Voll homomorpe Verschlüsselung

Definition Voll homomorphe Verschlüsselung

Sei Π ein Verschlüsselungsverfahren mit $Enc: R \to R'$ für Ringe R, R'. Π heißt *voll homomorph*, falls

- Enc (m_1) + Enc (m_2) eine gültige Verschlüsselung von $m_1 + m_2$
- 2 $Enc(m_1) \cdot Enc(m_2)$ eine gültige Verschlüsselung von $m_1 \cdot m_2$ für alle $m_1, m_2 \in R$ ist.

Anwendung: Cloud Computing

- Sende verschlüsselt Algorithmus A, Eingabe x an einen Server S.
- S berechnet daraus die verschlüsselte Ausgabe Enc(A(x)).
- Erlaubt Auslagern von Berechnungen an S.
- S lernt nichts über das Programm A oder die Eingabe x.

Erste voll homomorphe Verschlüsselung:

Gentry Verfahren (2009), basierend auf Problemen der Gittertheorie.

Digitale Signaturen

Funktionsweise von digitalen Signaturen:

- Schlüsselgenerierung erzeugt pk, sk von Alice.
- Signieren ist Funktion von sk.
- Verifikation ist Funktion von pk.

Idee: Es soll unmöglich sein, ein gültiges Paar von Nachricht *m* mit zugehöriger Signatur σ zu erzeugen, ohne *sk* zu kennen.

Eigenschaften digitaler Signaturen: Sei σ eine gültige Signatur für m.

- Integrität: m kann nicht verändert werden, da man keine gültige Signatur zu einem $m' \neq m$ erstellen kann.
- Authentizität: Falls σ ein gültige Signatur zu m ist, so kommt die Signatur von Alice, der Besitzerin von sk.
- Transferierbarkeit: Jeder kann die Gültigkeit von (m, σ) überprüfen. Insbesondere kann (m, σ) weitergereicht werden.
- Nicht-Abstreitbarkeit: Alice kann nicht behaupten, dass eine andere Person eine gültige Signatur erzeugt hat.

Definition Signaturverfahren

Definition Signaturverfahren

Ein Signaturverfahren ist ein 3-Tupel (Gen, Sign, Vrfy) von ppt Alg mit

- **1 Gen:** $(pk, sk) \leftarrow Gen(1^n)$.
- 2 Sign: $\sigma \leftarrow Sign_{sk}(m)$ für $m \in \{0, 1\}^*$.
- **3 Vrfy:** $Vrfy_{pk}(m, \sigma) = \begin{cases} 1 & \text{falls } \sigma \text{ gültig für } m \text{ ist.} \\ 0 & \text{sonst} \end{cases}$

Es gilt $Vrfy_{pk}(m, Sign_{sk}(m)) = 1$ für alle $m \in \{0, 1\}^*$.

Unfälschbarkeit von Signaturen

Spiel CMA-Spiel $Forge_{A,\Pi}(n)$

Sei Π ein Signaturverfahren mit Angreifer A.

- \bigcirc (pk, sk) \leftarrow Gen(1ⁿ)
- $(m, \sigma) \leftarrow \mathcal{A}^{Sign_{sk}(\cdot)}(pk)$, wobei $Sign_{sk}(\cdot)$ ein Signierorakel für beliebige Nachrichten $m' \neq m$ ist.
- **3** Forge_{A,\Pi}(n) = $\begin{cases} 1 & \text{falls } Vrfy_{pk}(m,\sigma) = 1, Sign_{sk}(m) \text{ nicht angefragt} \\ 0 & \text{sonst} \end{cases}$

Definition CMA-Sicherheit

Sei Π ein Signaturverfahren. Π heißt *existentiell unfälschbar* unter Chosen Message Angriffen (CMA), falls für alle ppt Angreifer A gilt

$$\operatorname{Ws}[Forge_{\mathcal{A},\Pi}(n)=1] \leq \operatorname{negl}(n).$$

Wir bezeichnen ∏ auch abkürzend als *CMA-sicher*.

Unsicherheit von Textbook RSA Signaturen

Algorithmus Textbook RSA Signaturen

- **1 Gen:** $(N, e, d) \leftarrow GenRSA(1^n)$. Setze pk = (N, e), sk = (N, d).
- **2** Sign: Für $m \in \mathbb{Z}_N$ berechne $\sigma = m^d \mod N$.
- **3** Vrfy: Für $(m, \sigma) \in \mathbb{Z}_N^2$ Ausgabe 1 gdw $\sigma^e \stackrel{?}{=} m \mod N$.

Unsicherheit: gegenüber CMA-Angriffen

- Wähle beliebiges $\sigma \in \mathbb{Z}_N$. Berechne $m \leftarrow \sigma^e \mod N$.
- Offenbar ist σ eine gültige Signatur für m.
- Angreifer besitzt keine Kontrolle über m (existentielle Fälschung).

Fälschen einer Signatur für ein gewähltes $m \in \mathbb{Z}_N$:

- Wähle $m_1 \in_R \mathbb{Z}_N^*$ mit $m_1 \neq m$. Berechne $m_2 = \frac{m}{m_1} \mod N$.
- Lasse m_1, m_2 vom Orakel $Sign_{sk}(\cdot)$ unterschreiben.
- Seien σ_1, σ_2 die Signaturen. Dann ist $\sigma := \sigma_1 \cdot \sigma_2 = m_1^d \cdot m_2^d = (m_1 m_2)^d = m^d \mod N$ gültig für m.

Hashfunktionen und Kollisionen

Definition Hashfunktion

Eine Hashfunktion ist ein Paar (Gen, H) von pt Algorithmen mit

- **10 Gen:** $s \leftarrow Gen(1^n)$. *Gen* ist probabilistisch.
- **2 H:** $\{0,1\}^n \leftarrow H_s(x)$ für alle $x \in \{0,1\}^*$. *H* ist deterministisch.

Spiel $HashColl_{A,\Pi}(n)$

- \bullet s \leftarrow Gen(1ⁿ)
- $(x, x') \leftarrow \mathcal{A}(s)$

Definition Kollisionsresistenz

Eine Hashfunktion Π heißt kollisionsresistent, falls für alle ppt \mathcal{A} gilt $Ws[HashColl_{A,\Pi}(n) = 1] \leq negl(n).$

Hashed RSA

Algorithmus Hashed RSA

- **1 Gen:** $(N, e, d, H) \leftarrow GenHashRSA(1^n)$ mit $H: \{0, 1\}^* \rightarrow \mathbb{Z}_N$. Ausgabe pk = (N, e, H), sk = (N, d, H).
- ② **Sign:** Für $m \in \{0,1\}^*$ berechne $\sigma = H(m)^d \mod N$.
- **3** Vrfy: Für $(m, \sigma) \in \mathbb{Z}_N^2$ Ausgabe 1 gdw $\sigma^e \stackrel{?}{=} H(m) \mod N$.

Einfacher Angriff:

- Sei $m_1 \neq m_2$ eine Kollision für H ist, d.h. $H(m_1) = H(m_2)$.
- Frage (m_1, σ) an. Dann ist (m_2, σ) eine gültige Fälschung.
- D.h. wir benötigen für *H* Kollisionsresistenz.

Anmerkung: Sicherheit gegen unsere Angriffe für Textbook RSA

- **1** Wähle $\sigma \in \mathbb{Z}_N$, $m' \leftarrow \sigma^e$. Müssen $m \in H^{-1}(m')$ bestimmen. Übung: Urbildbestimmung ist schwer für kollisionsresistentes H.
- Pür ein $m \in \mathbb{Z}_N^*$ benötigen wir m_1, m_2 mit $H(m) = H(m_1) \cdot H(m_2)$ in \mathbb{Z}_n . Scheint Invertierbarkeit von H zu erfordern.

Später: Zeigen CMA-Sicherheit einer Hashed RSA Variante. (im ROM)

Hash-and-Sign Paradigma

Ziel: Signaturen für Nachrichten beliebiger Länge

- Starten mit Signaturverfahren Π für $m \in \{0, 1\}^n$.
- Verwenden Hashfunktion $H: \{0,1\}^* \rightarrow \{0,1\}^n$.
- Unterschreiben Hashwerte statt der Nachrichten.

Definition Hash-and-Sign Paradigma

Sei $\Pi = (Gen, Sign, Vrfy)$ und $\Pi_H = (Gen_H, H)$ eine Hashfunktion.

- Gen': $(pk, sk) \leftarrow Gen(1^n)$, $s \leftarrow Gen_H(1^n)$. Ausgabe pk' = (pk, s) und sk' = (sk, s).
- **2 Sign':** Für eine Nachricht $m \in \{0, 1\}^*$ berechne $\sigma \leftarrow Sign_{sk}(H_s(m))$.
- **Vrfy**': Für eine Nachricht $m \in \{0, 1\}^*$ mit Signatur σ prüfe $Vrfy_{pk}(H_s(m), \sigma) \stackrel{?}{=} 1$.

Intuition: Fälschung impliziert Fälschung in Π oder Kollision in H.

Sicherheit von Hash-and-Sign

Satz Sicherheit des Hash-and-Sign Paradigmas

Sei Π CMA-sicher und Π_H kollisionsresistent. Dann ist das Hash-and-Sign Signaturverfahren Π' CMA-sicher.

Beweis:

- Sei \mathcal{A}' ein Angreifer für Hash-and-Sign Π' mit Ausgabe (m, σ) .
- Sei Q die Menge der von A an das Signierorakel $Sign_{sk}(\cdot)$ gestellten Anfragen. Es gilt $m \notin Q$.
- Sei *coll* das Ereignis, dass $m_i \in Q$ mit $H_s(m_i) = H_s(m)$.
- Dann gilt $Ws[Forge_{A',\Pi'}(n) = 1]$
 - = Ws[$Forge_{\mathcal{A}',\Pi'}(n) = 1 \land coll$] + Ws[$Forge_{\mathcal{A}',\Pi'}(n) = 1 \land \overline{coll}$]
 - $\leq \operatorname{Ws}[\operatorname{coll}] + \operatorname{Ws}[\operatorname{Forge}_{A',\Pi'}(n) = 1 \wedge \overline{\operatorname{coll}}]$
- Wir zeigen nun, dass beide Summanden vernachlässigbar sind.