Kryptanalyse Teil II

Alexander May

Fakultät für Mathematik Ruhr-Universität Bochum

Wintersemester 2012/13

Kryptanalyse II 1 / 119

Pollards (p-1)-Methode

Szenario:

- Sei N = pq und p 1 zerfalle in kleine Primfaktoren, q 1 nicht.
- D.h. es existieren Schranken B_1 , B_2 moderater Größe, so dass $p-1=\Pi_i p_i^{e_i}$ mit $p_i \leq B_1$ und $p_i^{e_i} \leq B_2$.

Idee:

- Für jedes $a \in \mathbb{Z}_N^*$ und jedes Vielfache k von p-1 gilt $a^k \equiv 1 \mod p$.
- Falls $a^k \not\equiv 1 \mod q$, dann erhalten wir $ggT(N, a^k 1) = p$.

Algorithmus Pollards p-1-Methode

EINGABE: N = pq

- **○** Wähle Schranken $B_1, B_2 \in \mathbb{N}$. Wähle $a \in_R \mathbb{Z}_N^*$.
- 2 Für alle Primzahlen $p_i \leq B_1$:
 - **1** Berechne $a := a^{p_i^{e_i}} \mod N$, so dass e_i maximal ist mit $p_i^{e_i} \leq B_2$.
- **③** Falls $ggT(a^k 1, N) \notin \{1, N\}$, Ausgabe des ggTs.
- AUSGABE: p, $q = \frac{N}{p}$ oder Kein Faktor gefunden.

Korrektheit der (p-1)-Methode

Satz Korrektheit der (p-1)-Methode

Sei N=pq und $B_1,B_2\in\mathbb{N}$, so dass p-1 B_1 -glatt ist mit Primpotenzen beschränkt durch $B_2,\ q-1$ jedoch nicht B_1 -glatt ist. Dann berechnet die (p-1)-Methode p in Zeit $\mathcal{O}(B_1\log^3N)$ mit Erfolgsws mind. $1-\frac{1}{B_1}$.

Beweis:

- Wir definieren $k := \prod_{\text{Primzahlen } p_i \leq B_1} p_i^{e_i}$.
- Da q-1 nicht B_1 -glatt, existiert ein Primfaktor $r \mid q-1$ mit $r > B_1$.
- Falls $r \mid \operatorname{ord}_{\mathbb{Z}_q^*}(a)$, so gilt $\operatorname{ord}_{\mathbb{Z}_q^*}(a) \nmid k$ und damit $a^k \not\equiv 1 \bmod q$.
- Andererseits ist k aber ein Vielfaches von p-1.
- Daher gilt $a^k \equiv 1 \mod p$ und es folgt $ggT(a^k, N) = p$.
- Bleibt zu zeigen, dass $r \mid \operatorname{ord}_{\mathbb{Z}_q^*}(a)$ mit hoher Ws für $a \in_{\mathcal{R}} \mathbb{Z}_N^*$.
- Da \mathbb{Z}_q^* zyklisch, gilt $\mathbb{Z}_q^* = \{\alpha^1, \dots, \alpha^{q-1}\}$ für einen Generator α .
- D.h. $(a \bmod q) \equiv \alpha^i$ für ein $i \in_R [q-1]$ und α^i besitzt $ord_{\mathbb{Z}_q^*}(\alpha^i) = \frac{q-1}{\operatorname{ort}(i,q-1)}$. (Übung)

Korrektheit der p-1-Methode

Beweis: (Fortsetzung)

- Ein Faktor r wird in $ord_{\mathbb{Z}_n^*}(\alpha^i)$ eliminiert gdw i Vielfaches von r ist.
- Dies geschieht mit Ws $\frac{1}{r}$. D.h. r verbleibt in $ord_{\mathbb{Z}_n^*}(\alpha^i)$ mit Ws $1 - \frac{1}{r} > 1 - \frac{1}{R_{\star}}$.

- Laufzeit: Es gibt sicherlich höchstens B_1 Primzahlen $\leq B_1$.
- Wegen $p_i^{e_i} = \mathcal{O}(B_2) = \mathcal{O}(N)$, kann $a^{p_i^{e_i}} \mod N$ in jeder Iteration von Schritt 2 in Zeit $\mathcal{O}(\log^3 N)$ berechnet werden.
- Damit benötigen wir für $a^k 1 \mod N$ Gesamtzeit $\mathcal{O}(B_1 \log^3 N)$.

Problem der (p-1)-Methode

- Erfolgsws und Laufzeit sind abhängig von der Ordnung von \mathbb{Z}_p^* .
- Falls $\frac{p-1}{2}$ prim ist, so benötigen wir $B_1 \approx p$.
- D.h. in diesem Fall ist die Laufzeit nicht besser als Brute-Force.
- Ausweg: Bei elliptischen Kurven E variiert die Ordnung von $E \mod p$ in einem großen Intervall, in dem glatte Zahlen liegen.

Elliptische Kurven

Definition Elliptische Kurve

Sei $p \neq 2,3$ prim, $f(x) = x^3 + ax + b \in \mathbb{Z}_p[x]$, $4a^3 + 27b^2 \not\equiv 0 \bmod p$. Wir definieren die Menge der Punkte auf einer *elliptischen Kurve* als

$$E := E[p] = \{(x, y) \in \mathbb{Z}_p^2 \mid y^2 \equiv f(x) \bmod p\} \cup \{\mathbf{0}\},$$

wobei O der Punkt im Unendlichen heißt.

Anmerkungen:

- Die Bedingung $4a^3+27b^2$ ist äquivalent zu der Forderung, dass f(x) in \mathbb{Z}_p^* keine mehrfachen Nullstellen besitzt. (Übung)
- Für jeden Punkt P = (x, y) auf E liegt auch (x, -y) auf E.
- Wir definieren -P = (x, -y).
- Für $P = \mathbf{0}$ definieren wir $-P = \mathbf{0}$ und $\mathbf{0} + Q = Q$ für alle Q auf E.

Addition von Punkten

Algorithmus Addition von Punkten auf E[p]

EINGABE: $p, P = (x_1, y_1), Q = (x_2, y_2)$ auf E mit $P, Q \neq \mathbf{0}$

- Falls $x_1 \equiv x_2 \mod p$ und $y_1 \equiv -y_2 \mod p$, Ausgabe O.
- Setze $\alpha := \begin{cases} \frac{y_2 y_1}{x_2 x_1} & \text{für } x_1 \not\equiv x_2 \bmod p \\ \frac{3x_1^2 + a}{2y_1} & \text{für } x_1 \equiv x_2 \bmod p \end{cases}$. Setze $\beta \equiv y_1 \alpha x_1 \bmod p$.
- **3** Berechne $x_3 \equiv \alpha^2 x_1 x_2 \mod p$ und $y_3 \equiv -(\alpha x_3 + \beta) \mod p$.

AUSGABE: $P + Q = (x_3, y_3)$

Anmerkungen:

- Sei $P \neq Q$. Wir betrachten die Gerade G durch P, Q.
- Falls Q = -P, so liegt G parallel zur y-Achse. Wir definieren

$$P + (-P) = \mathbf{0}.$$

- Sonst ist G definiert durch $y = \alpha x + \beta$ mit Steigung $\alpha = \frac{y_2 y_1}{x_2 x_1}$.
- Für P = Q besitzt die Tangente im Punkt P Steigung $\alpha = \frac{3x_1^2 + a}{2Ve}$.

Addition von Punkten

Lemma Addition von Punkten auf E

Seien P, Q auf E mit $P \neq -Q$. Dann schneidet die Gerade durch P, Q die Kurve E in einem dritten Punkt R mit -R := P + Q.

Beweis:

- Wir zeigen nur $P \neq Q$. Der Beweis für P = Q folgt analog.
- Wie zuvor setzen wir $P = (x_1, y_1), Q = (x_2, y_2)$ und $R = (x_3, y_3)$.
- Sei G die Gerade $y = \alpha x + \beta$ durch P, Q. Dann gilt für i = 1, 2 $(\alpha x_i + \beta)^2 = x_i^3 + ax_i + b$.
- x_1, x_2 sind damit Nullstellen des Polynoms $g(x) = x^3 \alpha^2 x^2 + \dots$
- Das Polynom g(x) besitzt damit genau 3 Nullstellen $g(x) = (x x_1)(x x_2)(x x_3) = x^3 (x_1 + x_2 + x_3)x^2 + \dots$
- Durch Koeffizientenvergleich folgt $x_1 + x_2 + x_3 = \alpha^2$.
- Wir erhalten $y_3 = \alpha x_3 + \beta$ und damit $-R = (x_3, -y_3)$.

Eigenschaften der Addition auf E

Korollar Effizienz der Addition

Sei E[p] eine elliptische Kurve mit Punkten P, Q. Dann kann P+Q in Laufzeit $\mathcal{O}(\log^2 p)$ berechnet werden.

• Wir benötigen nur Addition, Multiplikation und Division in \mathbb{Z}_p .

Satz von Mordell

Jede elliptische Kurve *E* bildet mit der definierten Addition eine abelsche Gruppe.

Beweis:

- Abgeschlossenheit: P + Q liefert wieder einen Punkt auf E.
- Neutrales Element ist der Punkt O.
- Inverses von $P \neq \mathbf{0}$ ist -P und $-\mathbf{0} = \mathbf{0}$.
- Abelsch: Berechnung von G unabhängig von Reihenfolge P, Q.
- Assoziativität kann durch Nachrechnen gezeigt werden.

Gruppenordnung einer elliptischen Kurve

Satz von Hasse (1933)

Sei E eine elliptische Kurve über \mathbb{F}_p . Dann gilt

$$|E| \le p + 1 + t \text{ mit } |t| \le 2\sqrt{p}.$$

Anmerkungen: (ohne Beweis)

- Sei $x \in \mathbb{Z}_p$ und $f(x) = x^3 + ax + b$.
- Falls f(x) ein quadratischer Rest modulo p ist, dann existieren genau zwei Lösungen $\pm y$ der Gleichung $y^2 \equiv f(x) \bmod p$, d.h. (x,y) und (x,-y) liegen in E.
- Falls f(x) ein Nichtrest ist, besitzt E keinen Punkt der Form (x, \cdot) .
- Genau die Hälfte aller Elemente in \mathbb{Z}_p^* ist ein quadratischer Rest.
- Falls $x \mapsto f(x)$ sich zufällig verhält auf \mathbb{Z}_p , erwarten wir $\frac{p}{2} \cdot 2 = p$ Punkte. Hinzu kommt der Punkt **O**, d.h. $|E| \approx p + 1$.
- Der Satz von Hasse besagt, dass sich $x \mapsto f(x)$ ist fast zufällig verhält mit einem Fehlerterm von $|t| \le 2\sqrt{p}$.

Verteilung und Berechnung der Gruppenordnung

Satz von Deuring

Sei $p \neq 2,3$ prim. Für jedes $t \in \mathbb{Z}$, $|t| \leq 2\sqrt{p}$ ist die Anzahl der elliptischen Kurven E modulo p mit |E| = p + 1 + t Punkten $\Omega\left(\frac{p^{\frac{3}{2}}}{\log p}\right)$.

Anmerkungen: (ohne Beweis)

- Die Anzahl aller Kurven E modulo p beträgt $p^2 p$. (Übung)
- Es gibt $4\sqrt{\overline{p}} + 1$ viele $t \in \mathbb{Z}$ mit $|t| \le 2\sqrt{\overline{p}}$.
- D.h. für jedes feste t gibt es durchschnittlich $\frac{p^2-p}{4\sqrt{p}+1}=\Omega(p^{\frac{3}{2}})$ elliptische Kurven E mit Ordnung |E|=p+1+t.
- Satz von Deuring: Durchschnittsargument korrekt bis auf log p.
- Sei *E* definiert mittels zufällig gewählter $(a,b) \in \mathbb{Z}_p^2$, $4a^3 \not\equiv -27b^2$.
- Dann ist |E| fast uniform verteilt in $[p+1-2\sqrt{p}, p+1+2\sqrt{p}]$.

Satz von Schoof (1985)

Für E modulo p kann |E| in Zeit $\mathcal{O}(\log^8 p)$ berechnet werden.

Elliptische Kurven modulo N

Definition Elliptische Kurve über \mathbb{Z}_n

Sei $N \in \mathbb{N}$ mit

$$ggT(6, N) = 1$$
, $f(x) = x^3 + ax + b \in \mathbb{Z}_N[x]$ und $ggT(4a^3 + 27b^2, N) = 1$.

Wir definieren die Punktemenge auf einer elliptischen Kurve als

$$E[N] = \{(x,y) \in \mathbb{Z}_N \mid y^2 \equiv f(x) \bmod N\} \cup \{\mathbf{0}\},\$$

wobei O der Punkt im Unendlichen heißt.

- Vorsicht: Die Punkte von E bilden mit der zuvor definierten Addition keine Gruppe.
- Bsp: Sei N = 55 und E definiert durch $f(x) = x^3 + 1$.
- Dann liegt P = (10, 11) auf E.
- Die Berechnung von 2P erfordert $(2y)^{-1} = 22^{-1} \mod 55$.
- Wegen ggT(22,55) = 11 existiert dieses Inverse in \mathbb{Z}_{55} nicht.
- D.h. *E* ist nicht abgeschlossen bezüglich der Addition.

Addition von Punkten auf E[N]

Algorithmus Addition von Punkten auf E[N]

EINGABE: $N, P = (x_1, y_1), Q = (x_2, y_2)$ auf E[N] mit $P, Q \neq \mathbf{0}$

- Falls $x_1 \equiv x_2 \mod N$ und $y_1 \equiv -y_2 \mod N$, Ausgabe O.
- ② Berechne $d = ggT(x_1 x_2, N)$. Falls $d \notin \{1, N\}$, Ausgabe d.
- § Falls $x_1 \equiv x_2 \mod N$, berechne $d = ggT(y_1 + y_2, N)$. Falls d > 1, Ausgabe d.
- Setze $\alpha := \begin{cases} \frac{y_2 y_1}{x_2 x_1} & \text{für } x_1 \not\equiv x_2 \\ \frac{3x_1^2 + a}{y_1 + y_2} & \text{für } x_1 \equiv x_2 \end{cases}$. Setze $\beta \equiv y_1 \alpha x_1 \mod N$.
- **5** Berechne $x_3 \equiv \alpha^2 x_1 x_2 \mod N$ und $y_3 \equiv -(\alpha x_3 + \beta) \mod N$.

AUSGABE: $P + Q = (x_3, y_3)$ oder nicht-trivialer Teiler d von N

Reihenfolge der Addition auf E[N]

Vorsicht: Es hängt von der Berechnungsvorschrift der Addition von Punkten auf E[N] ab, ob ein Teiler ausgegeben wird.

Definition Reihenfolge der Addition auf E[N]

Sei P ein Punkt auf E modulo N. Für $m \in \mathbb{N}$ definieren wir

$$mP = \begin{cases} (m-1)P + P & \text{für } m \text{ ungerade} \\ \frac{m}{2}P + \frac{m}{2}P & \text{für } m \text{ gerade, } m > 0 \\ \mathbf{O} & \text{für } m = 0. \end{cases}$$

Anmerkung:

• mP kann in Zeit $\mathcal{O}(\log m \log^2 N)$ berechnet werden.

Addition verträglich mit zuvor definierter Addition

Satz Verträglichkeit der Additionsdefinitionen

Sei P, Q auf E[N], so dass nicht für genau einen Teiler $p \mid N$ gilt $P + Q = \mathbf{O}$ auf $E \mod p$. Dann ist P + Q auf E[N] identisch mit der Addition auf E[p], E[q] oder liefert einen Teiler von N.

Beweis:

- Sei $P = (x_1, y_1)$ und $Q = (x_2, y_2)$.
- **Fall 1:** Sei $P + Q = \mathbf{O}$ auf E[p] und E[q].
- Dann gilt $\begin{vmatrix} x_1 \equiv x_2 \\ y_1 \equiv -y_2 \end{vmatrix}$ mod p und mod q und damit auch mod N.
- Es folgt $P + Q = \mathbf{O}$ auf E[p] und E[q].
- Unser Algorithmus berechnet analog $P + Q = \mathbf{0}$ auf E[N].

Addition verträglich mit zuvor definierter Addition

Beweis: (Fortsetzung)

- Fall 2: Sei $P + Q \neq O$ auf E[p] und E[q].
- Fall 2a: $x_1 \not\equiv x_2 \bmod p$ und $x_1 \not\equiv x_2 \bmod q$.
- Die Additionsformel ist identisch auf E[p] und E[N].
 (analog für E[q] und E[N])
- Fall 2b: $x_1 \not\equiv x_2 \bmod p$ und $x_1 \equiv x_2 \bmod q$ (und vice versa).
- Es folgt $ggT(x_1 x_2, N) = q$ in Schritt 2.
- Fall 2c: $\begin{vmatrix} x_1 \equiv x_2 & \mod N \\ y_1 \not\equiv -y_2 & \mod p \end{vmatrix}$ (analog $y_1 \not\equiv y_2 \mod q$).
- Die Gleichung $y^2 \equiv x_1^3 + ax_1 + b$ besitzt genau 2 Lösungen $y_{1,2} \equiv \pm y \mod p$ mit $y_1 \not\equiv -y_2 \mod p$. Damit gilt $y_1 \equiv y_2 \mod p$.
- Es folgt $y_1 + y_2 = 2y_1 \mod p$, d.h. die Additionsformel ist identisch. (analog modulo q)

ECM Faktorisierungssatz

Satz ECM Faktorisierungssatz

Sei $P + Q = \mathbf{O}$ auf E[p] und $P + Q \neq \mathbf{O}$ auf E[q]. Dann liefert die Addition P + Q auf E[N] einen Teiler von N.

Beweis:

- Wegen $P + Q = \mathbf{O}$ auf E[p] gilt $x_1 \equiv x_2 \mod p$ und $y_1 \equiv -y_2 \mod p$.
- Aus $P + Q \neq \mathbf{O}$ auf E[q] folgt

$$x_1 \not\equiv x_2 \bmod q \text{ oder } y_1 \not\equiv -y_2 \bmod q.$$

- Fall 1: $x_1 \not\equiv x_2 \bmod q$. Dann liefert Schritt 2 $ggT(x_1 x_2, N) = p$.
- Fall 2: $y_1 \not\equiv -y_2 \bmod q$. Dann liefert Schritt $3 \operatorname{ggT}(y_1 + y_2, N) = q$.

ECM Faktorisierung

Algorithmus ECM Faktorisierung

EINGABE: N = pq mit p, q gleicher Bitgröße

- **1** Wähle Schranken $B_1, B_2 \in \mathbb{N}$.
- Wähle $(a, x, y) \in_R \mathbb{Z}_N^3$ und berechne $b = y^2 x^3 ax \mod N$.
- Falls $ggT(4a^3 + 27b^2, N) = \begin{cases} 1 & \text{Setze } P = (x, y). \\ N & \text{Gehe zu Schritt 2.} \\ \text{sonst} & \text{Ausgabe } p, q. \end{cases}$
- Für alle Primzahlen p_i ≤ B₁, berechne P := p_i^{e_i}P auf E mod N, wobei e_i maximal mit p_i^{e_i} ≤ B₂.
 Falls eine der Berechnungen scheitert, Ausgabe p, q.
- Sonst zurück zu Schritt 2 oder Ausgabe Kein Faktor gefunden.

AUSGABE: *p*, *q* oder *Kein Faktor gefunden*.

Man beachte:

In Schritt 2 wird eine zufällige Kurve E mit zufälligem P auf E gewählt.

Korrektheit der ECM Faktorisierung

Satz Korrektheit der ECM Faktorisierung

Sei N=pq und E eine elliptische Kurve über \mathbb{Z}_N , so dass |E[p]| B_1 -glatt und |E[q]| nicht B_1 -glatt ist. Dann liefert ECM die Faktorisierung von N in Zeit $\mathcal{O}(B_1\log^3 N)$ mit Erfolgsws mind. $1-\frac{1}{B_1}$.

Beweis:

- Wir definieren $k:=\prod_{\text{Primzahlen }p_i\leq B_1}p_i^{e_i}$.
- Da |E[q]| nicht B_1 -glatt, gilt $r \mid |E[q]|$ für ein primes $r > B_1$.
- Falls $r \mid \operatorname{ord}_{E[q]}(P)$, so folgt $kP \neq \mathbf{0}$ auf E[q].
- Andererseits ist k ein Vielfaches von |E[p]|.
- Damit gilt $kP = \mathbf{0}$ auf E[p].
- D.h. wir erhalten bei Berechnung von kP auf (E[N]) P', Q' mit $P' + Q' = \mathbf{0}$ auf E[p] und $P' + Q' \neq \mathbf{0}$ auf E[q].
- \bullet Mit ECM Faktorisierungssatz liefert dies die Faktorisierung von N.
- Laufzeitanalyse und Erfolgws sind analog zur p 1-Methode.

Wahl der Schranken B₁, B₂ und Laufzeit

Laufzeit von ECM:

- Tradeoff: Kleine B₁ führen zu kleiner Laufzeit einer ECM-Iteration.
- Große B_1 erhöhen die Ws, dass $E \mod p$ B_1 -glatt ist. D.h. für große B_1 müssen weniger ECM-Iterationen durchlaufen werden.
- Optimale Wahl: $B_1 \approx L_p[\frac{1}{2}, \frac{1}{\sqrt{2}}] = e^{\frac{1}{\sqrt{2}}\sqrt{\log p \log \log p}}$.
- Unter einer Annahme für die Glattheit von Zahlen in $[p+1-2\sqrt{p},p+1+2\sqrt{p}]$ erhalten wir Gesamtlaufzeit $L_p[\frac{1}{2},\sqrt{2}]$.
- Besser als Laufzeit $L_N[\frac{1}{2},1]$ für Quadratisches Sieb falls $p < \sqrt{N}$: $L_p[\frac{1}{2},\sqrt{2}] = e^{\sqrt{2\ln p \ln \ln p}} < e^{\sqrt{2\frac{1}{2}\ln N \ln \ln N}} = L_N[\frac{1}{2},1].$
- ECM ist die beste Methode, um kleine Primfaktoren zu finden.

Quadratische Reste und das Legendre Symbol

Definition Quadratischer Rest

Sei p prim. Ein Element $a \in \mathbb{Z}_p$ heißt quadratischer Rest in \mathbb{Z}_p^* , falls es ein $b \in \mathbb{Z}_p^*$ gibt mit $b^2 \equiv a \bmod n$. Wir definieren

 $\mathsf{Q} \mathsf{R}_{p} = \{ a \in \mathbb{Z}_{p}^{*} \mid a \text{ ist ein quadratischer Rest } \} \text{ und } \mathsf{Q} \mathsf{N} \mathsf{R}_{p} = \mathbb{Z}_{p}^{*} \setminus \mathsf{Q} \mathsf{R}.$

Definition Legendre Symbol

Sei p > 2 prim und $a \in \mathbb{N}$. Das *Legendre Symbol* ist definiert als

$$\left(\frac{a}{\rho}\right) = \left\{ \begin{array}{cc} 0 & \text{falls } \rho | a \\ 1 & \text{falls } (a \bmod \rho) \in \mathsf{Q} R_{\rho} \\ -1 & \text{falls } (a \bmod \rho) \in \mathsf{Q} N R_{\rho}. \end{array} \right.$$

Berechnung von $dlog_{\alpha}(\beta) \mod 2$

Satz Berechnung des niederwertigsten Bits

Sei p prim, α Generator von \mathbb{Z}_p^* und $\beta \equiv \alpha^a \mod p$. Dann gilt

$$\left(\frac{\beta}{p}\right) \equiv \beta^{\frac{p-1}{2}} \bmod p = \begin{cases} 1 & \text{falls } a \equiv 0 \bmod 2 \\ -1 & \text{falls } a \equiv 1 \bmod 2 \end{cases}.$$

Beweis:

• Es gilt $\mathbb{Z}_p^* = \{\alpha, \alpha^2, \dots, \alpha^{p-1}\}$. Damit folgt

$$QR_{p} = \{\alpha^{2}, \alpha^{4}, \dots, \alpha^{2 \cdot \frac{p-1}{2}}, \underbrace{\alpha^{2 \cdot \frac{p+1}{2}}}_{\alpha^{2}}, \underbrace{\alpha^{2 \cdot \frac{p+3}{2}}}_{\alpha^{4}}, \dots, \underbrace{\alpha^{2(p-1)}}_{\alpha^{p-1}}\}$$

- D.h. β ist ein quadratischer Rest gdw *a* gerade ist.
- Es gilt $\beta^{\frac{p-1}{2}} = \pm 1$, da die 1 in \mathbb{Z}_p^* Quadratwurzeln ± 1 besitzt.
- Ferner ist $\beta^{\frac{p-1}{2}} = \alpha^{\frac{a(p-1)}{2}} = 1$ gdw $\frac{a(p-1)}{2}$ Vielfaches von p-1.
- D.h. $\beta^{\frac{p-1}{2}} = 1$ gdw a gerade ist.

Korollar: Wir können $dlog_{\alpha}(\beta) \mod 2$ in Zeit $\mathcal{O}(log^2 p)$ berechnen.

Lernen von $dlog_{\alpha}(\beta)$ modulo Teiler von p-1

Idee des Pohlig Hellman Algorithmus:

- Wir nehmen an, dass die Zerlegung $p-1=\prod_{i=1}^k p_i^{e_i}$ bekannt ist.
- Bestimmen $a = a_i \mod p_i^{e_i}$ für alle *i*. Wir ermitteln *a* mittels CRT.
- Zur Bestimmung von a_i verwenden wir die p_i -adische Zerlegung $a_i = a_{i0} + a_{i1}p_i + a_{i2}p_i^2 + \ldots + a_{ie_i-1}p_i^{e_i-1}$ mit $0 \le a_{ij} < p_i$.
- Die a_{ij} werden sukzessive für $j = 0, \dots, e_i 1$ berechnet.

Elemente in der p_i-adischen Entwicklung

Bestimmung von a_{i0} :

Es gilt

$$\beta^{\frac{p-1}{p_i}} \equiv \alpha^{\mathbf{a} \cdot \frac{p-1}{p_i}} = \alpha^{(\mathbf{a} \bmod p_i) \cdot \frac{p-1}{p_i}} \cdot \underbrace{\alpha^{\lfloor \frac{\mathbf{a}}{p_i} \rfloor \cdot p_i \cdot \frac{p-1}{p_i}}}_{\mathbf{1}} = \alpha^{(\mathbf{a} \bmod p_i) \cdot \frac{p-1}{p_i}} \equiv \alpha^{(\mathbf{a} \bmod p_i) \cdot \frac{p-1}{p_i}} = \alpha^{\mathbf{a}_{i0} \cdot \frac{p-1}{p_i}} \bmod p.$$

• Wir berechnen $\alpha^{\ell \cdot \frac{p-1}{p_i}}$ für $\ell = 0, \dots, p_i - 1$ und vergleichen mit $\beta^{\frac{p-1}{p_i}}$.

Bestimmung von aij:

- Angenommen, wir haben bereits a_{i0}, \ldots, a_{ij-1} bestimmt.
- Setze $r = a_0 + \ldots + a_{ij-1} p_i^{j-1}$ und $\beta' := \beta \cdot \alpha^{-r}$.
- Analog zum obigen Fall berechnen wir

$$\beta^{r\frac{p-1}{p_i'+1}} \equiv \alpha^{(a-r)\cdot\frac{p-1}{p_i'+1}} \equiv \alpha^{(a-r)\cdot\frac{p-1}{p_i'+1}} \equiv \alpha^{(a-r \bmod p_i^{j+1})\cdot\frac{p-1}{p_i'+1}} \equiv \alpha^{(a_i-r \bmod p_i^{j+1})\cdot\frac{p-1}{p_i'+1}} = \alpha^{a_{ij}\cdot\frac{p-1}{p_i}}.$$

• Durch Vergleich mit $\alpha^{\ell \cdot \frac{p-1}{p_i}}$, $\ell = 0, \ldots, p_i - 1$ bestimmen wir a_{ij} .

Pohlig-Hellman Algorithmus

Algorithmus Pohlig-Hellmann

EINGABE: p, α , $\beta' \equiv \alpha^{a} \mod p$ und $p-1 = \prod_{i=1}^{k} p_{i}^{e_{i}}$

- FOR $i=1,\ldots,k$ und $\ell=0,\ldots,p_i-1$ berechne $c_{i\ell}=\alpha^{\ell\cdot\frac{p-1}{p_i}}$.
- **2** FOR i = 1, ..., k

 - **2** FOR $j=0,\ldots,e_i-1$ **3** Bestimme $c_{i\ell}$ mit $c_{i\ell}=\beta^{\frac{p-1}{p_i^{l+1}}}$. Setze $a_{ij}=\ell$ und $\beta:=\beta\cdot\alpha^{-a_{ij}p_i^j}$.
- **3** Für i = 1, ..., k berechne $a_i = a_{i0} + a_{i1}p_i + ... + a_{ie_i-1}p_i^{e_i-1}$.

AUSGABE: $a = d\log_{\alpha}\beta$

Laufzeit:

- Schritt 1: $T_1 = (p_1 + ... + p_k) \cdot \mathcal{O}(\log^3 p)$.
- Schritt 2,3,4: $T_2 = (e_1 + ... + e_k) \cdot \mathcal{O}(\log^3 p) = \mathcal{O}(\log^4 p)$.
- D.h. wir erhalten Gesamtlaufzeit $\mathcal{O}(T_1 + T_2)$.
- Damit ist unsere Laufzeit polynomiell falls $p_i = \mathcal{O}(\log p)$ für alle $i > \infty$

Cold boot attacks

Szenario: Halderman et al 2008

- Computer wird inkorrekt runtergefahren, z.B. durch AUS-Schalter.
- DRAM erhält seinen Speicherinhalt für wenige Sekunden.
- Insbesondere stehen geheime Schlüssel im DRAM.
- Massives Kühlen erhält die Speicherinhalte stundenlang.
- Prozess induziert Ausfälle und Fehler bei einzelnen Bits.
- D.h. wir benötigen einen Algorithmus zur Ausfall-/Fehlerkorrektur.
- **Ziel:** Korrekturalgorithmen für Faktorisierung (p, q).

2-adische Faktorisierung

Algorithmus 2-adische Faktorisierung

EINGABE: N = pq mit Bitlänge 2n

- FOR i = 1 to n bestimme $M = \{(p', q') \mid p'q' = N \mod 2^n\}$.
- Für alle $(p', q') \in M$ mit Bitlänge jeweils n: Teste ob p'q' = N.

AUSGABE: p, q

Laufzeit:

- Für ungerades p' existiert $(p', q') \in M$ mit $q' = (p')^{-1} N \mod 2^n$.
- Damit ist $|M| \ge 2^{n-1} = \Omega(\sqrt{N})$.
- D.h. 2-adische Faktorisierung ist nicht besser als triviales Raten.

Bsp: Berechne M für $165 = 11 \cdot 15$.

Heninger-Shacham Algorithmus

Szenario:

• Erhalten \tilde{p} mit Bits von p und Ausfällen, z.B. $\tilde{p} = 1?0??1$.

Algorithmus Heninger-Shacham

EINGABE: N = pq mit Bitlänge 2n, Bitmaterial \tilde{p}, \tilde{q} .

- FOR i = 1 to n bestimme M = {(p', q') | p'q' = N mod 2ⁿ}.
 Verwerfe solche (p', q'), die inkonsistent mit dem Bitmaterial p, q sind.
- Für alle $(p', q') \in M$ mit Bitlänge jeweils n: Teste ob p'q' = N.

AUSGABE: p, q

Bsp: Faktorisiere N = 10100101 mittels $\tilde{p} = 101$? und $\tilde{q} = 1$??1.

Satz Heninger-Shacham 2009

Sei N=pq und \tilde{p}, \tilde{q} beinhalten jeweils mindestens 57% der Bits, gleichverteilt über den Bitvektor. Dann kann N mit großer Ws in polynomieller Zeit faktorisiert werden.

Fehlerkorrektur

Szenario: (Henecka, May, Meurer 2010)

- Physikalische Messung liefert \tilde{p}, \tilde{q} mit fehlerhaften Bits.
- Jedes Bit flippt mit bekannter Fehlerrate $\delta < \frac{1}{2}$.
- Man beachte: Für $\delta = \frac{1}{2}$ liefern \tilde{p}, \tilde{q} keine Information.

Algorithmus Fehlerkorrektur

EINGABE: N = pq mit Bitlänge 2n, fehlerhaftes Bitmaterial \tilde{p}, \tilde{q}

- Wähle *t* und Hamming Distanz *d* geeignet.
- ② FOR i=1 to $\frac{n}{t}$
 - **•** Berechne $M = \{(p', q') \mid p'q' = N \bmod 2^{it}\}$. Verwerfe (p', q') mit Hamming-Distanz $H((p', q'), (\tilde{p}, \tilde{q})) > d$ im letzten t-Bit Fenster.
- § Für alle $(p', q') \in M$ mit Bitlänge jeweils n: Teste ob p'q' = N.

AUSGABE: p, q

Bsp: Faktorisiere 10100101 = 1011 · 1111 mittels $\tilde{p} = 1001$, $\tilde{q} = 0111$. (t = 2, d = 1)

Hoeffding Schranke

Wahl von t und d:

- |M| soll polynomiell beschränkt sein, d.h. $t = \mathcal{O}(\log n)$.
- Korrekte Lösung p, q darf nicht verworfen werden: t und d groß.
- Wenige inkorrekte Lösungen sollen in M verbleiben: d klein.

Satz Hoeffding

Seien X_1, \ldots, X_{2t} unabhängige 0,1-wertige Zufallsvariablen mit $\operatorname{Ws}[X_i=1]=p$. Sei $X=X_1+\ldots+X_{2t}$. Dann gilt

$$\operatorname{Ws}[|X-2tp|\leq 2t\gamma]\leq e^{-4t\gamma^2}.$$

Erhalt der korrekten Lösung

Lemma Erhalt der korrekten Lösung

Sei $t=\frac{\ln n}{4\epsilon^2}$ für ein konstantes $\epsilon>0$ und $d=2t(\delta+\epsilon)$. Dann bleibt die korrekte Lösung in Fehlerkorrektur mit Ws $\geq 1-\frac{1}{t}$ erhalten.

Beweis:

- Sei p, $q \mod 2^{it}$ die korrekte partielle Lösung in Iteration i.
- In jeder Iteration vergleichen wir 2t Bits von p, q mit \tilde{p}, \tilde{q} .
- Definiere X_i als XOR der Bits in Position i für i = 1, ..., 2t.
- D.h. $X = X_1 + ... + X_{2t}$ bezeichnet die Anzahl verschiedener Bits.
- Jedes Bit kippt mit Ws δ , d.h. $E[X] = 2t \cdot E[X_i = 1] = 2t\delta$.
- Wir verwerfen (p,q) falls die Distanz zu (\tilde{p},\tilde{q}) größer d ist.
- Nach Hoeffding Schranke geschieht dies pro Runde mit Ws

$$\operatorname{Ws}[X > d] = \operatorname{Ws}[X > 2t(\delta + \epsilon)] \le e^{-4t\epsilon^2} = e^{-\ln n} = \frac{1}{n}.$$

ullet D.h. Fehlerkorrektur verwirft (p,q) nicht in $rac{n}{t}$ Runden mit

Ws[Erfolg]
$$\geq (1 - \frac{1}{n})^{\frac{n}{t}} \geq 1 - \frac{1}{t}$$
.

Inkorrekte Lösungen werden eliminiert

Lemma Elimination inkorrekter Lösungen

Unter der Annahme, dass sich fehlerhafte Lösungen zufällig verhalten, werden für $t=\frac{\ln n}{4\epsilon^2}$, $d=2t(\delta+\epsilon)$ alle inkorrekten Lösungen mit großer Ws eliminiert, sofern $\delta<\frac{1}{2}(1-\sqrt{\ln(2)})-\epsilon\approx 0.084-\epsilon$.

Beweis:

- Sei (p', q') inkorrekt. Wir vergleichen 2t Bits von p', q' und \tilde{p}, \tilde{q} .
- Sei X_i eine Zufallsvariable für das XOR der Bits an Position i.
- D.h. $X = X_1 + ... + X_{2t}$ ist die Anzahl der verschiedenen Bits.
- Unter unserer Annahme für (p', q') gilt $E[X] = 2t \cdot E[X_i = 1] = t$.
- Wir eliminieren (p', q') nicht, falls $X \leq d$. D.h. mit

$$\operatorname{Ws}[X \leq d] = \operatorname{Ws}[X \leq 2t(\delta + \epsilon)] = \operatorname{Ws}[X \leq 2t(\frac{1}{2} - (\underbrace{\frac{1}{2} - \delta - \epsilon)})] \leq e^{-4t\gamma^2}.$$

- Falls $\gamma^2 > \frac{\ln 2}{4}$, so erhalten wir $\operatorname{Ws}[X \leq d] < 2^{-t}$.
- D.h. alle 2^t inkorrekten Lösungen werden mit großer Ws eliminiert.
- Wir benötigen $(\frac{1}{2} \delta \epsilon)^2 > \frac{\ln 2}{4}$ bzw $\delta < \frac{1}{2}(1 \sqrt{\ln(2)}) \epsilon$.

Fehlerkorrektur bei Faktorisierung

Satz Henecka, May, Meurer 2010

Sei N=pq und \tilde{p}, \tilde{q} mit Fehlerrate $\delta<0.084-\epsilon$ behaftet. Dann faktorisiert FEHLERKORREKTUR N mit großer Ws in Zeit $\mathcal{O}(\log^{2+\mathcal{O}(\frac{1}{\epsilon^2})}N)$.

Resultate für RSA-Schlüssel mit mehr Information:

Schlüssel	Fehlerrate δ
(p,q)	0.084
(p,q,d)	0.160
(p,q,d,d_p)	0.206
(p,q,d,d_p,d_q)	0.237

Das Generalized Birthday Problem

Problem Birthday

Gegeben: Listen L_1, L_2 mit Elementen aus \mathbb{F}_2^n

Gesucht: $x_1 \in L_1 \text{ und } x_2 \in L_2 \text{ mit } x_1 + x_2 = \mathbf{\bar{0}} \text{ in } \mathbb{F}_2^n$

Anwendungen:

Meet-in-the-Middle Angriffe (z.B. für RSA, ElGamal)

• Kennen Lösung für $|L_1| = |L_2| = 2^{\frac{n}{2}}$ in Zeit $\tilde{\mathcal{O}}(2^{\frac{n}{2}})$.

Problem Generalized Birthday

Gegeben: Listen L_1, \ldots, L_k mit Elementen aus \mathbb{F}_2^n , unabhängig

und gleichverteilt gezogen

Gesucht: $x_1 \in L_1, \ldots, x_k \in L_k \text{ mit } x_1 + \ldots + x_k = \mathbf{0} \text{ in } \mathbb{F}_2^n$

Listen können auf beliebige Länge erweitert werden.

• Wir erwarten die Existenz einer Lösung sobald $|L_1| \cdot \dots \cdot |L_k| > 2^n$.

Zusammenfügen zweier Listen

Definition Join-Operator

Wir bezeichnen mit $low_{\ell}(x)$ die ℓ niederwertigsten Bits von x. Wir definieren für zwei Listen L_1, L_2 den Join-Operator

$$L_1\bowtie_{\ell} L_2=\{(x_1,x_2,x_1+x_2)\in L_1\times L_2\times \mathbb{F}_2^n\mid {\rm low}_{\ell}(x_1)={\rm low}_{\ell}(x_2)\}.$$

Eigenschaften:

- Es gilt $low_{\ell}(x_1 + x_2) = \mathbf{0}$ gdw $low_{\ell}(x_1) = low_{\ell}(x_2)$.
- Bei Eingabe L_1, L_2 kann $L_1 \bowtie L_2$ berechnet werden in Zeit $\tilde{\mathcal{O}}(\max\{|L_1|,|L_2|,|L_1|\bowtie_\ell|L_2|\}).$
- Es gilt $x_1 + x_2 = x_3 + x_4$ gdw $x_1 + x_2 + x_3 + x_4 = \mathbf{0}$.
- Falls $low_{\ell}(x_1 + x_2) = \mathbf{0}$ und $low_{\ell}(x_3 + x_4) = \mathbf{0}$, dann gilt $low_{\ell}(x_1 + x_2 + x_3 + x_4) = \mathbf{0}$ und $Ws[x_1 + x_2 + x_3 + x_4 = \mathbf{0} \mid low_{\ell}(x_1 + x_2 + x_3 + x_4) = \mathbf{0}] = \frac{1}{2n-\ell}$.



Algorithmus für das 4-Listen Problem

Algorithmus 4-Listen Problem

EINGABE: L_1, L_2, L_3, L_4 der Länge $|L_i| = 2^{\frac{n}{3}}$ mit Elementen aus \mathbb{F}_2^n

- ① Setze $\ell := \frac{n}{3}$.
- 2 Berechne $L_{12} = L_1 \bowtie_{\ell} L_2$ und $L_{34} = L_3 \bowtie_{\ell} L_4$.
- **3** Berechne $L_{1234} = L_{12} \bowtie_n L_{34}$.

AUSGABE: Elemente von L_{1234}

Korrektheit des 4-Listen Problem Algorithmus

Korrektheit:

- Elemente von L_{12}, L_{34} erfüllen $\log_{\frac{n}{3}}(x_1 + x_2) = \log_{\frac{n}{3}}(x_3 + x_4) = \mathbf{0}$.
- Wir erwarten Listenlänge $E[|L_{12}|] = \sum_{(x_1, x_2) \in L_1 \times L_2} \text{Ws}[\log_{\frac{n}{3}}(x_1 + x_2) = \mathbf{0}] = \frac{|L_1| \cdot |L_2|}{2\frac{n}{3}} = 2^{\frac{n}{3}}.$
- Analog gilt $E[|L_{34}|] = 2^{\frac{n}{3}}$.
- Elemente von L_{1234} erfüllen $x_1 + x_2 + x_3 + x_4 = 0$.
- Die erwartete Listenlänge $E[|L_{1234}|]$ von L_{1234} ist

$$\begin{array}{l} \sum_{(x_1,\ldots,x_4)\in L_{12}\ \times L_{34}} \operatorname{Ws}[x_1+\ldots+x_4=\boldsymbol{0}\mid \operatorname{low}_{\frac{n}{3}}(x_1+x_2)=\operatorname{low}_{\frac{n}{3}}(x_3+x_4)]\\ &=\frac{E(|L_{12}|)\cdot E(|L_{34}|)}{2^{\frac{2n}{3}}}=1. \end{array}$$

• D.h. wir erwarten, dass L₁₂₃₄ eine Lösung enthält.

Laufzeitanalyse des 4-Listen Problem Algorithmus

Laufzeit und Speicherplatz:

- Die Listen $L_1, \ldots, L_4, L_{12}, L_{34}$ benötigen jeweils Platz $\tilde{\mathcal{O}}(2^{\frac{n}{3}})$.
- Die Konstruktion von L_{12} , L_{34} geht in Laufzeit $\tilde{\mathcal{O}}(2^{\frac{n}{3}})$.
- Konstruktion von L_{1234} benötigt ebenfalls Laufzeit $\tilde{\mathcal{O}}(2^{\frac{n}{3}})$.
- **Gesamt:** Zeit und Platz $\tilde{\mathcal{O}}(2^{\frac{n}{3}})$

Übungen: Modifizieren Sie den Algorithmus, so dass

- $\bullet \ \operatorname{low}_{\ell}(x_1+x_2) = \operatorname{low}_{\ell}(x_3+x_4) = c \ \text{für ein} \ c \in \mathbb{F}_2^{\ell}.$
- wir $x_1 + x_2 + x_3 + x_4 = c'$ für ein $c' \in \mathbb{F}_2^n$ lösen können.
- wir jede Instanz mit $k \ge 4$ in Zeit und Platz $\tilde{\mathcal{O}}(2^{\frac{n}{3}})$ lösen können.

4-Listen Problem in \mathbb{Z}_{2^n}

Ziel: Verwende Gruppe $(\mathbb{Z}_{2^n}, +)$ statt $(\mathbb{F}_{2^n}, +)$.

Sei $-L = \{-x \in \mathbb{Z}_{2^n} \mid x \in L\}.$

Algorithmus 4-Listen Problem

EINGABE: L_1, L_2, L_3, L_4 mit Elementen aus \mathbb{Z}_{2^n} der Länge $|L_i| = 2^{\frac{n}{3}}$

- ② Berechne $L_{12} = L_1 \bowtie_{\ell} -L_2$ und $L_{34} = L_3 \bowtie_{\ell} -L_4$.
- **③** Berechne $L_{1234} = L_{12} \bowtie_n -L_{34}$.

AUSGABE: Elemente von L_{1234}

Korrektheit:

- Wir erhalten $(x_1, x_2, x_1 + x_2) \in L_{12}$ mit $x_1 + x_2 = 0 \mod 2^{\ell}$.
- Man beachte: Für $x_1 + x_2 = 0 \mod 2^{\ell}$ und $x_3 + x_4 = 0 \mod 2^{\ell}$ gilt

$$x_1 + x_2 + x_3 + x_4 = 0 \mod 2^{\ell}$$
.

Algorithmus k-Listen Problem, $k = 2^m$

Algorithmus k-Listen Problem

EINGABE: L_1, \ldots, L_{2^m} mit Elementen aus \mathbb{F}_2^n , Länge $|L_i| = 2^{\frac{n}{m+1}}$

- **2** For i := 1 to m 1
 - FOR j := 1 to 2^m step 2^j
 /* Join aller benachbarten Listen auf Level i des Baumes */
 - **2** Berechne $L_{j...j+2^{i}-1} = L_{j...j+2^{i-1}-1} \bowtie_{i\ell} L_{j+2^{i-1}...j+2^{i}-1}$.
- **3** Berechne $L_{1...2^m} = L_{1...2^{m-1}} \bowtie_n L_{2^{m-1}+1...2^m}$.

AUSGABE: Elemente von $L_{1...2^m}$

Beispiel für $k = 2^3$:

- Join für i = 1: $L_{12} = L_1 \bowtie_{\ell} L_2$, $L_{34} = L_3 \bowtie_{\ell} L_4$, ..., $L_{78} = L_7 \bowtie_{\ell} L_8$.
- Join für i=2: $L_{1234}=L_{12}\bowtie_{\ell}L_{34}, L_{5678}=L_{56}\bowtie_{\ell}L_{78}$.
- Join in Schritt 3: $L_{1...8} = L_{1...4} \bowtie_n L_{5...8}$.

Analyse des k-Listen Algorithmus

Korrektheit:

- Alle Startlisten besitzen Länge 2^{\ellist}.
- D.h. durch das Join auf unterster Ebene entstehen Listen mit erwarteter Länge $\frac{2^{\ell} \cdot 2^{\ell}}{2^{\ell}} = 2^{\ell}$.
- Damit entstehen in Schritt 2 stets Listen mit erwarteter Länge 2^{ℓ} .
- In Schritt 3 entsteht eine Liste L_{1...k} mit erwarteter Länge

$$\sum_{(x_1,\ldots,x_k)} \operatorname{Ws}[x_1+\ldots+x_k=\mathbf{0} \mid \operatorname{low}_{(m-1)\ell}(x_1+\ldots+x_{\frac{k}{2}}) = \\ \operatorname{low}_{(m-1)\ell}(x_{\frac{k}{2}+1}+\ldots+x_k)] = \frac{2^{2\ell}}{2^{n-(m-1)\ell}} = 1.$$

Analyse des *k*-Listen Algorithmus

Laufzeit und Platz:

- Die Listen L_1, \ldots, L_k benötigen jeweils Platz $\tilde{\mathcal{O}}(2^{\ell})$.
- In Schritt 2 berechnen wir k-2 Listen mit erwarteter Länge $\tilde{\mathcal{O}}(2^\ell)$.
- Damit erhalten wir Speicherplatzbedarf $\tilde{\mathcal{O}}(k2^{\ell}) = \tilde{\mathcal{O}}(k2^{\frac{n}{\log k+1}})$.
- Die Laufzeit für alle k-1 Join-Operationen beträgt $\tilde{\mathcal{O}}(2^{\ell})$.
- Damit ist die Gesamtlaufzeit ebenfalls $\tilde{\mathcal{O}}(k2^{\ell}) = \tilde{\mathcal{O}}(k2^{\frac{n}{\log k+1}})$
- Für $k = 2^{\sqrt{n}}$ erhalten wir Zeit und Speicherplatz Komplexität

$$\tilde{\mathcal{O}}(2^{\sqrt{n}}\cdot 2^{\frac{n}{\sqrt{n}+1}})=\tilde{\mathcal{O}}(2^{2\sqrt{n}}).$$

• Dies ist eine subexponentielle Funktion in *n*.

Übung: Konstruieren Sie einen Algorithmus für $k = 2^m + j$, $0 < j < 2^m$ mit Komplexität $\tilde{\mathcal{O}}(k2^{\frac{n}{\log k+1}})$.

Offenes Problem:

Geht es für $k = 2^m + j$ besser? Für k = 3 besser als $\mathcal{\tilde{O}}(2^{\frac{n}{2}})$?

41 / 119

Urbild Angriff auf Inkrementelle Hashfunktionen

AdHash Konstruktion: (Bellare, Micciancio 1997)

- Hashe Nachricht $x = (x_1, \dots, x_k)$ als $H(x) = \sum_{i=1}^k h(i, x_i) \bmod M.$
- Inkrementell: Block x_i kann leicht durch x_i' ersetzt werden.
- NASD (Network-Attached Security Disks) Instantiierung: $M = 2^{256}$

Algorithmus: Urbild Angriff auf AdHash

EINGABE: Modul $M = 2^{256}$, Hashwert c

- Generiere Listen L_1, \ldots, L_k mit $|L_i| = 2^{\frac{n}{\log k+1}}$.
- 2 Liste L_i enthält $y_j^{(i)} = h(i, x_j)$ für zufällig gewählte x_j .
- **3** *k*-Listen Algorithmus liefert $y_{j_1}^{(1)}, \ldots, y_{j_k}^{(k)}$ mit

$$y_{j_1}^{(1)} + \ldots + y_{j_k}^{(k)} = c \mod 2^{256} \text{ und } y_{j_i}^{(i)} = h(i, x_{j_i}).$$

AUSGABE: $x = (x_{i_1}, \dots, x_{i_k}) \text{ mit } H(x) = c \text{ mod } M$

Urbild Angriff auf Inkrementelle Hashfunktionen

Komplexität:

- Naive Urbildberechnung benötigt erwartet 2²⁵⁶ H-Auswertungen.
- Für unseren Angriff ist der k-Listen Algorithmus laufzeitbestimmend.
- Auswerten von $k \cdot 2^{\frac{n}{\log k+1}}$ für k = 128 liefert $2^7 \cdot 2^{32} = 2^{39}$.
- Allgemein: Erhalten einen Angriff mit Komplexität $\tilde{\mathcal{O}}(2^{2\sqrt{\log M}})$.
- D.h. für 80-Bit Sicherheit muss $M > 2^{1600}$ gewählt werden.

Fälschen von einfachen Ringsignaturen

Idee: Ringsignatur

- Sei $U = \{u_1, \dots, u_k\}$ eine Menge von Usern.
- Ein User u_i möchte eine Unterschrift im Namen von U leisten.
- Eine Ringsignatur schützt die Anonymität von u_i in U.

Ringsignatur von Back (1997)

Sei H eine Hashfunktion.

- **1 Gen:** Generiere RSA Schlüssel (N_i, e_i, d_i) für alle User u_i .
- **3** Sign: User u_i wählt $m_j \in_R \mathbb{Z}_{N_j}$, $j \neq i$, Nachricht m, und berechnet

$$m_i = \left(H(m) \oplus \bigoplus_{j \neq i} (m_j^{\mathbf{e}_j} \bmod N_j))\right)^{d_i} \bmod N_i.$$

Ausgabe von (m, σ) mit der Signatur $\sigma = (m_1, \dots, m_k)$.

③ Vrfy: Prüfe für (m, σ) die Identität

$$\bigoplus_{i=1}^k (m_i^{e_i} \bmod N_i) \stackrel{?}{=} H(m).$$

Fälschen von Ringsignaturen

Algorithmus Universelles Fälschen von Ringsignaturen

EINGABE: Nachricht m, (N_i, e_i) für i = 1, ..., k

1 Berechne Listen L_i für i = 1, ..., k mit Elementen

$$x_j^{(i)} = m_j^{e_i} \bmod N_i$$
 für $m_j \in_R \mathbb{Z}_{N_i}$.

2 *k*-Listen Algorithmus liefert $x_{j_1}^{(1)}, \ldots, x_{j_k}^{(k)}$ mit

$$x_{j_1}^{(1)}\oplus\ldots\oplus x_{j_k}^{(k)}=H(m).$$

AUSGABE: (m, σ) mit $\sigma = (m_{j_1}, \ldots, m_{j_k})$.

Komplexität:

- Sei $N = \max_{i} \{N_i\}$. Wir erhalten Komplexität $\mathcal{O}(k \cdot 2^{\frac{\log N}{\log k + 1}})$.
- D.h. für $k = \theta(\log N)$ erhalten wir einen subexponentiellen Angriff.

Polynomielle Vielfache mit kleinem Gewicht

Definition Gewicht eines Polynoms

Sei $p(x) = \sum_{i=0}^{n} p_i x^i \in \mathbb{F}_2[x]$. Das Gewicht w(p) von p(x) ist definiert als das Hamminggewicht des Koeffizientenvektors von p(x), d.h.

$$\operatorname{wt}(p) = \operatorname{wt}((p_0, \ldots, p_n)).$$

Anwendung: Bei sogenannten Korrelationsattacken auf Stromchiffren benötigt man Polynomvielfache sehr kleinen Gewichts.

Problem Polynomvielfache mit kleinem Gewicht

Gegeben: $p(x) \in \mathbb{F}_2[x]$ irreduzibel vom Grad n,

Gradschranke d > n, Gewicht k

Gesucht: $m(x) \in \mathbb{F}_2[x] \text{ mit } p(x) \mid m(x), \text{ Grad } \leq d \text{ und } \text{wt}(m) \leq k.$

Konstruktion von Polynomvielfachen

Wir identifizieren Polynome in $\mathbb{F}_2[x]$ mit ihren Koeffizientenvektoren.

Algorithmus Polynomvielfache

EINGABE: $p(x) \in \mathbb{F}_2[x]$, Gewicht k

- **1** Setze die Gradschranke $d := 2^{\frac{n}{\log k + 1}}$
- ② Generiere Listen L_i , $i=1,\ldots,k$ mit Elementen der Form $y_j^{(i)}=x^{a_j} \bmod p(x)$ für zufällig gewählte $a_j \leq d$.
- **3** *k*-Listen Algorithmus liefert $y_{j_1}^{(1)}, \dots, y_{j_k}^{(k)}$ mit

$$y_{j_1}^{(1)}\oplus\ldots\oplus y_{j_k}^{(k)}=\mathbf{0}.$$

AUSGABE: $m(x) = x^{a_{j_1}} + \ldots + x^{a_{j_k}}$

Konstruktion von Polynomvielfachen

Korrektheit:

- Wir definieren $\mathbb{F}_{2^n} = \mathbb{F}_2[x]/p(x)$. Addition zweier Polynome in \mathbb{F}_{2^n} entspricht dem XOR ihrer Koeffizientenvektoren.
- Nach Konstruktion gilt $m(x) = x^{a_{j_1}} + ... + x^{a_{j_k}} = 0$ in \mathbb{F}_{2^n} .
- D.h. p(x) muss m(x) teilen.
- Wegen $a_j \le d$ besitzt m(x) Grad höchstens d.
- Ferner besteht m(x) aus höchstens k Monomen.
- Damit besitzt m(x) Gewicht h\u00f6chstens k.
- Für die Listengröße im k-Listen Alg. benötigen wir $d = 2^{\frac{n}{\log k+1}}$.
- D.h. unser Algorithmus funktioniert nur für hinreichend großes d.

Komplexität:

- Der k-Listen Algorithmus liefert Komplexität $\tilde{\mathcal{O}}(k \cdot 2^{\frac{n}{\log k+1}})$.
- Bsp.: grad(p) = 120 und wir suchen Vielfaches mit Gewicht k = 4.
- Wir wählen $d = 2^{\frac{n}{\log k + 1}} = 2^{\frac{120}{3}} = 2^{40}$ erhalten $k \cdot 2^{\frac{n}{\log k + 1}} = 2^{42}$.

k-Listen Problem über \mathbb{F}_2^n für $k \ge n$

Problem Generalized Birthday für $k \ge n$

Gegeben: L_1, \ldots, L_k mit Elementen aus \mathbb{F}_2^n , $|L_i| \ge 2$, $k \ge n$.

Gesucht: $\mathbf{x}_1 \in L_1, \dots, \mathbf{x}_k \in L_k \text{ mit } \mathbf{x}_1 \oplus \dots \oplus \mathbf{x}_k = \mathbf{0}$

Idee: (Algorithmus von Bellare, Micciancio 1997)

- ObdA $L_i = \{\mathbf{x}_{i,0}, \mathbf{x}_{i,1}\}$ für alle i, sonst entferne Elemente aus L_i .
- Definiere $b_i = \begin{cases} 0 & \text{falls } \mathbf{x}_{i,0} \text{ in } L_i \text{ ausgew\"ahlt wird.} \\ 1 & \text{falls } \mathbf{x}_{i,1} \text{ in } L_i \text{ ausgew\"ahlt wird.} \end{cases}$
- D.h. wird müssen $\mathbf{b} = (b_1, \dots, b_n) \in \mathbb{F}_2^n$ finden mit $b_1 \mathbf{x}_{1,1} + (1 b_1) \mathbf{x}_{1,0} + \dots + b_k \mathbf{x}_{k,1} + (1 b_k) \mathbf{x}_{k,0} = \mathbf{0}$ $\Leftrightarrow b_1 (\mathbf{x}_{1,1} \mathbf{x}_{1,0}) + \dots + b_k (\mathbf{x}_{k,1} \mathbf{x}_{k,0}) = -(\mathbf{x}_{1,0} + \dots + \mathbf{x}_{k,0})$
- Dies ist ein lineares Gleichungssystem in den b_i.
- Falls die Matrix definiert durch die Vektoren $\mathbf{x}_{i,1} \mathbf{x}_{i,0}$ vollen Rang besitzt, so können wir das System in Zeit $\mathcal{O}(n^3 + kn)$ lösen.

Das Subset Sum Problem

Lehren aus dem Generalized Birthday Problem:

- Lösungen mit spezieller Form sind oft leichter zu konstruieren.
- Existieren hinreichend viele Lösungen, dann existieren auch Lösungen spezieller Form.

Definition Subset Sum Problem

Gegeben: $a_1, \ldots, a_n, S \in \mathbb{N}$

Gesucht: $I \subseteq [n], |I| = \frac{n}{2} \text{ mit } \sum_{i \in I} a_i = S$

- Brute-Force enumeriert alle $I \subseteq [n]$ mit $|I| = \frac{n}{2}$.
- Laufzeit ist $\tilde{\mathcal{O}}(\binom{n}{n/2}) = \tilde{\mathcal{O}}(2^n)$.

Abschätzung für Binomialkoeffizienten

Lemma Stirling-Abschätzung

Für
$$0 \le \alpha \le 1$$
 gilt $\binom{n}{\alpha n} = \tilde{\Theta}(2^{H(\alpha)n})$, wobei $H(\alpha) = -\alpha \log(\alpha) - (1 - \alpha) \log(1 - \alpha)$ die binäre Entropie ist.

Beweis:

Aus der Stirling-Formel $n! \sim \sqrt{2\pi n} \cdot (\frac{n}{e})^n$ folgt

Korollar

Für
$$0 \le \alpha \le \beta \le 1$$
 gilt $\binom{\beta n}{\alpha n} = \binom{\beta n}{\alpha \frac{1}{2}\beta n} = \tilde{\Theta}(2^{H(\frac{\alpha}{\beta})\cdot \beta n}).$

MitM für Subset Sum

Idee: Schreibe $\sum_{i \in I} a_i = S$ in der Form

$$\sum_{i \in I_1} a_i = S - \sum_{i \in I_2} a_i \text{ mit } I = I_1 \cup I_2 \text{ und } |I_1| = |I_2| = \frac{n}{4}.$$

Algorithmus Meet-in-the-Middle für Subset Sum

EINGABE: a_1, \ldots, a_n, S

- \bigcirc Permutiere a_1, \ldots, a_n .
- ② Für alle $I_1 \subseteq [1, \frac{n}{2}]$ mit $|I_1| = \frac{n}{4}$
 - **①** Erzeuge Liste *L* mit Einträgen $(I_1, \sum_{i \in I_1} a_i)$.
- 3 Sortiere *L* nach der zweiten Komponente.
- **1** Für alle $I_2 \subseteq [\frac{n}{2} + 1, n]$ mit $|I_2| = \frac{n}{4}$
 - Falls $S \sum_{i \in I_2} a_i$ in 2. Komponente von L auftaucht: $I := I_1 \cup I_2$.
- Falls keine Lösung gefunden, zurück zu Schritt 1.

AUSGABE: I mit $\sum_{i \in I} a_i$ und $|I| = \frac{n}{2}$.

Korrektheit und Komplexität

Korrektheit:

- Benötigen Permutation der a_i in Schritt 1, so dass $|I \cap [1, \frac{n}{2}]| = \frac{n}{4}$.
- Dies geschieht mit Ws

$$\frac{\binom{n/2}{n/4}^2}{\binom{n}{n/2}} = \tilde{\Omega}\left(\frac{2^{\frac{n}{2}} \cdot 2^{\frac{n}{2}}}{2^n}\right) = \tilde{\Omega}(1).$$

D.h. nach poly(n) Iterationen erhalten wir eine Lösung.

Komplexität:

• Der Algorithmus benötigt Zeit und Platz $\tilde{\mathcal{O}}(\binom{n/2}{n/4}) = \tilde{\mathcal{O}}(2^{\frac{n}{2}})$.

Repräsentationstrick: Howgrave-Graham, Joux (2010) Idee:

• Verwende modifiziertes Meet-in-the-Middle mit

$$\textstyle \sum_{i\in I_1} a_i = S - \sum_{i\in I_2} a_i \text{ mit } I_1, I_2 \subseteq [1,n] \text{ und } |I_1| = |I_2| = \frac{n}{4}.$$

ullet D.h. I_1,I_2 werden nicht wie zuvor aus disjunkten Mengen gewählt.

Nachteile:

- Größe von L für $(i_1, \sum_{i \in I_1} a_i)$ ist $\binom{n}{n/4}$ statt $\binom{n/2}{n/4}$.
- Falls $I_1 \cap I_2 \neq \emptyset$ ist $\sum_{i \in I_1 \cup I_2} a_i$ keine Lösung.

Vorteil:

- Anzahl Repräsentationen einer Lösung $I = I_1 \cup I_2$ ist $R := \binom{n/2}{n/4}$.
- **Bsp**: $I = \{1, 2, 5, 6\} \subseteq [1, 8]$ kann z.B. als $I_1 = \{1, 2\}$ und $I_2 = \{5, 6\}$ oder als $I_1 = \{1, 5\}$ und $I_2 = \{2, 6\}$ dargestellt werden.

Ziel: Konstruiere $\frac{1}{R}$ -Bruchteil von L mit *einer* Repräsentation.

D.h. wir konstruieren eine Liste L' der Größe

$$\frac{\binom{n}{n/4}}{\binom{n/2}{n/4}} = \mathcal{O}(2^{(H(\frac{1}{4}) - \frac{1}{2})n}) = \mathcal{O}(2^{0.311n})$$

• Kann in Gesamtlaufzeit $\tilde{\mathcal{O}}(2^{0.337n})$ realisiert werden.

Lineare Codes

Definition [n, k]-Code

Ein linearer [n, k]-Code C ist ein k-dimensionaler Unterraum $C \subseteq \mathbb{F}_2^n$.

Anmerkungen:

ullet Jeder [n,k]-Code C besitzt eine Generatormatrix $G\in \mathbb{F}_2^{k imes n}$ mit

$$C = \{ \mathbf{x}G \mid \mathbf{x} \in \mathbb{F}_2^k \}.$$

ullet Alternativ: Definiere C mittels Parity-Check Matrix $P \in \mathbb{F}_2^{(n-k) imes n}$

$$C = \{\mathbf{c} \in \mathbb{F}_2^n \mid P \cdot \mathbf{c}^t = \mathbf{0}\}.$$

Definition Syndrom

Sei $P \in \mathbb{F}_2^{(n-k)\times n}$ eine Parity-Check Matrix von C und $\mathbf{x} \in \mathbb{F}_2^n$. Dann heißt $\mathbf{s}(\mathbf{x}) := P \cdot \mathbf{x}^t$ das Syndrom von \mathbf{x} .

Distanz

Korollar

Sei $\mathbf{x} = \mathbf{c} + \mathbf{e} \in \mathbb{F}_2^n$ mit $\mathbf{c} \in C$. Dann gilt $s(\mathbf{x}) = s(\mathbf{e})$.

• D.h. das Syndrom hängt nur von e ab, nicht vom Codewort c.

Definition Distanz

Sei C ein [n, k]-Code. Wir definieren die *Distanz* von C als

$$d = \min_{\mathbf{c}, \mathbf{c}' \in C, \mathbf{c} \neq \mathbf{c}'} \{ \operatorname{wt}(\mathbf{c} + \mathbf{c}') \}.$$

Wir bezeichnen C auch als [n, k, d]-Code.

• Eindeutige Dekodierung von $\mathbf{x} = \mathbf{c} + \mathbf{e}$ möglich, sofern $\operatorname{wt}(\mathbf{e}) \leq \lfloor \frac{d-1}{2} \rfloor$.

Syndrom-Dekodierung

Problem Syndrom-Dekodierung

Gegeben: $P \in \mathbb{F}_2^{(n-k) \times n}$, ω , $\mathbf{x} = \mathbf{c} + \mathbf{e} \in \mathbb{F}_2^n$ mit $\mathbf{c} \in C$ und $\mathrm{wt}(\mathbf{e}) = \omega$

Gesucht: $\mathbf{e} \in \mathbb{F}_2^n$

Anmerkungen:

Syndrom-Dekodierung erlaubt die Dekodierung von x als

$$\mathbf{c} = \mathbf{x} + \mathbf{e}$$
.

- Brute-Force enumeriert alle $\mathbf{e} \in \mathbb{F}_2^n$ mit $\mathrm{wt}(\mathbf{e}) = \omega$ in Zeit $\tilde{\mathcal{O}}(\binom{n}{\omega})$.
- Idee: Verkleinere Suchraum durch lineare Algebra.

Information Set Decoding (Prange 1962)

Algorithmus Information Set Decoding

EINGABE:
$$P \in \mathbb{F}_2^{(n-k) \times n}$$
, ω , $\mathbf{x} \in \mathbb{F}_2^n$

- Permutiere Spalten von P, d.h. für eine Permutationsmatrix $U_P \in \mathbb{F}_2^{n \times n}$ berechne $P' := P \cdot U_P$.
- ② Erzeuge Einheitsmatrix in rechten Spalten, d.h. für ein invertierbares $U_G \in \mathbb{F}_2^{(n-k)\times (n-k)}$ berechne

$$P_s := U_G \cdot P' \text{ mit } P_s = (H|I_{n-k}) \text{ und } s(\mathbf{x}) := U_G \cdot P\mathbf{x}^t.$$

- Wähle p geeignet.
- Für jedes $\mathbf{e}_1 \in \mathbb{F}_2^k$ mit $\mathrm{wt}(\mathbf{e}_1) = p$: Berechne $\mathbf{e}_2^t := H \cdot \mathbf{e}_1^t + s(\mathbf{x})$. Falls $\mathrm{wt}(\mathbf{e}_2) = \omega p$, setze $\mathbf{e} = (\mathbf{e}_1, \mathbf{e}_2) \cdot U_p^{-1}$
- Falls keine Lösung e gefunden wurde, zurück zu Schritt 1.

AUSGABE: e

Korrektheit und Laufzeit von ISD

Korrektheit:

- Schritt 1 permutiert die Koordinaten von $\mathbf{e} = (\mathbf{e}_1, \mathbf{e}_2)$.
- Benötigen in Schritt 4, dass $\mathbf{e}_1 \in \mathbb{F}_2^k$ Gewicht $\operatorname{wt}(\mathbf{e}_1) = p$ besitzt.
- Dies geschieht mit Wahrscheinlichkeit

$$p_1 := \frac{\binom{k}{p}\binom{n-k}{\omega-p}}{\binom{n}{\omega}}.$$

• Es gilt $P_s \cdot \mathbf{e}^t = s(\mathbf{x})$ mit $\mathbf{e} = (\mathbf{e}_1, \mathbf{e}_2)$ und damit $H \cdot \mathbf{e}_1^t + I_{n-k} \cdot \mathbf{e}_2^t = U_G \cdot s(\mathbf{x})$ bzw. $\mathbf{e}_2^t = H \cdot \mathbf{e}_1 + s(\mathbf{x})$.

Laufzeit:

• Pro Iteration benötigen wir in Schritt 4 $\tilde{\mathcal{O}}(\binom{k}{p})$, d.h. insgesamt

$$\tilde{\mathcal{O}}\left(\binom{k}{p}\cdot p_1^{-1}\right) = \tilde{\mathcal{O}}\left(\frac{\binom{n}{\omega}}{\binom{n-k}{\omega-p}}\right).$$

- Wird minimiert für p = 0, d.h. wir erhalten $\tilde{\mathcal{O}}\left(\frac{\binom{n}{\omega}}{\binom{n-k}{\omega}}\right)$.
- Dies verbessert den Brute-Force Ansatz um den Faktor $\binom{n-k}{\omega}$.
- Laufzeit kann abgeschätzt werden durch $\mathcal{O}(2^{0.058n})$. (mittels der sogenannten Gilbert-Varshamov Schranke)

Sterns Information Set Decoding (1989)

Idee: Modifiziere Pranges Algorithmus wie folgt.

- Verwende Meet-in-the-Middle statt Brute Force in Schritt 4.
- Permutiere dazu $\mathbf{e} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) \in \mathbb{F}_2^{\frac{k}{2} \times \frac{k}{2} \times (n-k)}$, so dass $\mathrm{wt}(\mathbf{e}_1) = \mathrm{wt}(\mathbf{e}_2) = \frac{p}{2} \text{ und } \mathrm{wt}(\mathbf{e}_3) = \omega p$.
- Schreibe $H \in \mathbb{F}_2^{(n-k) \times k}$ als $H = (H_1|H_2)$ mit $H_1 = H_2 = \mathbb{F}_2^{(n-k) \times \frac{k}{2}}$.
- Matche $H_1 \cdot \mathbf{e}_1^t = H_2 \cdot \mathbf{e}_2^t + s(\mathbf{x})$ auf ℓ Koordinaten exakt.
- Für alle Lösungen $(\mathbf{e}_1, \mathbf{e}_2)$ berechne $\mathbf{e}_3 = H \cdot (\mathbf{e}_1, \mathbf{e}_2)^t + s(\mathbf{x})$.
- Prüfe wt(\mathbf{e}_3) $\stackrel{?}{=} \omega p$.
- Optimierung von p, ℓ liefert eine Laufzeitschranke von $\tilde{\mathcal{O}}(2^{0.056n})$.
- Der beste bekannte Algorithmus (BJMM 2012) nutzt zusätzlich den Repräsentationstrick und erreicht $\tilde{\mathcal{O}}(2^{0.049n})$.
- Parameterwahl McEliece: Empfehlung von Codelängen

$$n = \frac{80}{0.049} > 1600.$$

Motivation: Algebraische Analyse von Blockchiffren

Blockchiffren:

Eine Blockchiffre berechnet eine Abbildung

$$F: \{0,1\}^n \times \{0,1\}^m \to \{0,1\}^m \text{ mit } (k,x) \mapsto y.$$

- Für alle $k \in \{0,1\}^n$ ist $F_k := F(k,\cdot)$ eine Permutation auf $\{0,1\}^m$.
- Blockchiffren sind das wichtigste Konstrukt der Kryptographie.

Angriff auf Blockchiffren

Gegeben: $x, y = F_k(x)$

Gesucht: $k = k_1 ... k_n \in \{0, 1\}^n$

Algebraische Modellierung:

Betrachtes i-tes Ausgabebit von F_k

$$f_i := F_k^{(i)} : \{0,1\}^m \to \{0,1\} \text{ mit } x \mapsto y_i.$$

• Schreibe f_1, \ldots, f_m als Polynome in k_1, \ldots, k_n über \mathbb{F}_2 .

Affine Varietät

Definition Affine Varietät

Seien $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$ für einen Körper \mathbb{F} . Wir bezeichnen

$$\boldsymbol{V}(f_1,\ldots,f_m)=\{(a_1,\ldots,a_n)\in\mathbb{F}^n\mid f_i(a_1,\ldots,a_n)=0 \text{ für } i=1,\ldots,m\}$$

als die durch f_1, \ldots, f_m definierte affine Varietät.

Anmerkungen:

- $V(f_1, ..., f_m)$ ist die gemeinsame Nullstellenmenge von $f_1, ..., f_m$.
- Für Beispiele verwenden wir oft den Körper $\mathbb{F}=\mathbb{R}$, für die Kryptographie $\mathbb{F}=\mathbb{F}_{p}$.

Beispiele:

- $V(x^2 + y^2 1)$ ist in \mathbb{R}^2 der Einheitskreis mit Mittelpunkt **0**.
- $V(x^2 + y^2 z^2)$ liefert im \mathbb{R}^3 einen Doppelkegel.
- $V(y-x^2,z-x^3)$ liefert als Schnitt zweier Flächen eine Kurve.
- V(xz, yz) ist die Vereinigung der (x, y)-Ebene mit der z-Achse.

Spezialfall Lineare Varietät

Definition Lineare Varietät

Sei $A \in \mathbb{F}^{m \times n}$ und $\mathbf{b} \in \mathbb{F}^m$. Dann definieren die Lösungen $\mathbf{V} = \{\mathbf{x} \in \mathbb{F}^n \mid A\mathbf{x} = \mathbf{b}\}$ eine *lineare Varietät*.

Anmerkungen:

• Sei rang(A) = r. Dann besitzt **V** Dimension n - r. D.h. dim(**V**) wird von der Anzahl linear unabhängiger Gleichungen bestimmt.

Ziele:

- Lösbarkeit:
 - Gilt $\mathbf{V}(f_1,\ldots,f_m)\neq\emptyset$, d.h. ist $f_1=\ldots=f_m=0$ lösbar?
- Endlichkeit:
 - Ist $V(f_1, ..., f_m)$ endlich? Können wir alle Lösungen bestimmen?

Abgeschlossenheit unter Vereinigung und Schnitt

Satz Abgeschlossenheit unter Vereinigung und Schnitt

Seien V, W affine Varietäten. Dann sind auch $V \cap W$ und $V \cup W$ affine Varietäten.

- Seien $V = \mathbf{V}(f_1, \dots, f_m)$ und $W = \mathbf{V}(g_1, \dots, g_\ell)$. Sei $\mathbf{x} \in V \cap W$.
- Dann verschwindet **x** sowohl auf f_1, \ldots, f_m als auch auf g_1, \ldots, g_ℓ .
- Damit verschwindet **x** auf $f_1, \ldots, f_m, g_1, \ldots, g_\ell$, d.h.

$$V \cap W = \mathbf{V}(f_1,\ldots,f_m,g_1,\ldots,g_\ell).$$

- Wir zeigen weiterhin: $V \cup W = \mathbf{V}(f_i g_j \mid i = 1, ..., m, j = 1, ..., \ell)$.
- $V \cup W \subseteq V(f_ig_i)$: Sei $\mathbf{x} \in V \cup W$, oBda $\mathbf{x} \in V$.
- Dann verschwindet x auf allen f_i und damit auf allen f_ig_j.
- $\mathbf{V}(f_ig_j) \subseteq V \cup W$: Sei $\mathbf{x} \in \mathbf{V}(f_ig_j)$.
- Falls $\mathbf{x} \in V$, gilt $\mathbf{x} \in V \cup W$. Sonst folgt $f_{i'}(\mathbf{x}) \neq 0$ für ein $i' \in [m]$.
- Andererseits verschwindet **x** auf allen $f_{i'}g_{i}$.
- Damit verschwindet x auf allen g_j. D.h. es gilt x ∈ W = x = x

Ideal

Definition Ideal

Eine Menge $I \subseteq \mathbb{F}[x_1, \dots, x_n]$ heißt *Ideal* falls Folgendes gilt.

- $0 \in I$.
- ② Falls $f, g \in I$, dann ist $f + g \in I$.
- **③** Für $f \in I$ und $h \in \mathbb{F}[x_1, \dots, x_n]$ gilt $hf \in I$.

Definition Polynomideal

Seien $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$. Dann bezeichnen wir mit

$$\langle f_1,\ldots,f_m\rangle=\left\{\sum_{i=1}^m h_if_i\mid h_i\in\mathbb{F}[x_1,\ldots,x_n]\right\}$$

das $von f_1, \ldots, f_m$ generierte Polynomideal.

Anmerkung: $I = \langle f_1, \dots, f_m \rangle$ ist ein Ideal.

- Sei $I = \langle f_1, \dots, f_m \rangle$. $0 \in I$ wegen $0 = \sum_i 0 \cdot f_i$.
- Seien $f = \sum_i p_i f_i$, $g = \sum_i q_i f_i \in I$ und $h \in \mathbb{F}[x_1, \dots, x_n]$. Dann gilt $f + g = \sum_i (p_i + q_i) f_i \in I$ und $hf = \sum_i (hp_i) f_i \in I$.

Varietäten und Ideale

Definition Basis eines Ideals

Ein Ideal I heißt endlich erzeugt mit Basis $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$, falls $I = \langle f_1, \ldots, f_m \rangle$.

Satz Varietäten hängen nur vom Ideal ab

Seien f_1, \ldots, f_m und g_1, \ldots, g_ℓ Basen eines Ideals I. Dann gilt

$$\mathbf{V}(f_1,\ldots,f_m)=\mathbf{V}(g_1,\ldots,g_\ell).$$

Beweis:

- Zeigen $V(f_1, ..., f_m) \subseteq V(g_1, ..., g_\ell)$. Umkehrung folgt analog.
- Sei $\mathbf{x} \in \mathbf{V}(f_1, \dots, f_m)$. D.h. $f_i(\mathbf{x}) = 0$ für alle $i = 1, \dots, m$.
- Da die f_i eine Basis von I bilden, können wir jedes g_j schreiben als $g_j = \sum_{i=1}^m h_i f_i$ für $j = 1, \dots, \ell$.
- Damit gilt $g_j(\mathbf{x}) = \sum_i h_i(\mathbf{x}) \cdot f_i(\mathbf{x}) = 0$. D.h. $\mathbf{x} \in \mathbf{V}(g_1, \dots, g_\ell)$.

Bsp: Es gilt
$$\langle 2x^2 + 3y^2 - 11, x^2 - y^2 - 3 \rangle = \langle x^2 - 4, y^2 - 1 \rangle$$
 (Übung),

d.h. $V(2x^2 + 3y^2 - 11, x^2 - y^2 - 3) = V(x^2 - 4, y^2 - 1) = \{(\pm 2, \pm 1)\}$

Das Ideal einer Varietät

Frage: Welche Polynome verschwinden auf $V(f_1, \ldots, f_m)$?

Definition Ideal einer Varietät

Sei V eine affine Varietät. Dann ist das Ideal von V definiert als

$$\mathbf{I}(V) = \{ f \in \mathbb{F}[x_1, \dots, x_n] \mid f(\mathbf{x}) = 0 \text{ für alle } \mathbf{x} \in V \}.$$

Satz I(V) ist ein Ideal

Sei V eine affine Varietät. Dann ist I(V) ein Ideal.

Beweis:

- 0 ∈ I(V), da das Nullpolynom auf allen Punkten verschwindet.
- Seien $f, g \in I(V)$ und $h \in \mathbb{F}[x_1, \dots, x_n]$. Für alle $\mathbf{x} \in V$ folgt

$$\underbrace{f(\mathbf{x})}_{=0} + \underbrace{g(\mathbf{x})}_{=0} = 0 \text{ und } h(\mathbf{x}) \cdot \underbrace{f(\mathbf{x})}_{=0} = 0.$$

• Damit gilt $f + g \in I(V)$ und $hf \in I(V)$.

Beispiel: Ideal einer Varietät

Bsp Ideal einer Varietät

$$\mathbf{I}(\{(0,0)\}) = \langle x,y \rangle \subseteq \mathbb{F}[x,y].$$

- $\langle x,y \rangle \subseteq I(\{(0,0)\})$: Sei $f \in \langle x,y \rangle$. Dann gilt $f(x,y) = h_1(x,y) \cdot x + h_2(x,y) \cdot y$.
- Damit ist f(0,0) = 0 und es folgt $f \in I(\{(0,0)\})$.
- $I(\{(0,0)\}) \subseteq \langle x,y \rangle$: Sei $f \in I(\{(0,0)\})$. Dann gilt $f(x,y) = \sum_{i,j} a_{ij} x^i y^j$ mit f(0,0) = 0.
- Es folgt $a_{00} = 0$ und damit

$$f(x,y) = \left(\sum_{i,j,i>0} a_{ij} x^{i-1} y^j\right) \cdot x + \left(\sum_{j>0} a_{0j} y^{j-1}\right) \cdot y \in \langle x,y \rangle.$$

Polynome → Varietät → Ideal

Frage: Gilt $\langle f_1, \dots, f_m \rangle = I(V(f_1, \dots, f_m))$? Antwort: Leider nicht.

Satz

Es gilt $\langle f_1, \dots, f_m \rangle \subset \mathbf{I}(\mathbf{V}(f_1, \dots, f_m))$, aber i. Allg. keine Gleichheit.

- Sei $f \in \langle f_1, \dots, f_m \rangle$, d.h. $f = \sum_{i=1}^m h_i f_i$ für Polynome h_i .
- Die Polynome f_1, \ldots, f_m verschwinden auf allen $\mathbf{x} \in \mathbf{V}(f_1, \ldots, f_m)$.
- Damit gilt $f(\mathbf{x}) = 0$ für $\mathbf{x} \in \mathbf{V}(f_1, \dots, f_m)$, d.h. $f \in \mathbf{I}(\mathbf{V}(f_1, \dots, f_m))$.
- **Gegenbeispiel** für Gleichheit: $I(V(x^2, y^2)) \subseteq \langle x^2, y^2 \rangle$.
- Die Gleichungen $x^2 = y^2 = 0$ implizieren $\mathbf{V}(x^2, y^2) = \{(0, 0)\}.$
- Aus dem Beispiel zuvor folgt $I(V(x^2, y^2)) = I(\{(0, 0)\}) = \langle x, y \rangle$.
- Es gilt aber $\langle x, y \rangle \not\subseteq \langle x^2, y^2 \rangle$, da z.B. x nicht in der Form $h_1 \cdot x^2 + h_2 \cdot y^2$ dargestellt werden kann.

Ideale definieren Varietäten

Definition Varietät eines Ideals **V**(*I*)

Sei $I \subseteq \mathbb{F}[x_1, \dots, x_n]$ ein Ideal. Wir definieren

$$\mathbf{V}(I) = \{(a_1, \dots, a_n) \in \mathbb{F}^n \mid f(a_1, \dots, a_n) = 0 \text{ für alle } f \in I\}.$$

Satz Varietät eines Ideals V(I)

V(I) ist eine Varietät. Insbesondere gilt für $I = \langle f_1, \dots, f_m \rangle$, dass

$$\mathbf{V}(I)=\mathbf{V}(f_1,\ldots,f_m).$$

- $V(I) \subseteq V(f_1, ..., f_m)$: Sei $(a_1, ..., a_n) \in V(I)$. Dann gilt $f(a_1, ..., a_n) = 0$ für alle $f \in I$, d.h. insbesondere für $f_1, ..., f_m \in I$.
- $V(f_1, \ldots, f_m) \subseteq V(I)$: Sei $(a_1, \ldots, a_n) \in V(f_1, \ldots, f_m)$ und $f \in I$.
- Wir schreiben $f = \sum_i h_i f_i$ und damit gilt

$$f(a_1,\ldots,a_n) = \sum_{i=1}^m h_i(a_1,\ldots,a_n) \cdot \underbrace{f_i(a_1,\ldots,a_n)}_{0 = 0} = 0.$$

Beziehung zwischen Varietäten und ihren Idealen

Satz

Seien $V, W \subseteq \mathbb{F}^n$ affine Varietäten. Dann gilt

- $V \subseteq W \text{ gdw } I(W) \subseteq I(V).$
- V = W gdw I(V) = I(W).

- \bullet \Rightarrow : Sei $V \subseteq W$ und $f \in I(W)$.
- Dann verschwindet f auf allen $\mathbf{x} \in W$ und damit auf allen $\mathbf{x} \in V$.
- Damit folgt $f \in I(V)$.
- \Leftarrow : Sei $I(W) \subseteq I(V)$.
- Sei die affine Varietät W definiert durch die Polynome f_1, \ldots, f_m .
- Dann gilt $f_1, \ldots, f_m \in \mathbf{I}(W) \subseteq \mathbf{I}(V)$.
- D.h. f_1, \ldots, f_m verschwinden insbesondere auf den Punkten aus V.
- Da W aus allen gemeinsamen Nst. der f_i besteht, folgt $V \subseteq W$.
- 2 folgt aus 1: V = W gilt gdw $V \subseteq W$ und $W \subseteq V$ gdw V = W.

Interessante Probleme

Ziel: Löse die folgenden Probleme algorithmisch.

- **3** Basisdarstellung: Stelle jedes Ideal *I* mittels einer endlichen Basis $\langle f_1, \dots, f_m \rangle$ dar.
- Idealzugehörigkeit: Entscheide, ob f im Ideal $\langle f_1, \ldots, f_m \rangle$ liegt.
- Lösbarkeit von polynomiellen Gleichungssystemen: Bestimme alle gemeinsamen Lösungen von

$$\left|\begin{array}{ccc} f_1 & = & 0 \\ & \vdots & \\ f_m & = & 0 \end{array}\right|.$$

Polynomdivision

Definition führender Term

Sei $f = a_m x^m + \ldots + a_0 \in \mathbb{F}[x]$. Dann bezeichnen wir den führenden Term von f mit $LT(f) = a_m x^m$.

Anmerkung:

• Für $f, g \in \mathbb{F}[x]$ gilt: $\operatorname{grad}(f) \leq \operatorname{grad}(g) \Leftrightarrow \operatorname{LT}(f)$ teilt $\operatorname{LT}(g)$.

Algorithmus Polynomdivision

EINGABE: $f, g \in \mathbb{F}[x]$ mit grad $(g) < \operatorname{grad}(f)$

- Setze q := 0 und r := f.
- WHILE $(r \neq 0 \text{ und } LT(g) \text{ teilt } LT(r))$
 - Setze $q:=q+\frac{\operatorname{LT}(r)}{\operatorname{LT}(g)}$ und $r:=r-\frac{\operatorname{LT}(r)}{\operatorname{LT}(g)}\cdot g$.

AUSGABE: q, r mit grad(r) < grad(g) und f = qg + r

Invariante:
$$f=qg+r=(q+\frac{\operatorname{LT}(r)}{\operatorname{LT}(g)})\cdot g+r-\frac{\operatorname{LT}(r)}{\operatorname{LT}(g)}\cdot g$$
.

Jedes Ideal in $\mathbb{F}[x]$ wird von einem Polynom erzeugt.

Satz Jedes Ideal in $\mathbb{F}[x]$ ist ein Hauptideal.

Für jedes Ideal I in $\mathbb{F}[x]$ gilt $I = \langle f \rangle$ für ein $f \in \mathbb{F}[x]$, wobei f eindeutig ist bis auf Multiplikation mit Konstanten ungleich Null.

- Sei $I = \{0\}$, dann gilt $I = \langle 0 \rangle$.
- Andernfalls wähle $f \in I \setminus \{0\}$ minimalen Grads.
- Behauptung: $I = \langle f \rangle$. Es gilt $\langle f \rangle \subseteq I$, da I ein Ideal ist.
- $I \subseteq \langle f \rangle$: Sei $g \in I$ beliebig. Wir berechnen q, r mit g = qf + r und grad(r) < grad(f).
- Da I ein Ideal ist, gilt $qf \in I$ und ferner $r = g qf \in I$.
- Wegen grad(r) < grad(f), folgt r = 0 aufgrund von f's Minimalität.
- Daher gilt $g = qf \in \langle f \rangle$.

Jedes Ideal in $\mathbb{F}[x]$ wird von einem Polynom erzeugt.

Beweis der Eindeutigkeit:

- Angenommen $\langle f \rangle = \langle g \rangle$.
- Aus $f \in \langle g \rangle$ folgt f = hg für ein $h \in \mathbb{F}[x]$.
- Damit gilt grad(f) = grad(h) + grad(g), d.h. $grad(g) \le grad(f)$.
- Vertauschen von f und g liefert analog $grad(f) \leq grad(g)$.
- Damit gilt grad(g) = grad(f) und f, g unterscheiden sich durch Multiplikation mit einem konstanten Polynom h, grad(h) = 0.

Definition Hauptideal

Ein Ideal, das von einem Polynom erzeugt wird, heißt Hauptideal.

Problem:

Wie finden wir z.B. im Hauptideal $\langle x^4 - 1, x^6 - 1 \rangle$ einen Generator?

Der ggT ist ein Generator

Satz ggT ist Generator

Seien $f, g \in \mathbb{F}[x]$. Dann gilt $\langle f, g \rangle = \langle ggT(f, g) \rangle$.

- Jedes Ideal *I* in $\mathbb{F}[x]$ ist ein Hauptideal.
- D.h. $I = \langle f, g \rangle = \langle h \rangle$ für ein $h \in \mathbb{F}[x]$.
- Der Generator h ist ein gemeinsamer Teiler von f, g, da f, $g \in \langle h \rangle$.
- Um zu zeigen, dass h = ggT(f, g), müssen wir zeigen, dass jeder gemeinsame Teiler von f, g auch h teilt und h somit der ggT ist.
- Sei p ein beliebiger gemeinsamer Teiler von f, g.
- D.h. f = ap und g = bp für $a, b \in \mathbb{F}[x]$.
- Wegen $h \in \langle f, g \rangle$ existieren $c, d \in \mathbb{F}[x]$ mit h = cf + dg. Es folgt h = cap + dbp = (ca + dp)p.
- Damit teilt p das Polynom h, und es muss h = ggT(f, g) gelten.

Beispiele für Basisdarstellung und Idealzugehörigkeit

Bsp Basisdarstellung:

- Wir berechnen einen Generator von $I = \langle x^4 1, x^6 1 \rangle$.
- Der Euklidische Algorithmus für Polynome liefert

$$ggT(x^4-1, x^6-1) = x^2-1.$$

• Damit gilt $I = \langle x^2 - 1 \rangle$.

Bsp Idealzugehörigkeit:

- Sei $I = \langle x^3 3x + 2, x^4 1, x^6 1 \rangle$. Ist $x^2 + 2x + 1 \in I$?
- Es gilt $ggT(x^3 3x + 2, x^4 1, x^6 1) = x 1$. D.h. $I = \langle x 1 \rangle$.
- Division mit Rest liefert $x^2 + 2x + 1 = (x + 3)(x 1) + 4$.
- D.h. $x^2 + 2x + 1$ ist nicht in I, da es nicht von x 1 geteilt wird.

Bsp Lösbarkeit:

{1} ist die Lösungsmenge des polynomiellen Gleichungssystems

$$\begin{vmatrix} x^3 - 3x & = & -2 \\ x^4 & = & 1 \\ x^6 & = & 1 \end{vmatrix}.$$

Monomordnung

Ziel: geeignete Monomordnung in $\mathbb{F}[x_1,\ldots,x_n]$

- Monomordnung soll verträglich mit der Polynommultiplikation sein.
- Wir identifizieren Monome $\mathbf{x}^{\alpha} := \mathbf{x}_1^{\alpha_1} \dots \mathbf{x}_n^{\alpha_n}$ mit ihrem Exponentenvektor $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$.

Definition Monomordnung

Eine Monomordnung auf $\mathbb{F}[x_1,\ldots,x_n]$ ist eine Relation > auf \mathbb{N}_0^n mit:

- \bullet > ist eine totale Ordnung auf \mathbb{N}_0^n .
- Seien $\alpha, \beta \in \mathbb{N}_0^n$ mit $\alpha > \beta$. Dann gilt für alle $\gamma \in \mathbb{N}_0^n$ $\alpha + \gamma > \beta + \gamma$ (Verträglichkeit mit Monommultiplikation).
- \bigcirc > ist noethersch, d.h. jede strikt fallende Sequenz $\alpha_1 > \alpha_2 > \dots$ in \mathbb{N}_0^n terminiert.

Bsp:

- Die Ordnung . . . > 2 > 1 > 0 erfüllt obige Bedingungen auf \mathbb{N}_0 .
- Damit ist die Gradordnung eine Monomordnung auf $\mathbb{F}[x]$.

Lexikographische Ordnung

Definition Lexikographische Ordnung >_{lex}

Seien $\alpha, \beta \in \mathbb{N}_0^n$. Definiere $\alpha >_{lex} \beta$, falls in $\alpha - \beta$ der von links erste Nicht-Null Eintrag positiv ist. Wir schreiben $\mathbf{x}^{\alpha} >_{lex} \mathbf{x}^{\beta}$ für $\alpha >_{lex} \beta$.

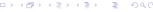
Bsp:

- $(2,3,4) >_{lex} (1,5,6)$ und $(2,3,4) >_{lex} (2,1,5)$.
- $(1,0,\ldots,0)>_{lex}(0,1,0\ldots,0)>_{lex}\ldots>_{lex}(0,\ldots,0,1)$, so dass $x_1>_{lex}\ldots>_{lex}x_n$.
- Wir verwenden ebenfalls $x >_{lex} y >_{lex} z$. Damit gilt z.B. $x > y^3 z^5$.
- Für die alphabetische Ordnung a > b > ... > z, erhalten wir eine Wörterbuchsortierung mit z.B. Kryptanalyse > Kryptographie.

Satz

Die lexikographische Ordnung $>_{lex}$ ist eine Monomordnung.

Beweis: Übungsaufgabe.



Andere wichtige Monomordnungen

Definition Grad-Lexikographische Ordnung $>_{grlex}$

Seien
$$\alpha, \beta \in \mathbb{N}_0^n$$
 und $|\alpha| = \sum_i \alpha_i, |\beta| = \sum_i \beta_i$. Definiere $\alpha >_{\textit{grlex}} \beta$ falls $|\alpha| > |\beta|$ oder $|\alpha| = |\beta|$ und $\alpha >_{\textit{lex}} \beta$.

- **Bsp:** $(1,2,3) >_{grlex} (2,2,1)$ und $(1,3,2) >_{grlex} (1,2,3)$.
- Wie bei der lexikographischen Ordnung gilt $x_1 >_{grlex} \ldots >_{grlex} x_n$.

Definition Gradreverse-Lexikographische Ordnung $>_{grevlex}$

Seien $\alpha, \beta \in \mathbb{N}_0^n$. Wir definieren $\alpha >_{grevlex} \beta$ falls

$$|\alpha|>|\beta|$$
 oder $|\alpha|=|\beta|$ und der von rechts erste Nicht-Null Eintrag in $\alpha-\beta$ ist negativ.

- **Bsp:** $(1,2,4) >_{grevlex} (3,2,1)$ und $(1,2,3) >_{grevlex} (0,3,3)$.
- Man beachte, dass z.B. $xy^2z^3 >_{lex} y^3z^3$ und $xy^2z^3 >_{grevlex} y^3z^3$.
- Es gilt $x_1 >_{grevlex} \dots >_{grevlex} x_n$.

Multigrad

Definition Multigrad, führender Term

Sei $f = \sum_{\alpha} a_{\alpha} x^{\alpha} \in \mathbb{F}[x_1, \dots, x_n] \setminus \{0\}$ und sei > eine Monomordnung.

- ① Der *Multigrad* von f ist multigrad $(f) = \max\{\alpha \in \mathbb{N}_0^n \mid a_\alpha \neq 0\}.$
- ② Der führende Koeffizient von f ist $LC(f) = a_{\text{multigrad}(f)}$.
- **3** Das führende Monom von f ist $LM(f) = x^{\text{multigrad}(f)}$.
- **1** Der führende Term von f ist $LT(f) = LC(f) \cdot LM(f)$.

Bsp: Sei
$$f = x^2yz^3 + 2x^3 + 3y^2z$$
. Dann gilt für $>_{lex}$ multigrad $(f) = (3, 0, 0)$, $LC(f) = 2$, $LM(f) = x^3$ und $LT(f) = 2x^3$.

Satz Eigenschaften des Multigrads

Seien $f,g \in \mathbb{F}[x_1,\ldots,x_n] \setminus \{0\}$. Dann gilt:

- \bigcirc multigrad(fg) = multigrad(f) + multigrad(g).
- 2 $\operatorname{multigrad}(f+g) \leq \max\{\operatorname{multigrad}(f),\operatorname{multigrad}(g)\}\ \text{für } f+g \neq 0.$

High-Level Beschreibung für Division in $\mathbb{F}[x_1,\ldots,x_n]$

Ziel: Algorithmus für Polynomdivision in $\mathbb{F}[x_1, \dots, x_n]$.

Gegeben: $f, f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$

Gesucht: Darstellung $f = a_1 f_1 + ... + a_m f_m + r$ mit

 $a_1,\ldots,a_m,r\in\mathbb{F}[x_1,\ldots,x_n]$ und keiner der Terme

in r ist teilbar von einem der Terme $LT(f_1), \ldots, LT(f_m)$.

Algorithmus High-Level Beschreibung Polynomdivision

EINGABE: $f, f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$

- Teile f sukzessive durch die Polynome f_1, \ldots, f_m mit Rest r.
- ② Falls $r \neq 0$ und r nicht weiter teilbar, entferne LM(r) und iteriere.

AUSGABE: $f = a_1 f_1 + \ldots + a_m f_m + r$

Bsp: Wir verwenden lexikographische Ordnung.

- Sei $f = x^2y + xy^2 + y^2$, $f_1 = xy 1$, $f_2 = y 1$.
- $f: f_1 = x + y$ mit Rest $r = x + y^2 + y$. Wir entfernen x aus r.
- $(y^2 y)$: $f_2 = y + 2$ mit Rest r = 2. Wir entfernen 2 aus r.
- Wir erhalten insgesamt $f = (x + y) \cdot f_1 + (y + 2) \cdot f_2 + x + 2$.

Divisionsalgorithmus für $\mathbb{F}[x_1,\ldots,x_n]$

Algorithmus DIVISION

EINGABE: $f, f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$

- ① Setze p := f, r := 0 und $a_1 := 0, ..., a_m := 0$.
- ② WHILE $p \neq 0$
 - Falls $LT(f_i)$ teilt LT(p), setze $a_i := a_i + \frac{LT(p)}{LT(f_i)}$ und $p := p \frac{LT(p)}{LT(f_i)} \cdot f_i$. (Teste Teilbarkeit von LT(p) in der Reihenfolge f_1, \ldots, f_m .)
 - Sonst setze p := p LT(p) und r := r + LT(p).

AUSGABE: $f = a_1 f_1 + \ldots + a_m f_m + r$

Korrektheit:

- Invariante $f = a_1 f_1 + ... + a_m f_m + p + r$ gilt in Schritt 1.
- Schritt 2.1 erhält die Invariante, falls $LT(f_i)$ den Term LT(p) teilt, da $a_i f_i + p = (a_i + \frac{LT(p)}{LT(f_i)}) f_i + p \frac{LT(p)}{LT(f_i)} \cdot f_i$.
- Schritt 2.2 erhält die Invariante: p + r = (p LT(p)) + (r + LT(p)).
- Bei Terminierung gilt p = 0. Damit besitzt f die gewünschte Form.

Divisionsalgorithmus für $\mathbb{F}[x_1,\ldots,x_n]$

Terminierung:

- z.z.: Modifikationen verringern multigrad(p) oder erzeugen p = 0.
- Schritt 2.1 eliminiert LT(p) mittels $p := p \frac{LT(p)}{LT(f_i)} \cdot f_i$.
- Schritt 2.2 eliminiert ebenfalls LT(p) mittels p := p LT(p).
- Damit verringert sich der Multigrad in Schritt 2.1 und in Schritt 2.2.
- Monomordnung: Die Sequenz der Multigrade muss terminieren.
- D.h. wir erhalten p = 0 und damit $f = a_1 f_1 + ... + a_m f_m + r$.

Reihenfolge ist wichtig

Bsp: Wie zuvor $f = x^2y + xy^2 + y^2$, $f_1 = xy - 1$ und $f_2 = y - 1$.

- Wir vertauschen aber nun die Reihenfolge in f_2 , f_1 bei der Division.
- Wir erhalten $f: f_2 = x^2 + xy + x + y + 1$ mit Rest p = 1.
- Dies liefert die Darstellung

$$f = (x^2 + xy + x + y + 1) \cdot f_2 + 0 \cdot f_1 + 1.$$

- Bei Reihenfolge (f_1, f_2) erhielten wir dagegen die Darstellung $f = (x + y) \cdot f_1 + (y + 2) \cdot f_2 + (x + 2)$.
- D.h. der Rest r hängt von der Reihenfolge der Division ab.

Idealzugehörigkeit

Idealzugehörigkeit:

$$f \in \langle f_1, \dots, f_m \rangle$$
 falls $f = a_1 f_1 + \dots + a_m f_m$. D.h. falls $r = 0$.

Bsp: Wir betrachten $f = xy^2 - x$, $f_1 = xy + 1$ und $f_2 = y^2 - 1$.

- Mit lexikographischer Ordnung und Reihenfolge (f_1, f_2) erhalten wir $f = v \cdot f_1 + 0 \cdot f_2 x + v$.
- Reihenfolge (f_2, f_1) liefert aber

$$f = x \cdot f_2 + 0 \cdot f_1.$$

- D.h. f ist im Ideal $\langle f_1, f_2 \rangle$.
- Allerdings liefert nur (f_2, f_1) die hinreichende Bedingung r = 0.

Ziel:

- Definiere geeignete Generatormenge G für $I = \langle f_1, \dots, f_m \rangle$.
- Beim Teilen durch *G* soll der Rest *r* eindeutig bestimmt sein.
- Rest r = 0 soll äquivalent zur Zugehörigkeit im Ideal I sein.
- Sogenannte Gröbnerbasen sind geeignete Generatormengen.

Monomideal

Definition Monomideal

Ein Ideal $I \subseteq \mathbb{F}[x_1, \dots, x_n]$ heißt *Monomideal* falls eine (unendliche) Menge $A \subseteq \mathbb{N}_0^n$ existiert, so dass I aus Polynomen der Form $\sum_{\alpha \in A} h_\alpha x^\alpha$ besteht. Wir schreiben dann $I = \langle x^\alpha \mid \alpha \in A \rangle$.

Bsp: Für $A = \{(1,4), (2,2), (3,1)\}$ erhalten wir $I = \langle xy^4, x^2y^2, x^3y \rangle$.

Satz Teilbarkeitssatz

Sei $I = \langle \mathbf{x}^{\alpha} \mid \alpha \in A \rangle$ ein Monomideal. Ein Monom \mathbf{x}^{β} liegt in I gdw \mathbf{x}^{α} teilt \mathbf{x}^{β} für ein $\alpha \in A$.

- \Leftarrow : Falls $\mathbf{x}^{\beta} = \mathbf{x}^{\gamma} \cdot \mathbf{x}^{\alpha}$, dann folgt $\mathbf{x}^{\beta} \in I$.
- \Rightarrow : Sei $x^{\beta} \in I$, d.h. $x^{\beta} = \sum_{i} h_{i} x^{\alpha^{(i)}}$ mit $h_{i} \in \mathbb{F}[x_{1}, \dots, x_{n}], \alpha^{(i)} \in A$.
- Multipliziere $h_i x^{\alpha^{(i)}}$ aus. Jedes Monom ist teilbar durch ein $x^{\alpha^{(i)}}$.
- Die Summe kollabiert aber zu einem einzigen Monom x^{β} .
- Damit muss auch das Monom x^{β} durch ein $x^{\alpha(i)}$ teilbar sein.

Gleichheit von Monomidealen

Satz Darstellung aus Monomen

Sei *I* ein Monomideal und $f \in \mathbb{F}[x_1, \dots, x_n]$. Dann gilt $f \in I$ gdw f eine \mathbb{F} -Linearkombination von Monomen in *I* ist.

Beweis:

- \Rightarrow : Sei $f = \sum_i h_i \mathbf{x}^{\alpha^{(i)}} \in I$.
- Ausmultiplizieren von $h_i x^{\alpha^{(i)}}$ liefert Monome der Form cx^{γ} mit $c \in \mathbb{F}$ und $x^{\alpha^{(i)}} \mid x^{\gamma}$. Nach Teilbarkeitssatz ist x^{γ} ein Monom in I.
- Damit können wir f in der gewünschten Form schreiben

$$f = \sum_{i} c_{i} x^{\gamma^{(i)}} \text{ mit } c_{i} \in \mathbb{F}, x^{\gamma^{(i)}} \in I.$$

◆ : Folgt aus der Abgeschlossenheit von / gegenüber Addition.

Korollar Gleichheit von Monomidealen

Zwei Monomideale sind gleich gdw sie dieselben Monome enthalten.

Dicksons Lemma

Lemma Dicksons Lemma

Jedes Monomideal $I = \langle x^{\alpha} \mid \alpha \in A \rangle \subset \mathbb{F}[x_1, \dots, x_n]$ besitzt eine endliche Basis $I = \langle x^{\alpha^{(1)}}, \dots, x^{\alpha^{(m)}} \rangle$.

Beweis per Induktion über die Anzahl der Variablen *n*:

- n = 1: $I = \langle x_1^{\alpha} \mid \alpha \in A \rangle$. Sei β das kleinste Element in $A \subseteq \mathbb{N}_0$.
- Daher gilt $\mathbf{x}_1^{\beta} \mid \mathbf{x}_1^{\alpha}$ für alle $\alpha \in A$. D.h. $I = \langle \mathbf{x}_1^{\beta} \rangle$.
- $n-1 \rightarrow n$: Wir verwenden die Variablen x_1, \dots, x_{n-1}, y .
- D.h. Monome besitzen die Form $x^{\alpha}y^{t}$ mit $\alpha \in \mathbb{N}_{0}^{n-1}$ und $t \in \mathbb{N}_{0}$.
- Sei J die Projektion von I auf $\mathbb{F}[x_1,\ldots,x_{n-1}]$. D.h. J wird generiert von denjenigen Monomen x^{α} , für welche $x^{\alpha}y^t \in I$ für ein $t \geq 0$.
- IV: Wir schreiben $J = \langle x^{\alpha^{(1)}}, \dots, x^{\alpha^{(m)}} \rangle$. Für $i = 1, \dots, m$ gilt $x^{\alpha^{(i)}}y^{t_i} \in I$ für ein festes $t_i \geq 0$. Sei $t = \max_i \{t_i\}$.
- Für jedes feste k = 0, ..., t-1 definiere $J_k \subseteq \mathbb{F}[x_1, ..., x_{n-1}]$ als die Projektion derjenigen Monome in I, die genau y^k enthalten.

Dicksons Lemma

Beweis: (Fortsetzung)

- Nach IV: $J_k = \langle x^{\alpha_k^{(1)}}, \dots, x^{\alpha_k^{(m_k)}} \rangle$ für $k = 0, \dots, t-1$.
- Wir behaupten, dass I von folgender Monomliste L generiert wird.

- $\langle L \rangle \subseteq I$: Die Monome in unserer Liste L sind alle in I. Dies folgt für die Elemente $x^{\alpha_k^{(i)}}y^k$ nach Konstruktion der Elemente in J_k .
- Für die Elemente $x^{\alpha^{(i)}}y^t$ gilt dies aufgrund der Maximalität von t.
- $I \subseteq \langle L \rangle$: Jedes $x^{\alpha}y^{\rho} \in I$ wird von einem Listenmonom geteilt.
- Sei $p \ge t$. Dann teilt ein $x^{\alpha^{(i)}}y^t$ nach Konstruktion von J.
- Sei p < t. Dann teilt ein $x^{\alpha_p^{(i)}} y^p$ nach Konstruktion von J_p .
- D.h. $\langle L \rangle$ und I enthalten dieselben Monome und sind daher gleich.

Idealzugehörigkeit in Monomidealen

Lemma Dicksons Lemma (Teil II)

Jedes Monomideal $I = \langle x^{\alpha} \mid \alpha \in A \rangle \subset \mathbb{F}[x_1, \dots, x_n]$ besitzt eine endliche Basis $I = \langle x^{\alpha^{(1)}}, \dots, x^{\alpha^{(m)}} \rangle$ mit $a^{(i)} \in A$.

Beweis: Übungsaufgabe.

Satz Idealzugehörigkeit in Monomidealen

Sei $I = \langle x^{\alpha^{(1)}}, \dots, x^{\alpha^{(m)}} \rangle$ ein Monomideal. Dann gilt $f \in I$ gdw f bei Division durch $x^{\alpha^{(1)}}, \dots, x^{\alpha^{(m)}}$ Rest 0 lässt.

- \Leftarrow : Aus $f = h_1 \cdot x^{\alpha^{(1)}} + \ldots + h_m \cdot x^{\alpha^{(m)}} + 0$ folgt $f \in I$.
- \Rightarrow : Nach Satz zur Darstellung aus Monomen folgt, dass $f \in I$ gwd $f = \sum_i c_i x^{\gamma^{(i)}}$ mit $x^{\gamma^{(i)}} \in I$.
- Andererseits ist $x^{\gamma^{(i)}} \in I$ gwd $x^{\alpha^{(j)}}$ teilt $x^{\gamma^{(i)}}$ für ein $j \in [m]$.
- Damit wird jeder Term in f von einem der $x^{\alpha(l)}$ geteilt.
- Sukzessives Teilen von f durch $x^{\alpha^{(1)}}, \ldots, x^{\alpha^{(m)}}$ liefert also Rest 0.99

Das Ideal der führenden Terme

Definition Ideal der führenden Terme

Sei $I \subseteq \mathbb{F}[x_1, \dots, x_n] \setminus \{0\}$ ein Ideal, LT(I) die Menge führender Terme

$$LT(I) = \{cx^{\alpha} \mid \text{es existiert } f \in I \text{ mit } LT(f) = cx^{\alpha}\}.$$

Dann heißt $\langle LT(I) \rangle$ das Ideal der führenden Monome von I.

Anmerkung:

- Sei $I = \langle f_1, \dots, f_m \rangle$. Es gilt $LT(f_i) \in LT(I)$ für alle $i \in [m]$.
- Daher folgt $\langle LT(f_1), \ldots, LT(f_m) \rangle \subseteq \langle LT(I) \rangle$.
- Andererseits kann LT(I) weitere Element enthalten.
- Sei $I = \langle f_1, f_2 \rangle$ mit $f_1 = x^3 2xy$ und $f_2 = x^2y + x 2y^2$.
- Es gilt $x^2 \in I$ wegen $x^2 = -y \cdot f_1 + x \cdot f_2$. D.h. $x^2 \in \langle LT(I) \rangle$.
- Aber x^2 wird weder von $LT(f_1) = x^3$ noch von $LT(f_2) = x^2y$ geteilt.
- Daraus folgt, dass x^2 nicht im Monomideal $\langle LT(f_1), LT(f_2) \rangle$ ist.

Existenz einer Gröbnerbasis

Definition Gröbnerbasis

Eine Menge $G = \{g_1, \dots, g_m\} \subseteq I$ heißt *Gröbnerbasis* falls

$$\langle LT(I)\rangle = \langle LT(g_1), \ldots, LT(g_m)\rangle.$$

Satz Existenz einer Gröbnerbasis

Sei I ein Ideal. Dann ist $\langle LT(I)\rangle$ ein Monomideal und es existiert eine Gröbnerbasis $\{g_1,\ldots,g_m\}\subseteq I$ mit $\langle LT(I)\rangle=\langle LT(g_1),\ldots,LT(g_m)\rangle$.

- Es gilt $\langle \{LT(g) \mid g \in I \setminus \{0\}\} \rangle = \langle \{LM(g) \mid g \in \setminus \{0\}\} \rangle$.
- Die führenden Monome von / generieren aber ein Monomideal.
- Anwendung von Dicksons Lemma liefert

$$\langle LT(I) \rangle = \langle LM(I) \rangle = \langle \{LM(g_i) | g_i \in I\} \rangle$$

$$= \langle LM(g_1), \dots, LM(g_m) \rangle = \langle LT(g_1), \dots, LT(g_m) \rangle.$$

Hilbert Basissatz

Satz Hilbert Basissatz

Jedes Ideal $I \subseteq \mathbb{F}[x_1, \dots, x_n]$ wird endlich generiert, d.h.

$$I=\langle g_1,\ldots,g_m\rangle$$
 für $g_1,\ldots,g_m\in I$.

- Falls $I = \{0\}$, verwende 0 als Generator. Sei also $I \neq \{0\}$.
- Sei $\{g_1, \ldots, g_m\} \subseteq I$ eine Gröbnerbasis für I.
- Wir wissen, dass $\langle LT(I) \rangle = \langle LT(g_1), \dots, LT(g_m) \rangle$ für $g_i \in I$.
- Behauptung: $I = \langle g_1, \dots, g_m \rangle$. Es gilt $\langle g_1, \dots, g_m \rangle \subseteq I$, da $g_i \in I$.
- $I \subseteq \langle g_1, \dots, g_m \rangle$: Sei $f \in I$ beliebig.
- Teilen von f durch g_1, \ldots, g_m liefert $f = a_1g_1 + \ldots + a_mg_m + r$, wobei kein Term von r von einem der $LT(g_i)$ geteilt wird.
- Angenommen $r \neq 0$. Es gilt $r = f a_1 g_1 \ldots a_m g_m \in I$.
- Aus $r \in I$ folgt $LT(r) \in \langle LT(I) \rangle = \langle LT(g_1), \dots, LT(g_m) \rangle$.
- Dann muss aber nach Teilbarkeitssatz LT(r) von einem der Terme LT(g_i) geteilt werden. (Widerspruch)
- D.h. es folgt r=0 und damit $f\in\langle g_1,\ldots,g_m\rangle$

Charakterisierung von Gröbnerbasen

Satz Charakterisierung von Gröbnerbasen

Eine Menge $G = \{g_1, \dots, g_m\} \subseteq I$ ist eine Gröbnerbasis gdw für jedes $f \in I$ der Term LT(f) von einem der $LT(g_i)$, $i = 1, \dots, m$ geteilt wird.

Beweis:

• \Rightarrow : Sei $G = \{g_1, \dots, g_m\}$ eine Gröbnerbasis, d.h.

$$\langle LT(I)\rangle = \langle LT(g_1), \ldots, LT(g_m)\rangle.$$

- Für jedes $f \in I$ gilt $LT(f) \in \langle LT(I) \rangle = \langle LT(g_1), \dots, LT(g_m) \rangle$.
- Nach Teilbarkeitssatz ist $LT(f) \in \langle LT(g_1), \dots, LT(g_m) \rangle$ gdw LT(f) von einem der Terme $LT(g_i)$ geteilt wird.
- \Leftarrow : Sei $f \in I$ beliebig. Es gilt $LT(g_i) \mid LT(f)$ für ein $i \in [m]$.
- Daraus folgt $\langle LT(I) \rangle \subseteq \langle LT(g_1), \dots, LT(g_m) \rangle$.
- Da stets auch $\langle LT(g_1), \dots, LT(g_m) \rangle \subseteq LT(I)$ gilt, folgt

$$\langle LT(I)\rangle = \langle LT(g_1), \ldots, LT(g_m)\rangle.$$

Beispiel einer Gröbnerbasis

Bsp: Gröbnerbasis. Wir verwenden lex-Ordnung in $\mathbb{R}[x, y, z]$.

- Sei $I = \langle g_1, g_2 \rangle = \langle x + z, y z \rangle$. Zeigen: $\{g_1, g_2\}$ ist Gröbnerbasis.
- D.h. wir müssen zeigen, dass $\langle LT(g_1), LT(g_2) \rangle = \langle x, y \rangle = \langle LT(I) \rangle$.
- Es gilt offenbar $\langle x, y \rangle \subseteq \langle LT(I) \rangle$, bleibt $\langle LT(I) \rangle \subseteq \langle x, y \rangle$ zu zeigen.
- Sei $f \in I$. Wir müssen zeigen, dass LT(f) von x oder y geteilt wird.
- Annahme: $f \in \mathbb{R}[z] \setminus \{0\}$.
- Wegen $f \in I$ verschwindet f auf V(x + z, y z).
- D.h. f verschwindet auf allen Punkten $(-t, t, t) \in \mathbb{R}^3$. Das einzige Polynom $f \in \mathbb{R}[z]$ mit dieser Eigenschaft ist z = 0 (Widerspruch).
- D.h. jedes Polynom $f \in I$ enthält einen x oder einen y-Term.

ACC - Ascending Chain Condition

Satz Ascending Chain Condition (ACC)

Sei $I_1 \subseteq I_2 \subseteq \ldots$ eine aufsteigende Kette von Idealen in $\mathbb{F}[x_1, \ldots, x_n]$. Dann existiert ein $N \ge 1$ mit $I_N = I_M$ für alle $M \ge N$.

- Wir definieren $I = \bigcup_{i=1}^{\infty} I_i$. Wir zeigen zunächst, dass I ein Ideal ist.
- Seien $f, g \in I$. Sei $f \in I_i$ und $g \in I_j$. ObdA $i \leq j$.
- Dann gilt $f, g \in I_j$ und damit $f + g \in I_j \subseteq I$.
- Analog folgt für $f \in I$, dass $f \in I_i$ für ein i und damit $hf \in I_i \subseteq I$.
- Da I ein Ideal ist, wird es endlich erzeugt. D.h. $I = \langle g_1, \dots, g_m \rangle$.
- Jeder Generator $g_i \in I$ ist in einem Ideal I_i . Sei $N = \max_i \{j_i\}$.
- Dann sind $g_1, \ldots, g_m \in I_N$. Damit gilt

$$I = \langle g_1, \dots, g_m \rangle \subseteq I_N \subseteq I_{N+1} \subseteq \dots \subseteq I.$$

Eindeutigkeit des Rests für Gröbnerbasen

Satz Eindeutigkeit des Rests

Sei $G = \{g_1, \dots, g_m\}$ eine Gröberbasis für $I \subseteq \mathbb{F}[x_1, \dots, x_n]$ und $f \in \mathbb{F}[x_1, \dots, x_n]$. Dann existiert ein eindeutiger Rest r mit

- Kein Term von r ist teilbar von einem der $LT(g_1), \ldots, LT(g_m)$.
- **2** Es existiert ein $g \in I$ mit f = g + r.

Beweis:

- **Existenz:** Polynomdivision mit g_1, \ldots, g_m liefert $f = \underbrace{a_1g_1 + \ldots + a_mg_m}_{g} + r$, wobei r Eigenschaft 1 besitzt.
- **Eindeutigkeit:** Seien $r \neq r'$ Reste mit f = g + r = g' + r'.
- Es gilt $r-r'=g'-g\in I$, d.h. $LT(r-r')\in \langle LT(I)\rangle = \langle LT(g_1),\ldots,LT(g_m)\rangle.$
- Damit ist LT(r-r') teilbar von einem $LT(g_i)$. D.h. einer der Terme von r oder r' wird von einem $LT(g_i)$ geteilt. (Widerspruch)

Man beachte: r ist eindeutig unabhängig von der Reihenfolge der $g_{i \sim n}$

Idealzugehörigkeit mittels Gröbnerbasis

Satz Idealzugehörigkeit mittels Gröbnerbasis

Sei $G = \{g_1, \dots, g_m\}$ eine Gröbnerbasis für I. Es gilt $f \in I$ gdw f bei Division durch die Polynome in G Rest 0 lässt.

Beweis:

- \Leftarrow : Sei $f = a_1g_1 + \ldots + a_mg_m$. Dann gilt $f \in \langle g_1, \ldots, g_m \rangle = I$.
- \Rightarrow : Sei $f \in I$. Dann erfüllt die Wahl g = f und r = 0 beide Eigenschaften des Satzes zuvor.
- Da der Rest r eindeutig bestimmt ist, muss r = 0 gelten.

Ziel: Konstruktion Gröbnerbasis

- Konstruiere für f_1, \ldots, f_m eine Gröbnerbasis g_1, \ldots, g_t mit $\langle f_1,\ldots,f_m\rangle=\langle g_1,\ldots,g_t\rangle.$
- Erzeuge dazu eine Linearkombinationen g der f_i, deren führender Term *nicht* im durch die $LT(f_i)$ erzeugten Ideal ist.
- Wir eliminieren dazu die führenden Koeffizienten der f_i.
- Füge g zu f_1, \ldots, f_m hinzu und iteriere.

Syzygien-Polynom

Definition kgV, S-Polynom (Syzygien-Polynom)

Seien $f, g \in \mathbb{F}[x_1, \dots, x_n]$ mit Multigraden $\alpha, \beta \in \mathbb{N}_0^n$.

- ① Das *kleinste gemeinsame Vielfache* von LM(f) und LM(g) ist definiert als x^{γ} , wobei $\gamma = (\gamma_1, \dots, \gamma_n)$ mit $\gamma_i = \max_i \{\alpha_i, \beta_i\}$.
- Das S-Polynom von f und g ist definiert als

$$S(f,g) = \frac{x^{\gamma}}{LT(f)} \cdot f - \frac{x^{\gamma}}{LT(g)} \cdot g.$$

Bsp:

- Seien $f = x^3y^2 + x^4$, $g = 3x^4y + y^2 \in \mathbb{R}[x, y]$ in grlex-Ordnung.
- Es gilt $\alpha = (3,2), \beta = (4,1)$ und $\gamma = (4,2)$. Damit ist $S(f,g) = \frac{x^4y^2}{x^3y^2} \cdot f \frac{x^4y^2}{3x^4y} \cdot g = xf \frac{1}{3}yg = x^5 \frac{1}{3}y^3.$

Buchberger Kriterium

Satz Buchberger Kriterium

Sei *I* ein Ideal. Eine Basis $G = \{g_1, \dots, g_m\}$ ist eine Gröbnerbasis gdw für alle $i \neq j$ beim Teilen von $S(g_i, g_j)$ durch G der Rest 0 entsteht.

Beweisskizze:

- ⇒: Sei G eine Gröbnerbasis.
- Da $S(g_i, g_j) \in I$ liefert die Teilung durch G Rest 0.
- \Leftarrow : Sei $f \in I$ beliebig. Wir müssen zeigen, dass

$$LT(f) \in \langle LT(g_1), \ldots, LT(g_m) \rangle.$$

- Da $f \in I = \langle g_1, \dots, g_m \rangle$ gilt $f = \sum_i h_i g_i$. Daraus folgt multigrad $(f) \leq \max_i \{ \text{multigrad}(h_i g_i) \}$.
- Müssen zeigen: $\operatorname{multigrad}(f) = \max_{i} \{\operatorname{multigrad}(h_i g_i)\}$ für ein i.
- Damit $LT(g_i) \mid LT(f)$, woraus $LT(f) \in \langle LT(g_1), \dots, LT(g_m) \rangle$ folgt.
- Annahme: $\operatorname{multigrad}(f) < \operatorname{max}_i \{ \operatorname{multigrad}(h_i g_i) \}$. D.h. es werden Terme eliminiert. Dies kann nur durch S-Polynome geschehen.
- Aufgrund der Teilbarkeit der S-Polynome gilt $S(g_i, g_j) = \sum_k h'_k g_k$.
- D.h. wir sukzessive können alle Eliminationen entfernen.

Beispiel Gröbnerbasis

Bsp:

- Wir verifizieren erneut die Basis $f_1 = x + z$, $f_2 = y z$ in $\mathbb{R}[x, y, z]$.
- Es gilt $S(f_1, f_2) = y \cdot f_1 x \cdot f_2 = yz + xz$.
- Division mit f_1, f_2 liefert $S(f_1, f_2) = z \cdot f_1 + z \cdot f_2$.
- Damit ist $\{f_1, f_2\}$ wirklich eine Gröbnerbasis für $\langle f_1, f_2 \rangle$.

Buchberger Algorithmus

Algorithmus BUCHBERGER

EINGABE: $F = \{f_1, \dots, f_m\}$ mit $I = \langle f_1, \dots, f_m \rangle$

- \bigcirc Setze G := F.
- WHILE $(\exists g_i \neq g_j \in G$, so dass $S(g_i, g_j) : G \text{ Rest } r \neq 0 \text{ lässt})$
 - **③** $G := G \cup \{r\}.$

AUSGABE: Gröbnerbasis G für I mit $F \subseteq G$

Beispiel Gröbnerbasen-Berechnung

Bsp:

- Seien $f_1 = x^2y + xy$, $f_2 = xy^2 + 1 \in \mathbb{R}[x, y]$ in griex-Ordnung.
- $S(f_1, f_2) = yf_1 xf_2 = xy^2 x$. Division liefert $S(f_1, f_2) = 1 \cdot f_2 x 1$.
- Wir fügen $f_3 = -x 1$ zur Basis hinzu.
- $S(f_1, f_3) = f_1 + xyf_3 = 0$ und $S(f_2, f_3) = f_2 + y^2f_3 = -y^2 + 1$.
- Wir fügen $f_4 = -y^2 + 1$ zur Basis hinzu.
- $S(f_1, f_4)$, $S(f_2, f_4)$, $S(f_3, f_4)$ verschwinden bei Basisdivision.
- D.h. $\{x^2y + xy, xy^2 + 1, -x 1, -y^2 + 1\}$ ist Gröbnerbasis für *I*.

Notation für Ideale und Division

Sei $G = \{g_1, \dots, g_m\}$ und $f \in \mathbb{F}[x_1, \dots, x_n]$. Wir schreiben vereinfacht

$$\langle G \rangle = \langle g_1, \dots, g_m \rangle \text{ und } \langle LT(G) \rangle = \langle LT(g_1), \dots, LT(g_m) \rangle.$$

Wir notieren mit \overline{f}^G den Rest der Division von f durch G.

Korrektheit von Buchberger

Satz

Algorithmus Buchberger terminiert nach endlich vielen Schritten mit einer Gröbnerbasis.

Beweis:

Korrektheit: Als Invariante gilt, dass G das Ideal I generiert.

- Sei $S(g_i,g_j)=\sum_i a_ig_i+r$. Da $S(g_i,g_j), \sum_i a_ig_i\in I$ ist auch $r\in I$.
- Wir fügen also nur Element aus I zu G hinzu.
- Buchberger Kriterium: G ist bei Terminierung eine Gröbnerbasis.

Terminierung: Sei $G = \{g_1, \ldots, g_m\}$.

• Sei $G' = G \cup \{r\}$ in Schritt 2.1. Da r in G aufgenommen wird, wird LT(r) von keinem der $LT(g_i)$ geteilt. D.h.

$$\langle LT(G) \rangle \subset \langle LT(G') \rangle$$
, da $G \subset G'$ und $LT(r) \in \langle LT(G') \rangle \setminus \langle LT(G) \rangle$.

- Damit entsteht in Schritt 2.1 eine aufsteigende Kette von Idealen $\langle LT(G) \rangle \subset \langle LT(G') \rangle \subset \langle LT(G'') \rangle \subset \dots$
- Nach ACC stabilisiert die Kette nach endlichen vielen Schritten.

Minimale Gröbnerbasis

Beobachtung: Gröbnerbasen enthalten oft unnötige Generatoren.

Satz Elimination von Generatoren

Sei G eine Gröbnerbasis für I. Sei $g \in G$ mit $LT(g) \in \langle LT(G \setminus \{g\}) \rangle$. Dann ist $G \setminus \{g\}$ eine Gröbnerbasis von I.

Beweis:

- Da *G* eine Gröbnerbasis ist, gilt $\langle LT(G) \rangle = \langle LT(I) \rangle$.
- Wegen $LT(g) \in \langle LT(G \setminus \{g\}) \rangle$ folgt $\langle LT(G \setminus \{g\}) \rangle = \langle LT(G) \rangle = \langle LT(I) \rangle$.
- Damit ist auch $G \setminus \{g\}$ eine Gröbnerbasis.

Definition Minimale Gröbnerbasis

Wir nennen eine Gröbnerbasis G minimal, falls für alle $g \in G$ gilt:

- **2** LC(g) = 1.

Minimierung einer Gröbnerbasis

Algorithmus MINIMIERE GRÖBNER

EINGABE: Gröbnerbasis B

- Für alle $g \in G$: Falls $LT(g) \in \langle LT(G \setminus \{g\}) \rangle$, setze $G := G \setminus \{g\}$.
- **②** Für alle $g \in G$: Setze $g := \frac{g}{LC(g)}$.

AUSGABE: minimale Gröbnerbasis

Beispiel: Gröbnerbasis $\{x^2y + xy, xy^2 + 1, -x - 1, -y^2 + 1\}$ (grlex)

- Wir können g_1 eliminieren, da $LT(g_1) = x^2y = -xy \cdot LT(g_3)$.
- Ferner können wir g_2 eliminieren, da $LT(g_2) = xy^2 = -x \cdot LT(g_4)$.
- Damit ist $\{x + 1, y^2 1\}$ eine minimale Gröbnerbasis.
- Leider sind minimale Gröbnerbasen nicht eindeutig.
- Die folgenden Basen sind ebenfalls minimal für die grlex-Ordnung

$$\{x+1, y^2 + a(x+1) - 1\}$$
 mit $a \in \mathbb{Z}$.

Reduzierte Gröbnerbasis

Definition reduzierte Gröbnerbasis

Wir nennen eine Gröbnerbasis G reduziert, falls für alle $g \in G$ gilt:

- **1** Kein Monom von g liegt in $\langle LT(G \setminus \{g\}) \rangle$.
- **2** LC(g) = 1.

Algorithmus REDUZIERE GRÖBNER

EINGABE: minimale Gröbnerbasis G

- \bigcirc Für alle $g \in G$

 - $\textbf{2} \quad \mathsf{Setze} \; G := G \setminus \{g\} \cup \{g'\}.$

AUSGABE: reduzierte Gröbnerbasis G

Reduzierte Gröbnerbasis

Satz Korrektheit REDUZIERE GRÖBNER

Algorithmus REDUZIERE GRÖBNER berechnet eine reduzierte Gröbnerbasis.

- Wir bezeichnen ein Polynom $g \in G$ als reduziert, falls kein Monom von g in $\langle LT(G \setminus \{g\}) \rangle$ liegt (Eigenschaft 1).
- Ein reduziertes *g* bleibt reduziert, sofern sich die führenden Terme von *G* nicht ändern.
- In Schritt 1.1 gilt LT(g') = LT(g), da aufgrund von G's Minimalität LT(g) von keinem der führenden Terme in $LT(G \setminus \{g\})$ geteilt wird.
- D.h. führendeTerme bleiben unverändert und $\langle LT(G') \rangle = \langle LT(G) \rangle$.
- Damit ist G' in Schritt 1.2 ebenfalls eine minimale Gröbnerbasis.
- Da wir alle $g \in G$ reduzieren, ist G bei Terminierung reduziert.

Eindeutigkeit reduzierter Gröbnerbasen

Satz Existenz und Eindeutigkeit reduzierter Gröbnerbasen

Jedes Ideal $I \subseteq \mathbb{F}[x_1, \dots, x_n]$ besitzt für eine feste Monomordnung eine eindeutige reduzierte Gröbnerbasis.

- **Existenz:** Hilbert Basissatz: $I = \langle G \rangle$ mit endlicher Basis G. Das G aus dem Beweis zum Basissatz ist bereits eine Gröbnerbasis.
- Anwendung der Algorithmen MINIMIERE GRÖBNER und REDUZIERE GRÖBNER führt zu einer reduzierten Basis G.
- **Eindeutigkeit:** Seien *G* und *G'* reduzierte Gröbnerbasen von *I*.
- Da G, G' Gröbnerbasen sind, gilt $\langle LT(G) \rangle = \langle LT(G') \rangle = \langle LT(I) \rangle$.
- LT(I) ist ein Monomideal. Zwei Monomideal sind gleich gdw sie dieselben Monome enthalten. D.h es gilt LT(G) = LT(G').
- Daher existiert für jedes $g \in G$ ein $g' \in G'$ mit LT(g) = LT(g').

Gleichheit von Idealen

Beweis: (Fortsetzung)

- Es genügt zu zeigen, dass g = g'.
- Wegen LT(g) = LT(g'), wird in g g' der Term LT(g) eliminiert.
- Da G, G' reduziert sind, wird keiner der sonstigen Terme in g g' von einem der $LT(g_i)$ geteilt. D.h.

$$\overline{g-g'}^G=g-g'.$$

- Da $g, g' \in I$, gilt $g g' \in I$.
- Da G eine Gröbnerbasis ist, folgt damit

$$\overline{g-g'}^{G}=0.$$

• Dies zeigt g = g' und damit sind G und G' identisch.

Algorithmus GLEICHHEIT IDEALE

EINGABE: $I_1 = \langle f_1, \dots, f_\ell \rangle$, $I_2 = \langle g_1, \dots, g_m \rangle$.

- Fixiere eine beliebige Monomordnung.
- ② Berechne reduzierte Gröbnerbasen G_1 , G_2 für I_1 , I_2 .

AUSGABE: $I_1 = I_2$ gdw $G_1 = G_2$.

Algorithmische Betrachtungen

Anmerkung: Effizienz

- Ziel: Effizienzsteigerung des Buchberger-Algorithmus durch Vermeidung von unnötigen S-Polynom Berechnungen.
- Verwendet Verallgemeinerung von S-Polynomen.
- Implementierungen im F4- und F5-Algorithmus.

Laufzeit von Buchberger:

- Sei *I* ein Ideal mit Generatoren vom Multigrad $\alpha = (\alpha_1, \dots, \alpha_n)$.
- Sei der Grad definiert als $d = \sum_{i=1}^{n} \alpha_i$.
- Gröbnerbasis von / kann Polynome vom Grad 2^{2^d} enthalten.
- D.h. Buchberger besitzt doppelt exponentielle Laufzeit.
- Probleme in der Praxis können aber oft effizient gelöst werden.
- grevlex-Ordnung erzeugt meist Polynome minimalen Grads.

BUCHBERGER Versus GAUSS-ELIMINATION

Bsp:
$$I = \langle 3w - 6x - 2y, 2w - 4x + 4z, w - 2x - y - z \rangle \subseteq \mathbb{R}[w, x, y, z]$$

Wir stellen / in Matrixform dar.

$$\begin{pmatrix}
3 & -6 & -2 & 0 \\
2 & -4 & 0 & 4 \\
1 & -2 & -1 & -1
\end{pmatrix}$$

Die normierte Stufenform davon ist

$$\left(\begin{array}{cccc} 1 & -2 & -1 & -1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

- Liefert eine minimale Gröbnerbasis $G = \{w 2x y z, y + 3z\}.$
- Wir stellen sicher, dass führende Einsen in ihrer Spalte der einzige Nicht-Null Eintrag sind.

$$\left(\begin{array}{cccc}
1 & -2 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right)$$

- Liefert die reduzierte Gröbnerbasis $G' = \{w 2x + 2z, y + 3z\}.$
- Die Gauß-Elimination ist ein Spezialfall von Buchberger.
- G' erlaubt einfaches Lösen des Gleichungssystems.

Lösen polynomieller Gleichungssysteme

Bsp:

Wir suchen alle Lösungen in C des Gleichungssystems

$$\begin{vmatrix} x^2 + y^2 + z^2 &=& 1 \\ x^2 + z^2 &=& y \\ x &=& z \end{vmatrix}.$$

- Sei $I = \langle x^2 + y^2 + z^2 1, x^2 y + z^2, x z \rangle$.
- Wir wollen V(I) bestimmen.
- Buchberger liefert die reduzierte lex-Gröbnerbasis

$$G = \{x - z, y - 2z^2, z^4 + \frac{1}{2}z^2 - \frac{1}{4}\}.$$

- Offenbar eliminiert die lex-Ordnung x in g₂ und x, y in g₃.
- Der Generator g₃ hängt nur von z ab und liefert

$$z=\pm \tfrac{1}{2}\sqrt{\pm \sqrt{5}-1}.$$

- Rücksubstitution von z in g_1, g_2 führt zu Lösungen in x und y.
- Damit erhalten wir alle Lösungen unseres Gleichungssystems.

Eliminationsideal

Definition Eliminationsideal

Sei $I=\langle g_1,\ldots,g_m\rangle\subseteq \mathbb{F}[x_1,\ldots,x_n].$ Das ℓ -te Eliminationsideal I_ℓ ist

$$I_{\ell} = I \cap \mathbb{F}[x_{\ell+1}, \ldots, x_n].$$

Anmerkung:

- In I_{ℓ} sind die Variablen x_1, \ldots, x_{ℓ} eliminiert.
- D.h. zum sukzessiven Lösen polynomieller Gleichungssysteme müssen wir Basen für I_{ℓ} für $\ell=1,\ldots,n-1$ berechnen.

Eliminationstheorem

Satz Eliminationstheorem

Sei G eine lex-Gröbnerbasis für $I \subseteq \mathbb{F}[x_1, \dots, x_n]$. Dann ist

$$G_\ell = G \cap \mathbb{F}[x_{\ell+1}, \dots, x_n]$$
 für $\ell = 1, \dots, n-1$

eine Gröbnerbasis des ℓ -ten Eliminationsideals I_{ℓ} .

- $\langle LT(G_{\ell}) \rangle \subseteq \langle LT(I_{\ell}) \rangle$: Nach Konstruktion gilt $G_{\ell} \subseteq I_{\ell}$. Daraus folgt $\langle LT(G_{\ell}) \rangle \subseteq \langle LT(I_{\ell}) \rangle$.
- $\langle LT(I_{\ell}) \rangle \subseteq \langle LT(G_{\ell}) \rangle$: Sei $f \in I_{\ell} \subseteq \mathbb{F}[x_{\ell+1}, \dots, x_{\ell}]$.
- zu zeigen: LT(f) wird von einem der LT(g) mit $g \in G_{\ell}$ geteilt.
- Da $f \in I$, wird LT(f) von einem der LT(g) mit $g \in G$ geteilt.
- Damit ist $LT(g) \in \mathbb{F}[x_{\ell+1},\ldots,x_n]$. Da aber $x_1 > \ldots > x_{\ell+1}$, folgt $g \in \mathbb{F}[x_{\ell+1},\ldots,x_n]$.
 - D.h. insgesamt gilt $g \in G \cap \mathbb{F}[x_{\ell+1}, \dots, x_n] = G_{\ell}$.

Erweitern partieller Lösungen

Bsp: Sei
$$I = \langle xy - 1, xz - 1 \rangle \subseteq \mathbb{C}[x, y, z]$$
.

- Das Ideal / besitzt Gröbnerbasis $G = \{xy 1, xz 1, y z\}$.
- $G_1 = G \cap \mathbb{C}[y,z] = y z$ und $G_2 = G \cap \mathbb{C}[z] = \emptyset$, d.h. $I_2 = \{0\}$.
- Damit ist jedes $z \in \mathbb{C}$ eine partielle Lösung.
- Wegen y = z ist jedes $(y, z) = (c, c) \in \mathbb{C}^2$ eine partielle Lösung.
- Da $x = \frac{1}{y} = \frac{1}{z}$ lässt sich diese Lösung zu $(\frac{1}{c}, c, c) \in \mathbb{C}^3$ erweitern.
- Allerdings sind diese nur für c = 0 eine Lösung.
- D.h. alle Lösungen $(y, z) = (c, c), c \neq 0$ sind erweiterbar.

Erweiterungssatz

Satz Erweiterungssatz

Sei
$$I = \langle f_1, \dots, f_m \rangle \subseteq \mathbb{C}[x_1, \dots, x_n]$$
. Für $i = 1, \dots, m$ sei

$$f_i = h_i(x_2, \dots, x_n) x_1^{N_i}$$
 (Terme mit grad $(x_1) \leq N_i$) für $h_i \neq 0$, $N_i \in \mathbb{N}_0$.

Sei
$$(a_2,\ldots,a_n)\in V(I_1)$$
. Es existiert $a_1\in\mathbb{C}$ mit $(a_1,\ldots,a_n)\in V(I)$ falls

$$(a_1,\ldots,a_n)\notin \mathbf{V}(h_1,\ldots,h_m).$$

(ohne Beweis)

Beispiel: $I = \langle xy - 1, xz - 1 \rangle \subseteq \mathbb{C}[x, y, z]$

- $I_2 = \{0\}$ ist das erste Eliminationsideal von $I_1 = \langle y z \rangle \subseteq \mathbb{C}[y, z]$.
- Es gilt $y z = h(z) \cdot y z$ mit h(z) = 1. D.h. $h(z) \neq 0$ für alle z.
- Damit lassen sich alle Lösungen z = c zu (y, z) = (c, c) erweitern.
- Es gilt $f_1 = \underbrace{y}_{h_1(y,z)} \cdot x 1$ und $f_2 = \underbrace{z}_{h_2(y,z)} \cdot x 1$.
- Ferner ist $V(h_1(y,z),h_2(y,z)) = \{(0,0)\}.$
- D.h. alle Lösungen außer (y, z) = (0, 0) sind erweiterbar.

Hilberts schwacher Nullstellensatz

Satz Hilberts schwacher Nullstellensatz

Sei $I \in \mathbb{C}[x_1, \dots, x_n]$ mit $\mathbf{V}(I) = \emptyset$. Dann gilt $I = \mathbb{C}[x_1, \dots, x_n]$.

(ohne Beweis)

Satz Lösbarkeit von Gleichungssystemen in ℂ

Sei $I = \langle f_1, \dots, f_m \rangle \in \mathbb{C}[x_1, \dots, x_n]$, G reduzierte Gröbnerbasis von I. Falls $G \neq \{1\}$, dann besitzt das System $f_1 = \dots = f_m = 0$ eine Lösung.

- Es gilt $\mathbb{C}[x_1,\ldots,x_n]=\langle 1\rangle$. {1} ist eine reduzierte Gröbnerbasis.
- D.h. falls $G \neq \{1\}$, dann gilt $I \neq \mathbb{C}[x_1, \dots, x_n]$.
- Daraus folgt V(I) ≠ ∅ mit schwachem Nullstellensatz.
- Damit besitzt das Gleichungssystem mindestens eine Lösung.

