Wann sind Codes eindeutig entschlüsselbar?

Definition Suffix

Sei C ein Code. Ein Folge $s \in \{0,1\}^*$ heißt Suffix in C falls

- \bigcirc $\exists c_i, c_i \in C : c_i = c_i s \text{ oder }$
- ② $\exists c \in C$ und einen Suffix s' in C: s' = cs oder
- ③ $\exists c \in C$ und einen Suffix s' in C: c = s's.
 - Bedingung 1: Codewort c_i lässt sich zu Codewort c_i erweitern.
 - Bedingung 2: Codewort c lässt sich zu Suffix s' erweitern.
 - Bedingung 3: Suffix s' lässt sich zu Codewort c erweitern.

Effiziente Berechnung von Suffixen

Algorithmus Berechnung Suffix

- Setze $S := \emptyset$, $T := \emptyset$.
- Für alle $c_i, c_j \in C \times C$: Falls es ein $s \in \{0, 1\}^*$ gibt mit $c_i = c_j s$, füge s in S und T ein.
- Solange $T \neq \emptyset$
 - Entferne ein beliebiges s' aus T.
 - **②** Für alle c ∈ C: Falls es ein $s ∈ \{0,1\}^* \setminus S$ gibt mit c = s's oder s' = cs, füge s zu S und T hinzu.

Laufzeit: $C = \{c_1, ..., c_n\}$

- Schritt 2: $\mathcal{O}(n^2)$ Codewortpaare
- Suffixlänge ist durch max_i{|c_i|} beschränkt.
- Es kann höchstens $n \cdot \max_i \{|c_i|\}$ Suffixe geben.
- Schritt 3: $\mathcal{O}(n^2 \cdot \max_i \{|c_i|\})$
- Polynomiell in der Eingabelänge: n, $max_i\{|c_i|\}$

Beispiele Suffixberechnung

- Code $C_2 = \{0, 1, 00\}$
 - Suffix $s_1 = 0$, denn $c_3 = c_1 0$.
- Code $C_3 = \{0, 01, 011\}$
 - ▶ Suffix $s_1 = 1$, denn $c_2 = c_1 1$.
 - ▶ Suffix $s_2 = 11$, denn $c_3 = c_1 11$.
- Code $C_4 = \{0, 10, 110\}$
 - Keine Suffixe, da Präfixcode.
- Code $C_5 = \{1, 110, 101\}$
 - Suffix $s_1 = 10$, denn $c_2 = c_1 10$.
 - Suffix $s_2 = 01$, denn $c_3 = c_1 01$.
 - Suffix $s_3 = 0$, denn $s_3 = c_1 0$.
 - Suffix $s_4 = 1$, denn $c_3 = s_1 1$.

Kriterium für eindeutig entschlüsselbar

Eindeutig entschlüsselbar

C ist ein eindeutig entschlüsselbarer Code \Leftrightarrow Kein Suffix ist Codewort in C.

- z.z.: C nicht eindeutig entschlüsselbar ⇒ Suffix ist Codewort
 - Zwei gleiche Folgen $c_1 \dots c_n$ und $d_1 \dots d_m$ von verschiedenen Codeworten
 - Fall 1: Codewort c_i lässt sich zu d_j erweitern

Fall 2: Codewort c_i lässt sich zu Suffix s_j erweitern

Suffix ist Codewort

Fall 3: Suffix s_k lässt sich zu Codewort d_j erweitern

- Nach jedem Schritt beginnt der konstruierte Suffix mit einem Codewortpräfix.
- Der zuletzt konstruierte Suffix ist identisch mit dem letzten Codewort von beiden Sequenzen.

Rückrichtung

- z.z.: Suffix s ist ein Codewort \Rightarrow C ist nicht eindeutig entschlüsselbar
 - Suffix s ist aus Anwendungen der drei Regeln entstanden.
 - Berechne die Kette zurück, aus der s entstanden ist.
 - Setze String c* ← s. Iteriere:
 - ▶ 1. Fall $c_i = c_i s$: $c^* \leftarrow c_i c^*$, terminiere.
 - ▶ 2. Fall s' = cs: $c^* \leftarrow cc^*$, $s \leftarrow s'$.
 - ▶ 3. Fall c = s's: $c^* \leftarrow s'c^*$, $s \leftarrow s'$.
 - Kette muss mit 1. Fall $c_i = c_i s'$ terminieren.
 - Zwei verschiedene Entschlüsselungen:
 Eine beginnt mit c_i, die andere mit c_j.
 - Beide sind gültig, da der letzte Suffix ein Codewort ist.

Beispiel: Für C = 1,110,101 erhalten wir für den Suffix 1 den String $c^* = 1101$ mit gültigen Dekodierungen 1|101 und 110|1.

Sätze von Kraft und McMillan

Satz von Kraft

Ein Präfixcode C für das Alphabet $A=\{a_1,\ldots,a_n\}$ mit Kodierungslängen $|C(a_j)|=\ell_j$ existiert gdw

$$\sum_{j=1}^n 2^{-\ell_j} \leq 1.$$

Satz von McMillan

Ein eindeutig entschlüsselbarer Code C für das Alphabet $A = \{a_1, \dots, a_n\}$ mit Kodierungslängen $|C(a_j)| = \ell_j$ existiert gdw

$$\sum_{j=1}^n 2^{-\ell_j} \le 1.$$

Präfixcodes genügen

Korollar

Ein Präfixcode *C* existiert gdw es einen eindeutig entschlüsselbaren Code *C* mit denselben Kodierungslängen gibt.

- Wir zeigen den Ringschluss für: $\sum_{j=1}^{n} 2^{-\ell_j} \le 1 \Rightarrow \text{Präfix} \Rightarrow \text{Eindeutig entschlüsselbar}$ (Präfix \Rightarrow Eindeutig entschlüsselbar: letzte Vorlesung)
- Gegeben sind Kodierungslängen ℓ_j . Gesucht ist ein Präfixcode mit $\ell_j = |C(a_j)|$.
- Definiere $\ell := \max\{\ell_1, \dots, \ell_n\}$, $n_i := \text{Anzahl } \ell_j \text{ mit } \ell_j = i$.

$$\sum_{j=1}^n 2^{-\ell_j} = \sum_{j=1}^\ell n_j 2^{-j} \le 1.$$

Beweis: $\sum_{i=1}^{n} 2^{-\ell_i} \le 1 \Rightarrow \text{Pr\"afix}$

Induktion über /:

- IA $\ell = 1$: $n_1 \le 2$
- Können Präfixcode $C \subseteq \{0,1\}$ für max. 2 Codeworte konstruieren.
- IS $\ell-1 \to \ell$: $n_{\ell} \le 2^{\ell} 2^{\ell-1} n_1 2^{\ell-2} n_2 \dots 2n_{\ell-1}$
- **IV:** Präfixcode mit n_i Worten der Länge $i, i = 1, ..., \ell 1$.
- Anzahl der Worte der Länge ℓ: 2^ℓ
- Anzahl der Worte der Länge ℓ mit Präfixen $n_1, \ldots, n_{\ell-1}$: $2^{\ell-1}n_1 + \cdots + 2n_{\ell-1}$.
- Können die n_ℓ Worte mit den verbleibenden $2^\ell (2^{\ell-1}n_1 + \cdots + 2n_{\ell-1})$ Worten der Länge ℓ als Präfixcode kodieren.

Eindeutig entschlüsselbar $\Rightarrow \sum_{i=1}^{n} 2^{-\ell_i} \le 1$

- Sei C eindeutig entschlüsselbar mit $C(a_j) = \ell_j, \ \ell = \max_j \{\ell_j\}.$
- Wählen $r \in \mathbb{N}$ beliebig. Betrachten

$$\left(\sum_{j=1}^{n} 2^{-\ell_j}\right)^r = \sum_{i=1}^{r\ell} n_i 2^{-i}$$

- Analog zum Beweis zuvor: n_i = Anzahl Strings aus $\{0, 1\}^i$, die sich als Folge von r Codeworten schreiben lässt.
- *C* eindeutig entschlüsselbar: Jeder String aus $\{0,1\}^i$ lässt sich als höchstens eine Folge von Codeworten schreiben, d.h. $n_i \leq 2^i$.
- Damit gilt $\sum_{i=1}^{r\ell} n_i 2^{-i} \le r\ell$ \Rightarrow $\sum_{j=1}^n 2^{-\ell_j} \le (r\ell)^{\frac{1}{r}}$
- Für $r \to \infty$ folgt $\sum_{j=1}^{n} 2^{-\ell_j} \le 1$.

Huffman Kodierung

Szenario: Quelle Q mit Symbole $\{a_1, \ldots, a_n\}$

• a_i sortiert nach absteigenden Quellws. $p_1 \ge p_2 \ge \cdots \ge p_n$.

Algorithmus Huffman-Kodierung

Eingabe: Symbole a_i mit absteigend sortierten p_i , i = 1, ..., n.

- **1** IF (n=2), Ausgabe $C(a_1) = 0$, $C(a_2) = 1$.
- ELSE
 - **3** Bestimme $k \in \mathbb{Z}_{n-1}$ mit $p_k \ge p_{n-1} + p_n \ge p_{k+1}$.
 - $(p_1, \dots, p_k, p_{k+1}, p_{k+2}, \dots, p_{n-1}) \leftarrow (p_1, \dots, p_k, p_{n-1} + p_n, p_{k+1}, \dots, p_{n-2})$
 - ③ $(C(a_1),...,C(a_{k-1}),C(a_{k+1}),...,C(a_{n-2}),C(a_k)0,C(a_k)1) \leftarrow Huffmann-Kodierung(a_1,...,a_{n-1},p_1,...,p_{n-1})$

Ausgabe: kompakter Präfixcode für Q

Laufzeit: $O(n^2)$ ($O(n \log n)$ mit Hilfe von Heap-Datenstruktur)

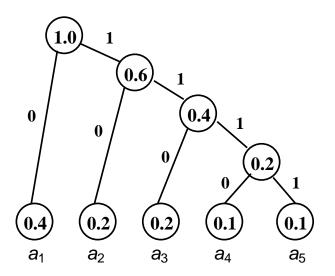
Beispiel Huffman-Kodierung

Beispiel:
$$p_1 = 0.4$$
, $p_2 = p_3 = 0.2$, $p_4 = p_5 = 0.1$

a _i	p_i	$C(a_i)$	p_i	$C(a_i)$	pi	$C(a_i)$	pi	$C(a_i)$
		00						0
		01			0.4	00	0.4	1
a ₃	0.2	11	0.2	10	0.2	01		
a_4	0.1	100	0.2	11				
a 5	0.1	101						

- **Fett** gedruckt: Stelle *k* Man beachte: *k* ist nicht eindeutig, d.h. *C* ist nicht eindeutig.
- E(C) = (0.4 + 0.2 + 0.2) * 2 + 2 * 0.1 * 3 = 2.2
- Huffman-Tabelle: Spalten 1 und 3. Mittels Huffman-Tabelle kann jeder String $m \in A^*$ in Zeit $\mathcal{O}(|C(m)|)$ kodiert werden.

Wahl eines anderen k



$$E(C') = 0.4 * 1 + 0.2 * (2 + 3) + 0.1 * 2 * 4 = 2.2$$

Eigenschaften kompakter Codes

Sei $\ell_i := |C(a_i)|$.

Lemma: Eigenschaften kompakter Codes

Sei C ein kompakter Code, oBdA ist C ein Präfixcode.

- Falls $p_i > p_j$, dann ist $\ell_i \le \ell_j$
- Es gibt mindestens zwei Codeworte in C mit maximaler Länge.
- Unter den Worten mit maximaler Länge existieren zwei Worte, die sich nur in der letzten Stelle unterscheiden.

Beweis der Eigenschaften

Beweis:

1 Sei $\ell_i > \ell_j$. Dann gilt

$$\begin{aligned} & \rho_i \ell_i + \rho_j \ell_j = \rho_i (\ell_i - \ell_j + \ell_j) + \rho_j (\ell_j - \ell_i + \ell_i) \\ = & \rho_i \ell_j + \rho_j \ell_i + (\ell_i - \ell_j) (\rho_i - \rho_j) > \rho_i \ell_j + \rho_j \ell_i \end{aligned}$$

D.h. vertauschen der Kodierungen von a_i und a_j verkürzt den Code.

- Sei $c = c_1 \dots c_n \in C$ das einzige Codewort mit maximaler Länge. Streichen von c_n führt zu einem Präfixcode mit kürzerer erwarteter Codewortlänge.
- Annahme: Alle Paar von Codeworten maximaler Länge unterscheiden sich nicht nur in der letzten Komponente.
 - Entferne die letzte Komponente eines beliebigen Codewortes maximaler Länge.
 - Wir erhalten einen Präfixcode mit kürzerer Länge.

Optimalität der Huffman-Kodierung

Satz

Die Huffman-Kodierung liefert einen kompakten Code.

Beweis per Induktion über n.

- IA: n = 2: Für {a₁, a₂} ist die Codierung {0,1} kompakt.
- **IS:** $n-1 \rightarrow n$: Sei C' kompakt für $\{a_1, \ldots, a_n\}$.
 - ▶ Lemma,2: C' enthält zwei Codeworte maximaler Länge.
 - Lemma,3: Unter den Codeworten maximaler Länge gibt es zwei Codeworte $c0, c1 \in C'$ mit $c \in \{0, 1\}^*$, die sich nur in der letzten Stelle unterscheiden.
 - ▶ Lemma,1: Die beiden Symbole a_{n-1} , a_n mit kleinster Quellws besitzen maximale Codewortlänge. Vertausche die Kodierungen dieser Symbole mit c0, c1.
 - ▶ a_{n-1} oder a_n tauchen mit Ws $p_{n-1} + p_n$ auf.
 - ▶ **IA:** Huffman-Kodierung liefert kompakten Präfixcode C für a_1, \ldots, a_{n-2}, a' mit Quellws $p_1, \ldots, p_{n-2}, p_{n-1} + p_n$
 - ▶ $C(a_1), \ldots, C(a_{n-2}), C(a')0 = c0, C(a')1 = c1$ ist Präfixcode mit erwarteter Codewortlänge E(C'), d.h. die Huffman-Kodierung liefert einen kompakten Präfixcode.