

Präsenzübungen zur Vorlesung Kryptanalyse SS 2014 Blatt 11 / 10 July 2014

Pohlig-Hellmann algorithm

Exercise 1:

Let G be a group. Suppose that q is prime and that we have an access to an oracle \mathcal{A} that solve discrete logarithm problem $\alpha^x = \beta$ in G whenever α has order q in $T_{\mathcal{A}}$ steps. Now let $\alpha \in G$ be an element of order q^e for some $e \geq 1$. Show how to solve the discrete logarithm problem $\alpha^x = \beta$ in $\mathcal{O}(eT_{\mathcal{A}})$.

Exercise 2:

Prove the following equalities:

- 1. $\langle 2x^2 + 3y^2 11, x^2 y^2 3 \rangle = \langle x^2 4, y^2 1 \rangle$
- 2. $\langle x + xy, y + xy, x^2, y^2 \rangle = \langle x, y \rangle$

Exercise 3:

Let k be an infinite field, and let $f \in k[x_1, \ldots, x_n]$. Prove that f = 0 in $k[x_1, \ldots, x_n]$ if and only if $f : k^n \to k$ is the zero function. (*Hint.* To prove the non-obvious direction use the induction on n).