Williams p + 1 Methode

Idee von Williams (p + 1)-Methode:

- Sei n = pr mit 1 , <math>p prim, $p \nmid r$.
- Sei $D \in \mathbb{N}$ mit ggT(D, N) = 1. Falls $(\frac{D}{\rho}) = (-1)$, dann gilt für $G_p = \{\omega \in (\mathbb{F}_p[\sqrt{D}])^* \mid N(\omega) = 1\}$, dass $|G_p| = p + 1$.
- Sei p + 1 b-glatt, d.h. $p + 1 = \prod_{p \in B} p^{e_B}$.
- Sei k ein Vielfaches von $\prod_{p \in B} p^{e_B}$. Dann gilt

$$\omega^k = x + y\sqrt{D} \equiv 1 \bmod p$$
 für alle $\omega \in (\mathbb{Z}/n\mathbb{Z})[\sqrt{D}]^*$ mit $N(\omega) = 1$.

• Falls zusätzlich $x \not\equiv 1 \bmod r$ folgt $p \leq \operatorname{ggT}(x-1,n) < n$.

Williams p + 1 Methode

Algorithmus Williams p + 1-Methode

EINGABE: n = pr zusammengesetzt, p prim, Schranke C mit $p \le C$.

- Wähle *b* geeignet. Sei $B = \{p_1, \dots, p_s\}$.
- Wähle $a \in_R \{1, ..., n-1\}$. Falls ggT(a, n) > 1, Ausgabe des ggT.
- Setze $D := a^2 1$ und $\omega := a + \sqrt{D}$.
- Für i = 1...s
 - **1** Wähle e_i maximal mit $p_i^{e_i} < C$. Berechne $\omega := \omega^{p_i^{e_i}}$ in $(\mathbb{Z}/n\mathbb{Z})[\sqrt{D}]$.
- Sei $\omega = x + y\sqrt{D}$. Falls $ggT(x 1, N) \notin \{1, N\}$, Ausgabe des ggT.

Korrektheit: In Schritt 3 wählen wir ein $\omega \in (\mathbb{Z}/n\mathbb{Z})[\sqrt{D}]^*$ mit

$$N(\omega) = a^2 - D = a^2 - (a^2 - 1) = 1.$$

- Mit Ws $\approx \frac{1}{2}$ gilt $(\frac{D}{n}) = (-1)$. Falls $(\frac{D}{n}) = 1$, ist $(\mathbb{Z}/n\mathbb{Z})[\sqrt{D}]^* = U_n$.
- In diesem Fall ist Williams Methode genau die (p-1)-Methode.
- Die sonstige Korrektheit folgt analog zur (p-1)-Methode.

Laufzeit: $\mathcal{O}(s \log^3 n)$ analog zur (p-1)-Methode.

Elliptische Kurven Faktorisierung

Idee der Elliptischen Kurven Faktorisierung (Lenstra 1993):

- Rechne auf einer elliptischen Kurve mit den Punkten $E(n) := \{(x,y) \in (\mathbb{Z}/n\mathbb{Z})^2 \mid y^2 = x^3 + ax + b \text{ mit } a,b \in \mathbb{Z}/n\mathbb{Z}\} \cup \mathcal{O}.$
- Die Punkte E(n) besitzen eine Gruppenstruktur.
- Für n = pr gilt $E(n) \cong E(p) \times E(r)$.
- ullet Für zufällige $a,b\in\mathbb{Z}/n\mathbb{Z}$ ist |E(p)| fast uniform verteilt in

$$[p+1-2\sqrt{p}, p+1+2\sqrt{p}].$$

- Wir wählen solange a, b, bis |E(p)| in kleine Primfaktoren zerfällt.
- D.h. im Gegensatz zu Pollards und Williams Methode können wir die Glattheit der Gruppenordnung über die Wahl von a, b steuern.
- Die Laufzeit der Elliptischen Kurven Faktorisierung ist

$$L_p[\frac{1}{2},\sqrt{2}]=e^{\sqrt{2\ln p \ln \ln p}}.$$

Faktorisieren auf Quantenrechnern

Idee von Shors Faktorisierungsalgorithmus (1994):

- Wir wählen ein zufälliges $a \in U_n$ und berechnen ord(a).
- Falls ord(a) ungerade, so wählen wir ein neues a.
- Falls ord(a) gerade, gilt $a^{\operatorname{ord}(a)} \equiv 1 \mod n$ und $a^{\frac{\operatorname{ord}(a)}{2}} \not\equiv 1 \mod n$.
- Sei zusätzlich $a^{\frac{\operatorname{ord}(a)}{2}} \not\equiv -1 \bmod n$, dies geschieht mit $\operatorname{Ws} \geq \frac{1}{2}$.
- Dann liefert $ggT(a^{\frac{ord(a)}{2}} \pm 1, n)$ nicht-triviale Teiler von n.
- Auf Quantenrechnern kann sehr effizient die diskrete Fouriertransformation (DFT) ausgerechnet werden.
- Die DFT eignet sich zur Periodenbestimmung von Funktionen.
- Als Funktion wählen wir die Exponentierfunktion

$$\exp: \mathbb{Z} \to U_n \text{ mit } i \mapsto a^i.$$

- Wegen $\exp(i + \operatorname{ord}(a)\mathbb{Z}) = \exp(i)$ besitzt $\exp(\cdot)$ Periode $\operatorname{ord}(a)$.
- Laufzeit von Shors Algorithmus auf Quantenrechnern: $\mathcal{O}(\log^3 n)$.

Liften von Lösungen quadratischer Gleichungen

Motivation:

- Quadratisches Sieb: Wir benötigen Lösungen von $X^2 \equiv n \mod p^k$.
- Für k = 1 berechne Lösungen mittels Tonelli-Shanks/Cippola.
- Liefern die Lösungen für k = 1 auch die Lösungen für k > 1?

Satz Liften von Lösungen quadratischer Gleichungen

Sei $p \in \mathbb{P} \setminus \{2\}$, $(\frac{a}{p}) = 1$ und $k \in \mathbb{N}$. Sei x_k Lösung für $x_k^2 \equiv a \mod p^k$, d.h. $x_k^2 - a = c_k' p^k$. Dann wird $x_{k+1}^2 \equiv a \mod p^{k+1}$ gelöst von

$$x_{k+1} := x_k + c_k p^k \text{ mit } c_k \equiv -\frac{c'_k}{2x_k} \mod p.$$

Beweis:

- Falls $x_{k+1}^2 \equiv a \mod p^{k+1}$, gilt $x_{k+1}^2 \equiv a \mod p^{\ell}$ für alle $\ell \leq k+1$.
- Dies liefert den Ansatz $x_{k+1} \equiv x_k \mod p^k$ bzw. $x_{k+1} = x_k + c_k p^k$.
- Wir suchen nun c_k .
- Da x_{k+1} modulo p^{k+1} definiert ist, bestimmen wir c_k modulo p.

Liften von Lösungen quadratischer Gleichungen

Beweis: (Fortsetzung)

• Mit Hilfe des Ansatzes $x_{k+1} = x_k + c_k p^k$ erhalten wir

$$0 \equiv x_{k+1}^2 - a = x_k^2 + 2x_k c_k p^k + (c_k p^k)^2 - a$$

$$\equiv x_k^2 - a + 2x_k c_k p^k \mod p^{k+1}.$$

- Wegen $x_k^2 a = c_k' p^k$ folgt $0 \equiv x_k^2 a + 2x_k c_k p^k = (c_k' + 2x_k c_k) p^k \mod p^{k+1}.$
- Teilen durch p^k und Auflösen nach c_k liefert $c_k \equiv -\frac{c_k'}{2x_k} \mod p$.

Anmerkung:

• Wir definieren $c_0 := x_1$. Dann gilt

$$\begin{array}{ll} x_k &= c_{k-1}p^{k-1} + x_{k-1} = c_{k-1}p^{k-1} + c_{k-2}p^{k-2} + x_{k-2} \\ &= c_{k-1}p^{k-1} + c_{k-2}p^{k-2} + \ldots + c_1p^1 + x_1 = \sum_{i=0}^{k-1}c_ip^i. \end{array}$$

• D.h. x_k lässt sich mittels der $c_{k-1} \dots c_0$ zur Basis p darstellen.

Liften von Lösungen quadratischer Gleichungen

Bsp: : Wir berechnen die Lösungen von $x_k^2 \equiv 2 \mod 7^k$ für $k \le 5$.

- Die Lösung $x_1 \equiv 3 \mod 7$ finden wir mittels Cippola-Algorithmus.
- Wir wenden danach unsere Formel zum Liften an.

k	x_k	c'_k	c_k	7 ^k
1	3	1	$-\frac{1}{6} = 1$	7
2	10	2	$-\frac{1}{3}=2$	49
3	108	34	$-\frac{6}{2.3} = 6$	343
4	2166	23	$-\frac{3}{2 \cdot 3} = 6$ $-\frac{2}{2 \cdot 3} = 2$	2401
5	4567	_	_	_

- Wir erhalten $x_5 = 2 \cdot 7^4 + 6 \cdot 7^3 + 2 \cdot 7^2 + 1 \cdot 7 + 3$.
- Wir würden gerne $x_{\infty} = \lim_{k \to \infty} x_k = \sum_{i=0}^{\infty} c_i 7^i$ berechnen.
- Damit hätten wir eine Lösung für alle Gleichungen $X^2 \equiv 2 \mod 7^k$.
- Im Allgemeinen wird ein solcher Grenzwert aber nicht existieren.

Die p-adischen Zahlen

Definition *p*-adische Zahlen

Sei $p \in \mathbb{P}$. Wir definieren die *ganzen p-adischen Zahlen* als

$$\mathbb{Z}_p := \{(x_k) \in \prod_{k=0}^{\infty} \mathbb{Z}/p^{k+1}\mathbb{Z} \mid x_{k+1} \equiv x_k \bmod p^{k+1}\}.$$

Ferner definieren wir $\epsilon : \mathbb{Z} \to \mathbb{Z}_p$ mit $\mathbf{x} \mapsto (\mathbf{x})_{\mathbf{k} \in \mathbb{N}_0} = (\mathbf{x}, \mathbf{x}, \mathbf{x}, \ldots)$.

Bsp: In \mathbb{Z}_3 erhalten wir

- $\epsilon_3(-1) = (-1, -1, -1, -1, -1, \ldots) = (2, 8, 26, 80, 242, \ldots).$
- $\epsilon_3(101) = (101, 101, 101, \ldots) = (2, 2, 20, 20, 101, 101, \ldots).$
- Aus dem Beispiel auf der Folie zuvor erhalten wir in \mathbb{Z}_7 $\epsilon_7(\sqrt{2})=(3,10,108,2166,4567,\ldots).$

