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Goals

1. Optimize the COPACOBANA without changing the

design.

2. After you have suceeded, analyze upcoming primitives like

Edwards curves.
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Known factoring algorithms

◮ Best known factorization algorithm for large numbers (above
300 bits, say) is the General Number Field Sieve (GNFS).

◮ In the so called Cofactorization Step a large number of smaller
integers have to be factored.

◮ For these factorizations Lenstra’s Elliptic Curve Method
(ECM) is used.

Fact:

Many runs of the same algorithm can be efficiently realized on a
dedicated hardware cluster.
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Components of a hardware cluster

Boards FPGAs ECM modules
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Components of a hardware cluster

Boards FPGAs ECM modules
Small modules =⇒ more parallelism, less inputs
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Components of a hardware cluster

Boards FPGAs ECM modules
Large modules =⇒ less parallelism, more inputs
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Components of a hardware cluster

Boards FPGAs ECM modules
Mixed modules not allowed!
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Components of a hardware cluster

Optimize!

25/31



Design goals

We want:

◮ A generic model of the cluster.

◮ A fast algorithm that computes the optimal distribution.

◮ A way of measuring the runtime achievement...

◮ ... against what?!?

Specifically in the case of the GNFS we need:

◮ Estimates on the number of parallel units per FPGA.

◮ Estimates on the average cost of one run of the ECM.

◮ A mathematical model of the ouputs of the GNFS: Difficult!
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Classes

The GNFS produces numbers of different sizes:
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a1 a2 . . . ak−1

# ECM ni

Cost ci

Optimize over all possible classes!
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Distribution on FPGAs

Given classes we need to fill many FPGAs:

Classes C C1 C2 . . . Ck−1
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Distribution on FPGAs

Given classes we need to fill many FPGAs:

Classes C C1 C2 . . . Ck−1

N FPGAs

Partition ℓ

Total cost of this configuration: max1≤i<k
ci·ai

ni·ℓi
.

Optimize over all configurations and classes, using e.g.
Bellman’s dynamic programming and a greedy heuristic!
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A toy example

Assume we are constructing modules for 17i-bit integers, given six
data sets D1, . . . ,D6.

Number of parallel processes per chip:
Bitlength 17i 51 68 85 102 119 136 153

Processes ni 22 18 15 12 10 9 8

Average runtime of an ECM on the FPGA (in µs):

Bitlength 17i 51 68 85 102 119

Cost ci 856.35 1038.78 1221.22 1403.65 . . .

Optimize for 128 FPGAs.
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Results of the optimization

Input distribution for dataset D1:
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Results of the optimization

Optimal classes:
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Runtime gain

◮ Let K · g be the maximal size of the inputs.

◮ We compare the runtime to an unoptimized cluster.

◮ On such a cluster there are only modules for K · g bit
numbers.

◮ The runtime is between

σ−
D

(N,K) :=
1

N

K
∑

i=1

ciai

nK

and σ+

D
(N,K) :=

#DcK

NnK

.

◮ Let γ±
D denote the runtime gain of τD against σ±

D in percent.

◮ We obtain:

D1 D2 D3 D4 D5 D6

γ−
D

17.47 16.97 17.66 18.38 18.4 16.88

γ+

D
33.29 32.73 33.36 33.86 33.5 32.12
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Optimizing several clusters

We can use our model to optimize m clusters in parallel, obtaining:

0 10 20 30 40 50 60 70 80 90 100
17

18

19

20

m

D1 D2 D3 D4 D5 D6

limN→∞ γ−
D

20.81 20.58 20.70 20.56 20.00 19.81
limN→∞ γ+

D
35.99 35.66 35.82 35.63 34.80 34.51
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Online reconfiguration

◮ We have seen that the result of the optimization depends
heavily on the input.

◮ On many clusters it is possible to reconfigure the FPGAs
during the runtime of the cofactorization step.

◮ If we could use such a method, we could run a daemon on the
controlling host computer that keeps track of the statistics of
the inputs.

◮ The daemon has also to estimate when a reconfiguration
makes sense.

◮ Further speedup possible!
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To sum up

We have:

◮ A generic model of the cluster.

◮ A fast algorithm that computes the optimal distribution.

◮ A way of measuring the runtime achievement...

◮ ... against an unoptimized cluster.

Specifically in the case of the GNFS we have:

◮ Estimates on the number of parallel units per FPGA.

◮ Estimates on the average cost of one run of the ECM.

◮ But: No mathematical model of the ouputs of the GNFS!

Thus regardless of the coordinate choices we can optimize the
cofactorization step in hardware considerably.
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Motivation

Edwards introduced in 2007 a new normal form for elliptic curves.

First Question

Do we have a speedup for addition and multiplication?

Second Question

Can these curves be used on the COPACOBANA?
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Edwards curves

◮ Let K be a field of characteristic p 6= 2.

◮ Then many elliptic curves C are birationally equivalent to a
curve of the form

x2 + y2 = 1 + dx2y2

where d 6∈ {0, 1}.

◮ If C is not equivalent to a curve in Edwards form, then its
quadratic twist is.

◮ In this case one needs to quadratically enlarge K.
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Transforming to Edwards form
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,
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Addition on Edwards curves

◮ We can define the following unified addition law:

(x1, y1) + (x2, y2) =

(

x1y2 + y1x2

1 + dx1x2y1y2

,
y1y2 − x1x2

1 − dx1x2y1y2

)

.

◮ Addition is well-defined if d is a nonsquare in the groundfield.

◮ The point (0, 1) is the neutral element with respect to this
addition law.

◮ Inverse of a point (x, y) is given by

−(x, y) = (−x, y).
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Addition visualized

x

y
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Twisted Edwards curves

◮ In 2008, Bernstein et al. introduced twisted Edwards curves.

◮ Prevents that we have to enlarge the ground field.

◮ A twisted Edwards curve Ea,d of the curve E is given by the
equation

ax2 + y2 = 1 + dx2y2.

◮ Here a 6= d are both nonzero.

◮ Note that for parameters a1, a2, d1, d2 the curves Ea1,d1 and
Ea2,d2 are quadratic twists of each other if a1d2 = a2d1.

◮ If further a1/a2 a square in K, then the curves are
isomorphic, e.g. using the map

(x, y) 7→ (
√

a1/a2 · x, y)
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Available coordinate choices

◮ Bernstein and Lange introduced different types of Edwards
coordinates.

◮ Clearly this choice is crucial for the speed of the basic
operations on the curve.

◮ We need to analyze the different types of coordinates to each
other.

◮ Also we have to compare these to well-known coordinates (for
classical elliptic curves).

◮ As usual: Count cost in terms of basic operations.

Operation in the ground field Cost

Multiplication M

Squaring S

Multiplication with a constant D

Addition A
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Projective Edwards coordinates

◮ Affine point on an Edwards curve E is given by a
tuple (x1, y1).

◮ Projectively the curve has the homogenized form

X2Z2 + Y 2Z2 = Z4 + dX2Y 2

◮ Here the projective point (X : Y : Z) with Z 6= 0 corresponds
to the affine point (X/Z, Y/Z).

Cost

General addition: 10M + 1S + 1D + 7A.

Doubling: 3M + 4S + 6A.
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Inverted Edwards coordinates

For Inverted Edwards Coordinates a projective point (X : Y : Z)
corresponds to the affine point (Z/X, Y/X).

Cost

General addition: 9M + 1S + 1D + 7A.

Doubling: 3M + 4S + 1D + 6A.

Speedup of one multiplication for general addition, but one more
multiplication with a constant for doubling!
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Montgomery coordinates

◮ On a Mongomery curve By2 = x3 + Ax2 + x a point (x, y) is
represented by a pair (X : Z) such that X/Z = x.

◮ This representation does not distinguish (x, y) from (x,−y)!

◮ Thus P + Q can only be computed if one knows

P,Q and P − Q.

Cost

General addition: 6M + 4S + 1D.

Doubling: Same.
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Comparison to Edwards coordinates

◮ Montgomery curves have a faster differential point addition.

◮ Differential addition chains in general longer than standard
ones.

◮ When using projective Edwards coordinates on twisted
Edwards curves: Speedup possible.

Example

Scalar multiplication [s]P with 256 bit scalar s:
Montgomery coordinates: On avg. 6M + 4S + 1D per bit.
Edwards coordinates: On avg. 4.86M + 4.12S + 0.194D per bit.
Speedup of 1.14M − 0.12S + 0.803D.

4/31



Comparison to Edwards coordinates

◮ Montgomery curves have a faster differential point addition.

◮ Differential addition chains in general longer than standard
ones.

◮ When using projective Edwards coordinates on twisted
Edwards curves: Speedup possible.

Example

Scalar multiplication [s]P with 256 bit scalar s:
Montgomery coordinates: On avg. 6M + 4S + 1D per bit.
Edwards coordinates: On avg. 4.86M + 4.12S + 0.194D per bit.
Speedup of 1.14M − 0.12S + 0.803D.

4/31



Use of Edwards coordinates for the COPACOBANA

◮ During the GNFS we will factor most of the time smallish
numbers.

◮ For such numbers the Edwards form does not yet yield any
speedup.

◮ Additionally: High development cost if one wants to redesign
the ECM modules!

◮ Thus it seems that for the ECM on the COPACOBANA the
use of Edwards coordinates does not (yet) make sense.

Problem

So what can we do?
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Finding new constructions

Ideas:

◮ Exploiting the additional symmetry of Edwards curve, i.e. the
operation (x, y) → (x,−y).

◮ Can we use existing constructions for Weierstraß curves in the
case of Edwards curves?

◮ Can we improve the addition chains for ECM?

2/31



Finding new constructions

Ideas:

◮ Exploiting the additional symmetry of Edwards curve, i.e. the
operation (x, y) → (x,−y).

◮ Can we use existing constructions for Weierstraß curves in the
case of Edwards curves?

◮ Can we improve the addition chains for ECM?

2/31



Finding new constructions

Ideas:

◮ Exploiting the additional symmetry of Edwards curve, i.e. the
operation (x, y) → (x,−y).

◮ Can we use existing constructions for Weierstraß curves in the
case of Edwards curves?

◮ Can we improve the addition chains for ECM?

2/31



Conclusion

Optimizations for the cluster:

◮ Independent of the implementation as long as it is scalable.

◮ Independent of the concrete coordinate choices.

◮ Already here a speedup of up to 30%.

Optimizations of the ECM modules:

◮ Using optimized coordinates.

◮ Problem: High development cost!
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The end.

Thank you!
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