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Abstract. Let (G, ·) be an arbitrary cyclic group of composite order N
with G ' G1×G2. We present a generic algorithm for solving the discrete
logarithm problem in G with Hamming weight δ logN , δ ∈ (0, 1), in time

Õ(
√
p+

√
|G2|

H(δ)
), where p is the largest prime divisor in G1 and H(·)

is the binary entropy function.
Our algorithm improves on the running time of Silver-Pohlig-Hellman’s
algorithm whenever δ 6= 1

2
. Moreover, it improves on the Meet-in-the-

Middle type algorithms of Heiman, Odlyzko and Coppersmith with run-

ning time Õ(
√
|G|H(δ)

) whenever p < |G|H(δ).
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1 Introduction

The hardness of the discrete logarithm problem on classical computers is one
of the most central sources for constructing public key cryptography. In order
to achieve minimal key-size and maximal performance, crypto designers usually
choose cyclic groups G for which no group-specific algorithm, e.g. of index cal-
culus type [1], is known. In these groups, the security analysis is based on the
performance of generic algorithms.

However, very few generic algorithms for cyclic groups are known. Among
them are Shanks’ Baby-Step Giant-Step algorithm [10] and its low-memory vari-
ant, Pollard’s Rho Method [9]. Both algorithms achieve a running time of

√
|G|.

Moreover, it is known by a result of Shoup [11] that generic algorithms in prime
order groups cannot compute discrete logarithms faster than

√
|G|.

The generic algorithm of Silver, Pohlig and Hellman [8] can be seen as a gen-
eralization of Shanks’ algorithm to non-prime order groups. Let G be a cyclic
group with |G| = N and prime factorization N =

∏k
i=1 p

ei
i . Thus we have

G ' G1 × . . . × Gk with cyclic groups |Gi| = peii . In the Silver-Pohlig-Hellman
algorithm, the discrete logarithm is first computed in Gi modulo pi, then lifted
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modulo peii and afterwards composed by Chinese Remaindering to the full group
order N . Since this process is dominated by the running time of an individ-
ual discrete logarithm computation in Gi modulo pi, the total running time is
dominated by maxi{

√
p
i
}.

If we do not further restrict the discrete logarithm problem, the generic algo-
rithms of Pollard and Silver, Pohlig and Hellman are all that we have. If we limit
our discrete logarithm to a certain interval [a, b] then the discrete logarithm can

be computed by Pollard’s kangaroo method [9] in time Õ(
√
b− a), which can be

seen as another variant of Shanks’ algorithm.
More generic algorithms are known when we limit our discrete logarithm to

a small Hamming weight. Let α be a generator of G with an order of bit-size
n. Let β = αx with an n-bit integer x having Hamming weight δn, δ ∈ (0, 1),
where we call δ the relative Hamming weight of x.

A brute-force enumeration of an n-bit number x with Hamming weight
δn takes time

(
n
δn

)
≈ 2H(δ)n. The algorithms of Heiman-Odlyzko [5], Copper-

smith [3] and Stinson [13] split x in two parts of length n
2 and Hamming weight

δ n2 each. This is a classical Meet-in-the-Middle approach that achieves a square-

root complexity of roughly 2
H(δ)

2 n = Õ(
√
|G|

H(δ)
).

1.1 Our Contribution and Related Work

We present a new algorithm that can be seen as a generalization of the Meet-
in-the-Middle algorithms of Heiman-Odlyzko and Coppersmith and the Silver-
Pohlig-Hellman algorithm. In spirit, our approach is similar to an algorithm of
van Oorschot and Wiener [15] for the discrete logarithm problem with small x,
as opposed to small Hamming weight x in our case. The van Oorschot-Wiener
algorithm computes the CRT-representation of xmodulo a factorN1 of the group
order via Silver-Pohlig-Hellman. Thus, x can be expressed as x = x1N1 + x0 for
some known x0. Then x1 is easily computed via Pollard’s kangaroo algorithm in
time Õ(

√
x1). Thus, van Oorschot and Wiener proceed in a divide and conquer

manner, where they split the computation of x in two parts.
Our algorithm also makes use of the Silver-Pohlig-Hellman algorithm as a

subroutine. However, our computation of the second part is way more challenging
than in the algorithm of van Oorschot and Wiener. Notice that the property of
a small Hamming weight discrete logarithm does not transfer to its Chinese
Remainder representation and vice versa. Nevertheless, we are able to show that
parts of the Chinese Remainder representation automatically reduce the search
space for small weight discrete logarithms.

In general, finding algorithms for small Hamming weight appears to be a
harder problem than finding algorithms for small size, e.g. for polynomial equa-
tions there is an efficient algorithm that finds all small size integer roots due
to Coppersmith [4], but there is no analogue known for small Hamming weight
roots.

Let G ' G′1 × . . .G′k be our composite group. We write this in the form
G ' G1×G2, where we suitably combine groups. Our runtime will be dependent



on the size of |G1|, its prime factorization, and the relative Hamming weight δ of
our discrete logarithm problem. So if k > 2, then for a given δ we have to form
G1 in such a way that minimizes the running time. Let β = αx be our discrete
logarithm problem in G.

Let us first describe a simple enumeration version of our algorithm. Assume
|G| = N, |G1| = N1, |G2| = N2 and let n, n1, n2 denote the bit-sizes of N , N1, N2,
respectively. Notice that N = N1N2 and thus (roughly) n = n1 +n2. Let us first
compute x mod N1, that is we compute the discrete logarithm in the smaller
subgroup G1 × {1} ⊂ G. With the Silver-Pohlig-Hellman algorithm this can be
done in time

√
p, where p is the largest prime factor of |G1|. Now we enumerate

all natural numbers x′ which have weight δ in the upper n − n1 = n2 most
significant bits and which are consistent with the computed discrete logarithm
in G1. We are able to show that the second restriction basically determines the
remaining n1 least significant bits uniquely. Since we do this enumeration as a
Meet-in-the-Middle approach, we achieve complexity√(

n2
δn2

)
≈
√

2H(δ)n2 ≈
√
|G2|

H(δ)
.

We want to stress that our algorithm is not designed to attack practical
cryptographic schemes. Our main goal was to combine ideas of [6, 12, 7, 2] to
obtain one of very few known generic algorithms for discrete logs. Our method is
inspired by a recent subset sum algorithm of Howgrave-Graham and Joux [6] and
our intention was to understand the full generality of their method in arbitrary
groups. In the Howgrave-Graham-Joux algorithm the target vector x ∈ {0, 1}n
is represented as a sum of vectors x1, x2 ∈ {0, 1}n. But their sum is a vector sum
in Zn, whereas our vectors represent integers and the addition x1 + x2 is in Z,
i.e. we allow carry bits that allow for new kinds of representations.

Our algorithm is also in the spirit of Stern’s Information Set Decoding tech-
nique [12] for decoding random linear codes, where one part of the unknown error
vector is obtained combinatorically, whereas the remaining bits are computed ef-
ficiently through simple linear algebra. Notice that like in [7, 2] it is possible to
combine our technique with the classical technique of [6]. We leave as an open
problem whether this leads to even better results.

2 Known Generic Algorithms

In this section, we quickly repeat some standard algorithms for discrete loga-
rithms, since we will use variations of these as subroutines in our algorithm.
We start by explaining the sort-and-match algorithm that is the basis for all
Meet-in-the-Middle approaches.

Let αx = β be a discrete logarithm instance in some group G generated by
α. Let us write x = x1 + x2, where x1 ∈ S1, x2 ∈ S2 for some sets S1,S2 ⊂ Z.
Then we obtain the identity

αx1 = β · α−x2 .



We compute a list L that contains the elements (αx1 , x1) for all x1 ∈ S1. Then,
we compute (β ·α−x2 , x2) for all x2 ∈ S2. Any element (β ·α−x2 , x2) that matches
an element (αx1 , x1) ∈ L in its first component yields a solution x = x1 + x2 to
the discrete logarithm problem. This strategy leads to the algorithm sort-and-
match.

Algorithm 1

1: procedure sort-and-match(S1,S2, α, β) . S1,S2 ⊆ ZN
2: Create a list L with entries (αx1 , x1) for all x1 ∈ S1, sort by its first component
3: for all x2 ∈ S2 do
4: Binary search for a (αx1 , x1) ∈ L such that αx1 = β/αx2

5: return x1 + x2 if there is a match
6: end for
7: return no match
8: end procedure

It is not hard to see that both the time and space complexity of sort-
and-match are Õ(|S1| + |S2|), where the Õ(·)-notation suppresses logarithmic
terms. So if x ∈ S and x1 ∈ S1, x2 ∈ S2 with |S1| ≈ |S2| ≈

√
|S| then sort-

and-match achieves the square root of the time complexity that is required for
simply enumerating all x ∈ S. Hence our goal is to define S1,S2 in such a way
that the maximum of their cardinalities roughly equals

√
|S|, and that with high

probability there always exist (x1, x2) ∈ S1 × S2 with x = x1 + x2.
In the following, we illustrate how the selection of S1,S2 is done for Shanks’

algorithm and for its variations due to Heiman-Odlyzko, Coppersmith and Stin-
son. Let (xn−1, . . . x0) ∈ {0, 1}n be the binary representation of x, i.e. x =∑n−1
i=0 xi2

i. Then we write x = x1 + x2 = v1 · 2n/2 + v2 with 0 ≤ v1, v2 < 2n/2.
Fig. 1 illustrates this splitting in form of the binary representations of x1, x2.
Notice that for ease of writing throughout this work we ignore any complications
that arise from rounding terms like n

2 , since this is always easy to solve.

x1

x2

= v1 · 2n/2

= v2

v1 0

0 v2︸ ︷︷ ︸ ︸ ︷︷ ︸
n/2 n/2

Fig. 1. Splitting

It is obvious that the search spaces S1,S2 both have cardinality 2
n
2 =

√
|S| =√

|{0, 1}n| and that there always exists a pair (x1, x2) ∈ S1×S2 with x = x1+x2.



This leads to a generic discrete logarithm algorithm in G with time and space
complexity Õ(2

n
2 ) = Õ(

√
|G|).

In a nutshell, when we move to discrete logarithms x whose binary represen-
tation (xn−1, . . . , x0) have Hamming weight δn, we can easily adapt the splitting
of Fig. 1. Namely, we enumerate over all v1, v2 ∈ {0, 1}

n
2 with Hamming weight

δ n2 . Hence, S consists of all numbers that can be represented as n-bit vectors
with relative Hamming weight δ, whereas the numbers in S1, S2 can be rep-
resented as n

2 -bit vectors with relative Hamming weight δ, where we append a
0
n
2 -string accordingly.

Let us first compare the cardinalities of S and S1, S2. Here, we use the well-
known approximation

(
n
δn

)
≈ 2H(δ)n, that stems from Stirling’s formula. This

implies that |S1| = |S2| ≈ 2H(δ)n2 = Õ(
√
|G|

H(δ)
) which is equal to the square

root of |S|. Thus, we obtain a Meet-in-the-Middle algorithm with square root
time and space complexity.

Notice however, that as opposed to Shanks’ algorithm not every x with
Hamming weight δn admits a splitting in x1, x2 as above, where both xi have
Hamming weight δ n2 . The probability that a random x splits in this way is(
n/2
δn/2

)2
/
(
n
δn

)
= Θ( 1√

n
). In the algorithms of Heiman, Odlyzko and Coppersmith

this problem is solved by a combinatorial structure which is called a splitting
set, which basically allows to re-randomize the coordinates for the splitting in
x1, x2.

A different deterministic approach due to Coppersmith is a simple application
of the intermediate value theorem. Assume wlog that the weight in the v1-part
is too high, and the weight in the v2-part is too low. Let us rotate both parts
cyclically until they change places. Since a rotation by one position changes the
weight in each part by at most 1, there must exist one out of the n/2 rotations
where both parts share the same weight.

In the following, we propose a slightly different solution for guaranteeing the
existence of a valid splitting, which we use in our algorithm. Namely, we choose
the non-zero parts of the binary representation of the element in S1,S2 from
{0, 1}n2 , where their relative Hamming weight lies in the interval (δ − ε, δ + ε)
for some small ε > 0. In this way, we can ensure that a randomly chosen x splits
in x1 +x2 with appropriate Hamming weights in this interval with a probability
that is exponentially close to 1, while only slightly increasing the running time.
The main reason for choosing such a weight interval is that it simplifies the
description and analysis of our algorithm significantly.

3 Our New Generic Discrete Log Algorithm

Let α generate a composite order group G ' G1 ×G2 with |G| = N , |G1| = Nτ

and |G2| = N1−τ for some τ ∈ (0, 1). In general, there might be several ways
to decompose G as G1 × G2. We will first describe our algorithm for a fixed
decomposition. Afterwards, we will minimize the running time by adjusting the
decomposition accordingly.



Our new algorithm combines the Silver-Pohlig-Hellman idea with a subse-
quent Meet-in-the-Middle approach for enumerating small weight vectors. As
described in Section 2, we have to define the sets S1,S2 that describe how we
split x = x1 +x2 with (x1, x2) ∈ S1×S2. We illustrate the binary representation
for our candidates (x1, x2) in Fig. 2. Here, the vi have relative weight δ, whereas
the wi may have arbitrary weight.

x

x1

x2

= v1 2
n+t
2 + v2 2t + w

= v1 2
n+t
2 + w1

= v2 2t + w2

v1 v2 w

v1 0 w1

0 v2 w2︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
(n− t)/2 (n− t)/2 t︸ ︷︷ ︸

(n+ t)/2

Fig. 2. New splitting

In the following, we always assume wlog that we know the factorization of
the group order N . Notice that this does not limit the applicability of our generic
algorithm, since our algorithm’s running time is exponential in the bit-length of
N anyway, whereas the factorization of N can be computed in sub-exponential
time.

The main idea of our new algorithm dlog is as follows. We first apply the
algorithm of Silver, Pohlig and Hellman to the smaller subgroup G1 to obtain the
discrete logarithm x′ modulo M := |G1|. Afterwards, we apply a Meet-in-the-
Middle technique on the bigger subgroup G2 where we cut down the search space
by the amount of information that is provided by x′. More precisely, knowing
only n− t bits of the discrete logarithm x (i.e. v1 and v2 in Fig. 2), it is possible
to compute the remaining t consecutive bits w in polynomial time with the help
of x′ = x mod M .

Let us fix some useful notation. We denote x′ = [x′]M = [x]M , where [·]M
describes the smallest non-negative representative of some number modulo M ,
i.e. in [0,M). Let us choose t such that 2t−1 < M ≤ 2t. Then w is either
[w]M := [x′ − v1 · 2(n+t)/2 − v2 · 2t]M or [w]M +M .

For any x ∈ N we denote by wt(x) the Hamming weight of the binary repre-
sentation of x.

In lines 6 through 9 a list S1 is computed by enumerating all values of v1 (see
Fig. 2). We show that the remaining t-bit value w1 can be uniquely obtained
from v1. Similarly, in lines 10 through 15 we obtain only three possible values for
w2 for each value of v2. In total, it is sufficient to perform a Meet-in-the-Middle



Algorithm 2

1: procedure dlog(|G1|, |G2|, α, β, δ, ε)
2: n← dlog2(|G1| · |G2|)e
3: t← dlog2(|G1|)e
4: x′ ← sph(|G1|, α|G2|, β|G2|) . Use Silver-Pohlig-Hellman to get x mod |G1|.
5: M ← |G1|
6: S1 ← {}
7: for all 0 ≤ v1 < 2(n−t)/2 with (δ − ε)n−t

2
≤ wt(v1) ≤ (δ + ε)n−t

2
do

8: S1 ← S1 ∪ {v1 · 2(n+t)/2 + [−v1 · 2(n+t)/2]M}
9: end for

10: S2 ← {}
11: for all 0 ≤ v2 < 2(n−t)/2 with (δ − ε)n−t

2
≤ wt(v2) ≤ (δ + ε)n−t

2
do

12: S2 ← S2 ∪ {v2 · 2t + [x′ − v2 · 2t]M}
13: S2 ← S2 ∪ {v2 · 2t + [x′ − v2 · 2t]M −M}
14: S2 ← S2 ∪ {v2 · 2t + [x′ − v2 · 2t]M +M}
15: end for
16: return sort-and-match(S1,S2, α, β)
17: end procedure

attack on only n− t bits instead of the full n bits of the binary representation of
x. Eventually, the subroutine sort-and-match finds the discrete logarithm x,
since we show that with overwhelming probability there is always some x1 ∈ S1
and x2 ∈ S2 that sum to x.

Theorem 1. Let α be a generator of an cyclic group G ' G1 × G2 of known
order N , where N has bit-size n. Let δ ∈ (0, 12 ) and let x be sampled uniformly
at random from all elements of ZN with Hamming weight δn. Let β := αx and p
be the largest prime factor of |G1|. Then for any ε > 0 with δ + ε ≤ 1

2 on input

(|G1|, |G2|, α, β, δ) algorithm dlog outputs x with probability at least 1− 4(n+1)

|G2|ε2

in time Õ
(√

p+
√
|G2|

H(δ+ε)
)

and space Õ
(√
|G2|

H(δ+ε)
)

.

Proof. Let us first define M := |G1|, n := dlog2(N)e, t := dlog2(M)e and x′ :=
[x]M as in dlog. Recall that [·]M denotes the least non-negative representative
modulo M , and wt(·) denotes the Hamming weight of the binary representation.
For simplicity, we ignore rounding problems like with (n − t)/2, since they can
easily be resolved without affecting the asymptotic running time.

Similar to the standard Meet-in-the-Middle approach from Section 2, in dlog
we decompose the unknown x = v1 · 2(n+t)/2 + v2 · 2t + w for some 0 ≤ v1, v2 <
2(n−t)/2 and 0 ≤ w < 2t, as illustrated in Fig. 2. Moreover, we require that both
v1, v2 have some Hamming weight in the interval [(δ−ε)(n−t)/2, (δ+ε)(n−t)/2].
The proof is organized as follows. Firstly, we show that any random x possesses
the correct weights for v1, v2 with overwhelming probability. Secondly, we show
that for the correct weights, dlog always outputs x. Thus, dlog is of Las Vegas
type. Its output is always correct, but dlog fails on an exponentially small
fraction of all input instances.



Let x ∈ ZN be chosen uniformly at random with Hamming weight wt(x) =
δn. We show that (δ− ε)(n− t)/2 ≤ wt(v1),wt(v2) ≤ (δ+ ε)(n− t)/2 holds with

a probability that is at least 1− 4(n+ 1)/|G2|ε
2

. Let (xn−1, . . . , x0) denote the
binary representation of x, and letXi be a random variable for xi. For simplifying
our proof, we assume that x was sampled by n independent Bernoulli trials with
P[Xi = 1] = δ for all bits i = 0, . . . , n − 1. Notice that sampling x in this
manner and rejecting all x that have an incorrect Hamming weight gives the
same distribution as sampling x uniformly at random from all x with Hamming
weight δn.

Let I ⊆ {0, . . . , n − 1} with |I| = (n − t)/2 be some index set. Let X =∑n−1
i=0 Xi be the Hamming weight of x, and let Y =

∑
i∈I Xi be the Hamming

weight of coordinates I. In order to estimate dlog’s failure probability, we com-
pute

P [|Y − δ(n− t)/2| > ε(n− t)/2 | X = δn] ,

which is the probability that the Hamming weight on the I-bits of x is not in
the range between (δ − ε) · (n− t)/2 and (δ + ε) · (n− t)/2, under the condition
that x has the correct Hamming weight. Notice that P[X = δn] ≥ P[X = i] for
any i 6= δn. Since 0 ≤ X ≤ n, we get 1 =

∑n
i=0 P[X = i] ≤ (n + 1) · P[X = δn]

and thus P[X = δn] ≥ 1
n+1 . This implies

P [|Y − δ(n− t)/2| > ε(n− t)/2 | X = δn]

≤ (n+ 1) · P [|Y − δ(n− t)/2| > ε(n− t)/2] .

An application of Hoeffding’s inequality yields

(n+ 1) · P [|Y − δ(n− t)/2| > ε(n− t)/2] ≤ 2(n+ 1)2−ε
2(n−t) ≤ 2(n+ 1)

|G2|ε2
.

Hence, we obtain a probability of at most 2(n+1)/|G2|ε
2

that the relative Ham-
ming weight for one of v1, v2 is incorrect. By the union bound, the probability
that v1 or v2 have incorrect weight is bounded by 4(n+ 1)/|G2|ε

2

.
It remains to show that for correct Hamming weight of v1, v2 dlog always

succeeds in computing x. By the correctness of our sort-and-match routine,
it suffices to show the existence of (x1, x2) ∈ S1 × S2 with x1 + x2 = x.

We split x in three parts v1, v2, w with x = v1 · 2(n+t)/2 + v2 · 2t + w (see
Fig. 2). Denote

x1 := v1 · 2(n+t)/2 + w1, x2 := v2 · 2t + w2 with 0 ≤ v1, v2 < 2(n−t)/2 and
0 ≤ w1, w2 < 2t.

In dlog we enumerate a first list S1 of all possible v1 and compute for each v1 a
corresponding w1. We proceed with v2 and their corresponding w2 analogously.

In S1 we choose to fix x1 = 0 mod M — the value 0 could be any con-
stant in ZM . Therefore, we compute w1 = −v1 · 2(n+t)/2 mod M and store the
corresponding integer

x1 := v1 · 2(n+t)/2 + [−v1 · 2(n+t)/2]M .



Notice that there always exists a 0 ≤ w1 < 2t with w1 = −v1 · 2(n+t)/2 mod M ,
since M ≤ 2t by the choice of t.

Since we have to ensure x1+x2 = x, we require x1+x2 = x′ mod M and thus
x2 = x′ mod M by our choice of x1. This in turn implies w2 = x′−v2 ·2t mod M .
By construction, we obtain

x1 + x2 = v1 · 2(n+t)/2 + [−v1 · 2(n+t)/2]M + v2 · 2t + [x′ − v2 · 2t]M = x mod M .

However, this does not necessarily imply x = x1 + x2 over Z. Especially,
we have to guarantee w1 + w2 = w. Notice that by definition w < 2t and
M ≤ 2t < 2M . Since 0 ≤ [w1]M , [w2]M < M we have 0 ≤ [w1]M + [w2]M < 2M .

If either 0 ≤ [w1]M + [w2]M < M and w < M (case I+I in Fig. 3) or
M ≤ [w1]M + [w2]M < 2M and M ≤ w (case II+II in Fig. 3), we are done.
If 0 ≤ [w1]M + [w2]M < M and M ≤ w (case I+II in Fig. 3), we have to add
M to [w1]M + [w2]M . In the remaining case II+I, we have to substract M from
[w1]M + [w2]M .

Thus, [w1]M + [w2]M + kM = w holds for some k ∈ {−1, 0, 1}. In dlog we
choose x1 = v1 · 2(n+t)/2 + [w1]M ∈ S1 and x2 = v2 · 2t + [w2]M + kM ∈ S2 for
all k ∈ {−1, 0, 1}. For the correct k, we obtain x1 + x2 = x, as desired. Thus,
sort-and-match succeeds, and dlog outputs the discrete logarithm x.

It remains to show the time and space complexities. sph takes time Õ(
√
p)

with only polynomial memory consumption, when using Pollard’s Rho Method
as a subroutine. Notice that the complexity of the for-loops in step 7 and 11 of
dlog are dominated by the time to enumerate and store those vi with largest
weight (δ + ε)n−t2 . Thus, our Meet-in-the-Middle attack has time and space

complexity Õ
(√
|G2|

H(δ+ε)
)

.

ut

0 M 2t 2M
w, case I w, case II

[w1]M + [w2]M , case I [w1]M + [w2]M , case II

Fig. 3. ±M

Remark 1 (Large weight). dlog is by definition restricted to small Hamming
weight 0 < δ ≤ 1

2 . Symmetrically, dlog can be applied to large Hamming weight
1
2 ≤ δ < 1 by transforming the discrete logarithm instance to β̃ := α2n−1/β.
This transforms x to x̃ = (2n − 1)− x with Hamming weight (1− δ) · n.

Remark 2 (Representations). Our algorithm can be interpreted in terms of the
representation technique introduced by Howgrave-Graham and Joux [6] for solv-
ing the subset sum problem. Notice that we split w = w1+w2 with w1, w2 ∈ ZM .



Thus, we obtain exactlyM representations (w1, w2) of w as a sum. In our case, we
use the fact that exactly one representation (w1, w2) ensures that x1 = 0 mod M
and x2 = x mod M , simultaneously. We can directly compute this representation
in polynomial time – once x′ is known – without any further assumption on the
problem instance. This differs from [6], where the authors spent exponential time
to compute a representation of the solution and only receive one representation
on expectation, assuming a uniform distribution of the subset sum elements.

Remark 3 (Getting rid of ε). Recall that we introduced ε to ensure that the
Hamming weight of v1 and v2 lies within some ε-strip around its expectation
with overwhelming probability. If we set ε = 0, then dlog finds the discrete log-
arithm x only for a polynomial fraction of all x that exactly match the expected
Hamming weight on v1, v2.

One might be tempted to use cyclic rotations of the binary representation of
x, just as described at the end of Section 2. However, some problems arise here.
If we fully rotate, we obtain a bit vector for which the Hamming weight of v1
and v2 matches its expectation. In this case, it might however happen that w
gets split into two parts by the cyclic rotations. In this case, we were not able
to bound the number of w’s by a polynomial. We could also consider the case
where we do not fully rotate x, but restrict to n − t left rotations only such
that the w-part does not split. We conjecture that the number of pathological
instances where dlog does not succeed for at least one of the n− t rotations is
exponentially small in this case, but we were not able to prove that.

3.1 How to optimally split G into subgroups

It remains to show how to optimally choose the subgroups G1 and G2 dependent
on the factorization of |G| and on the Hamming weight δ · log |G| of x. Since
we apply Silver-Pohlig-Hellman on G1, the group G1 should contain all prime
subgroups of G that are smaller or as large as the largest prime subgroup of
G1. In other words, if N =

∏k
i=1 pi is the factorization of the order of G and

p1 ≤ . . . ≤ pk, the only useful choices are |G1| =
∏`
i=1 pi and |G2| =

∏k
i=`+1 pi

for 1 ≤ ` ≤ k − 1. This is because we have to spend time
√
p for the maximal

prime divisor p of |G1| anyway. Thus, our ordering of the pi minimizes |G2| and
thus the overall running time.

Among the remaining k−1 choices, we have to find the best choice for `. Fix
an `, 1 ≤ ` ≤ k − 1, and define τi := logN pi for each 1 ≤ i ≤ k. From Theorem
1, the time complexity of dlog is

Õ
(√

p` +
√
p`+1 · · · pkH(δ+ε)

)
= Õ

(
(2n/2)τ` + (2n/2)(τ`+1+...+τk)·H(δ+ε)

)
.

Let us define p0 := 1, and thus τ0 = 0. In the case ` = 0 we obtain the time
complexity of the standard small weight Meet-in-the-Middle algorithm without
using sph. In the case ` = k we obtain the standard sph without any Meet-in-
the-Middle approach. Thus, our algorithm perfectly interpolates between both
cases and there exist τi such that our algorithm improves upon sph and standard
Meet-in-the-Middle for any 0 < ` < k with δ < 1

2 (cf. Fig. 4).



Theorem 2. Let τ0 := 0. Given δ, ε with δ+ ε ∈ (0, 12 ] and τ1, . . . , τk as defined
above, an optimal choice for dlog is to pick 0 ≤ ` ≤ k − 1 such that

τ`
τ` + . . .+ τk

< H(δ + ε) ≤ τ`+1

τ`+1 + . . .+ τk

and to choose |G1| =
∏`
i=1 pi and |G2| =

∏k
i=`+1 pi.

Proof. First notice that

k−1⋃
`=0

(
τ`

τ` + . . .+ τk
,

τ`+1

τ`+1 + . . .+ τk

]
defines a disjoint partition of (0, 1], due to the fact that τ1 + . . .+ τk = 1. Thus
each δ + ε with 0 < H(δ + ε) ≤ 1 leads to a unique choice of `.

Fix δ, ε and choose ` as defined above. We want to show that for each choice
of `′ 6= `, dlog’s complexity does not improve. Notice that there may be other
choices for ` that achieve the same complexity.

If `′ < `, then it is easy to see that (τ`+1+. . .+τk)·H(δ+ε) ≤ (τ`′+1+. . .+τk)·
H(δ+ε). Since τ`

τ`+...+τk
< H(δ+ε), we also have τ` < (τ`+ . . .+τk) ·H(δ+ε) ≤

(τ`′+1 + . . .+ τk) ·H(δ + ε). Thus the complexity does not improve for `′ < `.
If `′ > `, obviously we have τ` ≤ τ`′ . Additionally, we have that (τ`+1 +

. . . + τk) · H(δ + ε) ≤ τ`+1 ≤ τ`′ , since H(δ + ε) ≤ τ`+1

τ`+1+...+τk
. Therefore, the

complexity also does not improve for any `′ > `. ut

τ1/2

τ2/2

τ3/2

τ4/2

τ5/2

` = 0 ` = 1 ` = 2 ` = 3 ` = 4

H(δ + ε)

complexity exponent

Meet-in-the-

Middle

Silver-Pohlig-Hellman

Fig. 4. time complexity for k = 5, τ1 = 0.1, τ2 = 0.15, τ3 = 0.2, τ4 = 0.25, τ5 = 0.3

Fig. 4 shows the time complexity for a fixed group with a size of N that is
a product of 5 primes with sizes N0.1, N0.15, N0.2, N0.25 and N0.3. In this case,



Silver-Pohlig-Hellman (dashed line in Fig. 4, corresponding to ` = k) has a time
complexity of N0.15. As we can see, our algorithm’s improvement (straight line)
is defined piecewise for 1 ≤ ` ≤ k − 1. For small values of δ, a standard small
weight Meet-in-the-Middle approach (dotted line, corresponding to ` = 0) yields
the optimal complexity.
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