Stromchiffre

Algorithmus Stromchiffre

Sei G ein Pseudozufallsgenerator mit Expansionsfaktor $\ell(n)$. Wir definieren $\Pi_s = (Gen, Enc, Dec)$ mit Sicherheitsparameter n für Nachrichten der Länge $\ell(n)$.

- **1 Gen:** Wähle $k \in_R \{0, 1\}^n$.
- **2 Enc:** Bei Eingabe $k \in \{0,1\}^n$ und $m \in \{0,1\}^{\ell(n)}$, berechne $c := G(k) \oplus m$.
- **Dec:** Bei Eingabe $k \in \{0,1\}^n$ und $c \in \{0,1\}^{\ell(n)}$, berechne $m := G(k) \oplus c$.

Anmerkung:

- Π_s verwendet G(k) anstatt $r \in \{0,1\}^{\ell(n)}$ wie im One-Time Pad.
- D.h. wir benötigen nur n statt $\ell(n)$ echte Zufallsbits. (Bsp: n 128 Bit, $\ell(n)$ mehrere Megabyte)

Sicherheit unserer Stromchiffre

Satz Sicherheit von Π_s

Sei G ein Pseudozufallsgenerator. Dann ist Π_s KPA-sicher.

Beweis:

- Idee: Erfolgreicher Angreifer A liefert Unterscheider D für G.
- Sei A ein KPA-Angreifer auf Π_s mit Vorteil $\epsilon(n)$.
- ullet Wir konstruieren mittels ${\mathcal A}$ folgenden Unterscheider ${\mathcal D}$ für ${\mathcal G}$.

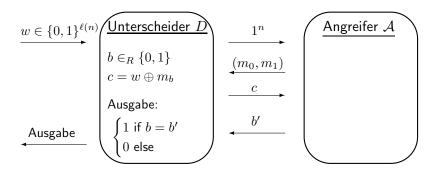
Algorithmus Unterscheider D

EINGABE: $w \in \{0, 1\}^{\ell(n)}$

- Erhalte $(m_0, m_1) \leftarrow \mathcal{A}(1^n)$
- ② Wähle $b \in_R \{0,1\}$ und berechne $c := w \oplus m_b$.
- **3** Erhalte $b' \leftarrow \mathcal{A}(c)$.

AUSGABE: =
$$\begin{cases} 1 & \text{falls } b' = b, \text{ Interpretation: } w = G(k), k \in_R \{0, 1\}^n \\ 0 & \text{sonst,} \end{cases}$$
 Interpretation: $w \in_R \{0, 1\}^{\ell(n)}$

Sicherheit von Π_s



Fall 1: $w = r \in_R \{0,1\}^{\ell(n)}$, d.h. w ist ein echter Zufallsstring.

- Dann ist die Verteilung von c identisch zur Verteilung beim One-Time Pad $\Pi_{\rm otp}$.
- Damit folgt aus der perfekten Sicherheit des One-Time Pads

$$\operatorname{Ws}[D(r) = 1] = \operatorname{Ws}[\operatorname{\textit{PrivK}}_{\mathcal{A},\Pi_{\operatorname{otp}}}^{\operatorname{\textit{eav}}}(n) = 1] = \frac{1}{2}.$$

Sicherheit von Π_s

Fall 2: w = G(k) für $k \in_R \{0,1\}^n$, d.h. w wurde mittels G generiert.

- Damit ist die Verteilung von c identisch zur Verteilung in Π_s .
- Es folgt $\operatorname{Ws}[D(G(k)) = 1] = \operatorname{Ws}[PrivK_{\mathcal{A},\Pi_s}^{eav}(n) = 1] = \frac{1}{2} + \epsilon(n)$.

Aus der Pseudozufälligkeit von G folgt insgesamt

$$\operatorname{negl}(n) \ge \Big|\underbrace{\operatorname{Ws}[D(r) = 1]}_{\frac{1}{2}} - \underbrace{\operatorname{Ws}[D(G(k)) = 1]}_{\frac{1}{2} + \epsilon(n)}\Big| = \epsilon(n).$$

Damit ist der Vorteil jedes Angreifers A vernachlässigbar.

Generator mit variabler Ausgabelänge

Ziel: Um Nachricht beliebiger Länge $\ell(n)$ mit Algorithmus Π_s zu verschlüsseln, benötigen wir ein G mit variabler Ausgabelänge $\ell(n)$.

Definition Pseudozufallsgenerator mit variabler Ausgabelänge

Ein pt Algorithmus G heißt *Pseudozufallsgenerator mit variabler Ausgabelänge* falls

- **⑤** Für eine Saat $s \in \{0,1\}^n$ und eine Länge $\ell \in \mathbb{N}$ berechnet $G(s,1^{\ell})$ einen String der Länge ℓ .
- Für jedes Polynom $\ell(n) > n$ ist $G_{\ell}(s) := G(s, 1^{\ell(n)}), s \in \{0, 1\}^n$ ein Pseudozufallsgenerator mit Expansionsfaktor $\ell(n)$.
- **③** Für alle s, ℓ, ℓ' mit $\ell \leq \ell'$ ist $G(s, 1^{\ell})$ ein Präfix von $G(s, 1^{\ell'})$.

Anmerkungen:

- Für Nachricht m erzeugen wir Chiffretext $c := G(k, 1^{|m|}) \oplus m$.
- Bedingung 3 ist technischer Natur, um im KPA-Spiel Verschlüsselungen von m_0 , m_1 beliebiger Länge zuzulassen.

Existenz Zufallsgenerator mit/ohne variable Länge

Fakt Existenz von Zufallsgeneratoren (Hastad, Impagliazzo, Levin, Luby, 1999)

- Die Existenz von Pseudozufallsgeneratoren folgt unter der Annahme der Existenz von sogenannten Einwegfunktionen.
- Pseudozufallsgeneratoren variabler Ausgabelänge können aus jedem Pseudozufallsgenerator fixer Länge konstruiert werden.

Vereinfacht:

Einwegfunktion ⇒ Pseudozufallsgenerator fixer Länge

⇒ Pseudozufallsgenerator variabler Länge

(mehr dazu im Verlauf der Vorlesung)

Diskussion Stromchiffren

Stromchiffre:

- Pseudozufallsgeneratoren mit variabler Ausgabelänge liefern Strom von Zufallsbits.
- Wir nennen diese Stromgeneratoren auch Stromchiffren.

Stromchiffren in der Praxis:

- Beispiele: LFSRs, RC4, SEAL, A5/1, E0 und Bluetooth.
- Viele Stromchiffren in der Praxis sind sehr schnell, allerdings sind die meisten leider ad hoc Lösungen ohne Sicherheitsbeweis.
- Schwächen in RC4 führten zum Brechen des WEP Protokolls.
- LFSRs sind kryptographisch vollständig gebrochen worden.
- 2004-08: Ecrypt-Projekt eStream zur Etablierung sicherer Standard-Stromchiffren. Vorgeschlagene Kandidaten:
 - Software: HC-128, Rabbit, Salsa20/12 und SOSEMANUK.
 - Hardware: Grain v1, MICKEY v2 und Trivium.

Sicherheit mehrfacher Verschlüsselung

Bisher: Angreifer \mathcal{A} erhält nur *eine* Verschlüsselung. Nachrichten müssen aber sicher bleiben, falls \mathcal{A} mehrere Chiffretexte erhält.

Spiel Mehrfache Verschlüsselung $PrivK_{A,\Pi}^{mult}(n)$

Sei Π ein Verschlüsselungsverfahren und $\mathcal A$ ein Angreifer.

- ① $(M_0, M_1) \leftarrow \mathcal{A}(1^n)$ mit $M_0 = (m_0^1, \dots, m_0^t)$, $M_1 = (m_1^1, \dots, m_1^t)$ und $|m_0^i| = |m_1^i|$ für alle $i \in [t]$.
- $k \leftarrow Gen(1^n).$
- ③ Wähle $b ∈_R \{0,1\}$. $b' ← A((Enc_k(m_b^1), ..., Enc_k(m_b^t))$.
- $PrivK_{A,\Pi}^{mult}(n) = \begin{cases} 1 & \text{für } b = b' \\ 0 & \text{sonst} \end{cases}.$

Mult-KPA Spiel

Angreifer A

$$M_i = (m_i^1, \dots, m_i^t), \ i = 0, 1$$
$$\left| m_0^j \right| = \left| m_1^j \right| \ \forall j, \ m_i^j \in \mathcal{M}$$
$$b' \in \{0, 1\}$$

 1^n

Mult-KPA Sicherheit

Definition Mult-KPA Sicherheit

Ein Verschlüsselungsschema $\Pi = (Gen, Enc, Dec)$ besitzt ununterscheidbare mehrfache Chiffretexte gegenüber KPA falls für alle ppt A:

$$\operatorname{Ws}[\operatorname{\textit{PrivK}}^{\textit{mult}}_{\mathcal{A},\Pi}(n)=1] \leq \frac{1}{2} + \operatorname{negl}(n).$$

Der Wsraum ist definiert über die Münzwürfe von $\mathcal A$ und $\mathit{PrivK}^{\mathit{mult}}_{\mathcal A,\Pi}$.

Notation: Wir bezeichnen Π als mult-KPA sicher.

KPA Sicherheit vs. mult-KPA Sicherheit

Satz KPA Sicherheit vs. mult-KPA Sicherhei

KPA Sicherheit impliziert nicht mult-KPA Sicherheit.

Beweis:

 \bullet Π_s ist KPA-sicher. Wir betrachten folgendes mult-KPA Spiel.

Algorithmus Angreifer A für Π_s

EINGABE: Sicherheitsparameter n

② Erhalte
$$C = (c_1, c_2)$$
.

AUSGABE:
$$b' = \begin{cases} 1 & \text{falls } c_1 = c_2 \\ 0 & \text{sonst} \end{cases}$$
.

• Da *Enc* von Π_s deterministisch ist, gilt $\operatorname{Ws}[\operatorname{\textit{PrivK}}^{\textit{mult}}_{\mathcal{A},\Pi_s}(n)=1]=1.$

Mult-KPA Angreifer auf Π_s

Angreifer ${\cal A}$

$$M_0 = (0^{\ell(n)}, 0^{\ell(n)})$$

$$M_1 = (0^{\ell(n)}, 1^{\ell(n)})$$

Falls $c^1 = c^2$, setze b = 0. Falls $c^1 \neq c^2$, setze b = 1.

Unsicherheit deterministischer Verschlüsselung

Korollar Unsicherheit deterministischer Verschlüsselung

Sei $\Pi = (\textit{Gen}, \textit{Enc}, \textit{Dec})$ mit deterministischer Verschlüsselung Enc. Dann ist Π unsicher gegenüber mult-KPA Angriffen.

• Voriger Angreifer A nutzt lediglich, dass für zwei identische Nachrichten $m_0 = m_1$ auch die Chiffretexte identisch sind.

Notwendig: Wir benötigen randomisiertes *Enc*, dass identische Nachrichten auf unterschiedliche Chiffretexte abbildet.

Synchronisierte sichere mehrfache Verschlüsselung

Synchronisierter Modus für Stromchiffren:

- Nutze für Nachrichten m_1, m_2, \ldots, m_n sukzessive Teil des Bitstroms $G(s) = s_1 s_2 \ldots s_n$ mit $|s_i| = |m_i|$.
- D.h. es werden nie Teile des Bitstroms wiederverwendet.
- Ermöglicht einfaches Protokoll zur Kommunikation von A und B:
 - ► A verschlüsselt mit s₁, B entschlüsselt mit s₁.
 - ▶ Danach verschlüsselt B mit s₂, mit dem auch A entschlüsselt, usw.
- Erfordert, dass A und B die Position im Bitstrom synchronisieren.
- Verfahren ist sicher, da die Gesamtheit der Nachrichten als einzelne Nachricht $m = m_1 \dots m_n$ aufgefasst werden kann.

Nicht-synchronisierte mehrfache Verschlüsselung

Nicht-synchronisierter Modus für Stromchiffren:

- Erweitern Funktionalität von Pseudozufallsgeneratoren G:
 - G erhält zwei Eingaben: Schlüssel k und Initialisierungsvektor IV.
 - \bigcirc G(k, IV) ist pseudozufällig selbst für bekanntes IV.
- Verschlüsselung von m mit erweiterten Pseudozufallsgeneratoren:

$$Enc_k(m) := (IV, G(k, IV) \oplus m) \text{ für } IV \in_R \{0, 1\}^n.$$

- Entschlüsselung möglich, da IV im Klartext mitgesendet wird.
- D.h. eine Nachricht m besitzt 2ⁿ mögliche Verschlüsselungen.
- Warnung: Konstruktion solch erweiterter G ist nicht-trivial.