CPA Spiel

Szenario: Wir betrachten aktive Angriffe.

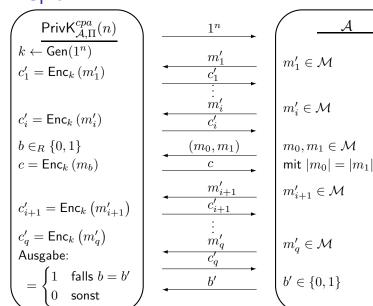
- D.h. A darf sich Nachrichten nach Wahl verschlüsseln lassen.
- A erhält dazu Zugriff auf ein Verschlüsselungsorakel $Enc_k(\cdot)$.
- Notation für die Fähigkeit des Orakelzugriffs: $A^{Enc_k(\cdot)}$.

Spiel CPA Ununterscheidbarkeit von Chiffretexten $PrivK^{cpa}_{\mathcal{A}.\Pi}(n)$

Sei Π ein Verschlüsselungsverfahren und $\mathcal A$ ein Angreifer.

- $(m_0, m_1) \leftarrow \mathcal{A}^{Enc_k(\cdot)}(1^n)$, d.h. \mathcal{A} darf $Enc_k(m)$ für beliebige m anfragen.
- **③** Wähle $b ∈_R \{0,1\}$ und verschlüssele $c ← Enc_k(m_b)$.
- **③** $b' \leftarrow A^{Enc_k(\cdot)}(c)$, d.h. A darf $Enc_k(m)$ für beliebige m anfragen.
- $PrivK_{\mathcal{A},\Pi}^{cpa}(n) = \begin{cases} 1 & \text{für } b = b' \\ 0 & \text{sonst} \end{cases}.$

CPA Spiel



CPA Sicherheit

Definition CPA Sicherheit

Ein Verschlüsselungsschema $\Pi = (Gen, Enc, Dec)$ besitzt *ununterscheidbare Chiffretexte gegenüber CPA* falls für alle ppt A:

$$\operatorname{Ws}[\operatorname{\textit{PrivK}}_{\mathcal{A},\Pi}^{cpa}(n)=1] \leq \frac{1}{2} + \operatorname{negl}(n).$$

Der Wsraum ist definiert über die Münzwürfe von $\mathcal A$ und $\mathit{PrivK}_{\mathcal A,\Pi}^{\mathit{cpa}}$.

Notation: Wir bezeichnen Π als *CPA sicher*.

CPA-Unsicherheit deterministischer Verschlüsselung

Satz Unsicherheit deterministischer Verschlüsselung

Sei $\Pi = (Gen, Enc, Dec)$ ein Verschlüsselungsschema mit deterministischem Enc. Dann ist Π **nicht** CPA-sicher.

Beweis: Konstruieren folgenden CPA Angreifer A.

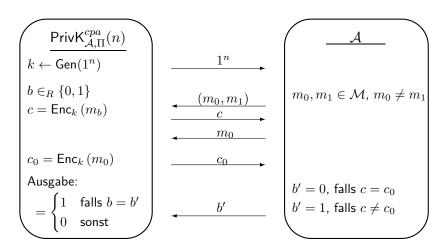
Algorithmus CPA Angreifer \mathcal{A}

EINGABE: 1ⁿ

- **③** Sende (m_0, m_1) für beliebige verschiedene $m_0, m_1 \in \mathcal{M}$.
- 2 Erhalte $c := Enc_k(m_b)$ für $b \in_R \{0, 1\}$.
- Stelle Orakelanfrage $c_0 := Enc_k(m_0)$.

AUSGABE:
$$b' = \begin{cases} 0 & \text{falls } c = c' \\ 1 & \text{sonst} \end{cases}$$
.

CPA Angreifer für deterministische Verschlüsselungen



• Es gilt $Ws[PrivK_{A,\Pi}^{cpa}(n) = 1] = 1$.

Mult-CPA Spiel

Wie CPA-Spiel, nur dass mehrfache Verschlüsselungen erlaubt sind.

Spiel Mehrfache Verschlüsselung $PrivK_{\mathcal{A},\Pi}^{mult-cpa}(n)$

Sei Π ein Verschlüsselungsverfahren und $\mathcal A$ ein Angreifer.

- ① $(M_0, M_1) \leftarrow \mathcal{A}^{Enc_k(\cdot)}(1^n)$ mit $M_0 = (m_0^1, \dots, m_0^t)$, $M_1 = (m_1^1, \dots, m_1^t)$ und $|m_0^i| = |m_1^i|$ für alle $i \in [t]$.
- 2 $k \leftarrow Gen(1^n)$.
- **③** Wähle $b ∈_R \{0,1\}$. $b' ← A^{Enc_k(\cdot)}((Enc_k(m_b^1), ..., Enc_k(m_b^t))$.
- $PrivK_{A,\Pi}^{mult-cpa}(n) = \begin{cases} 1 & \text{für } b = b' \\ 0 & \text{sonst} \end{cases}.$

Definition Mult-CPA Sicherheit

 Π heißt mult-CPA sicher, falls für alle ppt $\mathcal A$ gilt

$$\operatorname{Ws}[\operatorname{\textit{PrivK}}^{mult-cpa}_{\mathcal{A},\Pi}(n)=1] \leq \frac{1}{2} + \operatorname{negl}(n).$$

Mult-CPA Spiel

$\mathsf{PrivK}^{mult-c\overline{pa}}_{\mathcal{A},\Pi}(n)$

$$k \leftarrow \mathsf{Gen}(1^n)$$
$$c_i' = \mathsf{Enc}_k(m_i')$$

$$\begin{aligned} b &\in_R \left\{0,1\right\} \\ c^j &= \operatorname{Enc}_k \left(m_b^j\right) \\ C &= \left(c^1,\cdots,c^t\right) \end{aligned}$$

Ausgabe:

$$= \begin{cases} 1 & \text{falls } b = b' \\ 0 & \text{sonst} \end{cases}$$

$$\frac{m'_i}{c'_i}$$

$$\underbrace{\frac{(M_0, M_1)}{C}}$$

$$\frac{m_i'}{c_i'}$$

Angreifer \mathcal{A}

Wähle
$$m_i' \in \mathcal{M}$$
 für $i = 1, \dots, q$.

Wähle
$$M_0 = (m_0^1, \cdots, m_0^t)$$
 und $M_1 = (m_1^1, \cdots, m_1^t)$ mit $|m_0^t| = |m_1^t|$.

$$b' \in \{0,1\}$$

CPA-Sicherheit mehrfacher Verschlüsselung

Satz CPA-Sicherheit mehrfacher Verschlüsselung

Sei Π ein Verschlüsselungsschema. Dann ist Π CPA-sicher gdw Π mult-CPA sicher ist.

Beweis " \Rightarrow ": Für t = 2. Rückrichtung ist trivial.

• Sei \mathcal{A} ein Angreifer für $PrivK^{mult-cpa}_{\mathcal{A},\Pi}(n)$. Wir konstruieren einen Angreifer \mathcal{A}' für $PrivK^{cpa}_{\mathcal{A}',\Pi}(n)$. \mathcal{A} gewinnt mit Ws

$$Ws[b = 0] \cdot Ws[\mathcal{A}(Enc_k(m_0^1), Enc_k(m_0^2)) = 0] + Ws[b = 1] \cdot Ws[\mathcal{A}(Enc_k(m_1^1), Enc_k(m_1^2)) = 1].$$

• Daraus folgt $\operatorname{Ws}[\operatorname{\textit{PrivK}}^{\textit{mult-cpa}}_{\mathcal{A},\Pi}(n)=1]+\frac{1}{2}=$

$$\begin{split} &\frac{1}{2}\mathrm{Ws}[\mathcal{A}(\textit{Enc}_{\textit{k}}(\textit{m}_{0}^{1}),\textit{Enc}_{\textit{k}}(\textit{m}_{0}^{2})) = 0] + \frac{1}{2}\mathrm{Ws}[\mathcal{A}(\textit{Enc}_{\textit{k}}(\textit{m}_{1}^{1}),\textit{Enc}_{\textit{k}}(\textit{m}_{1}^{2})) = 1] \\ &+ \quad \frac{1}{2}\left(\mathrm{Ws}[\mathcal{A}(\textit{Enc}_{\textit{k}}(\textit{m}_{0}^{1}),\textit{Enc}_{\textit{k}}(\textit{m}_{1}^{2})) = 0] + \mathrm{Ws}[\mathcal{A}(\textit{Enc}_{\textit{k}}(\textit{m}_{0}^{1}),\textit{Enc}_{\textit{k}}(\textit{m}_{1}^{2})) = 1]\right) \end{split}$$

• **Ziel:** Zeigen, dass $Ws[PrivK^{mult-cpa}_{A,\Pi}(n) = 1] + \frac{1}{2} \le 1 + 2negl(n)$.

Betrachten der Hybride

Lemma

$$\tfrac{1}{2} \mathrm{Ws}[\mathcal{A}(\textit{Enc}_k(m_0^1), \textit{Enc}_k(m_0^2)) = 0] + \tfrac{1}{2} \mathrm{Ws}[\mathcal{A}(\textit{Enc}_k(m_0^1), \textit{Enc}_k(m_1^2)) = 1] \leq \tfrac{1}{2} + \mathrm{negl}(n).$$

Beweis: Sei A' Angreifer für *einfache* Verschlüsselungen.

• \mathcal{A}' versucht mittels \mathcal{A} das Spiel $PrivK^{cpa}_{\mathcal{A}',\Pi}(n)$ zu gewinnnen.

Strategie von CPA Angreifer \mathcal{A}'

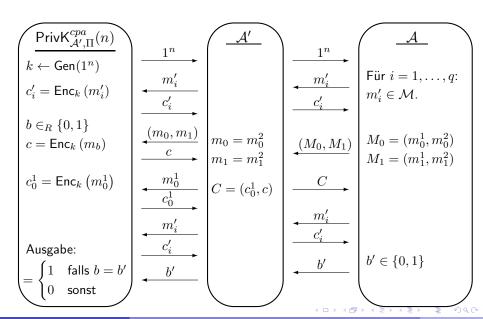
EINGABE: 1ⁿ und Orakelzugriff $Enc_k(\cdot)$

- **1** \mathcal{A}' gibt $\mathbf{1}^n$ und Orakelzugriff $Enc_k(\cdot)$ an \mathcal{A} weiter.
- ② $(M_0, M_1) \leftarrow \mathcal{A}^{Enc_k(\cdot)}(1^n)$ mit $M_0 = (m_0^1, m_0^2)$ und $M_1 = (m_1^1, m_1^2)$.
- $b' \leftarrow \mathcal{A}(Enc_k(m_0^1), c).$

AUSGABE: b'

- $\bullet \ \operatorname{Ws}[\mathcal{A}'(\textit{Enc}_k(m_0^2)) = 0] = \operatorname{Ws}[\mathcal{A}((\textit{Enc}_k(m_0^1), \textit{Enc}_k(m_0^2)) = 0] \ \text{und}$
- $Ws[A'(Enc_k(m_1^{2})) = 1] = Ws[A((Enc_k(m_0^{1}), Enc_k(m_1^{2})) = 1].$

Betrachten der Hybride



Fortsetzung Hybridtechnik

Beweis(Fortsetzung):

• CPA Sicherheit von Π bei einzelnen Nachrichten impliziert

$$\begin{split} \frac{1}{2} + \text{negl}(\textit{n}) & \geq & \text{Ws}[\textit{PrivK}_{\mathcal{A}',\Pi}^{\textit{cpa}}(\textit{n}) = 1] \\ & = & \frac{1}{2} \text{Ws}[\mathcal{A}'(\textit{Enc}_{\textit{k}}(\textit{m}_{0}^{2})) = 0] + \frac{1}{2} \text{Ws}[\mathcal{A}'(\textit{Enc}_{\textit{k}}(\textit{m}_{1}^{2})) = 1] \\ & = & \frac{1}{2} \text{Ws}[\mathcal{A}((\textit{Enc}_{\textit{k}}(\textit{m}_{0}^{1}), \textit{Enc}_{\textit{k}}(\textit{m}_{0}^{2})) = 0] + \\ & & \frac{1}{2} \text{Ws}[\mathcal{A}((\textit{Enc}_{\textit{k}}(\textit{m}_{0}^{1}), \textit{Enc}_{\textit{k}}(\textit{m}_{1}^{2})) = 1] \quad \Box_{\text{Lemma}} \end{split}$$

Analog kann gezeigt werden, dass

$$\frac{1}{2} + \text{negl}(n) \geq \frac{1}{2} \text{Ws}[\mathcal{A}((Enc_k(m_0^1), Enc_k(m_1^2)) = 0] + \\ \frac{1}{2} \text{Ws}[\mathcal{A}((Enc_k(m_1^1), Enc_k(m_1^2)) = 1]$$

• Daraus folgt Ws[$PrivK_{\mathcal{A},\Pi}^{mult-cpa}(n)$] $+\frac{1}{2} \le 1 + \text{negl}(n)$. $\square_{\text{Satz für } t = 2}$

Von fester zu beliebiger Nachrichtenlänge

- Beweistechnik für allgemeines t: Definiere für $0 \le i \le t$ Hybride $C^{(i)} = (Enc_k(m_0^1), \dots, Enc_k(m_0^i), Enc_k(m_1^{i+1}), \dots, Enc_k(m_1^t)).$
- $\bullet \ \operatorname{Ws}[\textit{PrivK}^{\textit{mult-cpa}}_{\mathcal{A},\Pi}(\textit{n}) = 1] = \tfrac{1}{2} \cdot \operatorname{Ws}[\mathcal{A}(\textit{C}^{(t)}) = 0] + \tfrac{1}{2} \cdot \operatorname{Ws}[\mathcal{A}(\textit{C}^{(0)} = 1].$
- \mathcal{A}' unterscheidet $Enc_k(m_0^i)$ und $Enc_k(m_1^i)$ für zufälliges $0 \le i \le t$.
- Entspricht dem Unterscheiden von $C^{(i)}$ und $C^{(i-1)}$.
- Liefert analog $\operatorname{Ws}[\operatorname{\textit{PrivK}}^{\textit{mult-cpa}}_{\mathcal{A},\Pi}(n)] \leq \frac{1}{2} + t \cdot \operatorname{negl}(n) \quad \Box_{\operatorname{Satz}}.$

Von fester zu beliebiger Nachrichtenlänge

- Sei Π ein Verschlüsselungsverfahren mit Klartexten aus $\{0,1\}^n$.
- Splitte $m \in \{0,1\}^*$ in $m_1, \dots m_t$ mit $m_i \in \{0,1\}^n$.
- Definiere Π' vermöge $Enc'_k(m) = Enc_k(m_1) \dots Enc_k(m_t)$.
- Voriger Satz: Falls Π CPA-sicher ist, so ist auch Π' CPA-sicher.

Zufallsfunktionen

Definition Echte Zufallsfunktionen:

Sei $Func_n = \{f \mid f : \{0,1\}^n \to \{0,1\}^n\}$. Wir bezeichnen $f \in_R Func_n$ als echte Zufallsfunktion auf n Bits.

Anmerkungen:

- Können $f \in Func_n$ mittels vollständiger Wertetabelle beschreiben.
- Damit kann f als Bitstring der Länge $n \cdot 2^n$ dargestellt werden: n Bits pro f(x) für alle $x \in \{0, 1\}^n$.
- Es gibt $2^{n \cdot 2^n}$ Strings dieser Länge $n \cdot 2^n$, d.h. $|Func_n| = 2^{n \cdot 2^n}$.

Definition längenerhaltende, schlüsselabhängige Funktion

Sei F ein pt Algorithmus. F heißt längenerhaltende, schlüsselabhängige Funktion falls F eine Fkt. $\{0,1\}^m \times \{0,1\}^n \to \{0,1\}^n$ berechnet. Notation: $F_k(x) := F(k,x)$, wobei k der Schlüssel ist.

Anmerkung:

• Zur Übersichtlichkeit der Notation verwenden wir stets $m = n_e$

Pseudozufallsfunktion

Definition Pseudozufallsfunktion (PRF)

Sei *F* eine längenerhaltende, schlüsselabhängige Funktion. Wir bezeichnen *F* als *Pseudozufallsfunktion* (PRF), falls für alle ppt *D* gilt

$$|\operatorname{Ws}[D^{F_k(\cdot)}(1^n) = 1] - \operatorname{Ws}[D^{f(\cdot)}(1^n) = 1]| \le \operatorname{negl}(n),$$

wobei $k \in_R \{0,1\}^n$ und $f \in_R Func_n$.

Anmerkungen:

- Die Beschreibungslänge von f ist $n2^n$ Bits, d.h. exponentiell in n.
- Daher erhält ein ppt D nicht f, sondern Orakelzugriff auf f und F_k .
- D kann nur polynomiell viele Anfragen an sein Orakel stellen.
- Danach muss D entscheiden, ob sein Orakel einer echten Zufallsfunktion oder einer Pseudozufallsfunktion entspricht.

