

Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Ilya Ozerov, Elena Kirshanova

Hausübungen zur Vorlesung Kryptanalyse SS 2014 Blatt 9 / 7 July, 2014

Exercise 1 (10 Punkte):

Using index-calculus method solve the dlog problem $\beta = \alpha^x \mod p$ for

 $(\alpha, \beta, p) = (204667, 733106, 759377).$

Use the factor-base of B-smooth numbers for B = 200 (you can increase/decrease B). In addition, provide the discrete logarithms for the factor-base elements.

Exercise 2 (4 Punkte): Let *E* be $y^2 = x^3 - 20x + 21 \mod 35$ and P = (15, -4).

- 1. Check that $P \in E$
- 2. Factor 35 by trying to compute 3P
- 3. Factor 35 by trying to compute 4P by doubling twice
- 4. Compute both 3P and 4P on $E \mod 5$ and $E \mod 7$. Explain why the factor 5 is obtained by computing 3P and 7 is obtained by computing 4P.

Exercise 3 (6 Punkte):

- 1. Prove that there are q + 1 points on the elliptic curve $y^2 = x^3 x$ defined over \mathbb{F}_q when $q = 3 \mod 4$.
- 2. Suppose that for any $a \in \mathbb{Z}$ there is an efficient algorithm of generation a point P = (x, y) such that $y^2 = x^3 + ax \mod n$. Explain why it would *not* be a good idea to use the elliptic curves $y^2 = x^3 + ax$ with various *a*'s to factor *n*.