RUHR-UNIVERSITÄT BOCHUM LEHRSTUHL FÜR KRYPTOLOGIE UND IT-SICHERHEIT Prof. Dr. Alexander May Alexander Meurer, Florian Giesen

Präsenzübungen zur Vorlesung Kryptographie 1 WS 2010/11

Blatt 2 / 8./10. November 2010

Für die erste Aufgabe ist folgende Definition von *vernachlässigbar* hilfreich, deren Äquivalenz zur Definition aus der Vorlesung wir auf dem Hausaufgabenzettel beweisen.

Definition 1. Eine Funktion $f: \mathbb{N} \to \mathbb{N}$ heißt vernachlässigbar, wenn für jede Konstante $c \in \mathbb{R}, c > 0$ ein $N = N(c) \in \mathbb{N}$ existiert, so dass $f(n) < n^{-c}$ für alle n > N gilt.

AUFGABE 1. Vernachlässigbares.

Entscheiden Sie, welche der folgenden Funktionen vernachlässigbar sind. Begründen Sie Ihre Antwort.

- a) $2^{-\log^2 n}$
- b) 0.99^n
- c) $2^{-100}n^{-1}$
- d) $2^{-\sqrt{n}}$

Hinweis: Für vernachlässigbare Funktionen können Sie beispielsweise eine konkrete Wahl für N(c) aus der obigen Definition angeben. Für nicht-vernachlässigbare Funktionen reicht es, ein $c \in \mathbb{R}$ anzugeben, welches die Definition widerlegt.

Wir definieren ein Spiel $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n,b)$ exakt wie das $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n)$ -Spiel aus der Vorlesung wobei nun ein $festes\ b$ (anstelle eines zufälligen) verwendet wird. Außerdem bezeichnen wir \mathcal{A} 's Ausgabe b' mit $\mathsf{out}(\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n,b))$. Hiermit definieren wir folgende alternative Definition für die Ununterscheidbarkeit von Verschlüsselungen gegenüber KPA.

Definition 2. Ein symmetrisches Verschlüsselungsverfahren Π besitzt ununterscheidbare Chiffretexte gegenüber KPA, wenn für jeden ppt-Angreifer \mathcal{A} gilt

$$\left|\mathbf{Ws}\left[\mathsf{out}(\mathsf{PrivK}_{A,\Pi}^{\mathsf{eav}}(n,1)) = 1\right] - \mathbf{Ws}\left[\mathsf{out}(\mathsf{PrivK}_{A,\Pi}^{\mathsf{eav}}(n,0)) = 1\right]\right| \leq \mathsf{negl}(n)$$
.

AUFGABE 2. Definitions sache.

Zeigen Sie, dass die obige Definition die Definition aus der Vorlesung (siehe Folie 31) impliziert.

Hinweis: Zeigen Sie hierzu zunächst, dass

$$\mathbf{Ws}\left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1\right] = \frac{1}{2} + \frac{1}{2} \cdot \left(\mathbf{Ws}\left[\mathsf{out}(\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n,1)) = 1\right] - \mathbf{Ws}\left[\mathsf{out}(\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n,0)) = 1\right]\right)$$
 gilt.

AUFGABE 3. Pseudozufall.

- a) Sei $G: \{0,1\}^{n/2} \to \{0,1\}^{n+1}$ ein Pseudozufallsgenerator (kurz PRG). Betrachten Sie nun $G': \{0,1\}^n \to \{0,1\}^{n+1}$ mit $G'(s) = G(s_1,\ldots,s_{n/2})$ für einen Seed $s = (s_1,\ldots,s_n)$ der Länge n. Beweisen Sie, das auch G' ein PRG ist, indem Sie aus einem Unterscheider für G' einen Unterscheider für G konstruieren.
- b) Sei $G: \{0,1\}^n \to \{0,1\}^{n+1}$ ein PRG. Definiere $G'': \{0,1\}^{n/2} \to \{0,1\}^{n+1}$ durch $G''(s):=G(0^{n/2}s)$ für einen Seed $s=(s_1,\ldots,s_{n/2})$. Zeigen Sie, dass G'' im Allgemeinen kein Pseudozufallsgenerator ist!

Hinweis: Verwenden Sie Teil a) um Teil b) zu lösen.