9.2.2 and Lemma 9.2.4 it holds

Pr [Noisy-Factoring fails] ≤ 2ǫ2

lnn
+

1

n
+

1

Ω(n2) .

To estimate the running time of the algorithm, we can safely ignore the costs of the
initialisation. We now upper bound the runtime needed by the expansion and pruning
phase for one single partial solution:

• During the expansion phase, each partial solution implies the computation of∑t−1
i=0 2i < 2t liftings according to Eq.(9.3). As already mentioned in Section 9.1, the

right hand side of of Eq.(9.3) can be computed in time O(n) – when storing the
results of the previous iterations. This yields a total computation time of O(n2t)
for the expanding phase.
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• The pruning phase can be realised in time O(t) for each of the fresh 2t partial
solutions, summing up to O(t2t).

We can upper bound t ≤ n, which results in an overall runtime of

O((n + t) ⋅ 2t) = O(n2t) = O(n1+ ln 2

4ǫ2 )
per candidate solution. Finally, testing candidate solutions for correctness can also be
done in time O(n).

Since we abort the computation whenever the size of our computation tree is ω(n2+ ln2

4ǫ2 )
(note that there will only be O(n) good solutions in any case), the total workload can
be upper bounded by

O (n2+ ln 2

4ǫ2 n1+ ln 2

4ǫ2 ) = O (n3+ ln2

2ǫ2 )
as claimed. This finishes the proof of Theorem 9.2.1.

9.3 The Coding-Theoretic Link

Very recently Paterson et al. [PPS12] further extended the noisy factorisation problem
(or, more precisely, the more general problem of correcting errors in fully redundant RSA
secret keys) to the setting where the 0 and 1 bits of p and q are flipped with possibly
distinct error probabilities δ1 and δ2, respectively. Moreover, [PPS12] introduces a neat
coding-theoretic viewpoint on the problem. This viewpoint allows to use interesting
tools from coding and information theory, such as channel capacity and list decoding, to
develop a new (slightly different) algorithm for their more general framework. Beyond
that, Paterson et al. propose upper bounds on the performance of their algorithm which
also apply to the HS algorithm and our work. In this section, we

• present the coding-theoretic viewpoint of [PPS12],

• discuss a (heuristic) upper bound on the error rate δ for a class of algorithms
(that contains our Noisy-Factoring algorithm) which is related to the Shannon
capacity of the underlying binary symmetric channel and

• prove that our algorithm and its analysis allow for an error rate that achieves
the second-order expansion of the theoretical upper bound (as first observed in
[KSI13]).

The Coding-theoretic Viewpoint

Let us begin with a brief description of the coding-theoretic link of [PPS12]: Consider
the näıve dyadic factorisation algorithm from Section 9.1 and recall that the 2

n
2 leaves of

the resulting computation tree give a set of candidate factorisations (each containing n
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1 − δ

δ

δ

1 − δ
1

0

1

0

Figure 9.1: The BSC with cross-over probability δ: A single bit is flipped with probability
0 < δ < 1

2
.

bits). This candidate set depends on the modulus N and is denoted by CN ∶= {c1, . . . , cλ}
where we write λ ∶= 2

n
2 for short. Now, Paterson et al. simply propose to view the set CN

as a block code of length n and rate log ∣CN ∣/n = 1
2
. In contrary to all preceding chapters

in this thesis, this code is non-linear, non-random (due to the iterative nature of the
Hensel lifting) and offers bad general decoding capabilities (the minimum distance of
the code is 2: every two leaves with the same ancestor agree on all but the last two
bits).

Now, Paterson et al. argue that the noisy factoring problem can be reformulated as a
decoding problem in CN as follows (cf.[PPS12, Section3]): Let c∗i ∈ CN be the codeword
that belongs to the wanted factorisation p, q . This codeword is simply transmitted
over the binary symmetric channel (BSC) with crossover probability δ (see Figure 9.1)
yielding a received word r. The task is to decode r to c∗i . In this light, the Noisy-
Factoring algorithm can be seen as a list decoding algorithm for CN . The notion of list
decoding goes back to Elias [Eli57] and refers to decoding algorithms that output a list
of candidate codewords instead of a single, unique codeword. For such a list decoding
algorithm D , a decoding error occurs if a transmitted codeword c results in a received
word r such that the output list D(r) does not contain c. As claimed in [PPS12], “this
coding-theoretic viewpoint allows to derive limits on the performance of any procedure
for selecting which candidate solution to keep in the HMM algorithm”. In the next
section, we explain this argument in more detail and discuss some technical caveats.

Theoretical Upper Bound on δ

A well-known result in information theory is the converse of Shannon’s noisy-channel
coding theorem [Sha48]: Asymptotically, no combination of a code and decoding al-
gorithm can achieve reliable decoding when the code rate exceeds the capacity of the
underlying communication channel. Although Shannon’s original statement only con-
siders the classical framework where one decodes to a unique codeword, it is easy to
obtain a generalisation for list decoding algorithms with output lists of polynomially
bounded size. More precisely, the argument in [PPS12] is based on the following simple
statement.

Theorem 9.3.1 (List-Decoding Capacity, cf. [Gur06, Theorem 3.4]). Let 0 < δ < 1
2

and
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ǫ > 0. Then for large enough n and any code C of block length n and rate R ∶= log ∣C∣
n
≥

1 −H(δ) + ǫ, there is at least one (received) word r ∈ {0,1}n such that

∣B(r, δn) ∩ C∣ ≥ 2
ǫ
2
n ,

that is at least one received word r can not be list-decoded with polynomial sized lists.

Remark 9.3.2. Note that the term 1 − H(δ) resembles the capacity of the BSC with
crossover probability δ. Moreover, the following proof also shows, that the above state-
ment holds in the average case, i.e. the expected number of codewords in a Hamming
ball of radius δn around a received word r is 2ǫn−o(n) where the probability is defined
over the random choice of r (and fixed code C).

Proof of Theorem 9.3.1. Define a random variable Z ∶= ∣B(r, δn) ∩ C∣ (over the random
choice of r). Clearly,

E [Z ] = ∣C∣ ∣B(r, δn)∣
2n

≥ 2ǫn−o(n) ,

thus there must exist at least one r with ∣B(r, δn) ∩ C∣ ≥ 2ǫn−o(n) ≥ 2
ǫ
2
n .

Based on Theorem 9.3.1, Paterson et al. argue that no list-decoding algorithm with
output lists of polynomial size for the noisy integer factorisation problem can exist
whenever

δ > H−1(1
2
) > 0.111 . (9.21)

This can be seen as follows: First, the Hamming distance between the received word
r and the codeword c∗i is at least (δ − ǫ)n with probability close to 1 for sufficiently large
n and arbitrary ǫ > 0. Thus, a list decoding algorithm must ouput a list of all codewords
within Hamming distance δn of r. Consequently, the above theorem tells us that such
an output list will have exponential-size if the code rate (= 1

2
) exceeds the capacity of

the underlying BSC (= 1 −H(δ)) which yields Eq.(9.21).
However, the above argumentation suffers from the following technical caveats:

1. We have to assume that the received word r is chosen uniformly at random in{0,1}n , in particular its choice must be independent from the code CN (this as-
sumption seems questionable since the transmitted word c∗i is clearly not indepen-
dent from CN ).

2. The proof of Theorem 9.3.1 only provides an average-case lower bound on the ran-
dom variable Z = ∣B(r, δn) ∩ C∣. However, depending on the actual code C, strong
deviations are conceivable: For example, consider the code C ∶= {c0, . . . , c2n/2−1} of
length n and rate 1

2
where c0 = (0, . . . ,0,1 . . . ,1) and ck = (k0, . . . , kn/2−1,0 . . . ,0)

(with the first n/2 coordinates of the codewords ck , k ≥ 1 being the binary repre-
sentation of k). Obviously, d(ci , r) ≥ n

2
for every r ∈ {0,1}n/2 × {1}n/2 and all i ≥ 1.

Thus, for exponentially many r we have ∣B(r, n
2
− 1) ∩ C∣ = 1.
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Clearly, the second point is very artificial and will probably not occur for the codes CN .
However, the above observations are related to the fact that we do not need to design a
list decoding algorithm for CN that successfully decodes on the average: We only need
to decode the particular codeword c∗i with high probability (if a classical factorisation
algorithm existed, such a decoding algorithm would be trivial to define). Consequently,
the proposed upper bound on δ has to be considered heuristic. Obtaining a rigorous
upper bound on δ would clearly require a proper formal definition of a specific class of
algorithms (which is left as an open question).

In the rest of this chapter, let us now assume the validity of the upper bound (9.21).
Recall that the theoretical upper bound of Noisy-Factoring provided by our analysis
is

δ ≤
1

2
−

√
ln 2

4
< 0.0837 , (9.22)

thus there might be space for minor improvements. In fact, the recent algorithm of
Paterson et al. tightly matches the theoretical upper bound but its analysis is based on
stronger heuristic randomness assumptions. Furthermore, the next section shows that
the upper bound (9.22) of our algorithm matches the second-order expansion of the
heuristic upper bound (9.21).

Second-order Optimality of Noisy-Factoring

It is well-known that the Taylor series expansion of the binary entropy function in a
neighbourhood of 1

2
is given by

H(δ) = 1 −
1

2 ln 2

∞∑
i=1

(1 − 2δ)2i
i(2i − 1) .

Let

∆ ∶= {0 < δ <
1

2
∶ 1 −H(δ) ≥ 1

2
} = {0 < δ <

1

2
∶

∞∑
i=1

(1 − 2δ)2i
i(2i − 1) ≥ ln 2}

be the set of error rates δ below the information-theoretic upper bound. By using the
expansion of H up to order k one obtains

∆ =
∞⋃
k=1

∆k

where ∆k ∶= {0 < δ < 1
2
∶ ∑k

i=1
(1−2δ)2i
i(2i−1) ≥ ln 2}. For k = 1 we obtain

∆1 = {0 < δ <
1

2
∶ (1 − 2δ)2 ≥ ln 2} = ⎧⎪⎪⎨⎪⎪⎩0 < δ <

1

2
∶ δ ≤

1

2
−

√
ln 2

4

⎫⎪⎪⎬⎪⎪⎭
which is the same condition as in Eq.(9.22). That is, our algorithm allows for error rates
up to the second-order expansion of the theoretical upper bound.

164



9.4 Conclusion

9.4 Conclusion

We conclude by indicating how the extended analysis for Noisy-Factoring and the
coding-theoretic link can be adapted to the following more general scenario: Given a
public RSA key (N , e) and noisy bits of a full RSA secret key (p, q ,d ,dp ,dq), the Hensel
lift gives four lifting equation in five unknowns (the unknowns are the respective bits of
p, q ,d ,dp ,dq). Note that every partial solution at step i of the algorithm now consists
of it + 1 bits for each of the five elements (p, q ,d ,dp ,dq) and t iterative Hensel liftings
yield a computation tree with 2t leaves where each leaf consists of 5t fresh bits. More
generally, one can also consider scenarios where one is given a different combination
of the elements p, q ,d ,dp and dq . Altogether, when given noisy bits of 2 ≤ m ≤ 5 of
such elements , denoted by s̃k = (s̃k1, . . . , s̃km), one obtains the following variant of
Theorem 9.2.1 for a generalised algorithm Error-Correction.

Theorem 9.4.1. Under Heuristic 9.1.5 for every fixed ǫ > 0 the following holds. Let(N , e) be an n-bit RSA public key with fixed e. We choose

t = ⌈ lnn
2mǫ2
⌉, γ0 =

√(1 + 1
t
) ⋅ ln 2

2m
and C =mt(1

2
+ γ0).

Further, let s̃k be an erroneous copy of sk with noise rate δ ≤ 1
2
− γ0 − ǫ. Then algorithm

Error-Correction reveals sk in time O (n3+ ln2

mǫ2 ) with success probability at least 1 −

(mǫ2

lnn
+

1
n
+

1
Ω(n2)).

We point out that the public exponent e must be fixed in order to compute an ini-
tial solution for the Hensel lifting, see [HMM10] for details. From a coding-theoretic
viewpoint, the generalised scenario generates a code of rate 1

m
and the theoretical upper

bound on δ becomes

δ ≤ H−1(1 − 1

m
) .

Thus, the larger m the larger the theoretically achievable noise rate δ. To summarize,
we present values for δ in comparison with the respective upper bound δ∗ for different
m in Table 9.1. Note that the gap between the error rate achieved by our algorithm and
the upper bound goes to 0 with m →∞.

m δ δ∗

2 0.084 0.111
3 0.160 0.174
4 0.206 0.214
5 0.237 0.243

Table 9.1: Bounds on δ and theoretical limit δ∗ for varying m.
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