\mathcal{NP} mittels NTMs

Satz

 \mathcal{NP} ist die Klasse aller Sprachen, die von einer NTM in polynomieller Laufzeit entschieden wird, d.h.

$$\mathcal{NP} = \bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k).$$

Zeigen:

∃ polynomieller Verifizierer für *L*

 \Leftrightarrow \exists NTM N, die L in polynomieller Laufzeit entscheidet.

Verifizierer ⇒ NTM

" \Rightarrow ": Sei V ein Verifizierer für L mit Laufzeit $\mathcal{O}(n^k)$ für ein festes k.

Algorithmus NTM N für L

Eingabe: w mit |w| = n.

- **1** Erzeuge nicht-deterministisch einen Zeugen c mit $|c| = \mathcal{O}(n^k)$.
- Simuliere V mit Eingabe (w, c).
- Falls V akzeptiert, akzeptiere. Sonst lehne ab.
 - Korrektheit:

```
w \in L \Leftrightarrow \exists c \text{ mit } |c| = \mathcal{O}(n^k) : V \text{ akzeptiert } (w, c).
```

- \Leftrightarrow N akzeptiert die Eingabe w in Laufzeit $\mathcal{O}(n^k)$.
- Damit entscheidet N die Sprache L in polynomieller Laufzeit.

NTM ⇒ Verifizierer

" \Leftarrow : Sei N eine NTM, die L in Laufzeit $\mathcal{O}(n^k)$ entscheidet.

Algorithmus Verifizierer

Eingabe: w, c

- o ist Kodierung eines Berechnungspfades von N bei Eingabe w.
- Simuliere N auf Eingabe w auf dem Berechnungspfad c.
- Falls N akzeptiert, akzeptiere. Sonst lehne ab.

Korrektheit:

 $w \in L \Leftrightarrow \exists$ akzeptierender Berechnungspfad c von N für $w \Leftrightarrow V$ akzeptiert (w, c).

Laufzeit:

- Längster Berechnungspfad von N besitzt Länge $\mathcal{O}(n^k)$.
- D.h. die Gesamtlaufzeit von V ist ebenfalls $\mathcal{O}(n^k)$.

Boolesche Formeln

Definition Boolesche Formel

- Eine Boolesche Variable x_i kann Werte aus $\{0,1\}$ annehmen, wobei $0 \cong$ falsch und $1 \cong$ wahr.
- Jede Boolesche Variable x_i ist eine Boolesche Formel.
- Sind ϕ, ϕ' Boolesche Formeln, so auch $\neg \phi, \phi \land \phi', \phi \lor \phi'$.
- Operatoren ¬, ∧, ∨ sind geordnet nach absteigender Priorität.
- ϕ ist erfüllbar $\Leftrightarrow \exists$ Belegung der Variablen in ϕ mit $\phi = 1$.

Bsp:

- $\phi = \neg (x_1 \lor x_2) \land x_3$ ist erfüllbar mit $(x_1, x_2, x_3) = (0, 0, 1)$.
- $\phi' = x_1 \land \neg x_1$ ist eine nicht-erfüllbare Boolesche Formel.

Satisfiability SAT

Definition SAT

SAT := $\{\phi \mid \phi \text{ ist eine erfüllbare Boolesche Formel.}\}$

Kodierung von ϕ :

- Kodieren Variable x_i durch bin(i).
- Kodieren ϕ über dem Alphabet $\{0, 1, (,), \neg, \wedge, \vee\}$.

SAT ist polynomiell verifizierbar.

Satz

SAT $\in \mathcal{NP}$.

Beweis

Algorithmus Polynomieller Verifizierer

EINGABE: $(\phi(x_1,...,x_n), \mathbf{c})$, wobei $\mathbf{c} = (c_1,...,c_n) \in \{0,1\}^n$.

• Falls $\phi(c_1, \dots, c_n) = 1$, akzeptiere. Sonst lehne ab.

Korrektheit:

• $\phi(x_1, \dots, x_n) \in \mathsf{SAT} \Leftrightarrow \exists \mathsf{Belegung} \ \mathbf{c} \in \{0, 1\}^n : \phi(\mathbf{c}) = 1$

Laufzeit:

- Belegung von ϕ mit **c**: $\mathcal{O}(|\phi|)$ auf RAM.
- Auswertung von ϕ auf **c**: $\mathcal{O}(|\phi|^2)$ auf RAM.

Konjunktive Normalform

Definition Konjunktive Normalform (KNF)

Seien x_1, \ldots, x_n Boolesche Variablen und ϕ eine Boolesche Formel.

- Wir bezeichnen die Ausdrücke x_i und $\neg x_i$ als *Literale*.
- Klauseln sind disjunktive Verknüpfungen von Literalen.
- ϕ ist in KNF, falls ϕ eine Konjunktion von Klauseln ist.
- Eine KNF Formel ϕ ist in 3-KNF, falls jede Klausel genau 3 Literale enthält.

Bsp

- $\neg x_1 \lor x_2$ und x_3 sind Klauseln.
- $(\neg x_1 \lor x_2) \land x_3$ ist in KNF.
- $(\neg x_1 \lor x_2 \lor x_2) \land (x_3 \lor x_3 \lor x_3)$ ist in 3-KNF.

Die Sprache 3-SAT

Definition 3SAT

3SAT:= $\{\phi \mid \phi \text{ ist eine erfüllbare 3-KNF Boolesche Formel.}\}$

 $\bullet \ \, \text{Offenbar gilt 3SAT} \subset \text{SAT}.$

Satz

3SAT∈ \mathcal{NP} .

Beweis

Algorithmus NTM für 3SAT

Eingabe: $\phi(x_1, \ldots, x_n) \in 3$ -KNF

- **1** Rate nicht-deterministisch eine Belegung $(c_1, \ldots, c_n) \in \{0, 1\}^n$.
- Palls $\phi(c_1, \ldots, c_n) = 1$, akzeptiere. Sonst lehne ab.
 - Laufzeit Schritt 1: $\mathcal{O}(n) = \mathcal{O}(|\phi|)$, Schritt 2: $\mathcal{O}(|\phi|)$.
 - ullet D.h. die Laufzeit ist polynomiell in der Eingabelänge $|\phi|$.

Simulation von NTMs durch DTMs

Satz Simulation von NTM durch DTM

Sei N eine NTM, die die Sprache L in Laufzeit t(n) entscheidet. Dann gibt es eine DTM M, die L in Zeit $2^{\mathcal{O}(t(n))}$ entscheidet.

Sei B(w) der Berechnungsbaum von N bei Eingabe w.

Algorithmus DTM M für L

- Tühre Tiefensuche auf B(w) aus.
- Falls akzeptierender Berechnungspfad gefunden wird, akzeptiere.
- Sonst lehne ab.
 - Berechnungspfade in B(w) besitzen höchstens Länge t(n).
 - Berechnungsbaum hat Tiefe höchstens t(n).
 - D.h. B(w) besitzt höchstens $2^{t(n)}$ Berechnungspfade.
 - Gesamtlaufzeit $2^{t(n)} \cdot \mathcal{O}(t(n)) = 2^{\mathcal{O}(t(n))}$.

Polynomielle Reduktion

Definition Polynomiell berechenbare Funktion

Sei Σ ein Alphabet und $f: \Sigma^* \to \Sigma^*$. Die Funktion f heißt polynomiell berechenbar gdw. eine DTM M existiert, die für jede Eingabe w in Zeit polynomiell in |w| den Wert f(w) berechnet.

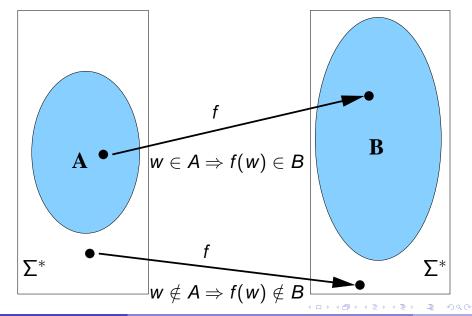
Definition Polynomielle Reduktion

Seien $A, B \subseteq \Sigma^*$ Sprachen. A heißt polynomiell reduzierbar auf B, falls eine polynomiell berechenbare Funktion $f: \Sigma^* \to \Sigma^*$ existiert mit

$$w \in A \Leftrightarrow f(w) \in B$$
 für alle $w \in \Sigma^*$.

Wir schreiben $A \leq_p B$ und bezeichen f als polynomielle Reduktion.

Graphische Darstellung $w \in A \Leftrightarrow f(w) \in B$



A ist nicht schwerer als B.

Satz

Sei $A \leq_p B$ und $B \in P$. Dann gilt $A \in P$.

- Wegen $B \in P$ existiert DTM M_B , die B in polyn. Zeit entscheidet.
- Wegen $A \leq_{p} B$ existiert DTM M_f , die f in polyn. Zeit berechnet.

Algorithmus DTM M_{Δ} für A

Eingabe: w

- Berechne f(w) mittels M_f auf Eingabe w.
- 2 Falls M_B auf Eingabe f(w) akzeptiert, akzeptiere. Sonst lehne ab.

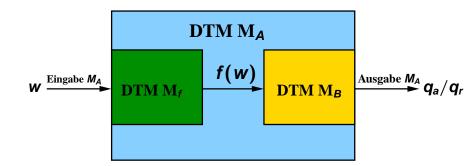
Korrektheit:

• M akzeptiert $w \Leftrightarrow M_B$ akzeptiert $f(w) \Leftrightarrow f(w) \in B \Leftrightarrow w \in A$.

Laufzeit:

• $T(M_A) = \mathcal{O}(T(M_f) + T(M_B))$, d.h. polynomiell in |w|.

Graphische Darstellung des Reduktionsbeweises



Transitivität polynomieller Reduktionen

Satz Transitivität von \leq_p

Seien $A, B, C \subseteq \Sigma^*$ Sprachen mit $A \leq_p B$ und $B \leq_p C$. Dann gilt $A \leq_p C$.

• Sei *f* die polynomielle Reduktion von *A* auf *B*, d.h.

$$w \in A \Leftrightarrow f(w) \in B$$
 für alle $w \in \Sigma^*$.

• Sei *g* die polynomielle Reduktion von *B* auf *C*, d.h.

$$v \in B \Leftrightarrow g(v) \in C$$
 für alle $v \in \Sigma^*$.

- Dann gilt insbesondere $w \in A \Leftrightarrow f(w) \in B \Leftrightarrow g(f(w)) \in C$.
- g(f(w)) kann in polynomieller Zeit berechnet werden durch Hintereinanderschaltung der polynomiellen DTMs für f und g.

Clique

Definition Clique

Sei G = (V, E) ein ungerichteter Graph. $C \subseteq V$, |C| = k heißt k-Clique in G, falls je zwei Knoten in C durch eine Kante verbunden sind.

CLIQUE:= $\{(G, k) \mid G \text{ enthält eine } k\text{-Clique.}\}$

Satz

 $3SAT \leq_{p} CLIQUE$

Zu zeigen: Es gibt eine polynomielle Reduktion f mit

- $lack \phi \in \mathsf{3SAT} \Leftrightarrow f(\phi) = (G,k) \in \mathsf{CLIQUE}$
- f ist eine polynomiell berechenbare Funktion

Idee für die Reduktion: Konstruiere (G, k) derart, dass

- ϕ erfüllbar \Leftrightarrow \exists erfüllende Belegung B für ϕ .
 - ⇔ B setzt in jeder Klausel mind. ein Literal auf wahr.
 - \Leftrightarrow Wahre Literale entsprechen einer k-Clique in G.

Die Reduktion f

Algorithmus M_f für f

Eingabe: $\phi = (a_{11} \lor a_{12} \lor a_{13}) \land ... \land (a_{n1} \lor a_{n2} \lor a_{n3})$

- Wahl der Knotenmenge V von G
 - Definiere 3*n* Knoten mit Labeln a_{i1} , a_{i2} , a_{i3} für i = 1, ..., n.
 - ② Wahl der Kantenmenge E: Setze Kante $(u, v) \in E$ außer wenn
 - u, v entsprechen Literalen derselben Klausel, denn die Clique soll aus Literalen verschiedener Klauseln bestehen.
 - Label von u ist Literal x und Label von v ist $\neg x$, denn x soll nicht gleichzeitig auf wahr und falsch gesetzt werden (Konsistenz).
- Wahl von k.
 - Setze k = n, denn alle Klauseln sollen erfüllt werden.

Ausgabe: (G, k)

zu zeigen: *f* ist polynomiell berechenbar.

- Laufzeit Schritt 1: $\mathcal{O}(n)$, Schritt 2: $\mathcal{O}(n^2)$, Schritt 3: $\mathcal{O}(1)$.
- Gesamtlaufzeit $\mathcal{O}(n^2)$ ist polynomiell in der Eingabelänge.

Korrektheit der Reduktion

Zeigen zunächst: $\phi \in \mathsf{3SAT} \Rightarrow f(\phi) = (G, k) \in \mathsf{CLIQUE}$

- Sei $\phi \in 3$ SAT. Dann besitzt ϕ eine erfüllende Belegung B.
- Damit setzt *B* in jeder Klausel $(a_{i1} \lor a_{i2} \lor a_{i3})$, i = 1, ..., n mindestens ein Literal $a_{i\ell_i}, \ell_i \in [3]$ auf wahr.
- Die n Knoten mit Label $a_{i\ell_i}$ in G sind paarweise verbunden, da
 - ▶ die Literale a_{iℓi} aus verschiedenen Klauseln stammen.
 - ▶ *B* ist eine konsistente Belegung, d.h. dass ein Literal $a_{i\ell_i}$ entweder auf wahr oder auf falsch gesetzt wird.
- Die *n* Knoten mit Label $a_{i\ell_i}$ bilden eine *n*-Clique in *G*.
- ullet D.h. $f(\phi)=(G,k)\in\mathsf{CLIQUE}$

Korrektheit von f: Rückrichtung

Zeigen:
$$f(\phi) = (G, k) \in \mathsf{CLIQUE} \Rightarrow \phi \in \mathsf{3SAT}$$

- Sei $f(\phi) = (G, k) \in CLIQUE$. Dann besitzt G eine n-Clique v_1, \ldots, v_n .
- Nach Konstruktion der Kantenmenge von E gilt:
 - $\mathbf{0}$ v_1, \ldots, v_n korrespondieren zu Variablen in verschiedenen Klauseln.
- Sei *B* diejenige Belegung, die die Label von v_1, \ldots, v_n wahr setzt.
 - \bigcirc B setzt in der *i*-ten Klausel das Literal v_i auf wahr für i = 1, ..., n.
 - B ist eine konsistente Belegung.
- Damit ist *B* ist eine erfüllende Belegung für ϕ .
- D.h. $\phi \in 3SAT$.

NP-Vollständigkeit

Definition \mathcal{NP} -vollständig

Sei L eine Sprache. Wir bezeichnen L als \mathcal{NP} -vollständig, falls

- $\mathbf{0}$ $L \in \mathcal{NP}$
- ② Für **jede** Sprache $A \in \mathcal{NP}$ gilt: $A \leq_p L$.