Primteiler-Normalform

Korollar Primteiler-Normalform

Jede endlich erzeugte abelsche Gruppe G ist isomorph zu

$$\mathbb{Z}^r imes \prod_{j=1}^s \prod_{i=1}^{s_j} \mathbb{Z}/p_j^{r_{ji}}\mathbb{Z}$$

für geeignete $p_j \in \mathbb{P}$, $r, s \in \mathbb{N}_0$ und $s_j, r_{ji} \in \mathbb{N}$.

Die Zahl r sowie die $\mathbb{Z}/p_j^{r_ji}\mathbb{Z}$ sind bis auf Reihenfolge eindeutig.

Beweis:

- Wir wissen bereits, dass $G \cong \mathbb{Z}^r \times \prod_{i=1}^{\ell} \mathbb{Z}/n_i\mathbb{Z}$.
- Für $n_i = \prod_{j=1}^{\ell_i} p_j^{r_{ji}}$ folgt mit CRT

$$\mathbb{Z}/n_i\mathbb{Z}\cong\prod_{j=1}^{\ell_i}\mathbb{Z}/p_i^{r_{ji}}\mathbb{Z}.$$

- Umsortieren der Faktoren liefert die obige Normalform.
- Für den Beweis der Eindeutigkeit verweisen wir auf [MS,P].

Anmerkung: r heißt der Rang der Gruppe G.

 $\textbf{Bsp} \text{ zuvor liefert } G \cong \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}.$

Elementarteiler

Korollar Elementarteiler-Normalform

Jede endliche erzeugte abelsche Gruppe G ist isomorph zu

$$\mathbb{Z}^r \times \prod_{i=1}^{\ell} \mathbb{Z}/n_i \mathbb{Z},$$

für geeignete $r \in \mathbb{N}_0$, $n_i \in \mathbb{N}$ mit $n_i > 1$ und $n_{i+1} | n_i$ für $i = 1, \dots, \ell - 1$. Die Zahlen n_i heißen *Elementarteiler* und sind eindeutig bestimmt.

Beweis:

- Wir wissen bereits, dass $G \cong \mathbb{Z}^r \times \prod_{j=1}^s \prod_{i=1}^{s_j} \mathbb{Z}/p_j^{r_{ji}}\mathbb{Z}$.
- Durch Umsortieren erreichen wir $r_{j1} \ge r_{j2} \ge \dots$ für jedes j.
- Wir definieren $n_i := \prod_{j=1}^s p_j^{r_{ji}}$ mit $r_{ji} = 0$ für $i > s_j$.
- Aus dem CRT folgt die Form $G \cong \mathbb{Z}^r \times \prod_{i=1}^{\ell} \mathbb{Z}/n_i\mathbb{Z}$.
- Die Eigenschaft $n_{i+1} \mid n_i$ folgt aus der Sortierung der r_{ji} , da jede Primpotenz von n_i von den Primpotenzen von n_{i+1} geteilt wird.
- Für die Eindeutigkeit verweisen wir wieder auf [MS,P].

Bsp zuvor liefert $G \cong \mathbb{Z} \times \mathbb{Z}/60\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Bsp. Struktur der Einheitengruppe

Bsp: Struktur der Einheitengruppe U_n für kleine n

- $U_2 = \{\bar{1}\} \cong \{0\}$, kongruent zur trivialen Gruppe.
- $U_3 = \{\bar{1}, \bar{2}\} \cong \mathbb{Z}/2\mathbb{Z}$, $\bar{2}$ generiert U_3 .
- $U_4 = \{\bar{1}, \bar{3}\} \cong \mathbb{Z}/3\mathbb{Z}, \bar{3}$ generiert U_4 .
- $U_5 = \{\bar{1}, \bar{2}, \bar{4} = \bar{2}^2, \bar{3} = \bar{2}^3\} \cong \mathbb{Z}/4\mathbb{Z}, \bar{2}$ generiert U_5 .
- $U_6 = \{\bar{1}, \bar{5}\} \cong \mathbb{Z}/2\mathbb{Z}, \bar{5}$ generiert U_6 .
- $U_7 = \{\bar{1}, \bar{3}, \bar{2} = \bar{3}^2, \bar{6} = \bar{3}^3, \bar{4} = \bar{3}^4, \bar{5} = \bar{3}^5\} \cong \mathbb{Z}/6\mathbb{Z}, \bar{3} \text{ generiert } U_6.$
- $U_8 = \{\bar{1}, \bar{3}, \bar{5}, \bar{7}\} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. $(\bar{3}, \bar{5})$ generieren U_8 , denn $3 \cdot 5 \equiv 7 \mod 8$ und $3^2 \equiv 1 \mod 8$.

Anmerkung:

- Sei g ein Erzeuger der Gruppe Un.
- Der Isomorphismus $(\mathbb{Z}/\varphi(n)/\mathbb{Z},+)\cong (U_n,\cdot)$ ist gegeben durch $\exp: \mathbb{Z}/\varphi(n)\mathbb{Z} \to U_n$ mit $i+\varphi(n)\mathbb{Z} \mapsto g^i+n\mathbb{Z}$.

Untergruppen endlicher Körper

Satz Untergruppen zyklischer Gruppen

Sei $\mathbb F$ ein Körper. Jede endliche Untergruppe (G,\cdot) , $G\subseteq \mathbb F$ ist zyklisch.

Beweis:

- Da G endlich ist, ist G auch endlich erzeugt und besitzt Rang 0.
- Nach Klassifikationssatz für endl. erzeugte abelsche Gruppen gilt

$$G\cong\prod_{j=1}^s\prod_{i=1}^{s_j}\mathbb{Z}/p_j^{r_{ji}}\mathbb{Z}$$
 für $s,s_j,r_{ji}\in\mathbb{N},\,p_j\in\mathbb{P}.$

• Falls $s_j = 1$ für alle j, dann gilt nach CRT

$$G\cong\prod_{i=1}^{s}\mathbb{Z}/p_{i}^{r_{ji}}\mathbb{Z}\cong\mathbb{Z}/(\prod_{i=1}^{s}p_{i}^{r_{ji}})\mathbb{Z}.$$

- Da die rechte Seite zyklisch ist, ist auch G zyklisch.
- Bleibt zu zeigen, dass $s_j = 1$ für j = 1, ..., s.

Untergruppen endlicher Körper

- Annahme: $s_i > 1$ für ein j, oBdA $s_1 > 1$.
- Wir betrachten die Untergruppe $H := \prod_{i=1}^{s_1} \mathbb{Z}/p_1^{r_{1i}}\mathbb{Z} \times 0 \subseteq G$.
- Sei $r := \max_i \{r_{1i}\}$. Es gilt $|H| = \prod_{i=1}^{s_1} p_1^{r_{1i}} > p_1^r$.
- Für alle h ∈ H gilt ord(h) | p₁^r. Es folgt
 h^{p₁^r} = 1 für alle h ∈ H ⊆ G ⊆ F.
- Damit sind alle $h \in H \subseteq \mathbb{F}$ Nullstellen von $X^{p_1^r} 1$.
- Dies sind $|H| > p_1^r$ Nullstellen für ein Polynom vom Grad p_1^r . (Widerspruch: In $\mathbb F$ kann $X^{p_1^r} 1$ nur max. p_1^r Nst. besitzen.)

U_p ist zyklisch.

Satz U_p ist zyklisch

Sei p prim. Dann ist $U_p = \mathbb{F}_p^*$ zyklisch, d.h. $U_p \cong \mathbb{Z}/(p-1)\mathbb{Z}$.

Beweis:

- Da \mathbb{F}_p ein endlicher Körper ist, ist $U_p \subseteq \mathbb{F}_p^*$ zyklisch.
- Wegen $|U_p| = p 1$ folgt aus dem Isomorphiesatz für zyklische Gruppen (Folie 84), dass $U_p \cong \mathbb{Z}/(p-1)\mathbb{Z}$.

Definition Primitivwurzel

Ein $g \in \mathbb{Z}$, das U_n erzeugt, heißt Generator oder Primitivwurzel mod n.

Übung: Zeigen Sie: Es gibt $\varphi(\varphi(n))$ viele Primitivwurzeln modulo n.

Test auf Primitivwurzel

Ziel: Entscheide effizient, ob *g* eine Primitivwurzel ist.

Satz Test auf Primitivwurzel

Sei $p \in \mathbb{P}$. Ein $g \in \mathbb{Z}$, $g \not\equiv 0 \bmod p$ ist Primitivwurzel modulo p gdw

 $g^{\frac{p-1}{q}} \not\equiv 1 \bmod p$ für alle Primteiler q von p-1.

Beweis:

- \Rightarrow Sei g eine Primitivwurzel, d.h. ord(g) = p 1.
 - Damit gilt $p-1=\min\{i\in\mathbb{N}\mid g^i\equiv 1\bmod p\}$. Es folgt $g^{\frac{p-1}{q}}\not\equiv 1\bmod p$, wegen $\frac{p-1}{q}< p-1$.
- \leftarrow Aus Satz von Lagrange folgt $\operatorname{ord}(g)|p-1$, d.h. $\operatorname{ord}(g)\cdot c=p-1$.
- Annahme: c>1. Dann besitzt c einen Primteiler q und es gilt $g^{\frac{p-1}{q}}\equiv g^{ord(g)\cdot \frac{c}{q}}=(g^{ord(g)})^{\frac{c}{q}}\equiv 1 \bmod p$. (Widerspruch)
- Aus c = 1 folgt ord(g) = p 1.
- Damit ist *g* eine Primitivwurzel modulo *p*.

Liften von Lösungen

Ziel: Wir zeigen, dass U_{p^r} mit $p \in \mathbb{P} \setminus \{2\}$, $r \geq 2$ zyklisch ist.

Lemma

Sei $x \in \mathbb{Z}$. Für $p \in \mathbb{P} \setminus \{2\}$ und $r \geq 2$ gilt

$$x \equiv 1 \mod p^{r-1} \Leftrightarrow x^p \equiv 1 \mod p^r$$

Beweis:

- ⇒ Sei $x \equiv 1 \mod p^{r-1}$, d.h. $x = 1 + cp^{r-1}$ für ein $c \in \mathbb{Z}$. Es folgt $x^p = (1 + cp^{r-1})^p = 1 + pcp^{r-1} + \sum_{i=2}^p \binom{p}{i} c^i p^{(r-1)i}$.
 - Für $i, r \ge 2$ gilt $(r-1)i \ge 2(r-i) = r + (r-2) \ge r$.
 - Damit folgt $x^p \equiv 1 \mod p^r$.

Liften von Lösungen

Beweis: (Fortsetzung)

- \Leftarrow Wir zeigen $x^p \equiv 1 \mod p^r \Rightarrow x \equiv 1 \mod p^{r-1}$ per Induktion über r.
- IA für r = 2. Nach Kleinem Satz von Fermat gilt $x^p \equiv x \mod p$.
- Aus $x^p \equiv 1 \mod p^2$ folgt $x^p \equiv 1 \mod p$ und damit $x \equiv 1 \mod p$.
- IS $r \rightarrow r + 1$: Sei $x^p \equiv 1 \mod p^{r+1}$.
- Es folgt $x^p \equiv 1 \mod p^r$. Nach IV folgt damit $x \equiv 1 \mod p^{r-1}$ bzw. $x = 1 + cp^{r-1}$ für ein $c \in \mathbb{Z}$.
- Falls $p \mid c$, dann folgt die Behauptung $x \equiv 1 \mod p^r$. Es gilt $1 \equiv x^p = (1 + cp^{r-1})^p = 1 + cp^r + \sum_{i=2}^p \binom{p}{i} c^i p^{(r-1)i} \mod p^{r+1}$.
- Wir wissen bereits, dass $p|\binom{p}{i}$ für $2 \le i < p$.
- Damit enthält die Summe einen Term $p^{(r-1)i+1}$ mit $(r-1)i+1 \geq 2(r-1)+1=r+1+(r-2) \geq r+1.$
- Für *i* = *p* ist

$$(r-1)i = (r-1)p \ge 3(r-1) = r+1+2(r-2) \ge r+1.$$

- Damit erhalten wir $1 \equiv 1 + cp^r \mod p^{r+1}$ bzw. $cp^r \equiv 0 \mod p^{r+1}$.
- Es folgt p|c wie gewünscht.

