
A Practical Key Recovery Attack on Basic TCHo
? ??

Mathias Herrmann1 and Gregor Leander2

1 Horst Görtz Institute for IT-Security
Faculty of Mathematics
Ruhr-University Bochum

Germany
mathias.herrmann@rub.de

2 Department of Mathematics
Technical University of Denmark

Denmark
g.leander@dtu.mat.dk

Abstract. TCHo is a public key encryption scheme based on a stream
cipher component, which is particular suitable for low cost devices like
RFIDs. In its basic version, TCHo offers no IND-CCA2 security, but the
authors suggest to use a generic hybrid construction to achieve this se-
curity level. The implementation of this method however, significantly
increases the hardware complexity of TCHo and thus annihilates the ad-
vantage of being suitable for low cost devices. In this paper we show,
that TCHo cannot be used without this construction. We present a cho-
sen ciphertext attack on basic TCHo that recovers the secret key after
approximately d3/2 decryptions, where d is the number of bits of the
secret key polynomial. The entropy of the secret key is log2

`
d
w

´
, where w

is the weight of the secret key polynomial, and w is usually small com-
pared to d. In particular, we can break all of the parameters proposed
for TCHo within hours on a standard PC.

Keywords. TCHo , chosen ciphertext attack, stream cipher

1 Introduction

Since the invention of public key cryptography many different crypto systems
have been presented. The most popular systems are either based on the hard-
ness of factoring large integers or related problems (e.g. RSA) or computing
discrete logarithms in various groups (e.g. DSA, ECDSA). While these schemes
are an excellent and preferred choice in almost all applications, there is still a
strong need for alternative systems based on other (supposedly) hard problems.
This is mainly due to the following two reasons. The first reason is that most
? The work described in this paper has been supported by the European Commission

through the ICT programme under contract ICT-2007-216676 ECRYPT II.
?? This research was partly supported by the German Research Foundation (DFG) as

part of the project MA 2536/3-1.

of the standard schemes are not suitable for very constraint environments like
RFID tags and sensor networks. This problem becomes even more pressing when
looking at the next century’s IT landscape, where a massive deployment of tiny
computer devices is anticipated and thus the need for extremely low cost public
key cryptography will increase significantly. The second — and quite unrelated
— reason is that most popular public key crypto systems like RSA, DSA and
ECDSA will be broken if quantum computers with sufficiently many qubits can
be built (see [9]). Thus, it is important to search for public key crypto systems
that have the potential to resist future quantum computers.

Those two reasons outlined above inspired Finiasz and Vaudenay to develop
the crypto system TCHo [7]. The original version of TCHo has been revised by
Aumasson, Finiasz, Meier and Vaudenay (see [3]). This revision was done mainly
to improve the efficiency of the original scheme and we refer to TCHo as defined
in [3].

TCHo is a public key encryption scheme based on a stream cipher component.
TCHo uses mainly hardware friendly operations and is therefore suitable for low
cost devices. Its security is based on the problem of finding a low weight multiple
of a given polynomial in F2[x] (LWPM for short). The public key of TCHo is a
high degree polynomial P ∈ F2[x] and the secret key K is a sparse, or low weight,
multiple of P . The LWPM problem is of importance in syndrome decoding [5],
stream cipher analysis and efficient finite field arithmetics [4]. In [2] El Aimani
and von zur Gathen provide an algorithm to solve this problem based on lattice
basis reduction and furthermore give an overview of other possible approaches
to tackle LWPM. Yet, the suggested parameters of TCHo cannot be broken by
any of those attacks.

In this paper we present a chosen ciphertext attack on TCHo that recovers
the secret key after roughly d3/2 decryptions, where d is the degree of the secret
polynomial. In particular all proposed parameters of TCHo given in [3] can be
broken within hours on a standard PC. Our attack recovers consecutively all bits
of the secret key by decrypting pairs of ciphertexts with a carefully chosen differ-
ence. The choice of the difference as well as the choice of the ciphertext depend
on all key bits recovered so far. This property of our attack is of independent
interest, as it is one of the rare occasions where an attack on a public key crypto
system is actually inherently adaptive with respect to the information gained so
far. To clarify, we do not solve the problem of finding low weight multiples of
a given polynomial efficiently, but rather provide an efficient method to extract
this low weight polynomial given a decryption oracle.

It should be noted that the designers do not claim that TCHo is IND-CCA2
secure. On the contrary, as shown in [3] TCHo is clearly not IND-CCA2 secure
since it is, just like RSA, trivially malleable. Given an encryption y for a message
m and a second message m′, it is easy to construct an encryption for m ⊕ m′.
However, as opposed to the trivial IND-CCA2 attack on TCHo that recovers the
message our CCA1 attack recovers the secret key.

In [3] the authors propose to use the revised Fujisaki-Okamoto [8] construc-
tion from [1] to transform TCHo into a IND-CCA secure scheme. Clearly, this

scheme is not affected by our attack. However, this transformation comes with an
additional overhead in the ciphertext length as well as a non negligable overhead
due to the fact that a practical implementation of the Fujisaki-Okamoto con-
struction requires to implement at least one secure hash function. Following [6],
the best known SHA-1 (resp. SHA-256) implementation requires approximately
8.000 GE (resp. 11.000 GE) which, based on the estimation in [3], would almost
double the hardware implementation cost for TCHo . Moreover, this transforma-
tion is only efficient in the case where instead of using a truly random number
generator for the encryption of TCHo a pseudo random number generator is
used, which further increases the hardware complexity. Our result implies that
TCHo cannot be used without the Fujisaki-Okamoto transformation. This in
turn implies that the efficiency gain for low cost hardware devices compared to
well established public key crypto systems like ECC vanishes.

One the positive side, our results can also be interpreted as an indication
that breaking TCHo is equivalent to solving the low weight multiple problem.

Finally, our attack is based on a new technique that can be seen as an adaptive
differential attack on public key systems. We believe that this technique can be
useful for the cryptanalysis of other schemes as well.

The paper is organized as follows: In Section 2 we recall the encryption
and decryption procedures for TCHo . In Section 3 we present our adaptive
differential attack whose running time is discussed in detail in Section 4.

2 The TCHo cipher

The encryption of a message using TCHo can be seen as transmitting a message
over a noisy channel. Given the trapdoor, i.e. the secret key, allows to reduce
the noise to a level where decoding of the encrypted message is possible.

The secret key of TCHo is a polynomial K ∈ F2[x] of degree d. We denote
its coefficients by k0 up to kd, i.e.

K = k0 ⊕ k1x⊕ k2x
2 ⊕ · · · ⊕ kdx

d.

For the key K it holds that k0 = kd = 1. Given the polynomial K we associate
the following matrix M with ` columns and `− d rows to it

M =

k0 k1 . . . kd 0 0 . . . 0
0 k0 k1 . . . kd 0 . . . 0

.
0 0 . . . 0 k0 k1 . . . kd

 (1)

The weight of the secret polynomial, i.e. the number of non-zero coefficients
is denoted by wK . For TCHo this weight is small. The public key consists of
a polynomial P ∈ F2[x] whose degree is in a given interval [dP

min, dP
max] and is

chosen such that K is a multiple of P . The length k of the plaintext can be
chosen arbitrarily, however following the proposed parameters in Table 1 we
exemplarily choose the case where the plaintexts are 128 bit vectors. The length

of the ciphertext is denoted by `. Furthermore TCHo uses a random source with
bias γ.

For simplicity of the description we assume that ` − d is divisible by 128.
Denote N = `−d

128 . The attack has an identical complexity in the general case as
can be seen from the experimental results in Section 4.3.

k dP
min − dP

max d wK γ `

I65 128 5800− 7000 25820 45 0.981 50000
II65 128 8500− 12470 24730 67 0.987 68000
III 128 3010− 4433 44677 25 1− 3

64
90000

IV 128 7150− 8000 24500 51 0.98 56000
V 128 6000− 8795 17600 81 1− 3

128
150000

VI 128 9000− 13200 31500 65 1− 1
64

100000

Table 1. Set of parameters proposed for TCHo (see [3])

2.1 Encryption

TCHo encrypts a plaintext m ∈ F128
2 by repeating the message m contiguously

and afterwards truncating it to ` bits. This results in a vector in F`
2. To this

vector a random string r ∈ F`
2 is added. This random string is not balanced,

but (highly) unbalanced in the sense that it contains far more zeros than ones.
The bias is denoted by γ. In addition, the first ` bits, denoted by p ∈ F`

2, of the
output of an (randomly initialized) LFSR with characteristic polynomial P is
added. Thus the encryption of the message m is

c = R(m)⊕ r ⊕ p

where R(m) ∈ F`
2 denotes the repeated and truncated version of m. The encryp-

tion process is shown in Figure 1.

REPEAT -m-

LFSR(P)
?e
6RAND(γ)

Enc(m)-

Fig. 1. Encryption with TCHo .

2.2 Decryption

Given a ciphertext c ∈ F`
2 decryption works as follows.

1. The ciphertext c is multiplied by M , the matrix associated with the secret
polynomial K given by (1). Let t := Mc where t ∈ F`−d

2 . In doing so, the
contribution from the LFSR with characteristic polynomial P vanishes as a
result of K being divisible by P . Thus t corresponds to an encoding of the
original message m xored with a random bit string of bias approximately
γwK (see [3] for details). Now, as wK is small, this bias is still large enough
to recover the message in the next step with high probability.

2. A majority logic decoding is performed on t. More precisely for each 0 ≤ j <
128 the sum

sj =
N−1∑
i=0

t128i+j

is computed over the integers. Remember that N = `−d
128 and note that this

is exactly the position where for simplicity of the description we require N
to be an integer. When this sum is greater or equal to N/2 the result of the
decoding is 1, otherwise it is 0. The result of this majority logic decoding is
a vector e ∈ F128

2 where

ej :=
{

1 if sj ≥N/2
0 if sj <N/2 j ∈ {0, . . . , 127}

3. Finally the vector e is multiplied by an invertible 128× 128 bit matrix T to
recover the message m := Te. Note that this matrix T depends on K and is
therefore unknown to the attacker.

2.3 Security Considerations

Given the public key P the problem to recover the secret key K is referred to
as the Low Weight Polynomial Multiple Problem, i.e. given a polynomial P find
a polynomial K that is divisible by P , has a bounded degree and low weight.
This problem is supposed to be hard. In [7] several algorithms were presented to
solve this problem. Additionally, an algorithm based on lattices was presented
in [2]. None of these approaches is capable to break TCHo .

As mentioned above TCHo is clearly not IND-CCA2 secure. This is due to
the fact that it is trivially malleable: Given a ciphertext c for a message m
then c ⊕ R(m′) is an encryption of m ⊕ m′. Moreover, if given a ciphertext,
changing only one bit is likely to be a valid ciphertext for the same message. In
[3] the authors propose to use a generic hybrid construction to obtain a hybrid
scheme that offers CCA2 security. However, this can only be applied efficiently
in the case where the random source is actually a pseudo random source. Using
a pseudo random source will increase the hardware complexity and is therefore a
suboptimal solution. Furthermore, a secure hash function has to be implemented.

Below, we present a chosen ciphertext attack that recovers the secret key
nearly in linear time. This attack shows that TCHo is not even CCA1 secure.
Moreover, given a decryption oracle one can efficiently recover the secret key.
From a practical perspective, such an attack is by far more important than an
attack based on the malleability of the scheme.

3 The Attack

Our attack strategy is to decrypt pairs of ciphertexts with a carefully chosen
difference. These differences are chosen such that the intermediate states in the
decryption process, after multiplication with the secret matrix M , differ in one
bit if and only if a certain key bit is set. With a high probability this difference
will cause a difference in the output of the decryption oracle. Thus, after a few
iterations of this approach we are able to decide with overwhelming probability
if a certain key bit is set or not.

The reason why a difference after multiplication with the matrix M yields
a difference after the majority logic decoding with good probability lies in the
fact that randomly chosen vector is likely to be balanced. In this case the one
bit difference between the two states will cause two different results after the
majority logic decoding and therefore two different results after the last step in
the decoding procedure, i.e. after multiplication with the invertible matrix T .

To illustrate our attack, we first demonstrate how to recover k0 using the
approach outlined above. Note that k0 = 1 in any case, and thus there is no
need to recover it, still this will clarify our attack strategy.

The following technical lemma will be used to estimate the success probability
of our attack.

Lemma 1. For N ≥ 1 we have

1√
2

1√
π(N + 1)

<

(
N

dN/2e
)

2N
< 2

1√
πN

.

Proof. For even N the bounds obtained by Stirling’s approximation state

1√
2

1√
πN

<

(
N

N/2

)
2N

< 2
1√
πN

.

Looking at Pascals triangle, we get for odd N that
(

N
(N+1)/2

)
= 1

2

(
N+1

(N+1)/2

)
,

thus
1√
2

1√
π(N + 1)

<

(
N

(N+1)/2

)
2N

=

(
N+1

(N+1)/2

)
2N+1

< 2
1√

π(N + 1)
.

Combining both cases we have

1√
2

1√
π(N + 1)

<

(
N

dN/2e
)

2N
< 2

1√
πN

ut

3.1 Recovering k0

Recovering k0 is very simple. First, one simply decrypts a randomly chosen
bitstring. In a second step the first bit of the randomly chosen bitstring is flipped
and is decrypted again. If the two decrypted messages differ then k0 has to be
equal to 1. This idea is explained in detail below.

Algorithm 1 (Recover k0)

1. Choose a random vector c ∈ F`
2 and let it be decrypted by the oracle. Let its

decryption be m.
2. Compute the vector c′ = c⊕ δ where δ = (1, 0, . . . , 0), i.e. flip the first bit of

the ciphertext. Let c′ be decrypted by the oracle and denote its decryption be
m′.

3. If m 6= m′ we deduce that k0 = 1.
4. Repeat these steps with a new random vector.
5. If after α repetitions no difference occurred, we deduce that k0 = 0.

The difference of the intermediate states, t = Mc and t′ = Mc′, after the first
step in the decryption process (see Section 2.2) is

∆ = M(c⊕ c′) = M(1, 0, . . . , 0)t = (k0, 0, . . . , 0)t.

Therefore t and t′ differ if and only if k0 is 1. Note that the attacker has no
access to these values. However, if by coincidence this one bit difference causes
a difference in the result of the majority logic decision during decryption, a
difference will occur in the decrypted messages visible to the attacker. Let us
denote by s0 the value corresponding to the sum in the majority logic decoding
step for t and s′0 be the corresponding value for t′, i.e.

s0 =
N−1∑
i=0

t128i, s′0 =
N−1∑
i=0

t′128i

If s0 is dN/2− 1e (resp. dN/2e) and the value of s′0 is dN/2e (resp. dN/2− 1e)
the values of e and e′ after the majority logic decoding will differ in their first
coordinates as

e0 :=
{

1 if s0 ≥N/2
0 if s0 <N/2

and

e′0 :=
{

1 if s′0 ≥N/2
0 if s′0 <N/2 .

Therefore, in this case we can conclude that k0 = 1 and moreover get

m⊕m′ = T (e⊕ e′) = T (1, 0, . . . , 0)t,

where T is the key dependent matrix used in the last step of the decryption
procedure. The key point for the running time of the attack is that this happens

with a non negligible probability. The fact that c was chosen randomly and M
has maximal rank implies that t is a random vector in F`−d

2 . Remember that s0

equals N/2 if and only if exactly half of the bits t128j , j ∈ {0, . . . , N − 1} are
one and the other half is zero.

Thus, applying Lemma 1, we get

P(s0 = dN/2e) =

(
N

dN/2e
)

2N
>

√
1

2π(N + 1)
.

Therefore, the probability to get a difference in m and m′ is given by

P(m 6= m′ | k0 = 1) = P(s0 = dN/2e and s′0 = dN/2− 1e)
+P(s0 = dN/2− 1e and s′0 = dN/2e)

=

(
N

dN/2e
)

2N
P(t0 = 0) +

(
N

dN/2−1e
)

2N
P(t0 = 1)

>

√
1

8π(N + 1)
.

Next we consider the error probability, i.e. the probability that, after running
Algorithm 1 we deduce k0 = 0 while it holds that k0 = 1. This is given by the
probability that, under the condition k0 = 1, in none of the α tries a difference
occurred. This probability can be upper bounded by

P(error) ≤

(
1−

√
1

8π(N + 1)

)α

which is exponentially small in α. Note furthermore that following Algorithm 1
we will never erroneously deduce k0 = 1 while it holds that k0 = 0.

Example 1. For the parameter set (IV) in Table 1 we get for α = 100 tries an
error probability less than 0.006 and for α = 200 an error probability less than
2−14.

3.2 Recovering all key bits

The method to recover other key bits than k0 generalizes the idea outlined above.
Our goal is to construct two ciphertexts with a certain difference, such that with
a high probability the majority decision flips one bit of the decrypted message
if the keybit we are looking for is set. Below, we consider only the case where
the attacker wants to recover kn where n < `− d. This is the most challenging –
and for all but the first proposed parameters the only– case that occurs. In the
case where n ≥ `− d one can easily adopt the ideas described below to recover
kn with two decryptions only.

Choosing the difference. Let us assume that we already successfully recovered
the bits k0 up to kn−1 and want to recover kn next. Denote the vector after
multiplying the difference δ ∈ F`

2 with the secret matrix M by ∆.

∆ =

k0 k1 . . . kd 0 0 . . . 0
0 k0 k1 . . . kd 0 . . . 0

.
0 0 . . . 0 k0 k1 . . . kd

δ0

δ1

...
δ`

We wish to have the difference ∆ = (1⊕ kn, 0, . . . , 0, 1, 0, . . . , 0)t where the 1 is
in the (n + 1)-th position.

For the attack we have to distinguish two cases. First consider the case where
n is not divisible by 128. In this case, for two ciphertexts c and c′ with the
difference δ the values s0 and s′0 will differ if kn is not set. In the case where n
is divisible by 128 the bit in the (n + 1)-th position will contribute to the same
sum s0. In order to avoid a cancelation of these contributions special care has
to be taken in the choice of the ciphertexts.

Given the knowledge about the key we already have we can compute a vector
δ′ ∈ Fn

2 such that

M ′δ′ = (0, . . . , 1)t (2)

where M ′ is the following n× n sub block of M :

M ′ =

k0 k1 . . . kn−1

0 k0 . . . kn−2

0
. . .

0 . . . 0 k0

Note that, as k0 = 1 the matrix M ′ is bijective and thus the existence of δ′

fulfilling (2) is guaranteed.
Now we can construct δ ∈ F`

2 the following way: The first entry, δ0, is com-
puted as shown below, then the vector δ′ is appended and finally δ is filled up
with zeros, i.e.

δ0 =
∑n−2

i=0 δ′iki+1 ⊕ 1
δi = δ′i−1 for 1 ≤ i ≤ n
δi = 0 for n + 1 ≤ i < `.

(3)

One verifies

∆ = Mδ =

(
k0(

n−2∑
i=0

δ′iki+1 ⊕ 1)⊕
n−1∑
i=0

δ′iki+1, 0 . . . , 0, 1, 0 . . . , 0

)t

=
(
k0 ⊕ δ′n−1kn, 0 . . . , 0, 1, 0 . . . , 0

)t
= (1⊕ kn, 0 . . . , 0, 1, 0, . . . , 0)t,

where the last equality follows as (2) implies δ′n−1 = 1.

Choosing the ciphertext. Unlike in the case where we wanted to recover k0

we will not use arbitrary random ciphertexts in this case, but restrict ourselves
to certain types of vectors. As mentioned above, this will ensure that we can
handle the case where we want to recover bits kn where n is divisible by 128.
Moreover, given the knowledge about the key we already have, carefully choos-
ing the ciphertext will improve the probability of obtaining pairs such that a
difference after multiplying with the secret matrix M will cause a difference at
the output of the decryption oracle.

We choose the ciphertext c such that we obtain a vector t = Mc with the
properties that 1.) it starts with repeated blocks of 256 bits, where the first bit
is one and the remaining 255 bits are zero, these repeated blocks are truncated
to give an n bit string, 2.) has a zero in the (n+1)-th position, 3.) the remaining
bits are randomly distributed. Since we know the key bits k0 to kn−1, we are able
to compute the first part ĉ ∈ Fn

2 of the ciphertext the same way we computed
δ′. More precisely, using the matrix M ′ defined above, we are going to compute
ĉ such that

M ′ĉ = b

where b consist of repeated blocks of 256 bits of the form (1, 0(255)), i.e.

b = (1, 0(255), 1, 0(255), . . .) ∈ Fn
2 .

To get the zero entry at the (n+1)-th position of t, we will set d+1 consecutive
bits of c equal to zero and finally the remaining bits of c are chosen uniformly
at random. The ciphertext then has the structure

c = (ĉ, 0(d+1), r) ∈ F`
2 (4)

where r ∈ F`−n−(d+1)
2 is randomly chosen.

The one at the first position together with the zero at the (n+1)-th position
of t will ensure that we can handle the case n divisible by 128. The repeated
blocks of a one followed by 255 zeros at the beginning of t will increase the
probability to get a difference in the decryptions provided that kn is zero. This
is explained in detail in Section 4.

Algorithm 2 (Recover kn)

1. Choose a random vector r ∈ F`−n−d−1
2 and compute c as described by (4).

Let c be decrypted by the oracle. Let its decryption be m.
2. Compute the vector c′ = c⊕ δ where δ was computed following (3) and let it

be decrypted by the oracle. Let its decryption be m′.
3. If m⊕m′ = T (1, 0, . . . , 0)t we deduce that:

(a) kn = 0 in the case where n 6= 0 mod 128
(b) kn = 1 in the case where n = 0 mod 128

4. Repeat the steps with a new random vector.
5. If after α repetitions no difference equal to T (1, 0, . . . , 0)t occurred, we deduce

that
(a) kn = 1 in the case where n 6= 0 mod 128

(b) kn = 0 in the case where n = 0 mod 128

Note that, after performing the algorithm to recover k0 the value T (1, 0, . . . , 0)t

is known to the attacker.

4 Analysis of the Attack

We now analyze the success probability and running time of Algorithm 2. We
distinguish two cases depending on n mod 128.

4.1 n 6= 0 mod 128

In this case the vectors t = Mc and t′ = Mc′ differ by

∆ = t⊕ t = M(c⊕ c′) = Mδ,

where
∆ = (1⊕ kn, 0, . . . , 0, 1, 0, . . . , 0)t

i.e. the vectors differ in their first coordinate if and only if kn = 0 and in their
(n + 1)-th coordinate. Assume that kn = 0. Due to (4) it holds that t0 = 1 and
t′0 = 0 and thus the sums used for the majority logic decoding step are related
by s0 = s′0 + 1. Analogously we have sn + 1 = s′n

Now, lets assume that the vector t is such that the sum used for the majority
logic decoding step is s0 = dN/2e (and thus s′0 = dN/2 − 1e). If this happens
and additionally sn and s′n are either both less than dN/2e or both greater or
equal to dN/2e then the corresponding vectors after the majority logic decoding
differ in their first coordinate exactly. Thus Algorithm 2 will successfully deduce
kn = 0. Note that, due to the relation sn +1 = s′n the condition that either both
values sn and s′n are smaller or both greater or equal to dN/2e is equivalent to
s′n 6= dN/2e.

Remember that t = Mc is of the form

t = (b, 0, r)

where b ∈ Fn
2 is a vector consisting of repeated blocks of 256 bits, where the first

bit is one and the remaining 255 bits are zero, and r ∈ F`−d−1−n
2 is a randomly

chosen vector. Considering the bits t128j that contribute to s0, we see that the
first bn/128c bits are balanced. Thus, s0 = dN/2e if and only if half of the bits
of r contributing to s0 equal zero and the other half equals one. Therefore, the
probability that s0 = dN/2e equals

P(s0 = dN/2e) =

(
N ′

dN ′/2e
)

2N ′ ,

where N ′ = d `−d−1−n
128 e. As n is not divisible by 128 the first bn/128c bits

contributing to s′n are all zero. Thus

P(s′n = dN/2e) =

(
N ′

dN/2e
)

2N ′ .

It follows that the success probability

p := P(m⊕m′ = T (1, 0, . . . , 0)t | kn = 0)

can be upper bounded by

p = P(s0 = dN/2e)P(s′n 6= dN/2e)

=

(
N ′

dN ′/2e
)

2N ′

1−

(
N ′

dN/2e
)

2N ′

≥

(
N ′

dN ′/2e
)

2N ′

(
1−

(
N

dN/2e
)

2N

)

>

√
1

2π(N ′ + 1)

(
1− 2

√
1

πN

)
.

Next, let us consider the probability that, after running Algorithm 2 we deduce
kn = 1 while it holds that kn = 0. This is given by the probability that, under the
condition that kn = 0, in none of the α tries a difference equal to T (1, 0, . . . , 0)
occurred. It can be upper bounded by

P(error) ≤ (1− p)α

which is exponentially small in α. Note that in the case where kn = 0 the
expected running time is 1/p. As the weight of K is small, this is the running
time for most of the cases.

4.2 n = 0 mod 128

Like before the vectors t = Mc and t′ = Mc′ differ by

∆ = t⊕ t = M(c⊕ c′) = Mδ,

i.e. the vectors differ in their first coordinate if and only if kn = 0 and in their
(n + 1)-th coordinate. Due to (4) we have t0 = 1 and t′0 = kn and tn = 0 and
t′n = 1. Now, as n is divisible by 128, the first and the (n+1)-th coordinate both
contribute to the value of s0 (resp. s′0). Hence, we get s′0 = s0 + kn.

Now if kn = 1 and s0 = dN/2− 1e (and thus s′0 = dN/2e) the corresponding
vectors e and e′ after the majority logic decoding differ in their first coordinate
exactly. Thus Algorithm 2 will successfully deduce kn = 1.

Again the special choice of c ensures that the first bn/128c bits of t′128j are
balanced. Therefore the probability of s′0 being dN/2e can be upper bounded by

P(m⊕m′ = T (1, 0, . . . , 0)t | kn = 1) = P(s′0 = dN/2e)

=

(
N ′

dN ′/2e
)

2N ′

>

√
1

2π(N ′ + 1)

where again N ′ = d `−d−1−n
128 e. Finally, let us consider the probability that, after

running Algorithm 2 we deduce kn = 0 while it holds that kn = 1. This is given
by the probability that, under the condition that kn = 1, in none of the α tries
a difference equal to T (1, 0, . . . , 0)t occurred. It can be upper bounded by

P(error) ≤

(
1−

√
1

2π(N ′ + 1)

)α

which is exponentially small in α.

4.3 Experimental Results

We implemented the described attack against TCHo in C/C++ using Shoup’s
NTL library. We were able to derive the secret key for each proposed parameter
set of [3] on a Core2 Duo 2.2 GHz laptop in less than 20 hours. The individual
timings are given in Table 2.

k d wK ` time in h

I65 128 25820 45 50000 2
II65 128 24730 67 68000 4.5
III 128 44677 25 90000 7
IV 128 24500 51 56000 3
V 128 17600 81 150000 20

VI 128 31500 65 100000 13

Table 2. Time to recover the secret key

One implementation detail that is worth mentioning, is the computation of
δ′ (resp. ĉ). A straightforward approach might be to compute the inverse of
the matrix M ′ of known bits. This has however an utterly bad performance, so
that it is not even possible to consider matrices of dimension 5000, which is a
rather small example compared to the size of secret polynomial. The best idea to
compute δ′ and ĉ is to solve the corresponding system of equations. We started by
using the method provided by NTL, but its performance was still unsatisfactory.
Because of the extreme sparsity of the matrix M ′ and the additionally a priori
given triangular form, it is obvious that solving such a system of equations over
F2 should not require much computation resources. Therefore we implemented
a simple backwards substitution using an array to store the known one-bits and
a obtained very efficient method to compute the required values δ′ and ĉ.

The value of α can be chosen rather large to get the probability of an error
close to zero, since the expected number of encryptions to find a zero-bit does
not depend on α and the number of one-bits is very small compared to the size
of the key.

Also notice that it is possible to run an arbitrary number of instances in
parallel to find the correct differences at the end of the decryption process.

There are several possibilities for further improvements of the actual attack.
One could guess blocks of zeros, make use of the ability to detect missing one-
keybits or reuse good ciphertext pairs. These improvements would allow to speed
up the attack by some (small) factors.

Acknowledgement

We like to thank the authors of [3] for providing us there sample implementation
of TCHo as well as for helpful comments about the cipher.

References

1. Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup. Tag-
KEM/DEM: A new framework for hybrid encryption and a new analysis of
Kurosawa-Desmedt KEM. In Ronald Cramer, editor, EUROCRYPT, volume 3494
of Lecture Notes in Computer Science, pages 128–146. Springer, 2005.

2. Laila El Aimani and Joachim von zur Gathen. Finding low weight polyno-
mial multiples using lattices. Cryptology ePrint Archive, Report 2007/423, 2007.
http://eprint.iacr.org/.

3. Jean-Philippe Aumasson, Matthieu Finiasz, Willi Meier, and Serge Vaudenay. TCHo

: A hardware-oriented trapdoor cipher. In Josef Pieprzyk, Hossein Ghodosi, and
Ed Dawson, editors, ACISP, volume 4586 of Lecture Notes in Computer Science,
pages 184–199. Springer, 2007.

4. Richard P. Brent and Paul Zimmermann. Algorithms for finding almost irreducible
and almost primitive trinomials. In The Fields Institute, Toronto, page 212, 2003.

5. Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-weight
words in a linear code: Application to McEliece’s cryptosystem and to narrow-sense
BCH codes of length 511. IEEE Transactions on Information Theory, 44(1):367–
378, 1998.

6. Martin Feldhofer and Christian Rechberger. A case against currently used hash
functions in RFID protocols. In Robert Meersman, Zahir Tari, and Pilar Herrero,
editors, OTM Workshops (1), volume 4277 of Lecture Notes in Computer Science,
pages 372–381. Springer, 2006.

7. Matthieu Finiasz and Serge Vaudenay. When stream cipher analysis meets public-
key cryptography. In Eli Biham and Amr M. Youssef, editors, Selected Areas in
Cryptography, volume 4356 of Lecture Notes in Computer Science, pages 266–284.
Springer, 2006.

8. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, CRYPTO, volume
1666 of Lecture Notes in Computer Science, pages 537–554. Springer, 1999.

9. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In IEEE Symposium on Foundations of Computer Science, pages 124–
134, 1994.

