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Motivation

Ultimate goal Find roots of multivariate polynomials
Given: polynomial f(X1,...,Xn) € Z[X1, ..., Xn]

Find: solutions (xio), . (0)) € Z" with f(x(o) . ,x,ﬁo)) =0modN

Examples:
@ Factorization problem N = pq:
f(x,y) =N —xy with (x©,y©) = (p,q)
® RSA equationed =1mod¢p(N) < ed =1+k(N—(p+q—1)):
f(x,y,z) =ex —1—y(N —2z), (x©,y© z0) =(d,k,p+q—1)

Goal 1 Find small modular roots of linear polynomials

Given: linear f(Xy,...,Xn) = @aiXg + azXg + ... + anXn, modulus N
Find:  small solutions (x(o) ...,xéo)) with f(x{o), e ,x,ﬁo)) = 0 mod N
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First definition of a lattice

Definition 1 Lattice
A lattice is a discrete, additive, abelian subgroup of R". J

Properties:

@ Closed:u,velL=u+veL

@ Neutral element: 0 =0" e L

@ Inverse element:u € L= —u el

@ Discrete: no accumulation point
Examples:

@ 7Z C Riis a lattice.

@ kZ C R is a lattice.

@ 79 c R",d < nis a lattice.

@ (kz)! c R", d < nis a lattice.
Representation problem: Lattices have an infinite number of points.
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Second definition of a lattice

Definition 2 Lattice
Letby,by,...,bg € R" be linearly independent. Then

L= {v eR|v=Y" abja e Z} is a lattice.

Exercise: Show that both definitions are equivalent.

Notation for lattices:
b1
@ Basis B=| : € R9*" with rank d and dimension n.
by
@ Lattice has fullrank ifd = n.
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Non-uniqueness of bases

Definition Unimodular transformations
Let B be a basis. Unimodular transformations of B consist of
© permutation of basis vectors,
@ addition of a multiple of a basis vector to another basis vector.

Exercise: Unimodular transformations leave lattice unchanged.
Exercise: Unimodular transformations are multiplications T - B with
T € z9%9, det(T) = +1.

Theorem
Let L be a lattice. Then L has infinitely many bases. J

Proof: There exist infinitely many unimodular transformations.

Good bases: Short and pairwise almost orthogonal basis vectors.
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Two different bases of the same lattice

—
- 0 ——
/ /
——

Lecture 1, Mon Aug 2 Introduction to Lattices: basis, determinant, minima, SVP and CVP 6/50



The lattice determinant

Definition Lattice determinant

Let L be a full rank lattice with basis B. The lattice determinant det(L)
is defined as det(L) := | det(B)].

Property:
@ For unimodular T: |det(TB)| = |det(T) - det(B)| = |det(B)|.
@ That means det(L) is a lattice invariant.

Geometric interpretation:  Fundamental region P(B)
o LetP(B) = {veR" |v =3 xbix € R0<x <1}.

@ Then det(L) is the volume of the fundamental region P(B).
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The lattice determinant is an invariant.
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Back to linear equations

Lemma

The set of integer solutions of a;x; + ... + anxy, = 0 mod N forms a
lattice of rank n.

Proof: Check via Definition 1 of a lattice.
® X =(Xg,...,Xn) = 0" is a solution.
@ Letu,v € Z" be solutions. Then u — v is a solution.

@ Let g; be the unit vectors. Since Ne;j,i = 1...n, are n linearly
independent solutions, the lattice rank is at least n.

@ Since the solutions are in Z" the rank is at most n.

Exercise 1: Find a basis for the lattice.

Exercise 2: Let A € Z™*" have rank m. Then {x € Z™ | xA = 0} forms
a lattice of rank n — m.

Lecture 1, Mon Aug 2 Introduction to Lattices: basis, determinant, minima, SVP and CVP 9/50



Successive minima

Definition Successive minima

Let L be arank d lattice. For i < d we denote by ); the minimal radius
of a ball around 0 that contains i linearly independent vectors.

Theorem

Let L be arank d lattice with d > 5. Then d linearly independent
vectors do not necessarily form a basis of L.

Proof: Let L be spanned by the basis

2 0000
02000
B=] 00200
00020
11111
@ L contains 2¢; fori =1,...,5. Therefore, \; = ... = A5 = 2.

@ But 2I5 is not a basis of L, since it does not contain (1,1,1,1,1).
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Successive minima Ay = |by |, A2 = |b|

o O
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Minkowski's Theorem

Theorem of Minkowski

Let L be a rank d lattice. Then \; < vd - det(L)3.

Heuristic 1

Let L be arank d lattice. Letv € L with |v| < \/adet(L)%. Thenv is a
shortest vector in L.
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Algorithmic problems: SVP and CVP

Problem Shortest Vector Problem (SVP)

Given: B e QY4x" for L
Find: veL\Owith|v|=A1 (or|v| <~A; for approx factor )

v

Problem Closest Vector Problem (SVP)

Given: B e QY*"for L, targett € Q"
Find: v e L with |v —t| = miny¢_ Ju —t]
(or |v —t| <~ -minyeL |u — t| for approx factor )

Theorem
© CVP is NP-hard (van Emde Boas 1981)
@ SVP is NP-hard (Ajtai 1996)

v

Unlikely: Algorithm with run time poly in d, n, log bmax = log(max; jb; ;).
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Closest Vector Problem (CVP)
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Lattice reduction with fixed rank d

Algorithm Gaul} (rank 2)

INPUT: basis by, b, € Q" with |by| > |b2]
© Find k € Z that minimizes |b; — kby|. Set by < by — kby.
Q Ifk #0, swap by and b,.

OUTPUT: basis b1, b, with by = Aq, b2 = A2

Running time:  O(nlog? bmax)

Example:
@ Oninput by = (11,6),b, = (8,4), the GauR algorithm outputs
b1 =(2,0),b, = (1,2).

Theorem

Let B € Q%M be a lattice basis. Then SVP and CVP can be solved in
time polynomial in (n,log bmax)-
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Approximative SVPs in arbitrary dimension

Theorem LLL algorithm (Lenstra, Lenstra, Lovasz 1982)

Let L be a lattice with basis v, ...,vq € Q". Then the LLL algorithm
computes a basis by, ..., bg with

Q |baf <c¥ - det(L)s

Q |bi| <c®-N(L)

1
where ¢ = () ~ 1.075 in time O(d°n 10> brmax).
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Solving linear equations

Goal 1: Find small modular roots of linear polynomials

Given: ay,...,an € Zn,N € N with gcd(a;,N) = 1 for some i and
aiXs + ...anXp = 0mod N for unknown (xy,...,X%,) € Z",

upper bounds X; € Z such that |x;| < X; and J[_; X; < N.

Find:  small solution x = (X, ..., X,) as solution of SVP
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A first approach

Wilog ged(an,N) = 1. Set b; :== —a; - a5 1. We obtain
biXy + ...+ by_1Xn_1 = X, mod N.

@ Create lattice L spanned by the basis

1 by
1 b,

1 bns
N
@ We have rank(L) = n, det(L) = det(B) = N.
@ Letbix; +...+by_1Xn_1 = Xn — YN for some y € Z.
n—1
@ Then (x1,...,Xp-1,¥)-B = (xl,...,xn_l,Zbixi +yN) =x.
i=1

Xn

@ Thus x € L with |x| < v/n-maxi{xi}.
@ Minkowski bound: \; < v/n - N.
@ Iffxi~...=~X, ~ N7, then x is a short vector (Heuristic 1).

Lecture 2, Tue Aug 3 Solving Linear Polynomial Equations: RSA, ElGamal signature, Pollard generator 18/50



A second approach

@ Wlog []iL; X; = N. Multiply ith column vector of B with Y; := %
Y1 anl
YZ an2
B/ = .
Yn-1 Ynbn_1
YnN

We obtain rank(L’) = n and
det(L) =N-TIL,Yi=N-[I, % =N [T, xi, =N".
Now (X1,...,Xn—1,Y) B = (X1Y1,.. ., Xn—1Yn_1,XYn) = X
We have |x;|Y; < ‘;—I‘ -N < N and thus x’ < /n-N.
Minkowski bound: A;(L') < v/ndet(L’)s = v/n - N.
Under Heuristic 1, we can expect to find x’ as the solution of an SVP.

From x’ we can easily recover the desired solution vector x.
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Solving inhomogenous or non-modular equations

Problem Inhomogenous equation
Find solution of a;x; + ... + apX, = b mod N. J

Approach via CVP instance
@ Define rank n + 1 lattice with vectors (X, ...,Xn, > i_; &% — YN).
@ Define CVP target vector as (0,...,0,b).

Exercise: Find a variation that uses an SVP instance as before.

Problem Equation over the integers
Find solution of a;x; + ...+ anXn, = b. J

Approach:
@ Reduce modulo largest of a; or b. We are back to modular case.
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Wiener attack

Theorem Wiener (1990)

Let N = pq with p, q of equal bit-size. Let ed = 1 mod ¢(N) with
d< %N%. Under Heuristic 1, N can be factored in time O(log? N).

Proof:

@ Write ed = 1 mod ¢(N) as ed = 1+k( —(p+9—1)), k € N, with
k=S50 <am d<d
@ Write the RSA equationas ed + k(p+q9 — 1) — 1 = kN.
@ Linearization: ex; + X2 = 0 mod N with (X1,X2) = (d,k(p +q — 1)).
@ We can define X; = $N1.
@ In order to define X, we observe that wlog p < v'N < q,
q < 2p < 2vN and therefore p + q < 3v/N.

@ Define an upperboundofk(p+qgq—1) <d(p+qg—1) < N7 = X5.
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Wiener attack

Proof (continued):
@ The requirements of our lattice method are fulfilled, since

X1X, < N and the coefficient of x, is co-prime to N.
@ Under Heuristic 1, we find (X1, X) as solution of an SVP instance.
@ We use a lattice with rank 2. (Exercise: Construct a basis.)
@ Running time of the GauR algorithm is O(log? bmax) = O(log? N).
@ From (x1,%z) be obtain d, k = 2422 and ¢(N) = 241,
@ From ¢(N) and N we can easily derive p, q (Exercise).
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Attacking GnuPG ElGamal signatures

El Gamal signature
© Params: public: prime p, a generator of Z¥, 3 = o2 mod p
private: a € Zp_,
Q Sign: o(m) = (7,6) = (o' mod p,r~*(m —ay) mod p — 1)
In GnuPG: a,r < pg for efficiency reasons

Linearization attack (Nguyen 2004):
@ Write 6 = r—*(m — ay) as
or +vya=mmodp — 1.
@ We obtain a linear modular equation in the unknowns r and a.
@ The productra < p% < p — 1 satisfies our size restriction.
@ If gcd(d,p — 1) or gcd(~,p — 1) = 1, we can apply our method.
@ Under Heuristic 1, we find (r, a) by solving SVP in a rank 3 lattice.
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Pseudo Random Number Generators (PRNGS)
Algorithm Linear Congruential
@ Params: public: N € N, secret: a,b, xg € Zy

O Alg: lterate X,y = ax; +bmodN,i=0,1,....
Output a fraction of the most significant bits of X ;.

Properties:

@ Easy: X4, X, X3 allow for computing the whole sequence.

@ Broken for every fixed fraction of output bits via lattice method.
(Hastad, Shamir 1985)

Algorithm Pollard Generator

@ Params: public: prime p € N, secret: b, Xy € Zy
Q Alg: lterate X171 = X2 +bmodN,i=0,1,....
Output a fraction of the most significant bits of x;, 1

Question: When do we output too many bits?

Lecture 2, Tue Aug 3

Solving Linear Polynomial Equations: RSA, EIGamal signature, Pollard generator 24 /50



Attacking the Pollard Generator
Theorem Blackburn, Gomez-Perez, Gutierrez, Shparlinski 2005

Let ry, rp, r3 be the output of the Pollard generator with |x; — ri| < %p%.
Then the whole sequence can be computed efficiently.

Proof:
X, = xZ+cmodp

@ We have 5
X3 = X3 +cmodp

= Xp — X3 = XZ — xZ mod p.
@ Letxj =ri +y; with |yi| < %p%. Our goal is to recover the vy;.
rp+Y2—r3—Ys=(r1+y1)? — (r2 +y2)? mod p
= yZ—yZ 4y, —y342ry, — 2r1y; =12 —r2 413 —r, modp.

z Cc
@ We obtain a linear, inhom equation in z,y,,y;. Coefficient of z is 1.
@ Can apply SVP in a rank 4 lattice provided that |zy1y»| < p.

@ The size restriction is satisfied, since we have |y1|, |yz| < p% and
1 1 1
2| < |yZ|+ yF] + Iy2| + lysl < 3p2 +p3 < p2.
@ From yq, Yy, we obtain X1, X, which in turn yields ¢ = x, — X12 mod p,
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Solving polynomial modular equations

Goal 2 Find small modular roots of polynomials

Given: integer N of unknown factorization, monic polynomial
f(x)=x"+an_1+...+aix +ag
Find: all small roots xg with f(xg) = 0 mod N

Remark: Finding all root in Zy is hard under the RSA assumption.

@ Letc = m® mod N be an RSA ciphertext.
@ The root xo = m is the unique root of f(x) = x® — ¢ mod N.

Linearization:

@ Linearize f(X) = Xn + @an_1Xn_1 + ... + @1X1 + @ with x; := xt.

. T i i (n+1)
@ Size restriction is [["_, x = [[, x' <[[, X' =X~z <N.

o This yields the bound X < N @D .
@ Requires to solve SVP in arank (n + 1) lattice.

Lecture 3, Wed Aug 4 Solving Polynomial Equations: Coppersmith method, stereotyped RSA, Franklin-Reiter

26 /50



Coppersmith’s method (1996)
Properties:

© It suffices to compute a short vector via LLL instead of solving
SVP. l.e., that the method stays poly time for non-constant n.

@ Provably (without heuristic) yields all sufficiently small roots.

Idea of Coppersmith’s method:
Let f(x) € Z[x].
Goal: Find all roots xq with f(xp) = 0 mod M and |xg| < X. Maximize X.

@ Choose m € N. Define collection fy(x), . .., fc(x) satisfying
fi(Xxo)) =0modM™ fori =1,..., k.
Example: Choose f;(x) = x' - f(x)™.
@ Construct g(x) = Y1, aify(x) for a; € Z with
g(Xo) = 0 over Z for all [xo| < X.
Sufficient condition: |g(xo)| < M™.
© Find root of g(x) over Z with standard techniques.
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Lemma of Hastad and Howgrave-Graham
Definition Norm of a polynomial

Letg(x) = > aix' € Z[x]. Then the norm of g is |g| = /> a?.

Lemma Howgrave-Graham

Let g(x) € Z[x] with n monomials. Let xo € Z with |xo| < X. Further let
© g(Xo) =0modM™,
@ g(xxX)| < “z.

Then g(xp) =0

Proof:

QG0 = [Sraxg| <5 [axi (2 \
S x| < VA lgex)] <

IN

This implies g(x0) = k - M™
[9(x)[ < M™

= g(x0) = 0.
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Theorem of Coppersmith

Theorem Coppersmith

Let e > 0. For sufficiently large M € N the following holds. Let f(x) be a
monic polynomial of degree n. Then one can compute all roots xg with

f(xp) =0 mod M and |xg| < VERG

. . . . l
in time polynomial in logM, n and <.

Proof:
® Fixm. (m=[x))
@ Define collection
fij(x) =xIM™fl fori=0,....m-1,j=0,...,n— 1.
@ Letf(xg) =0 mod M. Then
fi(Xg) = 0 mod M' and M™~f(xy) = 0 mod M™.

@ This implies that f; j(xg) = 0 mod M™ and therefore

9(Xo) = 2= j & jfij(X0) = 0 mod M™.
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Theorem of Coppersmith
Proof: (continued)

@ Order the polynomials f; j(xX) in increasing order of their degree.

fo,0(xX),fo,1(XX), ..., fo,n_1(xX)
f1,0(xX),f1,1(XX), ..., f1 n_1(xX)

fm—1,0(xX), fm 1 (XX), ..., fm—1,n-1(xX)
@ Write the coefficient vectors of f; (xX) |nto a basis matrix

Mm

men—l
- ... — Mmm=1xn

- —  MX(m=1)n

_ . _ MX mn—1
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Theorem of Coppersmith
Proof: (continued)
@ B spans a lattice L with rank(L) = mn and
2.2

(mn—1)mn 1 )mn m2n mn

det(L) = PGy M X T
@ Every linear combination v = ¢ - B defines a coefficient vector of
some g(xX) with no more than rank(L) = mn monomials.
@ According to Howgrave-Graham’s lemma we need
V] = Jg(xx)] < M.
@ The LLL algorithm computes a vector v with
1 m
Iv| < crank(L) det(L)®D (L) < yﬁ
@ For sufficiently large M we can neglect c"@k() and /mn:

det(L) < Mm-rank(L) 2

m~Tn m2n2

2.2 2 1
s X2 <M & X < M.

Note: With some extra work approximations and the e can be omitted.
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Attack on stereotyped messages (Coppersmith 96)
Scenario:

@ An attacker knows a stereotype part S of the message m = S + x.
@ For example, S ="The codeword for today is”.

Theorem

Let m = S + x with known S. Then x can be computed from
¢ =m® mod N in time polynomial in (log N, e) provided that |x| < Ne.

Proof:
@ We want to find the unique root of the polynomial
f(x) = (S +x)® —c mod N.
@ Notice that f(x) is a monic modular polynomial of degree n = e.
@ Coppersmith’s Theorem immediately yields the bound |x| < Nz.
@ Running time is poly in the bit-size of the modulus and the degree.
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RSA with random padding

Scenario:
@ Two message m, m’ are related: m’ = m +r mod N.
@ We obtain the plain RSA encryptions with exponente = 3
c=m3modN and ¢’ = (m+r)3 =m3+3m?r +3mr? +r3 mod N.

Exercise: Show that m can be efficiently computed from c,c’ and r.

Question: What happens for unknown but small r?
@ Question has applications for RSA with random padding R.
@ Assume that we encrypt the same message M twice.
@ Let the random padding be a k-bit string. Then
m=M-2K+R,
m =M-2k4+R.
@ Setr = R’ — R, thenm’ = m +r as before.
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Attack on Random Padding RSA (Franklin, Reiter 96)

Theorem

Letc = m3®mod N and ¢’ = (m + r)® mod N. Then m can be computed
in time polynomial in log N provided that |r| < N3,

Proof:
@ Write ¢’ = (m +r)3 as
¢/ —m3—r3=3m?r +3mr? =3mr(m+r)modN .
@ Raising both sides to the 3rd power leads to
(c’—mi—r?’)?’ = 9Q1ir3(m+r)3 mod N.
c c M
@ We obtain a monic polynomial f(r) of degree 9.
@ Coppersmith’s method recovers r for |r| < N3 in time poly in log N.

@ From c,c’,r one can efficiently recover m (previous exercise).
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Solving polynomial equations modulo divisors

Goal 2 Find small modular roots of polynomials

Given: integer M of unknown factorization, monic polynomial
f(x)=x"+an_1+...+aix + ao.
Find: all small roots xqu with f(xg) = 0 mod b for some b|M.

Remarks:
@ We do not know b, but it suffice to know a multiple M of b.
@ Root f(xo) = 0 mod b usually give us factorization of M in b and .
@ Let N = pq. Consider the polynomial f(x) = x mod p.
@ The roots of f are of the form kp, k € Z and yield the factorization.
@ We will first restrict to f(x) of degree 1.
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Coppersmith for divisors (1996)
Theorem Coppersmith for divisors

Let e > 0. For sufficiently large M € N the following holds.

Let f(x) = x + a. Let b be a divisor of M with b > M#, 0 < 8 < 1. Then
one can compute all Xo with

f(Xo) = 0 mod b and [xo| < M#*—<

in time polynomial in logM, % and 1.

Proof:
@ Choose suitable m. (m = [’821)

@ Define the following collection of polynomials f; of degree i.
fi(x) = M™fi(x) fori=0,...,m
fi(x) =x"MfM(x) fori=m+1,...,5m—-1

@ If f(xo) = 0 mod b then f;(x) = 0 mod b™ for all i.

@ Thus, g(x) = ), a;fi(x) fulfills condition 1 of Howgrave-Graham.
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Coppersmith for divisors

Proof: (continued)

@ Let X upper bound xq. The coefficient vectors of f(xX) form
Mm

- MmIX

_ _ Xm+1

_ _ X%m—l

@ B spans a lattice L with rank(L) = $m and

m Fm=1
det(L) =[[[.yM][Z; X'=M

m(m+1) (%mfl)%
2 2

X

w2 m2
~M7z X282,

@ Each lattice vector corresponds to a coefficient vector of some g(xX
@ Compute via LLL reduction a short vector v with

IV = JgOx)] < W) - det(L)wio,

).
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Coppersmith for divisors

Proof: (continued)
@ Howgrave-Graham’s second condition yields |g(xX )| < —2-

/rank(L)

@ Omitting low-order terms, we simplify our condition to
det(L) < b™-dim(L).
@ Using b > M?#, one obtains the more restrictive condition
det(L) < mAmrak(l) o M X3 < MPmEm
oM -X72 < M2 & X <M
@ Running time: LLL reduction on a rank %m basis with entries of
bit-size O(%m log M). This is polynomial in %, logM and m = 2.

€

Note: With additional tricks we can again omit the error term e.
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General form of Coppersmith’s Theorem

Theorem Coppersmith
Let e > 0. For sufficiently large M € N the following holds.
Let f(x) be a polynomial of degree n. Let b be a divisor of M with
b>M#?, 0< 8 <1.Thenone can compute all xq with
2
f(xo) = 0 mod b and |xo| < M'T

in time polynomial in log M, .
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Factoring with high bits known (Coppersmith 96)

Scenario:

@ Attacker knows the MSBs of p, e.g. via a side-channel attack.

@ Vanstone-Zuccherato scheme: 264 of 512 bits represent identity.
Theorem

Let N = pq with p > g. Let p be a known approximation of p with
Ip—p| < N#. Then N can be factored in time polynomial in log N.

Proof:
@ Define f(x) = p + x with root xg = p — p mod p and |Xo| < N,
@ Since p > g we have p > N%.Weset,B: %
@ Coppersmith’s Theorem: We can compute the root xg if
IXo| < N# = N3,
@ The root xg = p — p gives the factorization p = p + Xg and q = %
@ Our running time is polynomial in log N.
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Factoring with approximation of a multiple of p

Theorem

LetN = pq W|th p > Q. Let kp be a known approximation of kp with

lkp — kp\ < N7. Then N can be factored in time polynomial in log N.

Proof: left as an exercise.

Scenario: Using bits of dy = d mod p — 1 (Blémer, May 03)
@ Attacker knows MSBs of d, =d mod p — 1.
@ We use a small encryption exponent e.
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Using bits of d, = d modp — 1 (Blomer, May 03)
Theorem

LetN =pg,p >qande =N<, 0<a< Z Leta;,beaknown
approximation of d, with [d, — dp| < N“a.

Then N can be factored in time polynomial in log N.

Proof:

@ We have ed, = 1 mod p — 1 or equivalently ed, = 1+k(p — 1) with

k_eg"_l<eIo P <e.

@ This implies k < N7 and q1k.

@ We compute an approximation @ = ea; — 1 satisfying
kp —kp| = ledp —1+k — (edp — 1)
= le(dp — dp) + k| < N®Ni~* 4+ Nz < 2Nz
@ With previous theorem: One of the values kp + N7 yields p, .
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Factoring =4, Computing d (May 2004)
Theorem
Let N = pqg with p, g of equal bit-size. Assume we have an algorithm

that computes d in polynomial time with ed = 1 mod ¢(N),
ed < ¢(N)2. Then N can be factored in polynomial time.

Proof:
@ We have ed =1 mod ¢(N), respectively ed — 1 = k¢(N).
@ N is an approximation of (N) withN —¢(N) =p+qg—-1 < 3N:z.
@ One of the values N — %N%, i =0,...,5 satisfies

N — IEN% —(N) < IN3.
———

—

¢(N)
@ Define f(x) = ¢(N) — x mod ¢(N) with root xg = ng/(\l\l/) —¢(N),
Xo < 1Nz < ¢(N)z,

—~—
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Factoring =4, Computing d (May 2004)

Proof: (continued)
@ LetM =ed — 1 = ¢(N)* for o < 2. Defineb = ¢(N) and 3 = 1.
@ Coppersmith’s Theorem: We can compute Xg as long as

o] < M < (¢(N))# = $(N)2.

—~

@ The value xg yields ¢(N) = ¢(N) — Xo. The values of ¢(N) and N
together yield the factorization of N.

@ Running time of our method is polynomial in log(M) < 2logN.
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Extensions to multivariate polynomials

Idea:

© Construct k polynomials gy (X1, .. .,Xk),---,9k (X1, ..., X) all
sharing the same small roots over Z.

© Compute the common roots using resultants.

Problem: Does not work if gcd(gi, g;) is non-trivial.
(but usually works good in practice)

Some results using multivariate polynomials:
@ Boneh-Durfee 99: Cryptanalysis of RSA with d < N©-292,
@ Jochemsz-May 07: Cryptanalysis of RSA with d,, dq < N°073,
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The Digital Signature Algorithm (DSA)

Signature DSA

© Params: public: p, q | p— 1, o € Zj with ord(ar) = g, 8 = o mod p
private: a € Zq

@ Sign: o(m) = (v,6) = ((o" mod p) mod g, r~1(m + ay) mod q)

Remarks:
@ Knowledge of the randomization r immediately yields the secret a.

@ If two messages are signed with the same r, then a can be
efficiently computed. (Exercise)
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Attack on DSA (Nguyen 1999)

Scenario:
@ Attacker is allowed to query signature queries o4, ...,0q.
@ For each o; the attacker gets ¢ LSBs of r, e.g., via side-channel.
@ Example from practice: AT&T Crypto Lib always uses odd r.
o Letr = ri(m)zﬁ + ri(e) fori =1,...,d with known ri(e).
@ Since g = r, *(x; + ay;) we have
ani = 6t —x = 6(r™2¢ + 1) — x; mod g
= ays 27 =™ 42740 _x57127 mod q
—_——

t at
@ Note that at; is an approximation of at; up to an error of

()
m ri—r;
(M=t < g

Goal: Find the secret a using t;,...,tq and aty, ..., aty.
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The Hidden Number Problem (Boneh, Venkatesan 96)

Definition Hidden Number Problem (HNP)
Given: primeq,t;,...,tg and z;\tvl,...,éﬂ with
|(ati mod q) — ati| < 5.
Find: a € Zq

Remark:
@ We assume that the t; are uniformly random chosen in Zg.
@ If d and / are sulfficiently large then a is uniquely determined.
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Lattice based solution of HNP (Boneh, Venkatesan)

Idea:

@ Consider the lattice L spanned by the basis matrix

q 0

q 0

B= 0

qg O

th b ...ty

@ Obviously, (aty,aty, ..., aty, 2%) e L aswell as

t:= (at; modq,at, modgq,...,aty modq, %) € L.
@ From the vector t we can easily read of the desired secret a.
@ We know a vector t = (étvl, 5Vt2, ... ,é-i:j , 0) satisfying
[t—t] = |((aty mod g)—aty, ..., (aty mod q)—atq, 2)] < vd + - .
@ May hope that CVP in L with targetfyields t and thus a.
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DSA attacks are practical

Theorem Nguyen

Every u € Lwith Ju —t] < +/d +1- 3 yields a with some probability
which is constant for the parameters d ~ logq and ¢ ~ loglogg.

Remark:
@ Evaluation of the probability for a 160-bit q yields an attack for
d =100 and ¢ = 6.
@ In practice even the following parameter choice suffices:
d =100and ¢ = 3.
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