Ununterscheidbarkeit von Chiffretexten

Spiel Ununterscheidbarkeit von Chiffretexten $PrivK^{eav}_{\mathcal{A},\Pi}(n)$

Sei Π ein Verschlüsselungsverfahren und \mathcal{A} ein Angreifer.

- 2 $k \leftarrow Gen(1^n)$.
- **③** Wähle $b ∈_R \{0,1\}$. $b' ← A(Enc_k(m_b))$.
- $PrivK_{\mathcal{A},\Pi}^{eav}(n) = \begin{cases} 1 & \text{für } b = b' \\ 0 & \text{sonst} \end{cases}.$

Anmerkungen:

- \mathcal{A} wählt die zu verschlüsselnden Nachrichten m_0, m_1 selbst.
- \mathcal{A} gewinnt das Spiel, d.h. b = b', durch Raten von b' mit Ws $\frac{1}{2}$.
- Wir bezeichnen $\operatorname{Ws}[\operatorname{\textit{PrivK}}_{\mathcal{A},\Pi}^{eav}(n)=1]-\frac{1}{2}$ als Vorteil von $\mathcal{A}.$

Raten ist optimal

Satz Perfekte Sicherheit und PrivKeav

Ein Verschlüsselungsverfahren Π ist perfekt sicher gdw für alle Angreifer \mathcal{A} gilt $Ws[PrivK_{A,\Pi}^{eav}(n) = 1] = \frac{1}{2}$.

Beweis:

- " \Leftarrow ": Sei Π nicht perfekt sicher. Dann existieren $m_0, m_1 \in \mathcal{M}$ und $c \in C \text{ mit Ws}[C = c \mid M = m_0] \neq \text{Ws}[C = c \mid M = m_1].$
- OBdA Ws[$C = c \mid M = m_0$] > Ws[$C = c \mid M = m_1$].
- Wir definieren den folgenden Angreifer A für das Spiel PrivK^{eav}_{Δ Π}

Algorithmus Angreifer A

EINGABE: m_0, m_1, c

- **1** Versende Nachrichten m_0, m_1 . Erhalte $c' \leftarrow Enc_k(m_h)$.
- Palls c' = c, setze b' = 0. Sonst setze $b' \in \{0, 1\}$.

AUSGABE: b'

Nicht perfekt sicher ⇒ Vorteil

Beweis (Fortsetzung):

• Es gilt $Ws[PrivK_{A}^{eav} = 1] = Ws[A(Enc(m_b) = b)]$ $= \frac{1}{2} \cdot \text{Ws}[C \neq c] + \text{Ws}[M = m_0 \mid C = c] \cdot \text{Ws}[C = c]$ $= \frac{1}{2}(1 - Ws[C = c]) + Ws[M = m_0 \mid C = c] \cdot Ws[C = c].$

- Falls $\operatorname{Ws}[M=m_0\mid C=c]>rac{1}{2},$ so folgt $\operatorname{Ws}[\operatorname{\textit{Priv}K}^{eav}_{\mathcal{A}.\Pi}=1]>rac{1}{2}.$
- Es gilt $Ws[M = m_0 \mid C = c]$ $= \frac{\operatorname{Ws}[C = c \mid M = m_0] \cdot \operatorname{Ws}[M = m_0]}{\sum_{i=0}^{1} \operatorname{Ws}[C = c \mid M = m_i] \cdot \operatorname{Ws}[M = m_i]}$ $\frac{\operatorname{Ws}[C = c \mid M = m_0]^{\frac{1}{2}}}{\operatorname{Ws}[C = c \mid M = m_0] + \operatorname{Ws}[C = c \mid M = m_1]} > \frac{1}{2}.$

 $<2\cdot Ws[C=c|M=m_0]$

Perfekt sicher ⇒ kein Vorteil

Beweis (Fortsetzung): Perfekt sicher \Rightarrow Ws[$PrivK_{A,\Pi}^{eav} = 1$] = $\frac{1}{2}$

- Sei Π perfekt sicher. Dann gilt für alle $m_0, m_1 \in \mathcal{M}, c \in \mathcal{C}$ Ws $[C = c \mid M = m_0] = \text{Ws}[C = c] = \text{Ws}[C = c \mid M = m_1].$
- D.h. es gilt $\{c \mid c \in Enc_k(m)\} = C$ für alle $m \in M$.
- Daraus folgt $Ws[PrivK_{A\Pi}^{eav} = 1] = Ws[A(Enc(m_b) = b)]$

$$= \operatorname{Ws}[b = 0] \cdot \operatorname{Ws}[\mathcal{A}(Enc(m_0)) = 0] + \operatorname{Ws}[b = 1] \cdot \operatorname{Ws}[\mathcal{A}(Enc(m_1) = 1]$$

$$= \frac{1}{2} \cdot \left(\sum_{c \in Enc(m_0)} \operatorname{Ws}[\mathcal{A}(c) = 0 \mid C = c] \cdot \operatorname{Ws}[C = c] \right)$$

$$+ \sum_{c \in Enc(m_1)} \underbrace{\operatorname{Ws}[\mathcal{A}(c) = 1 \mid C = c]}_{1 - \operatorname{Ws}[\mathcal{A}(c) = 0 \mid C = c]} \cdot \operatorname{Ws}[C = c] \right)$$

$$= \frac{1}{2} \cdot \sum_{c \in Enc(m_1)} \operatorname{Ws}[C = c] = \frac{1}{2}.$$

Computational Security

Perfekte Sicherheit:

- Liefert Sicherheit im informationstheoretischen Sinn, d.h. der Angreifer erhält nicht genügend Information, um zu entschlüsseln.
- Benötigen Schlüssel der Länge aller zu verschlüsselnden Nachrichten. Dies ist unpraktikabel in der Praxis.

Computational Security Ansatz:

- Wir verwenden kurze Schlüssel (z.B. 128 Bit).
- Liefert Sicherheit nur gegenüber ppt Angreifern.
- Unbeschränkte Angreifer können bei KPA-Angriff \mathcal{K} durchsuchen.
- Seien $(m_1, c_1), \ldots, (m_n, c_n)$ die Plaintext/Chiffretext Paare.
- Mit hoher Ws existiert eindeutiges k mit $m_i = Dec_k(c_i)$, $i \in [n]$.
- Mit obigem KPA-Angriff kann der Angreifer in Polynomial-Zeit auch ein einzelnes $k \in \mathcal{K}$ raten, dieses ist korrekt mit Ws $\frac{1}{|\mathcal{K}|}$.
- D.h. ppt Angreifer besitzen nur vernachlässigbare Erfolgsws im Sicherheitsparameter.

Vernachlässigbare Wahrscheinlichkeit

Definition Vernachlässigbare Wahrscheinlichkeit

Eine Funktion $f: \mathbb{N} \to \mathbb{R}$ heißt *vernachlässigbar*, falls für jedes Polynom $p \in \mathbb{N}$ existiert, so dass für alle $n \geq N$ gilt $f(n) < \frac{1}{p(n)}$. Notation: f(n) = negl(n).

Bsp:

- Vernachlässigbare Funktionen: $\frac{1}{2^n}$, $\frac{1}{2^{\sqrt{n}}}$, $\frac{1}{2^{\log^2 n}}$, $\frac{1}{2^{\log\log n}}$.
- Nicht vernachlässigbare Funktionen: $\frac{1}{n^2}$, $\frac{1}{\log n}$, $\frac{1}{2\mathcal{O}(\log n)}$.

Korollar Komposition vernachlässigbarer Funktionen

Seien f_1 , f_2 vernachlässigbare Funktionen. Dann ist

- $f_1 + f_2$ vernachlässigbar.
- q(n) · f₁ vernachlässigbar für jedes Polynom q.

Sicherheitsbeweis per Reduktion

Annahme: Problem X lässt sich in ppt nur mit Ws negl(n) lösen.

- Sei Π ein Krypto-Verfahren mit Sicherheitsparameter *n*.
- Sei A ein ppt Angreifer auf Π mit Erfolgsws $\epsilon(n)$.
- Wir konstruieren eine polynomielle Reduktion \mathcal{A} ' für $X \leq_{p} \mathcal{A}$. (Erinnerung: Diskrete Mathematik II)

Algorithmus Reduktion A' für $X \leq_{\rho} A$

EINGABE: Instanz x des Problems X

- **①** Konstruieren aus x Instanz von Π, senden diese an A.
- 2 Sofern As Angriff eine Interaktion erfordert (z.B. bei CCA), wird diese von der Reduktion simuliert. As Sicht soll dabei identisch zu einem realen Angriff sein.
- ③ \mathcal{A} bright schließlich Π mittels Ausgabe y mit Ws $\epsilon(n)$.
- Wir verwenden y, um eine Lösung für die Instanz x zu berechnen.

AUSGABE: Lösung für x

Sicherheitsbeweis per Reduktion

- Alle Schritte der Reduktion laufen in polynomial-Zeit.
- Angenommen Schritt 4 besitze Erfolgws $\frac{1}{p(n)}$ für ein Polynom p(n).
- **•** Dann besitzt die Reduktion insgesamt Erfolgsws $\frac{\epsilon(n)}{p(n)}$.
- Nach Annahme lässt sich X nur mit Ws negl(n) lösen.
- D.h. $\frac{\epsilon(n)}{p(n)} \leq \text{negl}(n)$, und damit folgt $\epsilon(n) \leq \text{negl}(n)$.
- ullet Damit besitzt **jeder** Angreifer ${\mathcal A}$ vernachlässigbare Erfolgws.

Reduktionsbeweis bildlich

