Addition von Punkten

Lemma Addition von Punkten auf E

Seien P, Q auf E mit $P \neq -Q$. Dann schneidet die Gerade durch P, Q die Kurve E in einem dritten Punkt R mit R := -(P + Q).

Beweis:

- Wir zeigen nur $P \neq Q$. Der Beweis für P = Q folgt analog.
- Wie zuvor setzen wir $P = (x_1, y_1), Q = (x_2, y_2)$ und $R = (x_3, y_3)$.
- Sei G die Gerade $y = \alpha x + \beta$ durch P, Q. Dann gilt für i = 1, 2 $(\alpha x_i + \beta)^2 = x_i^3 + ax_i + b$.
- x_1, x_2 sind damit Nullstellen des Polynoms $g(x) = x^3 \alpha^2 x^2 + \dots$
- Dann muss g(x) 3 Nullstellen besitzen

$$g(x) = (x - x_1)(x - x_2)(x - x_3) = x^3 - (x_1 + x_2 + x_3)x^2 + \dots$$

- Durch Koeffizientenvergleich folgt $x_1 + x_2 + x_3 = \alpha^2$.
- Wir erhalten $y_3 = \alpha x_3 + \beta$ und damit $-R = (x_3, -y_3)$.

Eigenschaften der Addition auf E

Korollar Effizienz der Addition

Sei E eine elliptische Kurve mit Punkten P, Q. Dann kann P+Q in Laufzeit $\mathcal{O}(\log^2 p)$ berechnet werden.

• Wir benötigen nur Addition, Multiplikation und Division in \mathbb{Z}_p .

Satz von Mordell

Jede elliptische Kurve *E* bildet mit der definierten Addition eine abelsche Gruppe.

Beweis:

- Abgeschlossenheit: P + Q liefert wieder einen Punkt auf E.
- Neutrales Element ist der Punkt O.
- Inverses von $P \neq \mathbf{0}$ ist -P und $-\mathbf{0} = \mathbf{0}$.
- Abelsch: Berechnung von G unabhängig von Reihenfolge P, Q.
- Assoziativität kann durch Nachrechnen gezeigt werden.

Gruppenordnung einer elliptischen Kurve

Satz von Hasse

Sei E eine elliptische Kurve über \mathbb{F}_p . Dann gilt

$$|E| = p + 1 + t \text{ mit } |t| \le 2\sqrt{p}.$$

Anmerkungen: (ohne Beweis)

- Sei $x \in \mathbb{Z}_p$ und $f(x) = x^3 + ax + b$.
- Falls f(x) ein quadratischer Rest modulo p ist, dann existieren genau zwei Lösungen $\pm y$ der Gleichung $y^2 = f(x) \mod p$, d.h.

$$(x, y)$$
 und $(x, -y)$ liegen auf E .

- Falls f(x) ein Nichtrest ist, besitzt E keinen Punkt der Form (x, \cdot) .
- Genau die Hälfte aller Elemente in \mathbb{Z}_p^* ist ein quadratischer Rest.
- Falls $x \mapsto f(x)$ sich zufällig verhält auf \mathbb{Z}_p , erwarten wir $\frac{p}{2} \cdot 2 = p$ Punkte. Hinzu kommt der Punkt **O**, d.h. $|E| \approx p + 1$.
- Satz von Hasse: $x \mapsto f(x)$ ist fast zufällig mit Fehler $|t| \le 2\sqrt{p}$.

Unser Modell

- Shannon 1948: Informationstheorie und Mathematik der Kommunikation
- Hamming 1950: Erste Arbeit über fehlerkorrigierende Codes

Modell:

 $\textbf{Sender} \rightarrow \textbf{Kodierer} \rightarrow \textbf{Kanal} \rightarrow \textbf{Dekodierer} \rightarrow \textbf{Empfänger}$

- Kanal ist bandbreitenbeschränkt (Kompression)
- Kanal ist fehleranfällig (Fehlerkorrektur)
 - ▶ Bits können ausfallen: $0 \to \epsilon$, $1 \to \epsilon$ (Ausfallkanal)
 - ▶ Bits können kippen: $0 \rightarrow 1$, $1 \rightarrow 0$ (Symmetrischer Kanal)

Motivierendes Bsp: Datenkompression

Szenario:

- Kanal ist fehlerfrei.
- Übertragen gescannte Nachricht:
 Wahrscheinlichkeiten: 99% weißer, 1% schwarzer Punkt.
- Weiße Punkte erhalten Wert 0, schwarze Wert 1.

Kodierer:

- Splitten Nachricht in Blocks der Größe 10.
- Wenn Block x=0000000000, kodiere mit 0, sonst mit 1x.
- 1 dient als Trennzeichen beim Dekodieren.

Dekodierer:

- Lese den Code von links nach rechts.
- Falls 0, dekodiere 0000000000.
- Falls 1, übernehme die folgenden 10 Symbole.

Erwartete Codelänge

Sei $q := Ws[Block ist 0000000000] = (0.99)^{10} \ge 0.9$. Sei Y Zufallsvariable für die Codewortlänge eines 10-Bit Blocks:

$$E[Y] = \sum_{y \in \{0,1x\}} |y| \cdot \text{Ws}(Y = |y|) = 1 \cdot q + 11 \cdot (1-q) = 11 - 10q.$$

- D.h. die erwartete Bitlänge der Kodierung eines 10-Bit Blocks ist $11-10q \le 2$.
- Datenkompression der Nachricht auf 20%.
- Können wir noch stärker komprimieren?
- Entropie wird uns Schranke für Komprimierbarkeit liefern.

Ausblick: fehlerkorrigierende Codes

Szenario: Binärer symmetrischer Kanal

- Bits 0,1 kippen mit Ws $p, p < \frac{1}{2}$ zu 1,0. (Warum $< \frac{1}{2}$?)
- Korrekte Übertragung $0 \mapsto 0$, $1 \mapsto 1$ mit Ws 1 p.
- In unserem Beispiel p = 0.1.

Kodierer:

- Verdreifache jedes Symbol, d.h. 0 → 000, 1 → 111
- Repetitionscode der Länge 3.

Dekodierer:

- Lese den Code in 3er-Blöcken.
- Falls mindestens zwei Symbole 0 sind, dekodiere zu 0.
- Sonst dekodiere zu 1.

Ws Dekodierfehler

Symbol wird falsch dekodiert, falls mind. zwei der drei Bits kippen.

Ws(Bit wird falsch dekodiert)

- = Ws(genau 2 Bits kippen) + Ws(genau 3 Bits kippen)
- $= 3*p^2*(1-p)+p^3=3*10^{-2}*(1-10^{-1})+10^{-3}$
- Ohne Kodierung Fehlerws von 0.1.
- Mit Repetitionscode Fehlerws von \approx 0.03.
- Nachteil: Kodierung ist dreimal so lang wie Nachricht.
- Ziel: Finde guten Tradeoff zwischen Fehlerws und Codewortlänge.

Ausblick: fehlertolerante Codes

Szenario: Binärer Ausfallkanal

- Bits 0,1 gehen mit Ws $p, p < \frac{1}{2}$ verloren, d.h. $0 \mapsto \epsilon$ bzw. $1 \mapsto \epsilon$.
- Korrekte Übertragung $0 \mapsto 0$, $1 \mapsto 1$ mit Ws 1 p.
- In unserem Beispiel p = 0.1.

Kodierer: Repetitionscode der Länge 3.

Dekodierer:

- Lese den Code in 3er-Blöcken.
- Falls 3er-Block Zeichen $x \in \{0, 1\}$ enthält, Ausgabe x.

Fehler beim Dekodieren: Alle drei Symbole gehen verloren.

- Ws(Bit kann nicht dekodiert werden) = $p^3 = 0.001$.
- Fehlerws kleiner beim Ausfallkanal als beim sym. Kanal.

Definition Code

Bezeichnungen:

- Alphabet $A = \{a_1, \dots, a_n\}$, Menge von Symbolen a_i
- Nachricht sind Elemente $m \in A^*$.

Definition Code

Sei A ein Alphabet. Eine (binäre) Codierung C des Alphabets A ist eine injektive Abbildung

$$C: A \rightarrow \{0,1\}^*$$

 $a_i \mapsto C(a_i).$

Die Codierung einer Nachricht $m=a_{i_1}\dots a_{i_\ell}\in A^*$ definieren wir als

$$C(m) = C(a_{i_1}) \dots C(a_{i_\ell})$$
 (Erweiterung von C auf A^*).

Die Abbildung C heißt Code.

Bezeichnungen Code

- Die Elemente $c_i := C(a_i)$ bezeichnen wir als *Codeworte*.
- Wir bezeichnen sowohl die Abbildung von Nachrichten auf Codeworte als auch die Menge der Codeworte mit dem Buchstaben C.
- Falls $C \subseteq \{0,1\}^n$ spricht man von einem *Blockcode* der Länge n. In einem Blockcode haben alle Codeworte die gleiche Länge.

Entschlüsselbarkeit von Codes

Szenario: Datenkompression in fehlerfreiem Kanal

Definition eindeutig entschlüsselbar

Ein Code heißt eindeutig entschlüsselbar, falls jedes Element aus $\{0,1\}^*$ Bild höchstens einer Nachricht ist. D.h. die Erweiterung der Abbildung C auf A^* muss injektiv sein.

Definition Präfixcode

Ein Code $C = \{c_1, \dots, c_n\}$ heißt Präfixcode, falls es keine zwei Codeworte $c_i \neq c_j$ gibt mit

 c_i ist Präfix (Wortanfang) von c_j .

Beispiel

	a ₁	a ₂	a ₃
C ₁	0	0	1
C_2	0	1	00
C_3	0	01	011
C_4	0	10	11

- C_1 ist kein Code, da $C_1:A \to \{0,1\}^*$ nicht injektiv.
- C_2 ist nicht eindeutig entschlüsselbar, da $C_2:A^* \to \{0,1\}^*$ nicht injektiv.
- *C*₃ ist eindeutig entschlüsselbar, aber kein Präfixcode.
- C₄ ist ein Präfixcode.

Präfixcodes sind eindeutig entschlüsselbar.

Satz Präfixcode eindeutig entschlüsselbar

Sei $C = \{c_1, \dots, c_n\}$ ein Präfixcode. Dann kann jede kodierte Nachricht C(m) in Zeit $\mathcal{O}(|C(m)|)$ eindeutig zu m decodiert werden.

Beweis:

- Zeichne binären Baum
 - Kanten erhalten Label 0 für linkes Kind, 1 für rechtes Kind.
 - ▶ Codewort $c_i = c_{i_1} \dots c_{i_k}$ ist Label des Endknoten eines Pfads von der Wurzel mit den Kantenlabeln c_{i_1}, \dots, c_{i_n}
- Präfixeigenschaft: Kein einfacher Pfad von der Wurzel enthält zwei Knoten, die mit Codeworten gelabelt sind.
- Codewort c_i ist Blatt in Tiefe $|c_i|$

Algorithmus Dekodierung Präfix

Algorithmus Dekodierung Präfix

- Lese C(m) von links nach rechts.
- 2 Starte bei der Wurzel. Falls 0, gehe nach links. Falls 1, gehe nach rechts.
- Solution Falls Blatt mit Codewort $c_i = C(a_i)$ erreicht, gib a_i aus und iteriere.

Laufzeit: $\mathcal{O}(|C(m)|)$

Woher kommen die Nachrichtensymbole?

Modell

- Quelle Q liefert Strom von Symbolen aus A.
- Quellwahrscheinlichkeit: Ws[Quelle liefert a_i] = p_i
- Ws p_i ist unabhängig von der Zeit und vom bisher produzierten Strom (erinnerungslose Quelle)
- X_i: Zufallsvariable für das Quellsymbol an der i-ten Position im Strom, d.h.

$$\operatorname{Ws}[X_i = a_j] = p_j$$
 für $j = 1, \dots, n$ und alle i .

Ziel: Kodiere a_j mit großer Ws p_j mittels kleiner Codewortlänge.

Kompakte Codes

Definition Erwartete Codewortlänge

Sei Q eine Quelle mit Alphabet $A = \{a_1, \dots, a_n\}$ und Quellwahrscheinlichkeiten p_1, \dots, p_n . Die Größe

$$E(C) := \sum_{i=1}^n p_i |C(a_i)|$$

bezeichne die erwartete Codewortlänge.

Definition Kompakter Code

Ein Code C heißt kompakt bezüglich einer Quelle Q, falls er *minimale* erwartete Codewortlänge besitzt.

Wann sind Codes eindeutig entschlüsselbar?

Definition Suffix

Sei C ein Code. Ein String $s \in \{0,1\}^*$ heißt Suffix in C falls

- $\mathbf{O} \exists c_i, c_i \in C : c_i = c_i s \text{ oder}$
- ② $\exists c \in C$ und einen Suffix s' in C: s' = cs oder
- **③** $\exists c \in C$ und einen Suffix s' in C: c = s's.
 - Bedingung 1: Codewort c_i lässt sich zu Codewort c_i erweitern.
 - Bedingung 2: Codewort c lässt sich zu Suffix s' erweitern.
 - Bedingung 3: Suffix s' lässt sich zu Codewort c erweitern.

Effiziente Berechnung von Suffixen

Algorithmus Berechnung Suffix

EINGABE: $C = \{c_1, ..., c_n\}$

- Setze $S := \emptyset$, $T := \emptyset$.
- Für alle $c_i, c_j \in C \times C$: Falls es ein $s \in \{0, 1\}^*$ gibt mit $c_i = c_j s$, füge s in S und T ein.
- Solange $T \neq \emptyset$
 - Entferne ein beliebiges s' aus T.
 - **2** Für alle $c \in C$: Falls es ein $s \in \{0,1\}^* \setminus S$ gibt mit s' = cs oder c = s's, füge s zu S und T hinzu.

AUSGABE: Menge S der Suffixe von C

Laufzeit Suffixberechnung

Laufzeit:

- Schritt 2: $\mathcal{O}(n^2)$ Codewortpaare
- Suffixlänge ist durch $\max_i\{|c_i|\}$ beschränkt.
- Es kann höchstens $n \cdot \max_i \{|c_i|\}$ Suffixe geben. (Warum?)
- Schritt 3: $\mathcal{O}(n^2 \cdot \max_i \{|c_i|\})$
- Polynomiell in der Eingabelänge: n, max_i{|c_i|}