Trapdoor-Permutationsfamilie

Definition Permutationsfamilie

Eine *Permutationsfamilie* $\Pi_f = (Gen, Samp, f)$ besteht aus 3 ppt Alg:

- 1 \leftarrow Gen(1ⁿ), wobei I eine Urbildmenge D für f definiert.
- $x \leftarrow Samp(I)$, wobei $x \in_R D$.
- 3 $y \leftarrow f(I, x)$ mit $y := f(x) \in D$ und $f : D \leftarrow D$ ist bijektiv.

Definition Trapdoor-Permutationsfamilie

Trapdoor-Permutationsfamilie $\Pi_f = (Gen, Samp, f, Inv)$ besteht aus

- $(I, td) \leftarrow Gen(1^n)$ mit td als Trapdoor-Information
- $x \leftarrow Samp(I)$ wie zuvor
- $x \leftarrow Inv(td, y)$ mit $Inv_{td}(f(x)) = x$ für alle $x \in D$.

Invertieren einer Permutation

Spiel Invertieren einer Permutation *Invert*_{A, Π_i}(n)

Sei A ein Invertierer für die Familie Π_f .

- \bullet $I \leftarrow Gen(1^n), x \leftarrow Samp(I) \text{ und } y \leftarrow f(I, x).$
- $2 x' \leftarrow \mathcal{A}(I,y).$

Konstruktion einer Trapdoor-Einwegpermutation

Definition Einweg-Permutation

Eine (Trapdoor-)Permutationsfamilie heißt (Td-)Einwegpermutation falls für alle ppt Algorithmen \mathcal{A} gilt $\mathrm{Ws}[\mathit{Invert}_{\mathcal{A},\Pi_f}(n)=1] \leq \mathrm{negl}(n)$.

Bsp: Trapdoor-Einwegpermutation unter RSA-Annahme

- $Gen(1^n)$: $(N, e, d) \leftarrow GenRSA(1^n)$, Ausgabe I = (N, e) und td = (N, d).
- Samp(I): Wähle $x \in_R \mathbb{Z}_N$.
- f(I, x): Berechne $y \leftarrow x^e \mod N$.
- Inv(td, y): Berechne $x \leftarrow y^d \mod N$.

Hardcore-Prädikat

Ziel: Destilliere Komplexität des Invertierens auf ein Bit.

Definition Hardcore-Prädikat

Sei Π_f eine Einwegpermutation. Sei *hc* ein deterministischer pt Alg mit Ausgabe eines Bits hc(x) bei Eingabe $x \in D$. hc heißt Hardcore-Prädikat für f falls für alle ppt Algorithmen A gilt:

$$\operatorname{Ws}[\mathcal{A}(f(x)) = hc(x)]] \leq \frac{1}{2} + \operatorname{negl}(n).$$

Intuition: Bild f(x) hilft nicht beim Berechnen von hc(x).

Bsp: Goldreich-Levin Hardcore-Prädikat (ohne Beweis)

- Sei f eine Einwegpermutation mit Definitionsbereich $\{0,1\}^n$.
- Sei $x = x_1 \dots x_n \in \{0, 1\}^n$. Konstruiere

$$g(x,r) := (f(x),r) \text{ mit } r \in_R \{0,1\}^n.$$

- Offenbar ist q ebenfalls eine Einwegpermutation.
- Wir konstruieren ein Hardcore-Prädikat hc für g vermöge

$$hc(x,r) = \langle x,r \rangle = \sum_{i=1}^{n} x_i r_i \mod 2.$$

Beweis der Hardcore-Eigenschaft ist nicht-trivial.

Verschlüsselung aus Trapdoor-Einwegpermutation

Algorithmus VERSCHLÜSSELUNG_{II}

Sei Π_f eine Td-Einwegpermutation mit Hardcore-Prädikat hc.

- **1 Gen:** $(I, td) \leftarrow Gen(1^n)$. Ausgabe pk = I und sk = td.
- **2 Enc:** Für $m \in \{0,1\}$ wähle $x \in_R D$ und berechne $c \leftarrow (f(x), hc(x) \oplus m)$.
- **3 Dec:** Für Chiffretext $c = (c_1, c_2)$ berechne $x \leftarrow Inv_{td}(c_1)$ und $m \leftarrow c_2 \oplus hc(x)$.

Intuition:

- hc(x) ist "pseudozufällig" gegeben f(x).
- D.h. $hc(x) \oplus m$ ist ununterscheidbar von 1-Bit One-Time Pad.

CPA-Sicherheit unserer Konstruktion

Satz CPA-Sicherheit von VERSCHLÜSSELUNG

Sei Π_f eine Trapdoor-Einwegpermutation mit Hardcore-Prädikat hc. Dann ist Verschlüsselung CPA-sicher.

Beweis:

- Sei \mathcal{A} ein Angreifer mit Erfolgsws $\epsilon(n) = \mathrm{Ws}[Pub\mathcal{K}_{\mathcal{A},\Pi_f}^{cpa}(n) = 1].$ OBdA $(m_0, m_1) \leftarrow \mathcal{A}(pk)$ mit $\{m_0, m_1\} = \{0, 1\}.$ (Warum?)
- Verwenden A um einen Angreifer A_{hc} für hc zu konstruieren.

Algorithmus Angreifer A_{hc}

Eingabe: $I, y = f(x) \in D$

- **1** Setze pk ← I und berechne (m_0, m_1) ← $\mathcal{A}(pk)$.
- 2 Wähle $b, z \in_B \{0, 1\}$. Setze $c_2 \leftarrow m_b \oplus z$.

Beweis: Fortsetzung

- Sei $x = f^{-1}(y)$. A_{hc} rät z = hc(x).
- Es gilt $Ws[A_{hc}(f(x)) = hc(x)] = \frac{1}{2} \cdot Ws[b = b' \mid z = hc(x)] + \frac{1}{2} \cdot Ws[b \neq b' \mid z \neq hc(x)].$
- 1. Fall z = hc(x): (y, c_2) ist korrekte Verschlüsselung von m_b , d.h. Ws $[b = b' \mid z = hc(x)] = \epsilon(n)$.
- 2. Fall $z \neq hc(x)$: (y, c_2) ist Verschlüsselung von $\bar{m}_b = m_{\bar{b}}$, d.h. Ws $[b \neq b' \mid z \neq hc(x)] = \epsilon(n)$.
- Da hc ein Hardcore-Prädikat ist, folgt $\frac{1}{2} + \text{negl}(n) > \text{Ws}[A_{hc}(f(x)) = hc(x)] = \epsilon(n).$

Jacobi-Symbol

Erinnerung Jacobi-Symbol: Beweise siehe Diskrete Mathematik II

Definition Quadratischer Rest

Sei $N \in \mathbb{N}$. Ein Element $a \in \mathbb{Z}_N$ heißt *quadratischer Rest* in \mathbb{Z}_N , falls es ein $b \in \mathbb{Z}_N$ gibt mit $b^2 = a \mod N$. Wir definieren

 $QR_N = \{a \in \mathbb{Z}_N^* \mid a \text{ ist quadratischer Rest }\} \text{ und } QNR_N = \mathbb{Z}_N^* \setminus QR_N.$

Lemma Anzahl quadratischer Reste in primen Restklassen

Sei
$$p > 2$$
 prim. Dann gilt $|QR_p| = \frac{|\mathbb{Z}_p^*|}{2} = \frac{p-1}{2}$.

Beweisidee:

- Quadrieren auf \mathbb{Z}_p^* , $x \mapsto x^2$, ist eine 2:1-Abbildung.
- Die verschiedenen Werte x, (-x) werden beide auf x^2 abgebildet.

Legendre-Symbol

Definition Legendre Symbol

Sei p > 2 prim und $a \in \mathbb{N}$. Das Legendre Symbol ist definiert als

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{falls } p | a \\ 1 & \text{falls } (a \bmod p) \in QR_p \\ -1 & \text{falls } (a \bmod p) \in QNR_p \end{cases}.$$

Satz

$$\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \bmod p$$

Eigenschaften Quadratischer Reste

- Multiplikativität: $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$
- (QR_p, \cdot) ist eine multiplikative Gruppe.

Das Jacobi Symbol

Definition Jacobi Symbol

Sei $N = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k} \in \mathbb{N}$ ungerade und $a \in \mathbb{N}$. Dann ist das *Jacobi Symbol* definiert als

$$\left(\frac{a}{N}\right) = \left(\frac{a}{p_1}\right)^{e_i} \cdot \ldots \cdot \left(\frac{a}{p_k}\right)^{e_k}.$$

- Warnung: $(\frac{a}{N}) = 1$ impliziert nicht, dass $a \in QR_N$ ist.
- Bsp: $\left(\frac{2}{15}\right) = \left(\frac{2}{3}\right) \cdot \left(\frac{2}{5}\right) = (-1)(-1) = 1$.
- D.h. 2 ∈ QNR₃ und 2 ∈ QNR₅. Damit besitzt x² = 2 weder Lösungen modulo 3 noch modulo 5.
- Nach CRT besitzt $x^2 = 2 \mod 15$ ebenfalls keine Lösung.

