Perfekte Codes

Definition Perfekter Code

Sei $C \subseteq \{0,1\}^n$ ein (n,M,d)-Code. C heißt perfekt, falls

$$M \cdot V^n \left(\left\lfloor \frac{d-1}{2} \right\rfloor \right) = 2^n.$$

D.h. die maximalen disjunkten Hammingkugeln um die Codeworte partitionieren $\{0,1\}^n$.

• Nicht für alle (n, M, d), die obige Bedingung erfüllen, gibt es auch einen Code.

Perfekte Codes

- $\{0,1\}^n$ ist ein $(n,2^n,1)$ -Code
 - Packradius ist 0, Hammingkugeln bestehen nur aus Codewort selbst.
 - Perfekter Code, aber nutzlos für Fehlerkorrektur.
- R(n) ist für ungerade n ein perfekter (n, 2, n)-Code.
 - $2 \cdot \sum_{i=0}^{\frac{n-1}{2}} \binom{n}{i} = 2 \cdot \frac{2^n}{2} = 2^n$
 - Code ist nutzlos, da er nur zwei Codeworte enthält.
- Der Golay Code (23, 2¹², 7) ist perfekt.
 - $ightharpoonup 2^{12} \cdot \sum_{i=0}^{3} {23 \choose i} = 2^{11} \cdot 2^{12} = 2^{23}$
- Der Hamming Code $\mathcal{H}(h) = (n, M, d) = (2^h 1, 2^{n-h}, 3)$ ist perfekt.
 - $2^{n-h} (1+2^h-1) = 2^n$
- Die einzigen perfekten, binären v-fehlerkorrigierenden Codes mit $v \ge 2$ sind Repetitionscodes und der obige Golay Code.

Die Rate eines Codes

Definition Rate eines Codes

Sei C ein (n, M, d)-Code.

- Die Übertragungsrate ist definiert als $\mathcal{R}(C) = \frac{\log_2(M)}{n}$.
- ② Die *Fehlerrate* ist definiert als $\delta(C) = \frac{\lfloor \frac{d-1}{2} \rfloor}{n}$.

Beispiele:

- $C = \{0^n\}$ hat Übertragungrate 0, aber perfekte Fehlerkorrektur.
- $C = \{0,1\}^n$ hat Übertragungrate 1, aber keine Fehlerkorrektur.
- $\mathcal{R}(R(n)) = \frac{1}{n} \text{ und } \delta(R(n)) = \frac{\lfloor \frac{n-1}{2} \rfloor}{n}$.
 - ▶ Übertragungsrate konvergiert gegen 0, Fehlerrate gegen ½.
- $\mathcal{R}(\mathcal{H}(h)) = \frac{n-h}{n} = 1 \frac{h}{n} \text{ und } \delta(\mathcal{H}(h)) = \frac{1}{n}$.
 - Übertragungsrate konvergiert gegen 1, Fehlerrate gegen 0.

Die Größe A(n, d) und optimale Codes

Definition Optimaler Code

Wir definieren

$$A(n, d) = \max\{M \mid \exists \text{ bin\"arer } (n, M, d) - \text{Code}\}$$

Ein (n, M, d)-Code heißt optimal, falls M = A(n, d).

- Bestimmung von A(n, d) ist offenes Problem.
- Zeigen hier obere und untere Schranken für A(n, d).
- Für kleine Werte von n, d bestimmen wir A(n, d) wie folgt:
 - Zeigen A(n, d) ≤ M.
 - ► Konstruieren (*n*, *M*, *d*)-Code.
- $A(n,d) \le 2^n$ für $d \in [n]$: höchstens 2^n Codeworte der Länge n.
- $A(n,1) = 2^n$: $C = \{0,1\}^n$.
- A(n, n) = 2: R(n).
- $A(n,d) \le A(n,d')$ für $d,d' \in [n]$ mit $d' \le d$ (Übung)

0ⁿ ist ein Codewort

Lemma Äquivalenter Code mit 0ⁿ

Sei C ein (n, M, d)-Code. Dann gibt es einen (n, M, d)-Code C' mit $0^n \in C'$.

- Sei $c \in C$ mit k Nullen und n k Einsen.
- Permutiere Positionen in c so, dass c mit den k Nullen beginnt.
- Wende dieselbe Permutation auf die anderen Codeworte in C an.
 - Beachte: Die Distanz ändert sich nicht durch eine Permutation der Stellen.
- Flippe in jedem Codewort die letzten n k Stellen.
 - ▶ Beachte: Die Distanz ändert sich nicht durch ein Flippen der Bits.
- Der resultierende Code C' enthält 0^n und ist ein (n, M, d)-Code.

Bsp: $C = \{0101, 1010\}$ wird zu $C' = \{0000, 1111\}$.

Erstes nicht-triviales Resultat

Satz

$$A(4,3)=2.$$

- Sei C ein optimaler (4, M, 3)-Code. OBdA $0000 \in C$.
- Worte mit Distanz mindestens 3 von 0000:

- Je zwei Worte besitzen Distanz höchstens 2, d.h. $A(4,3) \le 2$.
- Für $C = \{0000, 0111\}$ gilt d(C) = 3 und damit A(4,3) = 2.

Verkürzen eines Codes

Definition Verkürzter Code

Sei C ein (n, M, d)-Code und $j \in [n], b \in \{0, 1\}$. Der bezüglich b-Bit an i-ter Position verkürzte Code C' entsteht aus C durch

- Einschränkung auf Codeworte aus C, deren j-tes Bit b ist.
- Herausstreichen der j-ten Stelle.
 - **Bsp:** Verkürzen von *C* = {001,010,101} bezüglich 0-Bit an 1. Position liefert $C' = \{01, 10\}.$
 - Beachte C besitzt Distanz 1, aber d(C') = 2.

Satz Verkürzter Code

Sei C ein (n, M, d)-Code und C' ein verkürzter Code. Dann gilt $d(C') \geq d$.

- Betrachten nur die bezüglich einer Stelle j konstanten Codeworte.
 - Stelle j kann nicht zur Distanz beitragen.

Rekursive Schranke für A(n, d)

Lemma Rekursive Schranke

Für $n \ge 2$ gilt: $A(n, d) \le 2 \cdot A(n - 1, d)$.

- Sei *C* ein optimaler (*n*, *M*, *d*)-Code.
- Sei C_b der bezügl. b-Bit, $b \in \{0,1\}$ an 1. Position verkürzte Code.
- Aus $d(C_b) \ge d$ folgt

$$A(n,d) = M = |C_0| + |C_1| \le A(n-1,d(C_0)) + A(n-1,d(C_1))$$

 $\le A(n-1,d) + A(n-1,d).$

Korollar

$$A(5,3)=4.$$

- $A(5,3) \leq 2 \cdot A(4,3) = 4$.
- $C = \{00000, 11100, 00111, 11011\}$ besitzt d(C) = 3.

Schnitt von Strings

Definition Hamminggewicht, Schnitt

Seien $\mathbf{x}, \mathbf{y} \subseteq \{0, 1\}^n$. Das Hamminggewicht $w(\mathbf{x})$ von \mathbf{x} ist definiert als die Anzahl von Einsen in \mathbf{x} .

Seien $\mathbf{x} = x_1 \dots y_n$, $\mathbf{y} = y_1 \dots y_n$. Dann ist der *Schnitt* definiert als

$$\mathbf{x} \cap \mathbf{y} = x_1 \cdot y_1 \dots x_n \cdot y_n$$

Lemma Distanz via Gewicht

Seien $\mathbf{x}, \mathbf{y} \subseteq \{0, 1\}^n$. Dann gilt

$$d(\mathbf{x},\mathbf{y}) = w(\mathbf{x}) + w(\mathbf{y}) - 2w(\mathbf{x} \cap \mathbf{y})$$

- Sei $a_{b_0b_1}$: Anzahl Position mit b_0 in **x** und b_1 in **y**, $b_i \in \{0, 1\}$.
- Es gilt

$$d(\mathbf{x},\mathbf{y}) = a_{10} + a_{01} = (a_{10} + a_{11}) + (a_{01} + a_{11}) - 2a_{11}$$

= $w(\mathbf{x}) + w(\mathbf{y}) - 2w(\mathbf{x} \cap \mathbf{y}).$

Ungerade *d* genügen

Satz

Sei $d \ge 1$ ungerade. Dann existiert ein (n, M, d)-Code C gdw ein (n+1, M, d+1)-Code C' existiert.

- " \Leftarrow ": Sei C' ein (n+1, M, d+1)-Code.
 - Seien $\mathbf{c}, \mathbf{c}' \in C'$ mit $d(\mathbf{c}, \mathbf{c}') = d + 1$ und i eine Position mit $\mathbf{c_i} \neq \mathbf{c_i'}$.
 - Lösche i-te Position aus C'. Resultierender Code C besitzt d(C) = d und Länge n.
- "⇒": Sei C ein (n, M, d) Code.
 - C: Erweitere C um Paritätsbit, so dass $w(\mathbf{c})$ gerade für alle $\mathbf{c} \in C'$.
 - Mittels I emma

$$d(\mathbf{x}, \mathbf{y}) = w(\mathbf{x}) + w(\mathbf{y}) - 2w(\mathbf{x} \cap \mathbf{y}) = 0 \mod 2 \text{ für alle } \mathbf{x}, \mathbf{y} \in C'.$$

• Wegen d = d(C) ungerade und d < d(C') < d + 1 folgt d(C') = d + 1.

Einige Werte von A(n, d) (Quelle: Sloane 1982)

Korollar

$$A(n, d) = A(n+1, d+1)$$
 für $d \ge 1$ ungerade.

n	5	6	7	8	9	10	11	16
<i>d</i> = 3	4	8	16	20	40	72-79	144-158	2560-3276
<i>d</i> = 5	2	2	2	4	6	12	24	256-340
d = 7	-	-	2	2	2	2	4	36-37

Sphere-Covering und Sphere-Packing

Satz Schranken Sphere-Covering und Sphere-Packing

$$\frac{2^n}{V^n(d-1)} \leq A(n,d) \leq \frac{2^n}{V^n\left(\lfloor \frac{d-1}{2} \rfloor\right)}.$$

Untere Schranke Sphere-Covering:

- Sei *C* ein optimaler (n, M, d)-Code, d.h. M = A(n, d).
- Für alle $\mathbf{x} \in \{0,1\}^n \, \exists \, \mathbf{c} \in C : d(\mathbf{x},\mathbf{c}) < d$. (Warum?)

$$\{0,1\}^n\subseteq\bigcup_{i=1}^M B^n(\mathbf{c_i},d-1)\quad\Rightarrow\quad 2^n\leq V^n(d-1)\cdot M.$$

Obere Schranke Sphere-Packing:

• C korrigiert $\lfloor \frac{d-1}{2} \rfloor$ Fehler, d.h. Hammingkugeln mit diesem Radius sind disjunkt.

$$\bigcup_{i=1}^{M} B^{n}\left(\mathbf{c_{i}}, \left\lfloor \frac{d-1}{2} \right\rfloor\right) \subseteq \{0,1\}^{n} \quad \Rightarrow \quad V^{n}\left(\left\lfloor \frac{d-1}{2} \right\rfloor\right) \cdot M \leq 2^{n}$$

Bsp A(n,3) für Sphere-Covering und Sphere-Packing

n	5	6	7	8	9	10	11	16
untere	2	3	5	7	12	19	31	479
A(n,3)	4	8	16	20	40	72-79	144-158	2560-3276
obere	5	9	16	28	51	93	170	3855

Singleton-Schranke

Satz Singleton-Schranke

$$A(n,d) \leq 2^{n-d+1}$$

- Sei C ein optimaler (n, M, d)-Code. Entferne letzte d-1 Stellen.
- Resultierende Codeworte sind alle verschieden, da sich c ∈ C in mindestens d Stellen unterscheiden.
- Es gibt M viele verkürzte unterschiedliche Codeworte der Länge n – (d – 1):

$$M \leq 2^{n-d+1}$$
.

Vereinfachte Plotkin-Schranke

Satz Vereinfachte Plotkin-Schranke

Sei n < 2d, dann gilt

$$A(n,d)\leq \frac{2d}{2d-n}.$$

- Sei C ein optimaler (n, M, d) Code und $S = \sum_{i < j} d(\mathbf{c_i}, \mathbf{c_j})$.
- Je zwei Codeworte besitzen Distanz mindestens d, d.h. $S \ge d\binom{M}{2}$.
- Betrachten erste Stelle in allen Codeworten:
 - ▶ Sei k die Anzahl der Nullen und (M k) die Anzahl der Einsen.
 - ▶ Erste Stelle liefert Beitrag von k(M k) zu S.
 - ► k(M-k) ist maximal für $k=\frac{M}{2}$, d.h. $k(M-k) \leq \frac{M^2}{4}$.
 - ▶ Analog für jede der *n* Stellen, d.h. $S \leq \frac{nM^2}{4}$.
- Kombination beider Schranken und Auflösen nach M liefert

$$M \leq \frac{2d}{2d-n}$$
.

Vergleich der oberen Schranken

n	7	8	9	10	11	12	13
A(n,7)	2	2	2	2	4	4	8
A(n,7) Singleton	2	4	8	16	32	64	128
Plotkin	2	2	2	3	4	7	14

Kodierungstheorem von Shannon für fehlerbehaftete Kanäle

Gegeben sei ein binärer symmetrischer Kanal Q mit Fehlerws p. Für alle $R < 1 + p \log_2 p + (1-p) \log_2 (1-p) = 1 - H(Q)$ und alle $\epsilon > 0$ gibt es für hinreichend große n einen (n, M)-Code C mit Übertragungsrate $\mathcal{R}(C) \geq R$ und $\operatorname{Ws}(\operatorname{Dekodierfehler}) \leq \epsilon$.

- Beweis komplex, nicht-konstruktiv.
- Resultat gilt nur asymptotisch für genügend große Blocklänge.

Erinnerung: Der Vektorraum \mathbb{F}_2^n

Schreiben $\{0,1\}^n$ als \mathbb{F}_2^n .

Definition Vektorraum \mathbb{F}_2^n

 $(\mathbb{F}_2^n,+,\cdot)$ mit Addition modulo $2,+:\mathbb{F}_2^n\times\mathbb{F}_2^n\to\mathbb{F}_2^n$ und skalarer Multiplikation $\cdot:\mathbb{F}_2\times\mathbb{F}_2^n\to\mathbb{F}_2^n$ definiert einen Vektorraum, d.h.

- Assoziativität: $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$
- **2** Kommutativität: $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
- ③ ∃ neutrales Element $0^n : 0^n + x = x + 0^n = x$
- **3** Selbstinverse: $\forall \mathbf{x} : \mathbf{x} = -\mathbf{x}$, d.h. $\mathbf{x} + \mathbf{x} = \mathbf{0}^{\mathbf{n}}$.
- **5** Skalare Multiplikation: $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$.

Definition Unterraum des \mathbb{F}_2^n

 $S \subseteq \mathbb{F}_2^n$ ist ein Unterraum des \mathbb{F}_2^n gdw

 $\mathbf{0}^{\mathbf{n}} \in S \text{ und } \forall \mathbf{x}, \mathbf{y} \in S : \mathbf{x} - \mathbf{y} \in S.$