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The Number Field Sieve 

  Precomputation 

  Relation collection 

  Linear Algebra (Matrix step) 

  Postprocessing 
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Relation Collection 

  Given F1(x,y), F2(x,y) ∈ Z[x,y] , 
homogeneous polynomials,  
e.g. of degree 5 and 1 

  Find (a,b) ∈ Z x N  with F1(a,b) and 

F2(a,b) smooth, gcd(a,b) = 1 
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Parameters for 1024 Bit 
(from TWIRL, 2003) 

  Smoothness bounds: 
B1 = 2.6 • 1010 (algebraic),  
B2 = 3.5 • 109 (rational). 

  Sieving region: 
A = 5.5 • 1014,  -A < a < A;  
B = 2.7 • 108,  0 < b < B. 

(≈ 2 x 5 GByte) 

(≈ 1400 TByte) 
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Suggested Hardware Designs 

  TWINKLE [Shamir 1999; Shamir, Lenstra 2000] 
not designed for 1024 bit numbers 

  TWIRL [Shamir, Tromer 2003] 
full wafer design 

  Mesh-based sieving  [G., St. 2003, 2004] 
not feasible for 1024 bit numbers 

  SHARK [Franke et al. 2005] 
elaborated butterfly transport system 

  SmallChips (Non-Wafer-Scale Sieving HW) [G., St. 2007] 
 more realistic, but high inter-chip communication 
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TWIRL - Types of Primes 

  Largish primes (rational):  219 < p 

                       (algebraic):  222 < p 

  Medium primes:   256 < p 

  Smallish primes:    p < 256 
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TWIRL - Largish Stations 
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  Rational: 
2 100 lines 
4 096 columns 
≈ 223/2 adders 

  Algebraic: 
14 900 lines 
32 768 columns 
≈ 229/64 adders 

TWIRL - Largish Stations  
 Adder Array 
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TWIRL - Med./Small Stations 

  For p < 219   (222) 

  Stations are different:  

smaller DRAM,  
more logic to generate “multiple hits” 

  Adder Array similar (≈ 500 lines) 
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TWIRL - Parts/Communication 
     (rational) 

  Size: 160 cm2  

(60 cm2 DRAM) 

  L. Stations:  

60 cm2 (incl. DRAM) 

  Adder Array:  

64 cm2 + 35 cm2 

(when using a 0.13 µm process) 
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TWIRL - Parts/Communication 
     (algebraic) 

  Size: 659 cm2  

(435 cm2 DRAM) 

  L. Stations:  

490 cm2 (incl. DRAM) 

  Adder Array:  

130 cm2 + 39 cm2 

(when using a 0.13 µm process) 
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TWIRL - Performance 

  Total chip area 8 x 160 cm2 + 659 cm2 
 One sieving line in 33 sec (1 GHz) 
  Sieving of a 1024 bit number with  

194 devices in one year 
  Fastest design (time x area) 
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TWIRL – Problems/Solutions 

  Devices can not (easily) be cut into pieces 
(I/O bandwidth of chips). 

  Larger Factorbasis increases this problem. 
  Production errors especially in Adder 

Array cause problems:  
Redundancy required (increases size). 

  Smaller production process and/or 
significant increase in I/O bandwidth 
would help. 
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SmallChips - Idea  

  Sieve intervals of a given size (226) 

  Generate (the rare) hits of large primes 

on different chips 

  Collect the hits in the memory cell 

responsible for this sieve location 
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SmallChips - Types of Primes  

  Largish primes I:  227.2 < p < B1 <  235 

...Type II/III:  1.5 • 107 < p < 227.2  

  Medium primes:  213 < p < 1.5 • 107  

  Smallish primes:   p < 213  
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SmallChips - Largish Stations 

. . . 

DRAM for (p, r)-pairs  

-A ≤ r < -A + S 

control logic & adder 

DRAM for (p, r)-pairs  

-A + S ≤ r < -A+ 2S 

control logic & adder 

DRAM for (p, r)-pairs  

control logic & adder 

DRAM for (p, r)-pairs  

control logic & adder 

- - - 

- - - 
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  256 stations for p > 1.5 • 107 ≈ 227.2  
  Distributed on 32 chips: 

size: 472 mm2 (0.13 µm process) 

output: 448 bit per clock cycle 
memory: 99%, logic: 1% 

  DRAM to store both FBs: 160 cm2 

SmallChips - Largish Stations 



11.9.2009 Architectures and their Bottlenecks 21 

SmallChips - Medium/
Smallish Stations 
Different type of storage: 

  First (p,r)-pair are stored, others are  

calculated 

  For p < 220: calculated in the collection 

unit (reduces communication, 

increases storage/area 
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SmallChips - Collection Unit 
  Distributed on 4 

chips, each holding 
  4 arrays of 32 x 32 

counting units. 
  Each unit is in 

charge of 212 sieve 
locations, 

  and adding up the 
log(p) values. 
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SmallChips - Collection Unit 
(area estimates) 

2,
2 

cm
 

22 L sta 
Type 2 
90 mm2 

16 L sta 
Type 3 
46 mm2 

16 L sta 
Type 3  
46 mm2 

20 M
 sta  

20 m
m

2 

2 M
 sta 2 m

m
2 

2 M
 sta 2 m

m
2 

2 M
 sta 2 m

m
2 

2 M
 sta 2 m

m
2 

array  
50 mm2 

array  
50 mm2 

array  
50 mm2 

array  
50 mm2 

22 L sta  
 Type 2 
90 mm2 

Distributed on 
4 chips: 

size: 493 mm2  
(0.13 µm process) 

input: 3584 bit / cc 
memory: 94% 
logic: 6% 
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SmallChips - Performance 
  Total silicon area 172 cm2 
 One subinterval (S=226) in 53,000 cc 
 One sieve line in 25 min (600 MHz) 
  Sieving of a 1024 bit number with  

8300 devices in one year 
  3.5 x more silicon area than TWIRL 
  or 2.0 x more after modification 
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SmallChips - Problems/
Solutions 
  Very fast communication as input to 

collection unit -> 
distribute collection unit on more chips. 

  Smaller process reduces chip size and/or 
allows to increase FB,  
communication will not increase much. 
     4% FB             0.4% communication 
 100% FB             10% communication 



Conclusion 

  SmallChips seems to be feasible 
  Design/production costs are high 
  Running costs are very high: 

8300 devices require 1.6 MWatt  
(200 W per device seems optimistic) 

  -> 1 400 000 € per Factorization 
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