

Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Alexander Meurer, Ilya Ozerov

Präsenzübungen zur Vorlesung

Kryptanalyse

WS 2011/2012

Blatt 8 / 7. Dezember 2011

AUFGABE 1:

Sei g ein Generator von \mathbb{Z}_q^* und $a \bmod q = g^i$ für ein $i \in [1, \dots, q-1]$. Zeigen Sie,

$$\operatorname{ord}_{\mathbb{Z}_q^*}(g_i) = \frac{q-1}{\operatorname{ggT}(i, q-1)} .$$

AUFGABE 2:

Sei $f(x) = x^3 + ax + b \in \mathbb{Z}_p[x]$. Zeigen Sie, dass die Bedingung $4a^3 + 27b^2 \neq 0 \mod p$ äquivalent zu der Forderung ist, dass f(x) keine mehrfachen Nullstellen besitzt.

AUFGABE 3:

Beweisen Sie: Die Anzahl aller elliptischen Kurven E modulo p beträgt p^2-p .

AUFGABE 4:

Sei $E: y^2 = x^3 + 1$ eine Kurve über \mathbb{Z}_{12} . Zeigen Sie, dass E nicht abgeschlossen bzgl. der Addition ist. Bestimmen Sie dazu zunächst alle Punkte auf der Kurve. Können Sie mittels der ECM-Methode faktorisieren?