### Diskrete Mathematik II

Alexander May

Fakultät für Mathematik Ruhr-Universität Bochum

Sommersemester 2011

# Organisatorisches

- Vorlesung: Mo 12-14 in HZO 70 , Di 09-10 in NA 6/99 (3+1 SWS, 6.75 CP)
- Übung: **Di 10-12** in NA 5/99
  - Assistent: Gottfried Herold, Korrektor: Ilya Ozerov
  - Präsenzübung ist zweiwöchentlich: 05.04., 19.04., 03.05., . . .
  - ▶ Vorrechenübung ist zweiwöchentlich: 12.04., 26.04., 10.05., . . . Abgabe der Übungen am selben Tag vor der Vorlesung.
  - Gruppenabgaben bis 3 Personen
  - Bonussystem: 1/3-Notenstufe für 50%, 2/3-Notenstufe für 75% Gilt nur, wenn man die Klausur besteht!
- Klausur: September(?)

## Themengebiete

- Komplexitätstheorie
  - Klassen P und NP
  - Reduktionen
  - Anwendung: Sicherheitsbeweise in der Kryptographie
- Algorithmische Zahlentheorie
  - Quadratische Reste
  - Beispiel Anwendungen: Zufallszahlengenerator, Identity-Based Encryption
- Kodierungstheorie
  - Komprimierende Codes
  - Beispiel Anwendungen: Kommunikation (Mobilfunk, Internet), Speicher (MP3)
  - Fehlererkennende Codes
  - Ausfalltolerante Codes
  - Beispiel Anwendungen: Mobilfunk, Internet, CD, Secret Sharing, Kryptosystem

### Weiterführende Referenzen

### **Ziel:** Einfaches aber mächtiges Rechnermodell.

- Michael R. Garey, David S. Johnson, "Computers and Intractability", Freeman, 2000
- J. Blömer, "Einführung in Algorithmen und Komplexität", Vorlesungsskript Universität Paderborn, 2002
- N. Koblitz, "A Course in Number Theory and Cryptography", Springer Verlag, 1994
- Steven Roman, "Introduction to Coding and Information Theory", Springer Verlag, 1996

# Einführung in die NP-Vollständigkeitstheorie

#### Notationen

- Alphabet  $A = \{a_1, \dots, a_m\}$  aus Buchstaben  $a_i$
- Worte der Länge n sind Elemente aus  $A^n = \{a_{i_1} \dots a_{i_n} \mid a_{i_i} \in A\}$ .
- $A^0 = \{\epsilon\}$ , wobei  $\epsilon$  das leere Wort ist.
- $A^* = \bigcup_{n=0}^{\infty} A^n, A^+ = A^* \setminus \{\epsilon\}, A^{\leq m} = \bigcup_{n=0}^{m} A^n$
- Länge  $|a_1 \dots a_n| = n$ .  $bin(a_1)$  ist Binärkodierung von  $a_1$ .

### **Definition** Sprache L

Sei A ein Alphabet. Eine Menge  $L \subset A^*$  heißt Sprache über dem Alphabet A. Das Komplement von L über A ist definiert als  $\bar{L} = A^* \setminus L$ .

# Turingmaschine (informal)

### Turingmaschine besteht aus:

- Einseitig unendlichem Band mit Zellen (Speicher),
- Kontrolle und einem Lesekopf, der auf einer Zelle steht.

#### Arbeitsweise einer Turingmaschine

- Bandsymbol > steht in der Zelle am linken Bandende.
- Kontrolle besitzt Zustände einer endlichen Zustandsmenge.
- Abhängig vom Zelleninhalt und Zustand schreibt die Kontrolle ein Zeichen und bewegt den Lesekopf nach links oder rechts.
- Zu Beginn der Berechnung gilt:
  - Lesekopf befindet sich auf dem linken Bandende ⊳.
  - ▶ Band enthält  $\triangleright a_1 \dots a_n \sqcup \sqcup \dots$ , wobei  $a_1 \dots a_n$  die Eingabe ist.
- Turingmaschine M hält gdw Kontrolle im Zustand q<sub>a</sub> oder q<sub>r</sub>.
  - ▶ Falls M in  $q_a$  hält, so akzeptiert M die Eingabe  $a_1 \ldots a_n$ .
  - ▶ Falls M in  $q_r$  hält, so verwirft M die Eingabe  $a_1 \dots a_n$ .
  - Falls M nie in die Zustände  $q_a, q_r$  kommt: M läuft unendlich.



# Turingmaschine (formal)

### **Definition** Deterministische Turingmaschine (Turing 1936)

Eine deterministische Turingmaschine DTM ist ein 4-Tupel ( $Q, \Sigma, \Gamma, \delta$ ) bestehend aus

- Zustandmenge Q: Enthält Zustände  $q_a$ ,  $q_r$ , s.
- Bandalphabet  $\Gamma$  mit  $\sqcup$ ,  $\triangleright \in \Gamma$
- Eingabealphabet  $\Sigma \subseteq \Gamma \setminus \{\sqcup, \rhd\}$ .
- **1** Übergangsfunktion  $\delta: \mathbb{Q} \setminus \{q_a, q_r\} \times \Gamma \to \mathbb{Q} \times \Gamma \times \{L, R\}$ 
  - Es gilt stets  $\delta(q, \triangleright) = (q', \triangleright, R)$  (am linken Bandende).
  - Es gilt nie  $\delta(q, a) = (q', \triangleright, L/R)$  (nicht am linken Bandende).

## Beispiel DTM M<sub>1</sub>

**Bsp**:  $a^{n}$ , n > 1

- $Q = \{q_0, q_1, q_2, q_r\}$  mit  $s = q_0$
- $\Sigma = \{a\}$  und  $\Gamma = \{\sqcup, \rhd, a\}$
- Übergangsfunktion

|   | $\delta$ | а             |                  | $\triangleright$           |
|---|----------|---------------|------------------|----------------------------|
| Ī | $q_0$    | $(q_1, a, R)$ | $(q_r,\sqcup,R)$ | $(q_0, \triangleright, R)$ |
|   | $q_1$    | $(q_1, a, R)$ | $(q_a,\sqcup,R)$ | $(q_1, \triangleright, R)$ |

### Notation der Konfigurationen bei Eingabe $a^2$ :

$$q_0 
hd aa$$

$$\vdash \triangleright aq_1a$$

## Nachfolgekonfigurationen

#### Notation Nachfolgekonfiguration

- Direkte Nachfolgekonfiguration: aqb ⊢ a'q'b'
- i-te Nachfolgekonfiguration: agb ⊢<sup>i</sup> a'g'b'
- Indirekte Nachfolgekonfiguration agb ⊢\* a'b'a', d.h.  $\exists i \in \mathbb{N} : aqb \vdash^i a'q'b'.$

### Akzeptanz und Ablehnen von Eingaben

- DTM *M* erhalte Eingabe  $w \in \Sigma^*$ .
  - ▶ M akzeptiert  $w \Leftrightarrow \exists a, b \in \Gamma^* \text{ mit } s \triangleright w \vdash^* aq_ab$
  - ▶ M lehnt w ab  $\Leftrightarrow \exists a, b \in \Gamma^* \text{ mit } s \rhd w \vdash^* aq_r b$

# Akzeptierte Sprache, L rekursiv aufzählbar

### **Definition** Akzeptierte Sprache, Rekursive Aufzählbarkeit

Sei M eine DTM. Dann ist die von M akzeptierte Sprache

$$L(M) = \{ w \in \Sigma^* \mid M \text{ akzeptiert Eingabe } w \}.$$

Eine Sprache L heißt *rekursiv aufzählbar* gdw eine DTM M existiert mit L = L(M).

- Unsere Beispiel-DTM  $M_1$  akzeptiert die Sprache  $L(M_1) = \{a\}^+$ .
- D.h.  $L = \{a\}^+$  ist rekursiv aufzählbar, da für  $M_1$  gilt  $L = L(M_1)$ .
- Aus der obigen Definition folgt:
   L ist nicht rekursiv aufzählbar ⇔ ∄ DTM M mit L = L(M).
- Es gibt Sprachen, die nicht rekursiv aufzählbar sind, z.B.  $\bar{H} = \{ \langle M, x \rangle \mid \text{DTM } M \text{ hält bei Eingabe } x \text{ nicht.} \}.$  (ohne Beweis)

# Entscheidbarkeit und rekursive Sprachen

#### **Definition** Entscheidbarkeit

Sei M eine DTM, die die Sprache L(M) akzeptiert. M entscheidet die Sprache L(M) gdw M alle Eingaben  $w \notin L(M)$  ablehnt. D.h. insbesondere M hält auf allen Eingaben.

Eine Sprache *L* heißt *entscheidbar* gdw eine DTM *M* existiert, die *L* entscheidet.

- Unsere Beispiel-DTM  $M_1$  entscheidet die Sprache  $L(M_1) = \{a\}^+$ .
- $L = \{a\}^+$  ist entscheidbar, da  $M_1$  die Sprache L entscheidet.

**Korollar** Entscheidbarkeit impliziert rekursive Aufzählbarkeit Sei *L* eine entscheidbare Sprache. Dann ist *L* rekursiv aufzählbar.

Die Rückrichtung stimmt nicht:
 Es gibt rekursiv aufzählbare L, die nicht entscheidbar sind, z.B.
 H = {\langle M, x \rangle | DTM M hält auf Eingabe x.}. (ohne Beweis)

### Entscheiden versus Berechnen

### **Definition** Berechnung von Funktionen

Eine DTM *M* berechnet die Funktion  $f: \mathbb{N}^n \to \mathbb{N}$ , falls *M* für jedes  $(a_1,\ldots,a_n)$  bei Eingabe  $bin(a_1)\#\ldots\#bin(a_n)$  den Bandinhalt  $bin(f(a_1,...,a_n))$  berechnet und in  $q_a$  hält.

 Werden der Einfachheit halber Sprachen entscheiden, nicht Funktionen berechnen.

## Laufzeit einer DTM, Klasse DTIME

#### **Definition** Laufzeit einer DTM

Sei M eine DTM mit Eingabealphabet  $\Sigma$ , die bei jeder Eingabe hält. Sei  $T_M(w)$  die Anzahl der Rechenschritte – d.h. Bewegungen des Lesekopfes von M – bei Eingabe w. Dann bezeichnen wir die Funktion  $T_M(n): \mathbb{N} \to \mathbb{N}$  mit  $T_M(n) = \max\{T_M(w) \mid w \in \Sigma^{\leq n}\}$  als Zeitkomplexität bzw. Laufzeit der DTM M.

- Die Laufzeit wächst monoton in n.
- Unsere Beispiel-DTM  $M_1$  mit  $L(M_1) = \{a\}^*$  besitzt Laufzeit  $\mathcal{O}(n)$ .

#### **Definition DTIME**

Sei  $t: \mathbb{N} \to \mathbb{N}$  eine monoton wachsende Funktion. Die Klasse DTIME ist definiert als

 $DTIME(t(n)) := \{L \mid L \text{ wird von DTM mit Laufzeit } \mathcal{O}(t(n)) \text{ entschieden.} \}.$ 

• Es gilt  $L(M_1) \in DTIME(n)$ .



# Registermaschine RAM

Registermaschine RAM besteht aus den folgenden Komponenten:

- Eingabe-/ und Ausgabe-Register
- Speicherregister
- Programm
- Befehlszähler
- Akkumulator

#### Funktionsweise einer RAM:

- Liest Eingabe aus Eingaberegister und lässt Programm auf Eingabe laufen.
- Führt Arithmetik im Akkumulator aus.
- Ergebnisse können im Speicherregister gespeichert werden.
- Befehlszähler realisiert Sprünge, Schleifen und bedingte Anweisungen im Programm.
- Ausgabe erfolgt im Ausgaberegister.



### DTMs versus RAMs, Churchsche These

### Fakt Polynomielle Äquivalenz von DTMs und RAMs

Sei  $t : \mathbb{N} \to \mathbb{N}$  eine monoton wachsende Funktion mit  $t(n) \ge n$ . Jede RAM mit Laufzeit t(n) kann durch eine DTM M mit Laufzeit  $\mathcal{O}(t(n)^3)$ simuliert werden.

### **Churchsche These** (1936)

"Die im intuitiven Sinne berechenbaren Funktionen sind genau die durch Turingmaschinen berechenbaren Funkionen."

- These ist nicht beweisbar oder widerlegbar.
- Alle bekannten Berechenbarkeitsbegriffe führen zu DTM-berechenbaren Funktionen.

### Die Klasse $\mathcal{P}$

#### **Definition** Klasse $\mathcal{P}$

Die Klasse  $\mathcal{P}$  ist definiert als

$$\mathcal{P} = \bigcup_{k \in \mathbb{N}} DTIME(n^k).$$

- $L \in \mathcal{P}$  gdw eine DTM existiert, die L in Laufzeit  $\mathcal{O}(n^k)$  entscheidet.
- $\bullet$   $\mathcal{P}$  ist die Klasse aller in Polynomialzeit entscheidbaren Sprachen. (auf DTMs, RAMs, etc.)
- Hintereinanderausführung/Verzahnung von DTMs mit polynomieller Laufzeit liefert polynomielle Gesamtlaufzeit.
- $\bullet$   $\mathcal{P}$  beinhaltet praktische und theoretisch interessante Probleme.
- Probleme ausserhalb von  $\mathcal{P}$  sind in der Praxis oft nur für kleine Instanzen oder approximativ lösbar.

