Polynomial Selection Using Lattices

Mathias Herrmann Alexander May Maike Ritzenhofen

Horst Görtz Institute for IT-Security Faculty of Mathematics Ruhr-University Bochum

 $\begin{array}{l} {\rm Factoring} \ 2009 \\ {\rm September} \ 12^{\rm th} \end{array}$

(中) (종) (종) (종) (종) (종)

Intro

• Need to find 2 irreducible polynomials $f_1(x), f_2(x) \in \mathbb{Z}[x]$ with common root m modulo N.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Intro

- Need to find 2 irreducible polynomials $f_1(x), f_2(x) \in \mathbb{Z}[x]$ with common root m modulo N.
- $deg(f_1(x)) = 5$ (algebraic polynomial)
- $deg(f_2(x)) = 1$ (linear polynomial)
- Homogeneous form:

$$F_1(x,z) = a_d x^d + a_{d_1} x^{d-1} z + \ldots + a_0 z^d$$

$$F_2(x,z) = x - mz$$

Intro

- Need to find 2 irreducible polynomials $f_1(x), f_2(x) \in \mathbb{Z}[x]$ with common root m modulo N.
- $deg(f_1(x)) = 5$ (algebraic polynomial)
- $deg(f_2(x)) = 1$ (linear polynomial)
- Homogeneous form:

$$F_1(x, z) = a_d x^d + a_{d_1} x^{d-1} z + \ldots + a_0 z^d$$

$$F_2(x, z) = x - mz$$

 Currently, algorithm of Thorsten Kleinjung yields the best polynomial pairs.

- 4 同 6 4 日 6 4 日 6

• Want to find many pairs $(a,b) \in \mathbb{Z}^2$ such that $F_1(a,b)$ and $F_2(a,b)$ are smooth.

伺下 イヨト イヨト

- Want to find many pairs $(a,b) \in \mathbb{Z}^2$ such that $F_1(a,b)$ and $F_2(a,b)$ are smooth.
- Need to be able to (quickly) compare polynomial (pairs).

(B) + (B)

- Want to find many pairs $(a,b) \in \mathbb{Z}^2$ such that $F_1(a,b)$ and $F_2(a,b)$ are smooth.
- Need to be able to (quickly) compare polynomial (pairs).

Quality Measures

$$Q_2(f_1, f_2) = \int_0^{\pi} \rho\left(\frac{\alpha(F_1) + \log F_1(-A\cos\theta, B\sin\theta)}{\log L_1}\right) \cdot \\\rho\left(\frac{\alpha(F_2) + \log F_2(-A\cos\theta, B\sin\theta)}{\log L_2}\right) d\theta$$

- Want to find many pairs $(a,b) \in \mathbb{Z}^2$ such that $F_1(a,b)$ and $F_2(a,b)$ are smooth.
- Need to be able to (quickly) compare polynomial (pairs).

Quality Measures

$$Q_{2}(f_{1}, f_{2}) = \int_{0}^{\pi} \rho \left(\frac{\alpha(F_{1}) + \log F_{1}(-A\cos\theta, B\sin\theta)}{\log L_{1}} \right) \cdot \rho \left(\frac{\alpha(F_{2}) + \log F_{2}(-A\cos\theta, B\sin\theta)}{\log L_{2}} \right) d\theta$$
$$Q_{3}(f_{1}) = \alpha(F_{1}) + \frac{1}{2} \log \left(\int_{\substack{|a| \le A \\ 0 < b \le B}} F_{1}(a, b)^{2} da db \right)$$

- Want to find many pairs $(a,b) \in \mathbb{Z}^2$ such that $F_1(a,b)$ and $F_2(a,b)$ are smooth.
- Need to be able to (quickly) compare polynomial (pairs).

Quality Measures

$$Q_{2}(f_{1}, f_{2}) = \int_{0}^{\pi} \rho \left(\frac{\alpha(F_{1}) + \log F_{1}(-A\cos\theta, B\sin\theta)}{\log L_{1}} \right) \cdot \\\rho \left(\frac{\alpha(F_{2}) + \log F_{2}(-A\cos\theta, B\sin\theta)}{\log L_{2}} \right) d\theta$$
$$Q_{3}(f_{1}) = \alpha(F_{1}) + \frac{1}{2} \log \left(\int_{\substack{|a| \leq A \\ 0 < b \leq B}} F_{1}(a, b)^{2} da db \right)$$
$$Q_{4}(f_{1}) = \max_{0 \leq i \leq d} |a_{i}| s^{d-\frac{i}{2}}$$

Basics in Lattices

Definition

Let $b_1,\ldots,b_n\in\mathbb{Q}^n$ be linearly independent vectors. The set

$$L := \left\{ x \in \mathbb{Q}^n \mid x = \sum_{i=1}^n a_i b_i, \quad a_i \in \mathbb{Z} \right\}$$

is a lattice.

ヘロト 人間 ト 人 ヨト 人 ヨトー

Basics in Lattices

Definition

Let $b_1,\ldots,b_n\in\mathbb{Q}^n$ be linearly independent vectors. The set

$$L := \left\{ x \in \mathbb{Q}^n \mid x = \sum_{i=1}^n a_i b_i, \quad a_i \in \mathbb{Z} \right\}$$

is a lattice.

Described by basis matrix

$$B(L) = \begin{pmatrix} - - -b_1 - - - \\ \vdots \\ - - -b_n - - - \end{pmatrix}$$

(日) (周) (王) (王)

Question

How can we use lattices to perform a polynomial selection?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Question

How can we use lattices to perform a polynomial selection?

- Fix a root m modulo N.
- Linear polynomial is just $f_2(x) = x m$.

Question

How can we use lattices to perform a polynomial selection?

- Fix a root m modulo N.
- Linear polynomial is just $f_2(x) = x m$.
- For algebraic polynomial use the following basis matrix.

Question

How can we use lattices to perform a polynomial selection?

- Fix a root m modulo N.
- Linear polynomial is just $f_2(x) = x m$.
- For algebraic polynomial use the following basis matrix.

Lattice reduction yields short lattice vector, i.e. polynomial with small coefficients.

Mathias Herrmann, Alexander May, Maike Ritzenhofen

Skewness

More sieve reports, if sieving region and polynomial are skewed.

 $-46023405120x^5 - 10480176714921624x^4 + 29328324309954903103603x^3 \\$

 $+830837975090049001398611663x^2+44455517941130586826494215518773x$

+ 130352490815251888089501986345593

・ 同 ト ・ ヨ ト ・ ヨ ト

Skewness

More sieve reports, if sieving region and polynomial are skewed.

 $-46023405120x^5 - 10480176714921624x^4 + 29328324309954903103603x^3$

 $+830837975090049001398611663x^2+44455517941130586826494215518773x$

+ 130352490815251888089501986345593

Skewness in lattice basis

Multiply basis matrix with a weight matrix that forces the polynomial to be skewed.

$$W = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & s & 0 & \dots & 0 & 0 \\ 0 & 0 & s^2 & \dots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \dots & s^d & 0 \\ 0 & 0 & 0 & \dots & 0 & S \end{pmatrix}$$

After LLL reduction apply the inverse scaling to obtain desired polynomial.

Result

- Obtain (skewed) polynomial with small coefficients.
- ullet \Rightarrow *good* polynomial with respect to

$$Q_4(f_1) = \max_{0 \le i \le d} |a_i| s^{d - \frac{i}{2}}$$

Result

- Obtain (skewed) polynomial with small coefficients.
- \Rightarrow good polynomial with respect to

$$Q_4(f_1) = \max_{0 \le i \le d} |a_i| s^{d - \frac{i}{2}}$$

• BUT: We want to use a better approximation of number of sieve reports.

∃ ► < ∃ ►</p>

Result

- Obtain (skewed) polynomial with small coefficients.
- ullet \Rightarrow *good* polynomial with respect to

$$Q_4(f_1) = \max_{0 \le i \le d} |a_i| s^{d - \frac{i}{2}}$$

- BUT: We want to use a better approximation of number of sieve reports.
- \Rightarrow Use different norm for LLL to capture quality with respect to Q_3 .

$$Q_{3}(f_{1}) = \alpha(F_{1}) + \frac{1}{2} \log \left(\int_{\substack{|a| \le A \\ 0 < b \le B}} F_{1}(a, b)^{2} \, da \, db \right)$$

Alter norm used by LLL. Define $||v|| := v^T M v$ with

$$M := \begin{pmatrix} \frac{2}{11}s^{-5} & 0 & \frac{2}{27}s^{-3} & 0 & \frac{2}{35}s^{-1} & 0 & 0\\ 0 & \frac{2}{27}s^{-3} & 0 & \frac{2}{35}s^{-1} & 0 & \frac{2}{35}s & 0\\ \frac{2}{27}s^{-3} & 0 & \frac{2}{35}s^{-1} & 0 & \frac{2}{35}s & 0 & 0\\ 0 & \frac{2}{35}s^{-1} & 0 & \frac{2}{35}s & 0 & \frac{1}{27}s^3 & 0\\ \frac{2}{35}s^{-1} & 0 & \frac{2}{35}s & 0 & \frac{1}{27}s^3 & 0\\ 0 & \frac{2}{35}s & 0 & \frac{1}{27}s^3 & 0 & \frac{2}{11}s^5 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & S \end{pmatrix}$$

・ロト ・聞 ト ・ヨト ・ヨト

.

Comparison: Quality with standard norm vs. new norm

∃ ⊳

Root Property

• Recall quality measure

$$Q_{3}(f_{1}) = \underbrace{\alpha(F_{1})}_{\text{Root property}} + \underbrace{\frac{1}{2}\log\left(\int_{\substack{|a| \leq A \\ 0 < b \leq B}} F_{1}(a,b)^{2} da db\right)}_{\text{Size property}}$$

<ロ> (日) (日) (日) (日) (日)

크

Root Property

• Recall quality measure

$$Q_{3}(f_{1}) = \underbrace{\alpha(F_{1})}_{\text{Root property}} + \underbrace{\frac{1}{2}\log\left(\int_{\substack{|a| \leq A \\ 0 < b \leq B}} F_{1}(a,b)^{2} \, da \, db\right)}_{\text{Size property}}$$

- Size property optimed by LLL, but
- Root property $\alpha(F_1)$ has major influence on quality.
- Need to model in lattice.

過 ト イヨト イヨト

1	x	x^2		x^d	$f_1(m)$	$f_1(\alpha_1)$		$f_1(\alpha_k)$
(1)	0	0		0	1	α_1^0		α_k^0
0	1	0		0	m	α_1^1		α_k^1
0	0	1		0	m^2	α_1^2		α_k^2
÷			•••		:		·	
0	0	0		1	m^d	α_1^d		α_k^d
0	0	0		0	N	0		0
0	0	0		0	0	p_1		0
0	0	0	•••	0	0	0	·	0
0	0	0		0	0	0		p_k

Mathias Herrmann, Alexander May, Maike Ritzenhofen

글 에 너 글 어

• Using some roots modulo small primes of Kleinjung's polynomial, we are able to reconstruct it with the lattice approach.

- Using some roots modulo small primes of Kleinjung's polynomial, we are able to reconstruct it with the lattice approach.
- However, we are not able to allow LLL to choose a set of roots modulo small primes.

(3) (3)

- Using some roots modulo small primes of Kleinjung's polynomial, we are able to reconstruct it with the lattice approach.
- However, we are not able to allow LLL to choose a set of roots modulo small primes.
- Trying all possibilities to complex,
- No iterative method obvious.

- Using some roots modulo small primes of Kleinjung's polynomial, we are able to reconstruct it with the lattice approach.
- However, we are not able to allow LLL to choose a set of roots modulo small primes.
- Trying all possibilities to complex,
- No iterative method obvious.
- Need a different approach to obtain a good root property.

Special Galois groups

• A theorem by Odoni states that asymptotically a polynomial, where the Galois group is the Frobenius group, yields smaller values.

Special Galois groups

- A theorem by Odoni states that asymptotically a polynomial, where the Galois group is the Frobenius group, yields smaller values.
- Our goal: Use LLL to find good polynomials with the special Galois group.

Generic polynomials with Galois group F_{20}

$$\begin{split} f_{gen}(x;a,b) &:= x^5 + \left(b^2(a^2+4) - 2a - \frac{17}{4}\right)x^4 + \left(3b(a^2+4) + (a^2+4) + \frac{13a}{2} + 1\right)x^3 \\ &- \left(b(a^2+4) + \frac{11a}{2} - 8\right)x^2 + (a-6)x + 1 \\ f_{gen}(x;p,q) &:= x^5 + 10px^3 + 20p^2x + q \end{split}$$

Special Galois groups

- A theorem by Odoni states that asymptotically a polynomial, where the Galois group is the Frobenius group, yields smaller values.
- Our goal: Use LLL to find good polynomials with the special Galois group.

Generic polynomials with Galois group F_{20}

$$\begin{split} f_{gen}(x;a,b) &:= x^5 + \left(b^2(a^2+4) - 2a - \frac{17}{4}\right)x^4 + \left(3b(a^2+4) + (a^2+4) + \frac{13a}{2} + 1\right)x^3 \\ &- \left(b(a^2+4) + \frac{11a}{2} - 8\right)x^2 + (a-6)x + 1 \\ f_{gen}(x;p,q) &:= x^5 + 10px^3 + 20p^2x + q \end{split}$$

• But: unable to find a root m modulo N.

- Generic polynomial with Frobenius group as Galois group.
- Compute roots modulo small primes and use these as input to lattice reduction, randomly chosen *m*.

a = b = a

- Generic polynomial with Frobenius group as Galois group.
- Compute roots modulo small primes and use these as input to lattice reduction, randomly chosen *m*.
- Hope that roots enforce the resulting polynomial to have the desired Galois group.

4 2 5 4 2 5

- Generic polynomial with Frobenius group as Galois group.
- Compute roots modulo small primes and use these as input to lattice reduction, randomly chosen *m*.
- Hope that roots enforce the resulting polynomial to have the desired Galois group.

Only happened if a lot of roots modulo small primes were enforce, but then the size of coefficients was very bad.

• Try to find parameters of the generic polynomials.

(人間) システン イラン

- Try to find parameters of the generic polynomials.
- Fix m and use Coppersmith's Algorithm to find a, b s.th. $f_{gen}(m; a, b) = 0 \mod N$.
- Two problems arise:
 - Upper bounds on *a*, *b* are very small. Experiments never found suitable *a*, *b*.
 - Even if we found good algebraic polynomial, the *polynomial pair* may still be bad.

A B > A B >

- Try to find parameters of the generic polynomials.
- Fix m and use Coppersmith's Algorithm to find a, b s.th. $f_{gen}(m; a, b) = 0 \mod N$.
- Two problems arise:
 - Upper bounds on a, b are very small. Experiments never found suitable a, b.
 - Even if we found good algebraic polynomial, the *polynomial pair* may still be bad.
- Add m as a further variable in Coppersmith's algorithm.
- But then the bounds get even worse and we cannot expect a solution.

< 回 > < 三 > < 三 >

Finding a root m

- All previous approaches used a given root m.
- \bullet Now: Try to find a good m with lattice methods.

- 4 回 ト - 4 回 ト

Finding a root m

- All previous approaches used a given root m.
- Now: Try to find a good m with lattice methods.

Translation

Given a polynomial f(x) with root m modulo N, the polynomial $f'(x) := f(x - \alpha)$ has root $m' = m + \alpha$.

$$(f'(m') = f(m' - \alpha) = f(m + \alpha - \alpha) = 0 \bmod N)$$

A B < A B </p>

Idea

- Start with arbitrary polynomial (known root $m \mod N$).
- Compute coefficients of translated polynomials.

伺下 イヨト イヨト

Idea

- Start with arbitrary polynomial (known root m modulo N).
- Compute coefficients of translated polynomials.

Translated polynomials

$$f_1(x) = px - m$$

$$f_2(x) = a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$

$$f_{1}'(x) = f_{1}(x - \alpha)$$

$$= p(x - \alpha) - m = px - (p\alpha + m)$$

$$f_{2}'(x) = f_{2}(x - \alpha)$$

$$= a_{5}x^{5} + (a_{4} - 5a_{5}\alpha)x^{4} + (a_{3} - 4a_{4}\alpha + 10a_{5}\alpha^{2})x^{3}$$

$$+ (a_{2} - 3a_{3}\alpha + 6a_{4}\alpha^{2} - 10a_{5}\alpha^{3})x^{2}$$

$$+ (a_{1} - 2a_{2}\alpha + 3a_{3}\alpha^{2} - 4a_{4}\alpha^{3} + 5a_{5}\alpha^{4})x$$

$$+ (a_{0} - a_{1}\alpha + a_{2}\alpha^{2} - a_{3}\alpha^{3} + a_{4}\alpha^{4} - a_{5}\alpha^{5}).$$

Problem Description

• Find α such that coefficients of translated polynomial are small.

< ロト < 同ト < ヨト < ヨト

크

Problem Description

• Find α such that coefficients of translated polynomial are small.

System of modular equations

 $g_{1}(\alpha) = p\alpha - m = \epsilon_{1} \mod N$ $g_{2}(\alpha) = a_{4} - 5a_{5}\alpha = \epsilon_{2} \mod N$ $g_{3}(\alpha) = a_{3} - 4a_{4}\alpha + 10a_{5}\alpha^{2} = \epsilon_{3} \mod N$ $g_{4}(\alpha) = a_{2} - 3a_{3}\alpha + 6a_{4}\alpha^{2} - 10a_{5}\alpha^{3} = \epsilon_{4} \mod N$ $g_{5}(\alpha) = a_{1} - 2a_{2}\alpha + 3a_{3}\alpha^{2} - 4a_{4}\alpha^{3} + 5a_{5}\alpha^{4} = \epsilon_{5} \mod N$ $g_{6}(\alpha) = a_{0} - a_{1}\alpha + a_{2}\alpha^{2} - a_{3}\alpha^{3} + a_{4}\alpha^{4} - a_{5}\alpha^{5} = \epsilon_{6} \mod N.$

イロト 人間ト イヨト イヨト

First Approach: SVP

• Solve SVP!

<ロ> (日) (日) (日) (日) (日)

First Approach: SVP

• Solve SVP!

Target vector $t = (1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4, \epsilon_5, \epsilon_6).$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Results

• Not possible to enforce geometric progression $(1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5)$ of the first components.

- 4 週 ト - 4 三 ト - 4 三 ト

Results

- Not possible to enforce geometric progression $(1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5)$ of the first components.
- Target vector is not among the short vectors in this lattice.

Results

- Not possible to enforce geometric progression $(1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5)$ of the first components.
- Target vector is not among the short vectors in this lattice.
- Need a different approach.

4 1 1 1 4

Second Approach:

LLL-Property

Let $B = b_1, \ldots, b_n$ be LLL-reduced. Then the Gram-Schmidt-orthogonalized vectors b_i^* fulfill

$$|b_i^*| \ge 2^{-\frac{i-1}{4}} \left(\frac{\det(L)}{b_{max}}\right)^{\frac{1}{i}}$$

< 回 > < 三 > < 三 >

Second Approach:

LLL-Property

Let $B = b_1, \ldots, b_n$ be LLL-reduced. Then the Gram-Schmidt-orthogonalized vectors b_i^* fulfill

$$|b_i^*| \ge 2^{-\frac{i-1}{4}} \left(\frac{\det(L)}{b_{max}}\right)^{\frac{1}{i}}.$$

• If target vector is larger than orthogonalized vector, then $< b_i^*, t >= 0$ gives polynomial equation.

過 ト イ ヨ ト イ ヨ ト

Second Approach:

LLL-Property

Let $B = b_1, \ldots, b_n$ be LLL-reduced. Then the Gram-Schmidt-orthogonalized vectors b_i^* fulfill

$$|b_i^*| \ge 2^{-\frac{i-1}{4}} \left(\frac{\det(L)}{b_{max}}\right)^{\frac{1}{i}}$$

- If target vector is larger than orthogonalized vector, then $< b_i^*, t >= 0$ gives polynomial equation.
- System of modular equations has 7 unknowns.
- If we find at least 7 orthogonal vectors that are larger than target vector, then we may be able to compute a solution.

A (10) A (10)

• The lattice L_1 only yields 6 polynomials.

イロン イヨン イヨン イヨン

크

• The lattice L_1 only yields 6 polynomials.

• We can explicitly compute upper bounds on variables, s.th. we target vector will be shorter than at least 7 orthogonalized vectors.

- Start with translated version of Kleinjung's polynomial pair $f_i'(x) = f_{KJ_i}(x \alpha)$
- Goal: Recover the inverse transformation $\alpha' = -\alpha$.

(日) (同) (三) (三) (三)

- Start with translated version of Kleinjung's polynomial pair $f_i'(x) = f_{KJ_i}(x \alpha)$
- Goal: Recover the inverse transformation $\alpha' = -\alpha$.
- Explicit computation of upper bound on α' :

$$|\alpha'| \le N^{0.6}$$

- Start with translated version of Kleinjung's polynomial pair $f_i'(x) = f_{KJ_i}(x \alpha)$
- Goal: Recover the inverse transformation $\alpha' = -\alpha$.
- Explicit computation of upper bound on α' :

$$|\alpha'| \le N^{0.6}$$

(Note: Search space of exponential size in polynomial time!)

- Start with translated version of Kleinjung's polynomial pair $f_i'(x) = f_{KJ_i}(x \alpha)$
- Goal: Recover the inverse transformation $\alpha' = -\alpha$.
- Explicit computation of upper bound on α' :

$$|\alpha'| \le N^{0.6}$$

- (Note: Search space of exponential size in polynomial time!)
- We get enough polynomials, but ...

- Start with translated version of Kleinjung's polynomial pair $f_i'(x) = f_{KJ_i}(x \alpha)$
- Goal: Recover the inverse transformation $\alpha' = -\alpha$.
- Explicit computation of upper bound on α' :

$$|\alpha'| \le N^{0.6}$$

- (Note: Search space of exponential size in polynomial time!)
- We get enough polynomials, but ...
- Problem: Obtained system of equations is still not 0-dimensional.
- \Rightarrow Does not allow to efficiently recover the root.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

크

• We are able to construct polynomials with good size property.

A B F A B F

- We are able to construct polynomials with good size property.
- New definition of norm better resembles polynomial quality.

- We are able to construct polynomials with good size property.
- New definition of norm better resembles polynomial quality.
- It is possible to provide (fixed) roots modulo (fixed) small primes, but no selection by LLL.

- We are able to construct polynomials with good size property.
- New definition of norm better resembles polynomial quality.
- It is possible to provide (fixed) roots modulo (fixed) small primes, but no selection by LLL.
- Enforcing a special Galois group, s.th. the polynomial has a good root property dramatically worsens the size property.

- A TE N - A TE N

- We are able to construct polynomials with good size property.
- New definition of norm better resembles polynomial quality.
- It is possible to provide (fixed) roots modulo (fixed) small primes, but no selection by LLL.
- Enforcing a special Galois group, s.th. the polynomial has a good root property dramatically worsens the size property.
- Searching for a good root *m* by means of LLL did not work (yet).

< 回 > < 三 > < 三 >