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Road map 2

I Lattice notation, Time bound of new SVP/CVP algorithm

II Factoring integers via easy CVP solutions

III Outline and partial analysis of the new SVP algorithm

We survey how to use known proof elements and we focus on
novel proof elements that are not covered by published work.



I: Lattices, QR-decomposition, LLL-bases 3

lattice basis B = [b1, . . . , bn] ∈ Zm×n

lattice L(B) = {Bx | x ∈ Zn}
norm ‖x‖ = 〈x, x〉 = (

∑m
i=1 x1

1 )1/2

SV-length λ1(L) = min{‖b‖ | b ∈ L\{0}}
Successive minima λ1, ..., λn

QR-decomposition B = QR ⊂ Rm×n such that
• the GNF — geom. normal form — R = [ri,j ] ∈ Rn×n is

uppertriangular, ri,j = 0 for j < i and ri,i > 0,
• Q ∈ Rm×n isometric: 〈Qx , Qy〉 = 〈x , y〉.

LLL-basis B = QR for δ ∈ (1
4 , 1](Lenstra, Lenstra, Lovasz 82):

1. |ri,j | ≤ 1
2 ri,i for all j > i (size-reduced)

2. δr2
i,i ≤ r2

i,i+1 + r2
i+1,i+1 for i = 1, . . . , n − 1.



Average time fast SVP algorithm 4

Def. The relative density of L: rd(L) := λ1γ
−1/2
n (detL)−1/n

rd(L) = λ1(L)/ max λ1(L′) holds for the maximum of λ1(L′)
over all lattices L′ such that dimL = dimL′ and detL = detL′.

The HERMITE constant γn = max{λ2
1/ det(L)2/n | dim L = n}.

We always have ‖b1‖2 = rd(L)2 γn (detL)2/n.

Theorem 4.1 (GSA). Given a lattice basis such that
‖b1‖ ≤

√
2eπ nb λ1, b ≥ 0, NEW ENUM solves SVP in time

nO(1) + (O(n2b−ε))
n+1

4 if rd(L) = n−
1
2−ε, ε > 0.

This time bound is polynomial if 2b < ε.

GSA : Let B = QR = Q[ri,j ] satisfy (for ri,i = ‖b∗i ‖):
r2
i,i/r2

i−1,i−1 = q for i = 2, ..., n and some q > 0.

W.l.o.g. let q < 1, otherwise ‖b1‖ = λ1.
We outline the proof of Thm 4.1 in part III.



Average time fast CVP algorithm 5

Corollary 6.1 (GSA). Given b1 ∈ L, 0 6= ‖b1‖ = O(λ1),
NEW ENUM finds b ∈ L such that ‖b− t‖ = ‖L − t‖ in time

nO(1) + O(
√

n rd(L) ‖L − t‖2 λ−2
1 )

n+1
4 .

This time bound is polynomial if

‖L − t‖ = O(λ1) and rd(L) ≤ n−
1
2−ε for ε > 0.

The required short vector b1 can in practice be added to the
basis, extending the lattice by a short vector preserving rd(L).

An example will be given in part II for factoring integers using
the prime number lattice.



II: Factoring integers via easy CVP solutions 6

Let N be a positive integer that is not a prime power. Let
p1 < · · · < pn enumerate all primes less than (ln N)α. Then

n = (ln N)α/(α ln ln N)(1 + O(1)/α ln ln N).
Let the prime factors p of N satisfy p > pn.

We show how to factor N by solving easy CVP’s for the prime
number lattice L(B), basis matrix B = [b1, . . . , bn] ∈ R(n+1)×n :

B =


√

ln p1 0 0

0
. . . 0

0 0
√

ln pn
Nc ln p1 · · · Nc ln pn

, N =


0
...
0

Nc ln N ′

,

and the target vector N ∈ Rn+1, where either N ′ = N or
N ′ = Npn+j for one of the next n primes pn+j > pn, j ≤ n.
W.l.o.g. let N ′ = N for the analysis.



Outline of the factoring method 7

We identify the vector b =
∑n

i=1 eibi ∈ L(B) with the pair (u, v)

of integers u =
∏

ej>0 pej
j , v =

∏
ej<0 p−ej

j ∈ N.

Then u, v are free of primes larger than pn and gcd(u, v) = 1.

We compute vectors b =
∑n

i=1 eibi ∈ L(B) close to N such that

|u − vN ′| < u. The prime factorizations |u − vN ′| =
∏n

i=1 pe′i
i

and of u yield a non-trivial relation∏
ei>0 pei

i = ±
∏n

i=1 pe′i
i mod N. (7.1)

Given n + 1 independent relations (7.1) we write these relations

with p0 = −1 and ei,j , e′i,j ∈ N as
∏n

i=0 p
ei,j−e′i,j
i = 1 mod N

for j = 1, ..., n + 1. Any non trivial solution z1, ..., zn+1 ∈ Z of the
equations

∑n+1
j=1 zj(ei,j − e′i,j) = 0 mod 2 for i = 0, ..., n

solves X 2 = Y 2 mod N with X =
∏n+1

j=1 p
Pn

i=0 zi ei,j
j mod N,

Y =
∏n+1

j=1 p
Pn

i=0 zi e′i,j
j mod N.



Computing relations (7.1) from smooth (u,v) 8

Lemma If |u − vN ′| = o(Nc), v = Θ(Nc−1), e1, ..., en ∈ {0± 1}
then ‖b−N‖2 = (2c−1) ln N + ln(pn+j)+Θ(|u− vN ′|2(N/N ′)2).

Proof. We see from e1, ..., en ∈ {0± 1} that
‖b− N‖2 = ln u + ln v + N2c | ln u

vN′ |2.

Clearly, v = Θ(Nc−1), |u − vN ′| = o(Nc) implies
ln u + ln v = (2c − 1) ln N + ln(N ′/N) + Θ(1).

Moreover
| ln u

vN′ | = | ln
(
1+ u−vN′

vN′

)
| = |u−vN′|

vN′ (1+o(1)) = Θ( |u−vN′|
Nc−1N′ ).

Combining these equations proves the claim. �

Theorem 7.2 ‖b− N‖2 ≤ (2c − 1) ln N + 2δ ln pn implies

|u − vN ′| ≤ p
1
α

+δ+o(1)
n .



The existence of b ∈ L(B) such that |u− vN| = 1 9

An integer z is called y-smooth, if all prime factors p of z satisfy
p ≤ y . Let N ′ be either N or Npn+j for one of the next n primes
pn+j > pn. We denote

Mα,c,N =
{

(u, v) ∈ N2 u ≤ Nc , |u − vN ′| = 1, Nc−1/2 < v < Nc−1

u, v are squarefree and (ln N)α−smooth

}
.

Theorem 7.4 [S93] If the equation |u − du/NcN| = 1 is for
random u of order Nc nearly statistically independent from the
event that u, du/Nc are squarefree and (ln N)α-smooth then
#Mα,c,N = Nε+o(1) holds if α > 2c−1

c−1 , c > 1.

We will use this theorem for c = ln N and α > 4.



Vectors b ∈ L closest to N yield relations (7.1) 10

Theorem 7.5 The vector b =
∑n

i=1 eibi ∈ L(B) closest to N
provides a non-trivial relation (7.1) provided that Mα,c,N 6= ∅.

Theorem 7.6 If Mα,c,N 6= ∅ for c = ln N and α > 4 then we can
minimize ‖L(B)− N‖ in polynomial time under GSA given
b ∈ L(B) such that 0 6= ‖b‖ = O(λ1).

It follows from Mα,c,N 6= ∅ for N ′ ∈ {N, Npn+j} that
‖L − N‖2 ≤ (2c − 1) ln N ′ + 1 = (2c − 1 + o(1)) ln N.

Lemma 5.3 of [MG02] proves that λ2
1 ≥ 2c ln N −Θ(1)

Claim λ2
1 = 2c ln N + O(1).

rd(L) = λ1/(
√

γn(detL)
1
n ) .

(2eπ 2c ln N
(ln N)α

) 1
2

= O(c ln N)(1−α)/2 = O((ln N)1−α).
Moreover, we have for c = ln N, α > 4 and ε = 1

2 − 1/α > 0 that

n−
1
2−ε = n−1+1/α ≈ (α ln ln N)1−1/α(ln N)1−α > rd(L).



Providing a nearly shortest vector of L(B) 11

We extend the prime number basis B and L(B) by a nearly
shortest lattice vector of the extended lattice, preserving rd(L),
det(L) and the structure of the lattice.

We extend the prime base by a prime p̄n+1 of order Θ(Nc) such
that |u − p̄n+1| = O(1) holds for a squarefree (ln N)α-smooth u.
Then ‖

∑
i eibi − bn+1‖2 = 2c ln N + O(1) holds for u =

∏
i pei

i
the additional basis vector bn+1 corresponding to p̄n+1.∑

i eibi − bn+1 is a nearly shortest vector of L(b1, ..., bn+1).

Efficient construction of p̄n+1 . Generate u at random and
test the nearby p̄ for primality. If the density of primes near the
u is not exceptionally small p̄n+1 and bn+1 can be found in
probabilistic polynomial time. A single p̄n+1 can be used to
solve all CVP’s for the factorization of all integers of order Θ(N).



III: A novel enumeration of short lattice vectors 12

Let πt : span(b1, ..., bn) → span(b1, ..., bt−1)
⊥ for t = 1, ..., n

denote the orthogonal projections and let Lt = L(b1, ..., bt−1).

Stage (ut, ..., un) of ENUM. b :=
∑n

i=t uibi ∈ L and
ut , ..., un ∈ Z are given. The stage searches exhaustively for all∑t−1

i=1 uibi ∈ L such that ‖
∑n

i=1 uibi‖2 ≤ A holds for a given
upper bound A ≥ λ2

1. We have
‖

∑n
i=1 uibi‖2 = ‖ζt +

∑t−1
i=1 uibi‖2 + ‖πt(b)‖2.

where ζt := b− πt(b) = Qvt ∈ spanLt is the orthogonal
projection in spanLt of the given b =

∑n
i=t uibi and

vt = (v1, ..., vt−1, 0n−t+1)t for vi =
∑n

i=t ri,juj . Stage (ut , ..., un)
exhaustively enumerates Bt−1(ζt , ρt) ∩ Lt , the intersection of
the lattice Lt and the sphere Bt−1(ζt , ρt) ⊂ spanLt of dimension
t − 1 with radius ρt := (A− ‖πt(b)‖2)1/2 and center ζt .



The success rate βt of stages 13

The GAUSSIAN volume heuristics estimates |Bt−1(ζt , ρt) ∩ Lt |
for t > 1 to

βt =def volBt−1(ζt , ρt)/ detLt .

Here volBt−1(ζt , ρt) = Vt−1ρ
t−1
t , Vt−1 = π

t−1
2 /( t−1

2 )!
is the volume of the unit sphere of dimension t − 1,

detLt =
∏t−1

i=1 ri,i , ρ2
t := A− ‖πt(

∑n
i=t uibi)‖2.

We call βt the success rate of stage (ut , ..., un).

If ζt mod Lt is uniformly distributed over
{
∑t−1

i=1 ribi |0 ≤ r1, ..., rt−1 < 1}
then Eζt [ |Bt−1(ζt , ρt) ∩ Lt | ] = βt , where Eζt refers to a random
ζt mod Lt . This holds because 1/ detLt is the number of
lattice points of Lt per volume in spanLt . The formal analysis of
NEW ENUM by Theorem 4.1 uses a proven version of the
volume heuristics without assuming that ζt mod Lt is random.



Outline of New Enum for SVP 14

INPUT LLL-basis B = QR ∈ Zm×n, R ∈ Rn×n, A := n
4(det BtB)2/n,

OUTPUT a sequence of b ∈ L(B) of decreasing length
‖b‖2 ≤ A terminating with ‖b‖ = λ1.

1. s := 1, Ls := ∅, (we call s the level)
2. Perform algorithm ENUM [SE94] pruned to stages with βt ≥ 2−s:

Upon entry of stage (ut , ..., un) compute βt . If βt < 2−s delay
this stage and store (βt , ut , ..., un) in the list Ls of delayed stages
If βt ≥ 2−s perform stage (ut , ..., un) on level s, and as soon
as some non-zero b ∈ L of length ‖b‖2 ≤ A has been found
give out b and set A := ‖b‖2 − 1.

3. Ls+1 := ∅, perform the stages (ut , ..., un) of Ls with βt ≥ 2−s−1

in increasing order of t and for fixed t in order of decreasing βt .
Collect the appearing substages (ut ′ , ..., ut , ..., un)
with βt ′ < 2−s−1 in Ls+1.

4. IF Ls+1 6= ∅ THEN [ s := s + 1, GO TO 3 ]
ELSE terminate by exhaustion.



Proof of Theorem 4.1 15

Thm 4.1 NEW ENUM solves SVP in time nO(1) + (O(n2b−ε))
n+1

4

if rd(L) = n−
1
2−ε, ε > 0 and if b1‖ ≤

√
2eπ nb.

NEW ENUM essentially performs stages in decreasing order of
the success rate βt . Let b′ =

∑n
i=1 u′i bi ∈ L denote the unique

vector of length λ1 that is found by NEW ENUM.
Let β′t be the success rate of stage (u′t , ..., u′n).

NEW ENUM performs stage (u′t , ..., u′n) prior to all stages
(ut , ..., un) of success rate βt ≤ 1

2β′t

Simplifying assumption. We assume that NEW ENUM
performs stage (u′t , ..., u′n) prior to all stages of success rate
βt < β′t , ( i.e., ρt < ρ′t ).
By definition ρ2

t = A− ‖πt(b)‖2 and ρ′t
2 = A− ‖πt(b′)‖2.

Without using the simplifying assumption, the proven time
bound of Theorem 4.1 increases at most by the factor 2.



A proven version of the volume heuristics 16

Consider the number Mt of stages (ut , ..., un) with
‖πt(

∑n
i=t uibi)‖ ≤ λ1: Mt := #

(
Bn−t+1(0, λ1) ∩ πt(L)

)
.

Modulo the heuristic simplifications Mt covers the stages that
precede (u′t , ..., u′n) and those that finally prove ‖b′‖ = λ1.

Lemma 4.2 Mt ≤ e
n−t+1

2
∏n

i=t(1 +
√

8π λ1√
n−t+1 ri,i

).

Proof. We use the method of Lemma 1 of [MO90] and follow
the adjusted proof of (2) in section 4.1 of [HS07]. We
abbreviate nt = n − t + 1. Consider the ellipsoid

Et = {(xt , ..., xn)
t ∈ Rnt | ‖πt(

∑n
i=t xibi)‖2 ≤ λ2

1 }, where
‖πt(

∑n
i=t xibi)‖2 =

∑n
i=t

∑n
j=i(ri,jxj)

2 =
∑n

i=t
∑n

j=i(µj,ixj)
2‖b∗i ‖2.

By definition Mt ≤ #(Et ∩ Znt ). We set∑
i x :=

∑
j>i

ri,j
ri,i

xj and x ′i := xi + d
∑

i xc,
{

∑
i x} :=

∑
i x− d

∑
i xc,

Ft := {(x ′t , ..., x ′n)t ∈ Rnt |
∑n

i=t(x
′
i + {

∑
i x} )2r2

i,i ≤ λ2
1 }.



Claim #(Et ∩ Znt) ≤ #(Ft ∩ Znt) 17

Proof. The transformation (xt , ..., xn) 7→ (x ′t , ..., x ′n) is injective.
[ If i ≥ t is the least index such that (yi , ..., yn) and (zi , ..., zn)
differ then y ′i 6= z ′i . Moreover (x ′i + {

∑
i x})ri,i =

∑n
j=i ri,jxj .]

We simplify Et to E ′t = {x′ ∈ Rnt |
∑n

i=t x ′i
2r2

i,i ≤ 4λ2
1}.

Since | {
∑

i x} | ≤ 1
2 , xi ∈ Z and |xi + ε|2 ≥ x2

i /4 for |ε| ≤ 1
2 we

see that Ft ∩ Znt ⊂ E ′t ∩ Znt . Hence Mt ≤ #(E ′t ∩ Znt ).
We bound #(E ′t ∩ Znt ) using the method of [MO90, Lemma 1].
Denoting Nr := #{(kt , ..., kn)

t ∈ Znt |
∑n

i=t r2
i,ik

2
i = r} we have

#(E ′t ∩ Znt ) =
∑

0≤r≤4λ2
1

Nr es(4λ2
1−r)nt ≤ es4λ2

1nt
∑
r≥0

Nr e−srnt

≤ es4λ2
1nt

n∏
i=t

∑
ki∈Z

e−sr2
i,i k

2
i nt ≤ es4λ2

1nt
n∏

i=t
(1 +

√
π√

snt ri,i
)

since
∑

k∈Z e−Tk2
= 1 + 2

∑∞
k=1 e−Tk2 ≤ 1 + 2

∫∞
0 e−Tx2

dx =

1 +
√

π/T . We get for s := 1/(8λ2
1) :

#(E ′t ∩ Znt ) ≤ ent/2 ∏n
i=t(1 +

√
8π λ1√
nt ri,i

). �



Proof of Theorem 4.1 continued 18

Now r2
i,i = ‖b1‖2qi−1, λ2

1/(γn rd(L)2) = (det L)
2
n = ‖b1‖2q

n−1
2

hold by GSA and thus γn ≥ n
2 eπ directly imply for i = t , ..., n

√
n − t + 1 ri,i ≤

√
2eπ rd(L)−1λ1 q(2i−n−1)/4.

By Lemma 4.2 Mt ≤
∏n

i=t
e
√

π rd(L)−1 λ1 q(2i−n−1)/4+
√

8eπ λ1√
n−t+1 ri,i

.

For η̄ := 2 +
√

e, t := n
2 + 1− c,

m(q, c) := [if c > 0 then q
1−c2

4 else 1] we get

Mt ≤ m(q, c)
( η̄

√
2eπ λ1√

n−t+1 rd(L)

)n−t+1
/ det πt(L), (4.1)

because m(q, c) = q
1−c2

4 = q−
Pc

i=0(2i−1)/4) ≥
∏n/2+1

i=t

√
n−t+1 ri,i

η̄
√

2eπ λ1
for c > 0. We see from (4.1) and
det πt(L) = ‖b1‖n−t+1q

Pn−1
i=t−1 i/2 that

Mt ≤ m(q, c)
( η̄

√
2eπ λ1√

n−t+1 rd(L) ‖b1‖

)n−t+1
/q

Pn−1
i=t−1 i/2 (4.2)
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Now γn ≤ 1.744 (n+o(n))
2eπ [KL78] implies via GSA
eπ λ2

1
n rd(L)2‖b1‖2 ≤ q

n−1
2 for n ≥ n0. (4.3)

(4.2), (4.3), 1
n−1

∑n−1
i=t−1 i = n

2 −
(t−1)(t−2)

2(n−1) yield

Mt ≤ m(q, c)
( η̄

√
2eπ λ1√

n−t+1 rd(L) ‖b1‖

)n−t+1(√n rd(L) ‖b1‖√
eπ λ1

)n− (t−1)(t−2)
n−1 .

The difference of the exponents

de(t) = n − (t−1)(t−2)
n−1 − n + t − 1 = (t − 1)(1− t−2

n−1)

is positive for t ≤ n and maximal for tmax = n
2 + 1,

de(n
2 + 1− c) = n+1

4 + 1/4−c2

n−1 . We get for ‖b1‖ ≤
√

2eπ nb λ1,

t = n
2 + 1− c : Mt ≤ m(q, c)

(
O(n

1
2 +brd(L))

) n+1
4 + 1/4−c2

n−1 .

Hence Mt = (O(n
1
2 +2brd(L) )

n+1
4 . �
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Main open problem

Can the factoring algorithm be improved by the method of the
number field sieve ?

We factor N via easy CVP-solutions that correspond to
multiplicative relations mod N, related to the quadratic sieve.
The last coordinate of an CVP-solution yields a multiplicative
relation of the factor base, under the natural logarithm ln.

How to incorporate mod N reductions under the ln transform ?
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