# Some Remarks on

# Polynomial Selection in the GNFS

#### Colin Stahlke, Christine Priplata

{stahlke,priplata} at edizone.de

- 1. Basics
- 2. Improving local optimization
- 3. Measuring the quality
- 4. Improving a quality function
- 5. Summary

# 1. Basics

- 2. Improving local optimization
- 3. Measuring the quality
- 4. Improving a quality function
- 5. Summary

Choose two irreducible, coprime polynomials  $f_1, f_2 \in \mathbb{Z}[x]$  such that

$$\exists m \in \mathbb{Z}: f_1(m) \equiv f_2(m) \equiv 0 \mod N$$

Let  $F_1$  and  $F_2$  be the homogenized polynomials of  $f_1$  and  $f_2$ .

Now we sieve for pairs  $(a, b) \in \mathbb{Z}^2$  such that  $F_i(a,b)$  has a smooth prime ideal decomposition in the number field  $\mathbb{Q}[x]/(f_i(x))$  for i=1,2.

A good polynomial selection is crucial for the size and the speed of the GNFS.

#### **Basics: Constructing polynomial pairs**

It is crucial to get small coefficients.

Expansion to base m:

$$N = \sum_{i=0}^{d} a_{i} m^{i} \qquad f_{1}(x) = \sum_{i=0}^{d} a_{i} x^{i} \qquad f_{2}(x) = x - m$$

If the degree d is larger, the coefficients a<sub>i</sub> are smaller.

- There are methods to control the size of some of the a<sub>i</sub>.
- Extensive search reduces the size of all a<sub>i</sub>.
- The leading coefficient of  $f_2$  can be larger than 1.

Finally local optimization.

#### **Basics:** Measuring the quality of polynomials

The best test for the quality of  $(f_1, f_2)$  is sieving.

 $Q(f_1, f_2) = #\{ (a, b) \in \mathbb{Z} \mid (a, b) = 1, F_i(a, b) \text{ is } L_i \text{-smooth, } |a| \le A, 0 \le B \}$ 

This test is slow. For faster approximations we need the following notations:

prime p *small* <==> p<1000

K(n) := product of small primes (with multiplicity) dividing n

 $\alpha(F) := E_{n \in \mathbb{Z}}(\log(K(n))) - E_{coprime(a, b) \in \mathbb{Z}^2}(\log(K(F(a, b)))) \qquad E \text{ expectation value}$ 

 $\rho(x)$  := Dickmann  $\rho$ -Function (probability that a number of size n is  $n^{1/x}$ -smooth) Then the probability that F(a,b) is L-smooth is about:

$$\rho\left(\frac{\alpha(F) + \log(F(a, b))}{\log(L)}\right)$$

#### Basics: Measuring the quality of polynomials

$$Q_1(f_1, f_2) = \frac{6}{\pi^2} \int_{|a| \le A \atop 0 < b \le B} \rho\left(\frac{\alpha(F_1) + \log F_1(a, b)}{\log L_1}\right) \rho\left(\frac{\alpha(F_2) + \log F_2(a, b)}{\log L_2}\right) \, da \, db$$

 $Q_2(f_1, f_2) =$ 

$$\begin{split} &\int_0^\pi \varrho \Big( \frac{\alpha(F_1) + \log F_1(-A\cos\theta, B\sin\theta)}{\log L_1} \Big) \varrho \Big( \frac{\alpha(F_2) + \log F_2(-A\cos\theta, B\sin\theta)}{\log L_2} \Big) \ d\theta \\ &Q_3(f_1) = \alpha(F_1) + \frac{1}{2} \log \left( \int_{\substack{|a| \le A \\ 0 < b \le B}} F_1(a, b)^2 \ da \ db \right) \\ &Q_4(f_1) = \max_{0 \le i \le d_1} |a_i| s^{i - \frac{d_1}{2}} \qquad \text{s = A/B} \quad \text{skewness} \end{split}$$

$$Q_{3}(f_{1}) = \alpha(F_{1}) + \frac{1}{2} \log \left( \int_{|a| \leq A \atop 0 < b \leq B} F_{1}(a, b)^{2} da db \right)$$
  
local part  $\alpha(F_{1})$  + infinite part (think of  $Q_{4}(f_{1}) = \max_{0 \leq i \leq d_{1}} |a_{i}| s^{i - \frac{d_{1}}{2}}$ )

$$\alpha(F_1) = \sum_{p \text{ small prime}} \alpha_p(F_1)$$

Replace  $f_1$  by  $f_1$ +(ax+b) $f_2$  to optimize the local part  $\alpha(F_1)$ .

Translate  $f_1$  and  $f_2$  to reduce the infinite part.

Choosing (a,b) in some congruence classes modulo small primes p makes  $lpha_p(F_1)$  small and speeds up the process.

# 1. Basics

- 2. Improving local optimization
- 3. Measuring the quality
- 4. Improving a quality function
- 5. Summary

N = 12301866845301177551304949583849627207728535695953347921973224521517264005072636575187452021997864693899564749427740638459 2519255732630345373154826850791702612214291346167042921431160 2221240479274737794080665351419597459856902143413

After 30 CPU years of T. Kleinjung's first polynomial selection:

α = -7,30

$$Q_2 = 3,79 \cdot 10^{-9}$$

skewness = 44204,72

Now we tried with T.Kleinjung's second polynomial selection

**Task:** locally optimize 3403 polynomial pairs got after 1 CPU day.

After 26 CPU days of ordinary local optimization (without congruence classes):  $\alpha = -7,20$  $Q_2 = 2,18 \cdot 10^{-9}$  First a quick and dirty test with lots of congruences, skipping loads of (a,b) pairs.

After 11 CPU minutes of local optimization with congruences for 2,3,5,...,19:

 $\alpha = -7,70$  $Q_2 = 2,35 \cdot 10^{-9}$ skewness = 2124936

A more thorough approach with more reasonable parameters gave after 9 CPU hours:

 $\alpha = -8,329$  $Q_2 = 2,57 \cdot 10^{-9}$ 

**Task:** locally optimize 16.912.909 polynomial pairs got after several CPU years within some CPU days.

First idea: sort polynomial pairs by their infinite part and consider only the best.

failed

**Task:** locally optimize 16.912.909 polynomial pairs got after several CPU years within some CPU days.

First idea: sort polynomial pairs by their infinite part and consider only the best.

failed

Second idea: We must be quick and dirty again!

After 393 CPU hours of local optimization with congruences for 2,3,5,...,23:

 $\alpha = -8,783$  $Q_2 = 3,53 \cdot 10^{-9}$ 

But: How to do the thorough approach now?

T. Kleinjung did several CPU years of local optimization with congruences for 2,3,5,...,13. Best result:

 $\alpha = -8,99$  $Q_2 = 3,81 \cdot 10^{-9}$ 

We have access to the 1059 best pairs. They are all local optimizations from just 2 polynomial pairs.

Already detected by our quick and dirty search! Therefore: local optimization of e.g. only 5 polynomial pairs.

After some CPU hours of local optimization of only the best pair, we got:

 $Q_2 = 3,79 \cdot 10^{-9}$ 

## Result

For T.Kleinjung's second polynomial selection:

- 1. Do a quick search with many congruences.
- 2. Search through the best results much more carefully.



# 1. Basics

# 2. Improving local optimization

# 3. Measuring the quality

4. Improving a quality function

5. Summary

#### Probesieben

Experiment 1: Sieve the first 100 special q and note

 $t_1$  the number of relations per second  $q_1$  the number of relations per special q

Experiment 2: Sieve about every 2000<sup>th</sup> special q (with different parameters) and note

t<sub>2</sub> the number of relations per second q<sub>2</sub> the number of relations per special q

We did this for 83824 polynomial pairs, all of them local optimizations of the same pair.

Are there any correlations between these numbers?





| Q     | $t_1$  | $q_1$  | $t_2$  | $q_2$  |
|-------|--------|--------|--------|--------|
| $t_1$ | 1      | 0.9584 | 0.6768 | 0.7028 |
| $q_1$ | 0.9584 | 1      | 0.7373 | 0.7745 |
| $t_2$ | 0.6768 | 0.7373 | 1      | 0.9678 |
| $q_2$ | 0.7028 | 0.7745 | 0.9678 | 1      |

If the numbers were uncorrelated to the total sieving quality, there was no reason why the numbers of different experiments would correlate at all.

Probesieben seems to reflect the quality of polynomial pairs.

# 1. Basics

- 2. Improving local optimization
- 3. Measuring the quality
- 4. Improving a quality function
- 5. Summary

Linear combination with best correlation

$$Q_3(f_1) = \alpha(F_1) + \frac{1}{2} \log \left( \int_{|a| \le A \atop 0 < b \le B} F_1(a, b)^2 \, da \, db \right)$$

Is the factor  $\frac{1}{2}$  correct?

We want to choose the factor such that  $Q_3$  correlates best with the sieving quality.

Think of k=83824 and n=2.

Let y be a k-tuple and  $x_1, x_2, ..., x_n$  be n k-tuples.

We want to find the linear combination  $\sum_{j=1}^{n} \lambda_j x_j$  that correlates best with y. This can be done by linear algebra.

Let y be the 83824-tuple of values  $t_2$ ,  $x_1$  the 83824-tuple of the local parts and  $x_2$  the 83824-tuple of the infinite part of Q<sub>3</sub>. Set  $\lambda_1$ =1, then  $\lambda_2$ =2,07.

#### Linear combination with best correlation

|             | Exp. $1$ | Exp. $1$            | Exp. $2$            | Exp. $2$            |       |       |
|-------------|----------|---------------------|---------------------|---------------------|-------|-------|
|             | # Rel/s  | $\# \mathrm{Rel}/q$ | $\# \mathrm{Rel/s}$ | $\# \mathrm{Rel}/q$ | $Q_2$ | $Q_3$ |
|             |          |                     |                     |                     |       |       |
| $\lambda_2$ | 2,33     | 2,03                | 2,07                | 2,15                | 3,99  | 1,00  |

We suggest  $\lambda_2=2$  and therefore the following new quality function:

$$Q'_{3}(f_{1}) = \alpha(F_{1}) + \log\left(\int_{|a| \le A \atop 0 < b \le B} F_{1}(a, b)^{2} \, da \, db\right)$$

Now we also have:  $\alpha(F_1) = \sum_{p \text{ small prime}} \alpha_p(F_1)$ 

Should the summands for p=2,3,5,...,1999 get new weights? We want to change the local part.

Let y be the 83824-tuple of values t<sub>2</sub> and let the x<sub>j</sub> be the 83824-tuples of the local parts  $\alpha_p(F_1)$ .

Set  $\lambda_1$ =1. We represent the numbers  $\lambda_i$  in the following picture:



primes

We approximate the cloud of points by the following function:

![](_page_24_Figure_2.jpeg)

primes

We suggest the following new quality function:

$$Q_3''(f_1) = \frac{1}{2} \log \left( \int_{|a| \le A \atop 0 < b \le B} F_1(a, b)^2 \, da \, db \right) + \sum_p f(p) \cdot \alpha_p(F_1)$$

with 
$$f(x)=0.281936 \cdot \log \frac{(x+10)}{4,4}$$
 for x>2 and f(2)=1.

Now we want to test the two new quality functions Q'<sub>3</sub> and Q''<sub>3</sub>. We

- choose an arbitrary 350 bit number which is a product of two large primes,
- generate 67774 good polynomial pairs having several different common zeroes,
- perform experiment 1 and 2 with these 67774 polynomial pairs
- and calculate Q<sub>2</sub>, Q<sub>3</sub>, Q'<sub>3</sub>, Q''<sub>3</sub> and the correlations with t<sub>1</sub>, q<sub>1</sub>, t<sub>2</sub> and q<sub>2</sub>.

Which quality functions correlate best with the quality got from real sieving?

| $\varrho$ | $t_1$    | $q_1$    | $t_2$    | $q_2$    |
|-----------|----------|----------|----------|----------|
| $Q_3$     | -0.61525 | -0.70406 | -0.67121 | -0.70073 |
| $Q'_3$    | -0.61600 | -0.69990 | -0.67732 | -0.69648 |
| $Q_3''$   | -0.67113 | -0.76005 | -0.71864 | -0.74903 |
| $Q_2$     | 0.75045  | 0.77738  | 0.74335  | 0.78090  |

- Q'<sub>3</sub> is as good as Q<sub>3</sub>.
- Q"<sub>3</sub> is much better than Q<sub>3</sub> and takes the same CPU time.
- Q<sub>2</sub> is still more accurate but takes more CPU time.

Conclusion: The quality function Q<sub>3</sub> should be modified in a way similar to Q"<sub>3</sub>.

# 1. Basics

- 2. Improving local optimization
- 3. Measuring the quality
- 4. Improving a quality function

# 5. Summary

## Summary

We presented

- a strategy for speeding up the local optimization part of the polynomial selection process
  - using congruences make T. Kleinjung's most recent polynomial selection work for large bit lengths
  - detecting good polynomial pairs speeds up local optimization considerably, so CPU time can be used to find better polynomials
- an improvement of the quality function Q<sub>3</sub>
  - method for choosing linear combinations with best correlation
  - connection between Probesieben and real sieving quality

Q"<sub>3</sub>  
$$Q_3''(f_1) = \frac{1}{2} \log \left( \int_{\substack{|a| \le A \\ 0 < b \le B}} F_1(a, b)^2 \, da \, db \right) + \sum_p f(p) \cdot \alpha_p(F_1)$$