Affine Varietät

Definition Affine Varietät

Seien $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$ für einen Körper \mathbb{F} . Wir bezeichnen

$$\mathbf{V}(f_1, \dots, f_m) = \{(a_1, \dots, a_n) \in \mathbb{F}^n \mid f_i(a_1, \dots, a_n) = 0 \text{ für } i = 1, \dots, m\}$$

als die durch f_1, \ldots, f_m definierte affine Varietät.

Anmerkungen:

- $V(f_1, ..., f_m)$ ist die gemeinsame Nullstellenmenge von $f_1, ..., f_m$.
- Für Beispiele verwenden wir oft den Körper $\mathbb{F}=\mathbb{R}$, für die Kryptographie $\mathbb{F}=\mathbb{F}_{\rho}$.

Beispiele:

- $V(x^2 + y^2 1)$ ist in \mathbb{R}^2 der Einheitskreis mit Mittelpunkt **0**.
- $V(x^2 + y^2 z^2)$ liefert im \mathbb{R}^3 einen Doppelkegel.
- $V(y-x^2,z-x^3)$ liefert als Schnitt zweier Flächen eine Kurve.
- V(xz, yz) ist die Vereinigung der (x, y)-Ebene mit der z-Achse.

Spezialfall Lineare Varietät

Definition Lineare Varietät

Sei $A \in \mathbb{F}^{m \times n}$ und $\mathbf{b} \in \mathbb{F}^m$. Dann definieren die Lösungen $\mathbf{V} = \{\mathbf{x} \in \mathbb{F}^n \mid A\mathbf{x} = \mathbf{b}\}$ eine *lineare Varietät*.

Anmerkungen:

• Sei rang(A) = r. Dann besitzt **V** Dimension n - r. D.h. dim(**V**) wird von der Anzahl linear unabhängiger Gleichungen bestimmt.

Mehr Ziele:

- Lösbarkeit:
 - Gilt $\mathbf{V}(f_1,\ldots,f_m)\neq\emptyset$, d.h. ist $f_1=\ldots=f_m=0$ lösbar?
- ② Endlichkeit:
 - Ist $V(f_1, ..., f_m)$ endlich? Können wir alle Lösungen bestimmen?

Abgeschlossenheit unter Vereinigung und Schnitt

Satz Abgeschlossenheit unter Vereinigung und Schnitt

Seien V, W affine Varietäten. Dann sind auch $V \cap W$ und $V \cup W$ affine Varietäten.

- Seien $V = \mathbf{V}(f_1, \dots, f_m)$ und $W = \mathbf{W}(g_1, \dots, g_\ell)$. Sei $\mathbf{x} \in V \cap W$.
- Dann verschwindet **x** sowohl auf f_1, \ldots, f_m als auch auf g_1, \ldots, g_ℓ .
- Damit verschwindet \mathbf{x} auf $f_1, \ldots, f_m, g_1, \ldots, g_\ell$, d.h.

$$V \cap W = \mathbf{V}(f_1,\ldots,f_m,g_1,\ldots,g_\ell).$$

- Wir zeigen weiterhin: $V \cup W = V(f_i g_i \mid i = 1, ..., m, j = 1, ..., \ell)$.
- $V \cup W \subseteq V(f_ig_i)$: Sei $\mathbf{x} \in V \cup W$, oBda $\mathbf{x} \in V$.
- Dann verschwindet \mathbf{x} auf allen f_i und damit auf allen f_ig_j .
- $\mathbf{V}(f_ig_j)\subseteq V\cup W$: Sei $\mathbf{x}\in\mathbf{V}(f_ig_j)$.
- Falls $\mathbf{x} \in V$, gilt $\mathbf{x} \in V \cup W$. Sonst folgt $f_{i'}(\mathbf{x}) \neq 0$ für ein $i' \in [m]$.
- Andererseits verschwindet \mathbf{x} auf allen $f_{i'}g_{j}$.
- Damit verschwindet **x** auf allen g_j . D.h. es gilt $\mathbf{x} \in W_{\bullet}$

Ideal

Definition Ideal

Eine Menge $I \subseteq \mathbb{F}[x_1, \dots, x_n]$ heißt *Ideal* falls Folgendes gilt.

- $0 \in I$.
- ② Falls $f, g \in I$, dann ist $f + g \in I$.
- **③** Für $f \in I$ und $h \in \mathbb{F}[x_1, \dots, x_n]$ gilt $hf \in I$.

Definition Polynomideal

Seien $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$. Dann bezeichnen wir mit

$$\langle f_1,\ldots,f_m\rangle=\left\{\sum_{i=1}^mh_if_i\mid h_i\in\mathbb{F}[x_1,\ldots,x_n]\right\}$$

das von f_1, \ldots, f_m generierte Ideal.

Anmerkung: $I = \langle f_1, \dots, f_m \rangle$ ist ein Ideal.

- Sei $I = \langle f_1, \dots, f_m \rangle$. $0 \in I$ wegen $0 = \sum_i 0 \cdot f_i$.
- Seien $f = \sum_i p_i f_i$, $g = \sum_i q_i f_i \in I$ und $h \in \mathbb{F}[x_1, \dots, x_n]$. Dann gilt

Varietäten und Ideale

Definition Basis eines Ideals

Ein Ideal I heißt endlich erzeugt mit Basis $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$, falls $I = \langle f_1, \ldots, f_m \rangle$.

Satz Varietäten hängen nur vom Ideal ab

Seien f_1, \ldots, f_m und g_1, \ldots, g_ℓ Basen eines Ideals I. Dann gilt

$$\mathbf{V}(f_1,\ldots,f_m)=\mathbf{V}(g_1,\ldots,g_\ell).$$

Beweis:

- Zeigen $V(f_1, ..., f_m) \subseteq V(g_1, ..., g_\ell)$. Umkehrung folgt analog.
- Sei $\mathbf{x} \in \mathbf{V}(f_1, \dots, f_m)$. D.h. $f_i(\mathbf{x}) = 0$ für alle $i = 1, \dots, m$.
- Da die f_i eine Basis von I bilden, können wir jedes g_j schreiben als $g_j = \sum_{i=1}^m h_i f_i$ für $j = 1, \dots, \ell$.
- Damit gilt $g_j(\mathbf{x}) = \sum_i h_i(\mathbf{x}) \cdot f_i(\mathbf{x}) = 0$. D.h. $x \in \mathbf{V}(g_1, \dots, g_\ell)$.

Bsp: Es gilt
$$\langle 2x^2 + 3y^2 - 11, x^2 - y^2 - 3 \rangle = \langle x^2 - 4, y^2 - 1 \rangle$$
 (Übung),

d.h. $V(2x^2 + 3y^2 - 11, x^2 - y^2 - 3) = V(x^2 - 4, y^2 - 1) = \{(\pm 2, \pm 1)\}$

Das Ideal einer Varietät

Frage: Welche Polynome verschwinden auf $V(f_1, \ldots, f_m)$?

Definition Ideal einer Varietät

Sei V eine affine Varietät. Dann ist das Ideal von V definiert als

$$\mathbf{I}(V) = \{ f \in \mathbb{F}[x_1, \dots, x_n] \mid f(\mathbf{x}) = 0 \text{ für alle } \mathbf{x} \in V \}.$$

Satz I(V) ist ein Ideal

Sei V eine affine Varietät. Dann ist I(V) ein Ideal.

Beweis:

- $0 \in I(V)$, da das Nullpolynom auf allen Punkten verschwindet.
- Seien $f, g \in I(V)$ und $h \in \mathbb{F}[x_1, \dots, x_n]$. Für $\mathbf{x} \in V$ folgt

$$\underbrace{f(\mathbf{x})}_{=0} + \underbrace{g(\mathbf{x})}_{=0} = 0 \text{ und } h(\mathbf{x}) \cdot \underbrace{f(\mathbf{x})}_{=0} = 0.$$

• Damit gilt $f + g \in I(V)$ und $hf \in I(V)$.

Beispiel: Ideal einer Varietät

Bsp Ideal einer Varietät

$$\mathbf{I}(\{(0,0)\}) = \langle x,y \rangle \subseteq \mathbb{F}[x,y].$$

- $\langle x,y \rangle \subseteq I(\{(0,0)\})$: Sei $f \in \langle x,y \rangle$. Dann gilt $f(x,y) = h_1(x,y) \cdot x + h_2(x,y) \cdot y.$
- Damit ist f(0,0) = 0 und es folgt $f \in I(\{(0,0)\})$.
- $I(\{(0,0)\}) \subseteq \langle x,y \rangle$: Sei $f \in I(\{(0,0)\})$. Dann gilt $f(x,y) = \sum_{i,j} a_{ij} x^i y^j$ mit f(0,0) = 0.
- Es folgt $a_{00} = 0$ und damit

$$f(x,y) = \left(\sum_{i,j,i>0} a_{ij} x^{i-1} y^j\right) \cdot x + \left(\sum_{j>0} a_{0j} y^{j-1}\right) \cdot y \in \langle x,y \rangle.$$

Polynome \rightarrow Varietät \rightarrow Ideal

Frage: Gilt $\langle f_1, \dots, f_m \rangle = I(V(f_1, \dots, f_m))$? Antwort: Leider nicht.

Satz

Es gilt $\langle f_1, \dots, f_m \rangle \subset \mathbf{I}(\mathbf{V}(f_1, \dots, f_m))$, aber i. Allg. keine Gleichheit.

- Sei $f \in \langle f_1, \dots, f_m \rangle$, d.h. $f = \sum_{i=1}^n h_i f_i$ für Polynome h_i .
- Die Polynome f_1, \ldots, f_m verschwinden auf allen $\mathbf{x} \in \mathbf{V}(f_1, \ldots, f_m)$.
- Damit gilt $f(\mathbf{x}) = 0$ für $\mathbf{x} \in \mathbf{V}(f_1, \dots, f_m)$, d.h. $f \in \mathbf{I}(\mathbf{V}(f_1, \dots, f_m))$.
- **Gegenbeispiel** für Gleichheit: $I(V(x^2, y^2)) \subseteq \langle x^2, y^2 \rangle$.
- Die Gleichungen $x^2 = y^2 = 0$ implizieren $\mathbf{V}(x^2, y^2) = \{(0, 0)\}.$
- Aus dem Beispiel zuvor folgt $I(V(x^2, y^2)) = I(\{(0, 0)\}) = \langle x, y \rangle$.
- Es gilt aber $\langle x, y \rangle \not\subseteq \langle x^2, y^2 \rangle$, da z.B. x nicht in der Form $h_1 \cdot x^2 + h_2 \cdot y^2$ dargestellt werden kann.

Beziehung zwischen Varietäten und ihren Idealen

Satz

Seien $V, W \subseteq \mathbb{F}^n$ affine Varietäten. Dann gilt

- $V \subseteq W \text{ gdw } I(W) \subseteq I(V).$
- V = W gdw I(V) = I(W).

- $\bullet \Rightarrow$: Sei $V \subseteq W$ und $f \in I(W)$.
- Dann verschwindet f auf allen $\mathbf{x} \in W$ und damit auf allen $\mathbf{x} \in V$.
- Damit folgt $f \in I(V)$.
- \Leftarrow : Sei $I(W) \subseteq I(V)$.
- Sei die affine Varietät W definiert durch die Polynome f_1, \ldots, f_m .
- Dann gilt $f_1, \ldots, f_m \in \mathbf{I}(W) \subseteq \mathbf{I}(V)$.
- D.h. f_1, \ldots, f_m verschwinden insbesondere auf den Punkten aus V.
- Da W aus *allen* gemeinsamen Nst. der f_i besteht, folgt $V \subseteq W$.
- 2 folgt aus 1: V = W gilt gdw $V \subseteq W$ und $W \subseteq V$ gdw V = W.

Interessante Probleme

Ziel: Löse die folgenden Probleme algorithmisch.

- **1 Basisdarstellung:** Stelle jedes Ideal *I* mittels einer endlichen Basis $\langle f_1, \dots, f_m \rangle$ dar.
- 2 Idealzugehörigkeit: Entscheide, ob f im Ideal $\langle f_1, \dots, f_m \rangle$ liegt.
- Sestimme alle gemeinsamen Lösungen von

$$\left|\begin{array}{ccc} f_1 & = & 0 \\ & \vdots & \\ f_m & = & 0 \end{array}\right|.$$

Polynomdivision

Definition führender Term

Sei $f = a_m x^m + \ldots + a_0 \in \mathbb{F}[x]$. Dann bezeichnen wir den *führenden Term* von f mit $LT(f) = a_m x^m$.

Anmerkung:

• Für $f, g \in \mathbb{F}[x]$ gilt: $\operatorname{grad}(f) \leq \operatorname{grad}(g) \Leftrightarrow \operatorname{LT}(f)$ teilt $\operatorname{LT}(g)$.

Algorithmus Polynomdivision

EINGABE: $f, g \in \mathbb{F}[x]$ mit grad $(g) < \operatorname{grad}(f)$

- Setze q := 0 und r := f.
- **2** WHILE $(r \neq 0 \text{ und } LT(g) \text{ teilt } LT(r))$
 - Setze $q := q + \frac{\operatorname{LT}(r)}{\operatorname{LT}(g)}$ und $r \frac{\operatorname{LT}(r)}{\operatorname{LT}(g)} \cdot g$.

AUSGABE: q, r mit grad(r) < grad(g) und f = qg + r

Invariante: $f = qg + r = (q + \frac{\operatorname{LT}(r)}{\operatorname{LT}(g)}) \cdot g + r - \frac{\operatorname{LT}(r)}{\operatorname{LT}(g)} \cdot g$.

Jedes Ideal in $\mathbb{F}[x]$ wird von einem Polynom erzeugt.

Satz Jedes Ideal in $\mathbb{F}[x]$ ist ein Hauptideal.

Für jedes Ideal I in $\mathbb{F}[x]$ gilt $I = \langle f \rangle$ für ein $f \in \mathbb{F}[x]$, wobei f eindeutig ist bis auf Multiplikation mit Konstanten ungleich Null.

- Sei $I = \{0\}$, dann gilt $I = \langle 0 \rangle$.
- Andernfalls wähle $f \in I \setminus \{0\}$ minimalen Grads.
- Behauptung: $I = \langle f \rangle$. Es gilt $\langle f \rangle \subseteq I$, da I ein Ideal ist.
- $I \subseteq \langle f \rangle$: Sei $g \in I$ beliebig. Wir berechnen q, r mit g = qf + r.
- Da *I* ein Ideal ist, gilt $qf \in I$ und ferner $r = g qf \in I$.
- Wegen deg(r) < deg(f), folgt r = 0 aufgrund der Minimalität von f.
- Daher gilt $g = qf \in \langle f \rangle$.

Jedes Ideal in $\mathbb{F}[x]$ wird von einem Polynom erzeugt.

Beweis der Eindeutigkeit:

- Angenommen $\langle f \rangle = \langle g \rangle$.
- Aus $f \in \langle g \rangle$ folgt f = hg für ein $h \in \mathbb{F}[x]$.
- Damit gilt grad(f) = grad(h) + grad(g), d.h. $grad(g) \le grad(f)$.
- Vertauschen von f und g liefert analog $grad(f) \leq grad(h)$.
- Damit gilt grad(g) = grad(f) und f, g unterscheiden sich durch Multiplikation mit einem konstanten Polynom h, grad(h) = 0.

Definition Hauptideal

Ein Ideal, das von einem Polynom erzeugt wird, heißt Hauptideal.

Problem:

Wie finden wir z.B. im Hauptideal $\langle x^4 - 1, x^6 - 1 \rangle$ einen Generator?

Der ggT ist ein Generator

Satz ggT ist Generator

Seien $f, g \in \mathbb{F}[x]$. Dann gilt $\langle f, g \rangle = \langle ggT(f, g) \rangle$.

- Jedes Ideal I in $\mathbb{F}[x]$ ist ein Hauptideal.
- D.h. $I = \langle f, g \rangle = \langle h \rangle$ für ein $h \in \mathbb{F}[x]$.
- Der Generator h ist ein gemeinsamer Teiler von f, g, da f, $g \in \langle h \rangle$.
- Um zu zeigen, dass h = ggT(f, g), müssen wir zeigen, dass jeder gemeinsame Teiler von f, g auch h teilt und h somit der ggT ist.
- Sei *p* ein beliebiger gemeinsamer Teiler von *f*, *g*.
- D.h. f = ap und g = bp für $a, b \in \mathbb{F}[x]$.
- Wegen $h \in \langle f, g \rangle$ existieren $c, d \in \mathbb{F}[x]$ mit h = cf + dg. Es folgt h = cap + dbp = (ca + dp)p.
- Damit teilt p das Polynom h, und es muss h = ggT(f, g) gelten.

Beispiele für Basisdarstellung und Idealzugehörigkeit

Bsp Basisdarstellung:

- Wir berechnen einen Generator von $I = \langle x^4 1, x^6 1 \rangle$.
- Der Euklidische Algorithmus für Polynome liefert

$$ggT(x^4-1, x^6-1) = x^2-1.$$

• Damit gilt $I = \langle x^2 - 1 \rangle$.

Bsp Idealzugehörigkeit:

- Sei $I = \langle x^3 3x + 2, x^4 1, x^6 1 \rangle$. Ist $x^2 + 2x + 1 \in I$?
- Es gilt $ggT(x^3 3x + 2, x^4 1, x^6 1) = x 1$. D.h. $I = \langle x 1 \rangle$.
- Division mit Rest liefert $x^2 + 2x + 1 = (x+3)(x-1) + 4$.
- D.h. $x^2 + 2x + 1$ ist nicht in I, da es nicht von x 1 geteilt wird.

Bsp Lösbarkeit:

{1} ist die Lösungsmenge des polynomiellen Gleichungssystems

$$\begin{vmatrix} x^3 - 3x & = & -2 \\ x^4 & = & 1 \\ x^6 & = & 1 \end{vmatrix}.$$

Monomordnung

Ziel: geeignete Monomordnung in $\mathbb{F}[x_1,\ldots,x_n]$

- Monomordnung soll verträglich mit der Polynommultiplikation sein.
- Wir identifizieren Monome $\mathbf{x}^{\alpha} := x_1^{\alpha_1} \dots x_n^{\alpha_n}$ mit ihrem Exponentenvektor $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$.

Definition Monomordnung

Eine Monomordnung auf $\mathbb{F}[x_1,\ldots,x_n]$ ist eine Relation > auf \mathbb{N}_0^n mit:

- \bullet > ist eine totale Ordnung auf \mathbb{N}_0^n .
- ② Seien $\alpha, \beta \in \mathbb{N}_0^n$ mit $\alpha > \beta$. Dann gilt für alle $\gamma \in \mathbb{N}_0^n$ $\alpha + \gamma > \beta + \gamma$ (Verträglichkeit mit Monommultiplikation).
- \odot > ist eine Wohlordnung auf \mathbb{N}_0^n . D.h. jede nicht-leere Teilmenge von \mathbb{N}_0^n enthält ein kleinstes Element.

Bsp:

- Die Ordnung ... > 2 > 1 > 0 erfüllt obige Bedingungen auf \mathbb{N}_0 .
- Damit ist die Gradordnung eine Monomordnung auf $\mathbb{F}[x]$.

Wohlordnung

Anmerkung:

Wohlordnung wird uns Terminierung von Algorithmen liefern.

Lemma zur Wohlordnung

Eine Relation > ist eine Wohlordnung gdw jede strikt fallende Sequenz $\alpha_1 > \alpha_2 > \dots$ in \mathbb{N}_0^n terminiert.

- keine Wohlordung ⇒ Sequenz terminiert nicht:
- Sei $S \subseteq \mathbb{N}_0^n$ eine Menge ohne minimales Element.
- Wähle $\alpha_1 \in S$. Da α_1 nicht minimal in S ist, existiert $\alpha_2 < \alpha_1$, usw.
- Sequenz terminiert nicht ⇒ keine Wohlordung:
- Sei $\alpha_1 > \alpha_2 > \dots$ eine Sequenz. Definiere $S = {\alpha_i \mid i \in \mathbb{N}}.$
- *S* besitzt kein minimales Element, d.h. > ist keine Wohlordnung.

Lexikographische Ordnung

Definition Lexikographische Ordnung >_{lex}

Seien $\alpha, \beta \in \mathbb{N}_0^n$. Definiere $\alpha >_{lex} \beta$, falls in $\alpha - \beta$ der von links erste Nicht-Null Eintrag positiv ist. Wir schreiben $x^{\alpha} >_{lex} x^{\beta}$ für $\alpha >_{lex} \beta$.

Bsp:

- $(2,3,4) >_{lex} (1,5,6)$ und $(2,3,4) >_{lex} (2,1,5)$.
- $(1,0,\ldots,0)>_{lex}(0,1,0\ldots,0)>_{lex}\ldots>_{lex}(0,\ldots,0,1)$, so dass $x_1>_{lex}\ldots>_{lex}x_n$.
- Wir verwenden ebenfalls $x >_{lex} y >_{lex} z$. Damit gilt z.B. $x > y^3 z^5$.
- Für die alphabetische Ordnung a > b > ... > z, erhalten wir eine Wörterbuchsortierung mit z.B. Kryptanalyse > Kryptographie.

Satz

Die lexikographische Ordnung $>_{lex}$ ist eine Monomordnung.

Beweis: Übungsaufgabe.

Andere wichtige Monomordnungen

Definition Grad-Lexikographische Ordnung $>_{grlex}$

Seien
$$\alpha, \beta \in \mathbb{N}_0^n$$
 und $|\alpha| = \sum_i \alpha_i, |\beta| = \sum_i \beta_i$. Definiere $\alpha >_{\textit{grlex}} \beta$ falls $|\alpha| > |\beta|$ oder $|\alpha| = |\beta|$ und $\alpha >_{\textit{lex}} \beta$.

- **Bsp:** $(1,2,3) >_{grlex} (2,2,1)$ und $(1,3,2) >_{grlex} (1,2,3)$.
- Wie bei der lexikographischen Ordnung gilt $x_1 >_{grlex} \ldots >_{grlex} x_n$.

Definition Gradreverse-Lexikographische Ordnung $>_{grevlex}$

Seien $\alpha, \beta \in \mathbb{N}_0^n$. Wir definieren $\alpha >_{\textit{grevlex}} \beta$ falls $|\alpha| > |\beta|$ oder $|\alpha| = |\beta|$ und der von rechts erste Nicht-Null Eintrag in $\alpha - \beta$ ist negativ.

- **Bsp:** $(1,2,4) >_{grevlex} (3,2,1)$ und $(1,2,3) >_{grevlex} (0,3,3)$.
- Man beachte, dass z.B. $xy^2z^3 >_{lex} y^3z^3$ und $xy^2z^3 >_{grevlex} y^3z^3$.
- Es gilt $x_1 >_{grevlex} \dots >_{grevlex} x_n$.