Algorithmus von Tonelli und Shanks

Algorithmus Berechnen von Quadratwurzeln mod p

EINGABE:
$$p \in \mathbb{P}$$
, d mit $(\frac{d}{p}) = 1$

- Sei $p 1 = 2^s q$ mit q ungerade.
- 2 Setze $x \equiv d^q \mod p$ und $\ell = 0$.
- **3** Wähle $z \mod p$ zufällig bis $(\frac{z}{p}) = (-1)$. Setze $g := z^q \mod p$.
- **o** For j = 1 to s 1
 - If $((x \cdot g^{-\ell})^{2^{s-1-j}} \equiv (-1) \bmod p)$ then $\ell := \ell + 2^j$.

AUSGABE: $a \text{ mit } a^2 \equiv d \mod p$

- Korrektheit: Folgt aus den beiden Folien zuvor.
- Laufzeit: Erwartete Laufzeit $\mathcal{O}(\log^4 \rho)$.

Übung: Modifizieren Sie den Algorithmus zum Berechnen 3. Wurzeln,

Algorithmus von Tonelli und Shanks

Bsp: Wir berechnen die Lösungen von $y^2 \equiv 2 \mod 41$.

- Es gilt $41 1 = 2^3 \cdot 5$.
- Wir setzen $x \equiv 2^5 = 32 \equiv -9 \mod 41$.
- Es gilt $(\frac{3}{41}) = (\frac{41}{3}) = (\frac{2}{3}) = (-1)$.
- Wir setzen $g = 3^5 = 81 \cdot 3 \equiv (-3) \mod 41$.
- Damit gilt $g^{-1} \equiv (-14) \mod 41$.
- Für j = 1 ist $x^2 = (-9)^2 = 81 \equiv (-1) \mod 41$, d.h. $\ell_1 = 1$.
- Für j = 2 ist $x \cdot g^{-\ell} = (-9) \cdot (-14)^2 \equiv (-1) \mod 41$, d.h. $\ell_2 = 1$.
- Damit gilt $\ell = 6$ und $a \equiv 2^3(-14)^3 \equiv 24 \mod 41$.
- Wir testen $(\pm 24)^2 \equiv 2 \mod 41$.

Kettenbrüche

Definition Kettenbruch

Ein endlicher Kettenbruch ist eine Sequenz $[a_0,\ldots,a_n]$ mit $a_i\in\mathbb{R}$ und

Wert
$$[a_0] := a_0$$
 und $[a_0, \dots, a_n] := [a_0, \dots, a_{n-1} + \frac{1}{a_n}]$ für $n \in \mathbb{N}$.

Der Wert ist eines *unendlichen Kettenbruchs* $[a_0, a_1, \ldots]$ ist definiert als $\lim_{n\to\infty} [a_0, \ldots, a_n]$.

Anmerkung: Aus der Definition folgt

$$[a_0,\ldots,a_n]=a_0+\frac{1}{a_1+\frac{1}{a_2+\ldots+\frac{1}{a_n}}}.$$

Ziel: Konstruiere $[a_0, a_1, \ldots]$ mit $a_0 \in \mathbb{Z}$ und $a_i \in \mathbb{N}$ für $i \geq 1$.

Bsp:

•
$$\frac{43}{30} = 1 + \frac{13}{30} = 1 + \frac{1}{\frac{30}{13}} = 1 + \frac{1}{2 + \frac{4}{13}} = 1 + \frac{1}{2 + \frac{1}{\frac{13}{14}}} = 1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4}}} = [1, 2, 3, 4].$$

- Sei $\Phi = [1, 1, \ldots]$. Für den Grenzwert muss gelten $\Phi = 1 + \frac{1}{1 + \Phi}$.
- Die positive Lösung von $\Phi^2 \Phi 1$ ist der goldene Schnitt $\frac{1+\sqrt{5}}{2}$

Kettenbruchalgorithmus

Algorithmus KETTENBRUCH

EINGABE: $x \in \mathbb{R}$

- **1** Berechne $a_0 = \lfloor x \rfloor$ und $t_0 := x a_0 \in [0, 1[$. Setze n = 0.
- ② Solange $t_n \neq 0$
 - Berechne

$$r_n := \frac{1}{t_n} > 1$$
, $a_{n+1} := \lfloor r_n \rfloor \in \mathbb{N}$ und $t_{n+1} := r_n - a_{n+1} \in [0, 1[$.

② Setze n := n + 1.

AUSGABE:
$$x = [a_0, \dots, a_n]$$
 mit $a_0 \in \mathbb{Z}$, $a_1 \dots, a_n \in \mathbb{N}$.

Bsp: Kettenbruch für $\frac{43}{30}$:

i	a_i	ti	ri
0	1	13 30 4	30 13
1	2	13	13 13 4
2	3	1/4	4
3	4	Ó	_

Korrektheit von KETTENBRUCH

Satz Korrektheit von KETTENBRUCH

Bei Terminierung liefert Kettenbruch bei Eingabe $x \in \mathbb{R}$ Ausgabe

$$x = [a_0, \ldots, a_n]$$
 mit $a_0 \in \mathbb{Z}$ und $a_1, \ldots, a_n \in \mathbb{N}$.

Beweis:

- Wir beweisen die Invariante $x = [a_0, \dots, a_n, r_n]$ per Induktion.
- IA für n = 0: Es gilt $x = [x] = [a_0 + t_0] = [a_0 + \frac{1}{r_0}] = [a_0, r_0]$.
- **IS** $n \to n + 1$: Es gilt

$$[x] \stackrel{!V}{=} [a_0, \dots, a_n, r_n] = [a_0, \dots, a_n, a_{n+1} + t_{n+1}]$$
$$= [a_0, \dots, a_n, a_{n+1} + \frac{1}{r_{n+1}}] = [a_0, \dots, a_n, a_{n+1}, r_{n+1}].$$

Terminierung von KETTENBRUCH

Satz Terminierung von KETTENBRUCH

Kettenbruch terminiert gdw $x \in \mathbb{Q}$.

Für $x=rac{p}{q}\in\mathbb{Q}$ benötigt KETTENBRUCH Zeit $\mathcal{O}(\log^3(\max\{|p|,q\}))$.

Beweis:

- \Rightarrow : Falls Kettenbruch mit $x=[a_0,a_1,\ldots,a_n]$ terminiert, so können wir x zu einem Bruch $\frac{p}{q}$ mit $p\in\mathbb{Z},q\in\mathbb{N}$ umformen.
- \Leftarrow : Sei $X = \frac{p}{q} =: \frac{b_0}{b_1}$.
 - Wir zeigen, dass KETTENBRUCH dieselbe Rekursion durchführt wie der Euklidische Algorithmus (EA) bei Eingabe b_0 , b_1 .
 - EA führt die Rekursion $b_i = q_i b_{i+1} + b_{i+2}$ mit $q_i = \lfloor \frac{b_i}{b_{i+1}} \rfloor$ durch.
 - KETTENBRUCH berechnet die Rekursion $t_i = \frac{1}{t_{i-1}} a_i$.
 - Für $t_i:=rac{b_{i+2}}{b_{i+1}}$ und $a_i=q_i$ folgt $t_i=rac{1}{t_{i-1}}-a_i\Leftrightarrow rac{b_{i+2}}{b_{i+1}}=rac{b_i}{b_{i+1}}-q_i\Leftrightarrow b_i=q_ib_{i+1}+b_{i+2}.$

Terminierung von KETTENBRUCH

Beweis: (Fortsetzung)

• Wir müssen noch zeigen, dass beide Rekursionen dieselben Startwerte besitzen. Es gilt $a_0 = \lfloor x \rfloor = \lfloor \frac{b_0}{b_1} \rfloor = q_0$ und

$$a_1 = \lfloor r_0 \rfloor = \lfloor \frac{1}{x - a_0} \rfloor = \lfloor \frac{1}{\frac{b_0}{b_1} - \frac{b_0 - b_2}{b_1}} \rfloor = \lfloor \frac{b_1}{b_2} \rfloor = q_1.$$

- Ferner gilt $t_0 = x a_0 = \frac{b_0}{b_1} \lfloor \frac{b_0}{b_1} \rfloor = \frac{b_0}{b_1} q_0 = \frac{b_0}{b_1} \frac{b_0 b_2}{b_1} = \frac{b_2}{b_1}$ und $t_1 = \frac{1}{t_0} + a_1 = \frac{b_1}{b_2} q_1 = \frac{b_1}{b_2} \frac{b_1 b_3}{b_2} = \frac{b_3}{b_2}.$
- EA bricht nach $\mathcal{O}(\log(\max\{|p|,q\}))$ Iterationen für ein $b_k=0$ ab.
- Damit ist $t_{k-2} = 0$ und Kettenbruch terminiert.
- D.h. auch Kettenbruch benötigt $\mathcal{O}(\log(\max\{|p|,q\}))$ Iterationen.
- KETTENBRUCH läuft damit insgesamt in Zeit $\mathcal{O}(\log^3(\max\{|p|,q\}))$.

Anmerkung: Kettenbrüche sind nicht eindeutig. Für $a_n > 1$ gilt $[a_0, \ldots, a_{n-1}, a_n] = [a_0, \ldots, a_{n-1}, a_n - 1 + \frac{1}{1}] = [a_0, \ldots, a_{n-1}, a_n - 1, 1].$ Übung: Zeigen Sie die Eindeutigkeit eines Kettenbrüche für x, wobei

vorausgesetzt ist, dass das letzte Element größer als 1 ist.

Näherungsbrüche

Ziel: Wir wollen zeigen, dass $[a_0, a_1, \ldots]$ stets konvergiert.

Wir definieren

$$p_{-2} = 0 \quad p_{-1} = 1 \quad p_n = a_n p_{n-1} + p_{n-2}
q_{-2} = 1 \quad q_{-1} = 0 \quad q_n = a_n q_{n-1} + q_{n-2}$$

- Dann gilt $\frac{p_0}{q_0} = \frac{a_0}{1} = [a_0]$ und $\frac{p_1}{q_1} = \frac{a_1 a_0 + 1}{a_1} = a_0 + \frac{1}{a_1} = [a_0, a_1]$.
- Wir können die Rekursion in Matrix-Schreibweise darstellen.
- Die Startwerte sind $\begin{pmatrix} p_{-1} & p_{-2} \\ q_{-1} & q_{-2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- Die Rekursionsgleichung k\u00f6nnen wir in folgender Form schreiben.

$$\left(\begin{array}{cc} p_n & p_{n-1} \\ q_n & q_{n-1} \end{array}\right) = \left(\begin{array}{cc} p_{n-1} & p_{n-2} \\ q_{n-1} & q_{n-2} \end{array}\right) \left(\begin{array}{cc} a_n & 1 \\ 1 & 0 \end{array}\right)$$

Damit können wir die Rekursion einfach auflösen zu

$$\left(\begin{array}{cc} p_n & p_{n-1} \\ q_n & q_{n-1} \end{array}\right) = \prod_{i=0}^n \left(\begin{array}{cc} a_i & 1 \\ 1 & 0 \end{array}\right).$$

Näherungsbrüche

Lemma Näherungsbrüche

Für alle $n \in \mathbb{N}_0$ und alle positiven $r \in \mathbb{R}$ gilt

$$[a_0, a_1, \dots, a_n] = \frac{p_n}{q_n} \text{ und } [a_0, a_1, \dots, a_n, r] = \frac{rp_n + p_{n-1}}{rq_n + q_{n-1}}.$$

Beweis:

- Wir zeigen zunächst die zweite Gleichung per Induktion über n.
- IA für n = 0: $[a_0, r] = \frac{ra_0 + 1}{r} = a_0 + \frac{1}{r}$.
- IS für $n-1 \to n$: Wir schreiben $[a_0, \dots, a_n, r]$ als

$$[a_0,\ldots,a_n+\frac{1}{r}]\stackrel{IV}{=}\frac{(a_n+\frac{1}{r})p_{n-1}+p_{n-2}}{(a_n+\frac{1}{r})q_{n-1}+q_{n-2}}=\frac{p_n+\frac{1}{r}p_{n-1}}{q_n+\frac{1}{r}q_{n-1}}=\frac{rp_n+p_{n-1}}{rq_n+q_{n-1}}.$$

Aus der 2. Gleichung erhalten wir

$$[a_0, a_1, \dots, a_{n-1}, r] = \frac{rp_{n-1} + p_{n-2}}{rq_{n-1} + q_{n-2}}$$
 für alle $r \in \mathbb{R}$.

• Einsetzen von $r = a_n$ liefert $[a_0, a_1, \dots, a_n] = \frac{a_n p_{n-1} + p_{n-2}}{a_n q_{n-1} + q_{n-2}} = \frac{p_n}{q_n}$.

Eigenschaften von Näherungsbrüchen

Lemma Eigenschaften von Näherungsbrüchen

Es gilt

- 2 $p_nq_{n-1}-p_{n-1}q_n=(-1)^{n+1}$ für $n \in \mathbb{N}_0$.
- **3** $p_n q_{n-2} p_{n-2} q_n = (-1)^n a_n$ für $n \in \mathbb{N}_0$.

Beweis:

- (1) **IA** für n = 1: Es gilt $q_0 = 1$, $q_1 = a_1 \ge 1$ und damit $q_2 = a_2q_1 + q_0 \ge q_1 + q_0 > q_1 \ge 1$.
 - IS $n \rightarrow n+1$: Es gilt

$$q_{n+1} = a_n q_n + q_{n-1} \ge q_n + q_{n-1} > q_n \ge n.$$

(2) Wir schreiben $p_nq_{n-1} - p_{n-1}q_n$ als

$$\det \begin{pmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{pmatrix} = \det \prod_{i=0}^n \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix} = \prod_{i=0}^n \det \begin{pmatrix} a_i & 1 \\ 1 & 0 \end{pmatrix} = (-1)^{n+1}.$$