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Exercise 1:
Measure the first qubit of the states given below. What are the resulting states?
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Exercise 2:
Let A ∈ Cm×m, B ∈ Cn×n be unitary matrices. Show that A⊗B ∈ Cnm×nm is also unitary.

Exercise 3:
For each two-qubit state below either express it as a product of two one-qubit states or show
that the qubits are entangled:
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Exercise 4:

Let H = 1√
2

(
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1 −1

)
∈ C2×2. Define CH ∈ C4×4 as 2-qubit unitary transformation such that

∀b ∈ {0, 1}:

CH |0b〉 = |0〉 ⊗H|b〉, CH |1b〉 = |1b〉.

1. Write out CH explicitly;

2. Prove that for any quantum state |q〉 = α00|00〉+α01|01〉+α10|10〉+α11|11〉 the outcomes
of the following two processes (a) and (b) are the same:

(a) we measure the first qubit of the state q and if the result is 0, we apply H to the
second qubit, otherwise we do nothing;

(b) we apply CH to q and then measure the first qubit.



Exercise 5:
Consider the state

|z〉 = 1√
2
(|000〉+ |111〉).

Suppose all three qubits of this state are measured in the {|+〉, |−〉} basis (i.e. |+〉 = 1√
2
(|0〉+

|1〉), |−〉 = 1√
2
(|0〉− |1〉). What are the possible outcomes of these measurements? With what

probabilities do they occure? Suppose the first qubit is measured in the {|+〉, |−〉} basis and
the second and the third qubits in the {|+ I〉 = 1√

2
(|0〉+ i|1〉), | − I〉 = 1√

2
(|0〉 − i|1〉)} basis.

Again, what are the possible outcomes of the measurements? With what probabilities fo they
occure?


