

Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Elena Kirshanova

Hausübungen zur Vorlesung

Kryptanalyse I

SS 2015

Blatt 1 / 16. April 2015 Abgabe bis: 30. April 12:00 Uhr, Kasten NA/02

Aufgabe 1 (3 Punkte):

Show that RSA with N being prime is insecure.

Aufgabe 2 (3 Punkte):

Let N = pq, for two distinct primes p and q, and let $gcd(e, \phi(n)) = 1$. Show that

$$RSA_e: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$$
$$x \to x^e$$

is bijective.

Aufgabe 3 (5 Punkte):

Hastad's Broadcast Attack. Imagine a secret announcement letter M has been sent to three parties. Each party has its public key pair (N_i, e_i) for i = 1, ... 3, where $e_i = 3$ for all i (we assume here that $gcd(N_i, N_j) = 1, j \neq i$). Eve wants to know the content of the secret letter. All she sees, however, are three ciphertexts

$$c_1 = M^3 \mod N_1$$
 $c_2 = M^3 \mod N_2$ $c_3 = M^3 \mod N_3$

Assuming that $M < N_i$ for all i, help Eve to recover M.

Aufgabe 4 (10 Punkte):

Programming assignment. You are given an oracle-access to a function dec(c) that inverts the $RSA_{N,d}$ function: on input c it computes $m = c^d \mod N$ for all but one ciphertext. We call this ciphertext a challenge-ciphertext c^* . The parameters (N, e, d, c^*) are fixed. You'll find all public parameters in the file 'params.txt'. Your task is to decrypt the challenge c^* . To accomplish the task you should follow the instruction below (Important! You will need to have the GMP library installed on your machine (www.gmplib.org):

Instructions (for Linux):

Download the two files 'dec.o' and 'dec.h' from the web-page.
It provides the function

that returns the decryption of a ciphertext c_{inp} given as a string for fixed (N, d). You can also provide a ciphertext of the GMP long int type by calling

2. To use the above function, either create your own .cpp file and include 'dec.h' as a header or download the template file 'hw1.cpp' from the web-site. To compile this .cpp file with the 'dec.o' run in terminal

Don't forget to link it with the GMP library!

3. As the result, you should get a .out file which you can then execute.

As this is an attack on a public key cryptosystem and you are given e, you should implement the corresponding encryption function by yourself. You should submit both the resulting $m = dec(c^*)$ and your code.

Instructions (for Windows):

- 1. Find a machine with Linux.
- 2. Follow the instructions above.