Ruhr-Universität Bochum

Lehrstuhl für Kryptologie und IT-Sicherheit

Prof. Dr. Alexander May

Mathias Herrmann

Hausübungen zur Vorlesung Kryptographie 2 SS 2009

Blatt 5 / 17. Juni 2009 / Abgabe spätestens 01. Juli, 8:30 Uhr

AUFGABE 1 (5 Punkte):

Sei \mathcal{G} ein Polynomialzeit Algorithmus, der bei Eingabe 1^n eine Primzahl p mit ||p|| = n und einen Generator g von \mathbb{Z}_p^* ausgibt. Man vermutet, dass das diskrete Logarithmus Problem bzgl. \mathcal{G} hart ist, d.h. dass die Funktion $f_{p,g}(x) := [g^x \mod p]$ eine Einwegfunktion ist. Bezeichne $\mathsf{lsb}(x)$ das niederwertigste Bit von x. Zeigen Sie, dass lsb kein Hardcore-Prädikat für die Funktion $f_{p,g}$ ist.

AUFGABE 2 (5 Punkte):

Wir betrachten Textbook-Rabin-Verschlüsselung, d.h. eine Nachricht $m \in \mathcal{QR}_N$ wird mit dem öffentlichen Schlüssel N durch den Chiffretext $c := [m^2 \mod N]$ verschlüsselt (N ist dabei eine Blum-Zahl).

Geben Sie einen Chosen-Ciphertext-Angriff an, der nicht nur die Nachricht liefert, sondern sogar den privaten Schlüssel rekonstruiert.

AUFGABE 3 (5 Punkte):

Sei $\Psi(N^2)$ die Menge $\{(a,1) \mid a \in \mathbb{Z}_N\} \subset \mathbb{Z}_{N^2}^*$. Ist es schwer zu entscheiden, ob ein gegebenes Element $y \in \mathbb{Z}_{N^2}^*$ in $\Psi(N^2)$ ist ? Beweisen Sie Ihre Aussage.

AUFGABE 4 (5 Punkte):

Wir wissen, dass $\mathbb{Z}_N \times \mathbb{Z}_N^* \cong \mathbb{Z}_{N^2}^*$, wobei der Isomorphismus durch $f: \mathbb{Z}_N \times \mathbb{Z}_N^* \to \mathbb{Z}_{N^2}^*$ mit

$$f(a,b) := [(1+N)^a \cdot b^N \mod N^2]$$

gegeben ist.

Zeigen Sie, dass f effizient umkehrbar ist, falls die Faktorisierung von N bekannt ist.