Sieving Hardware for the NFS: Architectures and their Bottlenecks

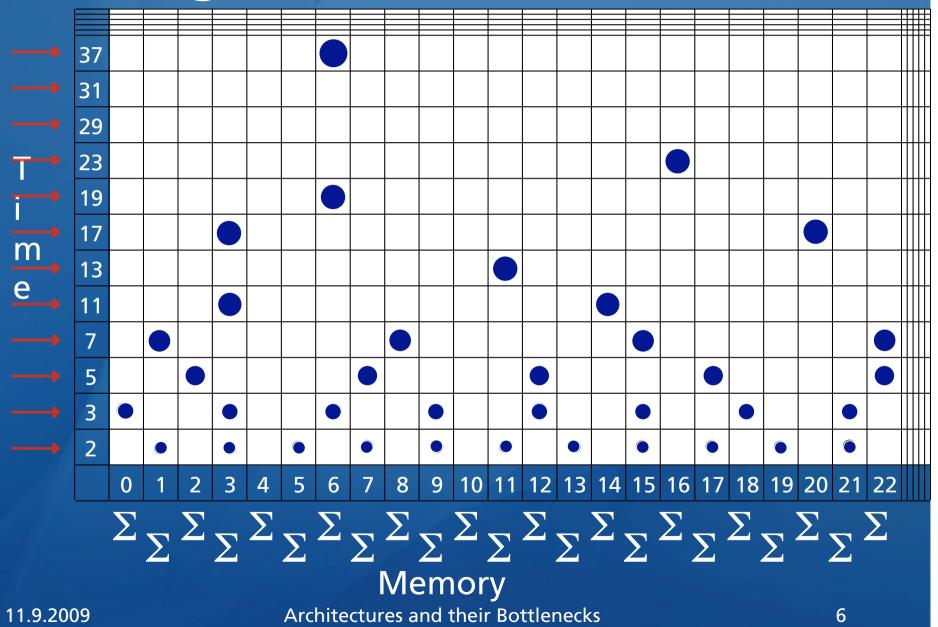
Willi Geiselmann

The Number Field Sieve

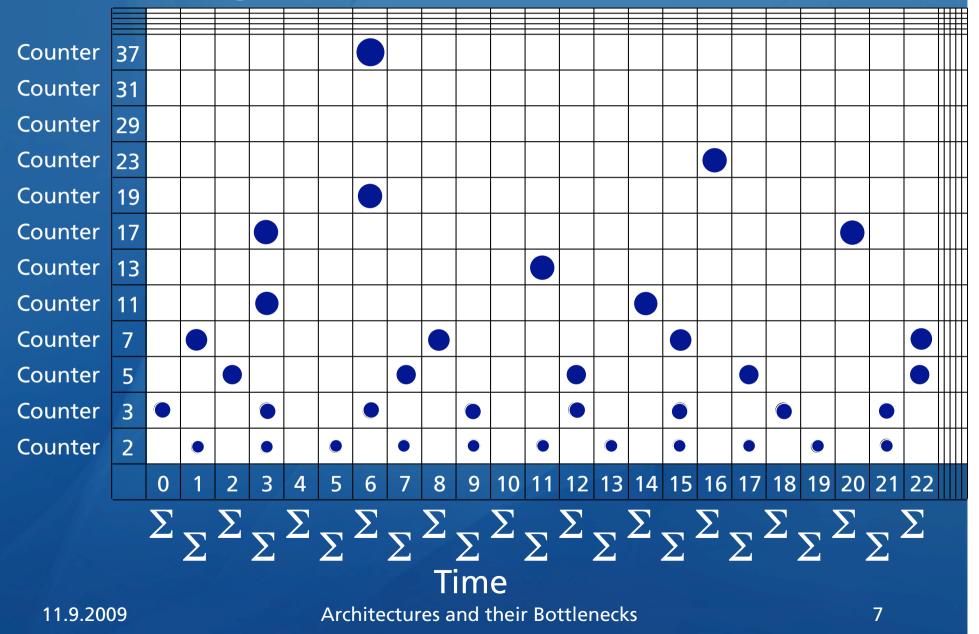
- Precomputation
- Relation collection
- Linear Algebra (Matrix step)
- Postprocessing

Relation Collection

Given F₁(x,y), F₂(x,y) ∈ Z[x,y], homogeneous polynomials, e.g. of degree 5 and 1
Find (a,b) ∈ Z x N with F₁(a,b) and F₂(a,b) smooth, gcd(a,b) = 1

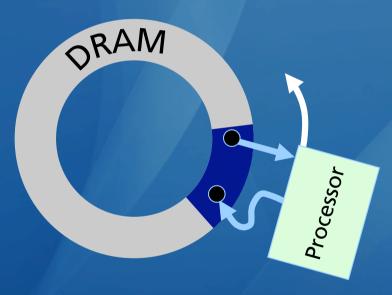

Parameters for 1024 Bit (from TWIRL, 2003)

Smoothness bounds: B₁ = 2.6 • 10¹⁰ (algebraic), B₂ = 3.5 • 10⁹ (rational). (≈ 2 x 5 GByte)
Sieving region: A = 5.5 • 10¹⁴, -A < a < A; B = 2.7 • 10⁸, 0 < b < B. (≈ 1400 TByte)


Suggested Hardware Designs

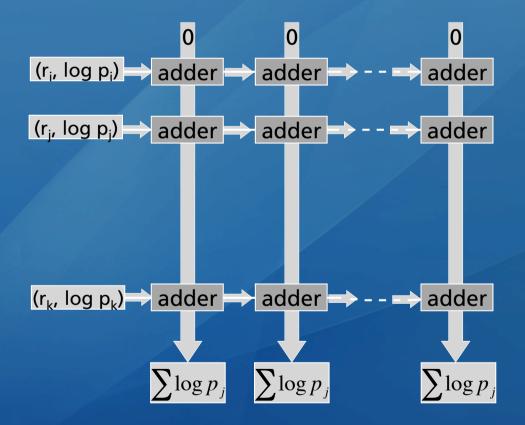
- TWINKLE [Shamir 1999; Shamir, Lenstra 2000] not designed for 1024 bit numbers
- TWIRL [Shamir, Tromer 2003] full wafer design
- Mesh-based sieving [G., St. 2003, 2004] not feasible for 1024 bit numbers
- SHARK [Franke et al. 2005] elaborated butterfly transport system
- SmallChips (Non-Wafer-Scale Sieving HW) [G., St. 2007] more realistic, but high inter-chip communication

Sieving (Eratosthenes)


Sieving (TWINKLE/TWIRL)

TWIRL - Types of Primes

 Largish primes (rational): 2¹⁹ < p (algebraic): 2²² < p
 Medium primes: 256 < p
 Smallish primes: p < 256


TWIRL - Largish Stations DRAM

 Rotates / reads with constant speed
 Writes to the "correct" address

TWIRL - Largish Stations Adder Array

Rational: 2 100 lines 4 096 columns $\approx 2^{23}/2$ adders Algebraic: 14 900 lines 32 768 columns $\approx 2^{29}/64$ adders

TWIRL - Med./Small Stations

• For $p < 2^{19}$ (2²²)

 Stations are different: smaller DRAM, more logic to generate "multiple hits"
 Adder Array similar (≈ 500 lines)

TWIRL - Parts/Communication (rational)

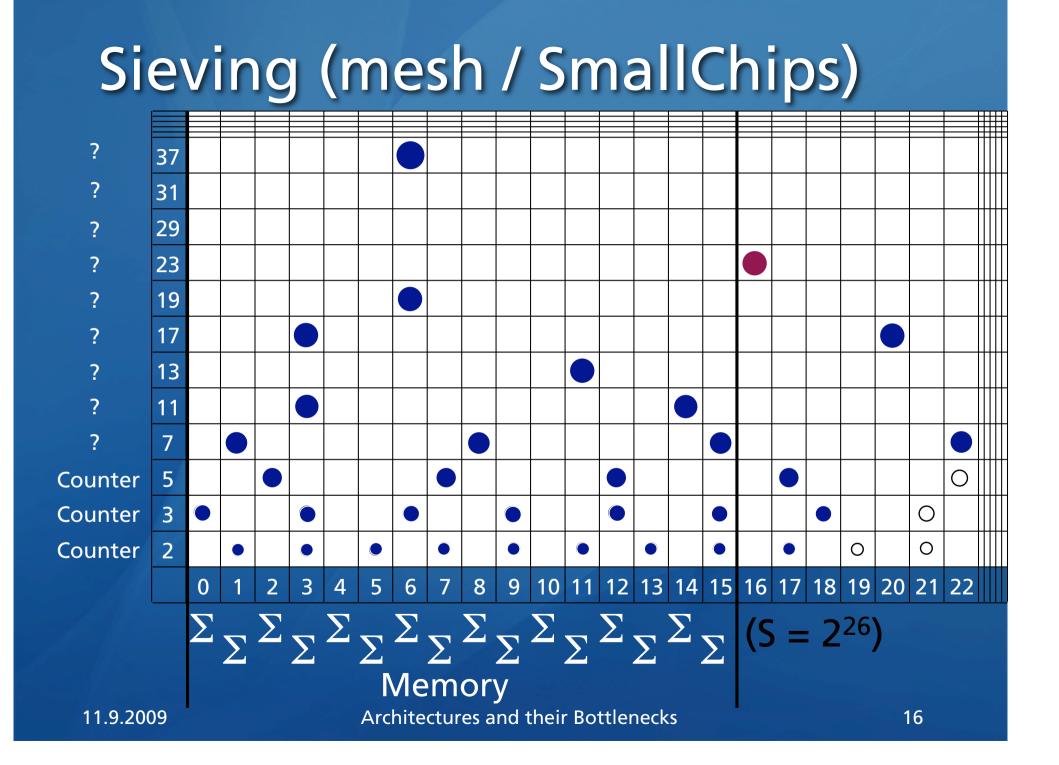
- Size: 160 cm²
 (60 cm² DRAM)
- L. Stations:
 60 cm² (incl. DRAM)
- Adder Array:
 64 cm² + 35 cm²

subtraction of the property of

(when using a 0.13 μ m process)

TWIRL - Parts/Communication (algebraic)

- Size: 659 cm²
 (435 cm² DRAM)
- L. Stations:
 490 cm² (incl. DRAM)
- Adder Array:
 130 cm² + 39 cm²

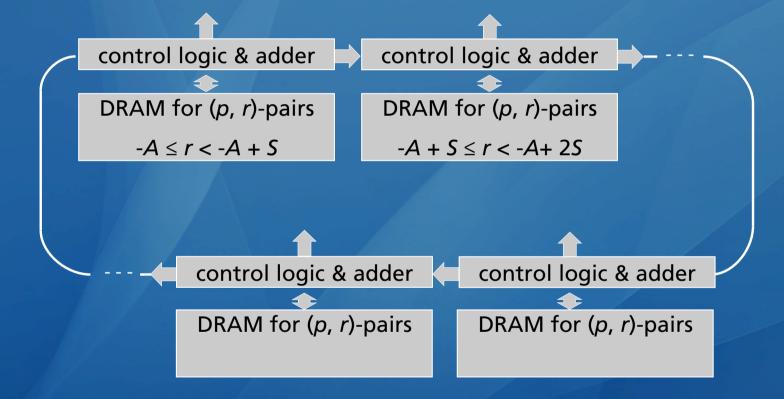

(when using a 0.13 μ m process)

TWIRL - Performance

Total chip area 8 x 160 cm² + 659 cm²
One sieving line in 33 sec (1 GHz)
Sieving of a 1024 bit number with 194 devices in one year
Fastest design (time x area)

TWIRL – Problems/Solutions

- Devices can not (easily) be cut into pieces (I/O bandwidth of chips).
- Larger Factorbasis increases this problem.
- Production errors especially in Adder Array cause problems: Redundancy required (increases size).
- Smaller production process and/or significant increase in I/O bandwidth would help.

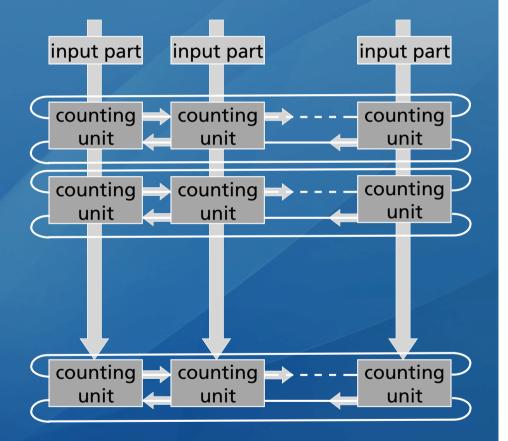

SmallChips - Idea

Sieve intervals of a given size (2²⁶)
Generate (the rare) hits of large primes on different chips
Collect the hits in the memory cell responsible for this sieve location

SmallChips - Types of Primes

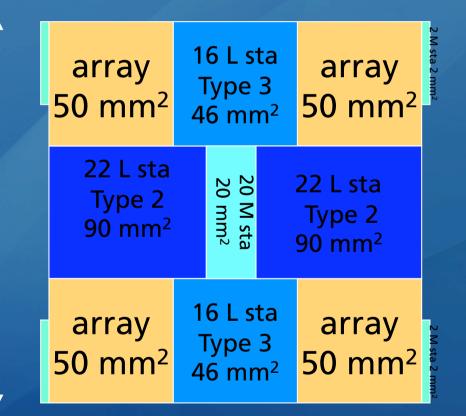
 Largish primes I: 2^{27.2} 1</sub> < 2³⁵ ...Type II/III: 1.5 • 10⁷ 27.2</sup>
 Medium primes: 2¹³ 7</sup>
 Smallish primes: p < 2¹³

SmallChips - Largish Stations



SmallChips - Largish Stations

256 stations for p > 1.5 • 10⁷ ≈ 2^{27.2}
Distributed on 32 chips: size: 472 mm² (0.13 µm process) output: 448 bit per clock cycle memory: 99%, logic: 1%
DRAM to store both FBs: 160 cm² SmallChips - Medium/ **Smallish Stations** Different type of storage: First (p,r)-pair are stored, others are calculated For p < 2²⁰: calculated in the collection unit (reduces communication, increases storage/area


SmallChips - Collection Unit

- Distributed on 4 chips, each holding
- 4 arrays of 32 x 32 counting units.
- Each unit is in charge of 2¹² sieve locations,
- and adding up the log(p) values.

SmallChips - Collection Unit (area estimates)

Distributed on 4 chips: size: 493 mm² (0.13 μm process) input: 3584 bit / cc memory: 94% logic: 6%

SmallChips - Performance Total silicon area 172 cm² One subinterval (S=2²⁶) in 53,000 cc One sieve line in 25 min (600 MHz) Sieving of a 1024 bit number with 8300 devices in one year 3.5 x more silicon area than TWIRL or 2.0 x more after modification

SmallChips - Problems/ Solutions

- Very fast communication as input to collection unit -> distribute collection unit on more chips.
- Smaller process reduces chip size and/or allows to increase FB, communication will not increase much.
 4% FB ↔ 0.4% communication 100% FB ↔ 10% communication

Conclusion

 SmallChips seems to be feasible
 Design/production costs are high
 Running costs are very high: 8300 devices require 1.6 MWatt (200 W per device seems optimistic)
 -> 1 400 000 € per Factorization