
Lehrstuhl für Kryptologie und IT-Sicherheit
Prof. Dr. Alexander May
Elena Kirshanova

Hausübungen zur Vorlesung

Kryptanalyse I
SS 2015

Blatt 2 / 7. May 2015
Abgabe bis: 21. May 12:00 Uhr, Kasten NA/02

Aufgabe 1 (5 Punkte):
Why not to choose primes close to

√
N for RSA.

Assume one of the RSA primes is close to
√
N : |p −

√
N | < 4

√
N . Show how to factor N in

polynomial time.

Hint. You might want yo use the following fact: for N = pq,N =
(
p+q
2

)2 − (p−q
2

)2
. Note that

the first summand is ≈
√
N , while the second one is small.

Aufgabe 2 (8 Punkte):
Why not to share N among several users in RSA. Give a probabilistic polynomial
time algorithm that finds a non-trivial divisor of N , having as input an RSA key-pair (e, d).

Aufgabe 3 (5 Punkte):
Meet-in-the middle on El-Gamal. Given an El-Gamal ciphertext (αr, αrxm) for the
message m, where 〈α〉 = Z∗

p, give a meet-in-the-middle type of attack on either r, x or m.
Explain your choice and give a complexity estimate for your attack.

Aufgabe 4 (7 Punkte):
In this exercise, you will develop and analyze an algorithm to evaluate a polynomial f(x), of

degree less than n = 2k in n points u1, . . . , un in O(n log2 n) time using Õ(n) memory:

1. Show that f(x) mod (x− c) = f(c) for some constant c;

2. Let us define polynomials

Pi,j =
2i−1∏
l=0

(x− uj·2i+l), 0 < i < k, 0 < j < 2k−i

whence
P0,j = (x− uj), 0 < j < k.

Show that
Pi+1,j = Pi,2j · Pi,2·j+1.

Show how to construct all Pi,j in time O(Mul(n) log n), where Mul(n) is time to multiply
two polynomials of degree n.

3. Using the construction from above and 1., devise a recursive algorithm that computes
f(u1), . . . , f(un). What is the running time?

Aufgabe 5 (10 Punkte):
Programming assignment: Bleichenbacher attack. Here is another version of an

adaptive CCA-attack on the RSA cryptosystem published in [1] on PKCS # 1. The weakness
was hidden in the way the RSA formatted an input message : for a modulus N < 28k of k
bytes and a message m < 28k−11, the encryption block EB = 00‖02‖padding‖00‖m is formed,
where padding has 8 bytes size. Decryption succeeds if and only if the underlying plaintext
is of this special form (called PKCS conformed), otherwise the error is return.

Observe, that given a ciphertext c∗ (assume it is a proper ciphertext and the correspon-
ding plaintext is PKCS conformed), you can multiply it by any other ciphertext c0 = me

0

mod N and check whether c0 · c∗ mod N is PKCS conform or not. Once you found c0 s.t.
c0 · c∗ mod N is PKCS conformed, you can deduce some partial information on bytes of the
challenge c∗.

In this homework, we simplify the task slightly, preserving the idea of the attack. Here,
you are given an access to the oracle that checks the Most Significant Bit of the plaintext (for
a given ciphertext) and answers ‘Conform’ if MSB(dec(c)) == 1. Note that now you are not
allowed to query the decryption oracle, but the ability to extract just a bit of information is
enough for the total break.

As in HW1, you will find N, e, c∗ in ‘params.txt’. The file ‘dec.o’ provides

bool IfConform (mpz t c)

and return 1 if MSB(m = dec(c)) == 1, otherwise 0.
Your task is to find m = Dec(c∗). You can follow the instructions from HW1. Submit

your code!
Note: if you encounter numerical instabilities while getting all the bits, submit your code

with a partial output.

Literatur

[1] Daniel Bleichenbacher, Chosen Ciphertext Attacks Against Protocols Based on the RSA
Encryption Standard PKCS1, 1998

