
Optimizing BJMM with Nearest Neighbors:
Full Decoding in 22n/21 and McEliece Security

Leif Both and Alexander May

Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

Faculty of Mathematics
leif.both@rub.de, alex.may@rub.de

Abstract. We revisit the Becker-Joux-May-Meurer (BJMM) decoding
algorithm in combination with Nearest Neighbor search. May and Oze-
rov showed that Nearest Neighbor search speeds up the original BJMM
algorithm for full decoding of random binary linear codes of length n
from 20.1019n to 20.0967n. We show that some optimization of the original
BJMM algorithm in combination with Nearest Neighbor search further
slightly improves the worst case running downto 20.0953n. We also pro-
vide optimized running times for BJMM for cryptographic instantiations
of the McEliece cryptosystem that cast some doubts on the targeted se-
curity levels.

Keywords: Decoding binary linear codes, BJMM, Nearest Neighbors

1 Introduction

Decoding random linear k-dimensional codes C ⊆ Fn2 is an NP-hard problem that
is interesting for many areas of computer science, and especially for the construc-
tion of cryptographic systems that are supposed to resist quantum computer
attacks [McE78,Ale03,Reg05]. Therefore, it is of paramount importance to know
the best algorithms and the true complexity of the decoding problem, which in
turn is the key to precisely estimating the security of code-based cryptosystems.

A major step towards understanding the complexity was already achieved
in the sixties by Prange [Pra62], who introduced the notion of Information Set
Decoding (ISD) algorithms. With Prange’s algorithm, decoding any constant rate
code can be done in time 20.1208n. Here the constant 0.1208 in the exponent is
maximized over all rates k

n , and achieves its maximum slightly below rate 1
2 .

Since then, there have been a number of refinements of Prange’s original ISD
algorithm [Ste88,Dum91,Bar97,BLP11,MMT11,BJMM12,MO15] improving this
complexity exponent.

Statistical Decoding is the only known promising generic decoding technique
that does not fit into the realm of ISD algorithms. It was first introduced by Al
Jabri [Al 01], later optimized by Overbeck [Ove06] and analyzed by Fossorier,
Kobara and Imai [FKI07]. However, a recent asymptotic analysis by Debris-
Alazard and Tillich [DT17] shows lower bounds for this approach implying that



for random linear codes Statistical Decoding is always inferior even to Prange’s
original ISD algorithm.

Our work builds on the well known ISD algorithm of Becker, Joux, May, and
Meurer [BJMM12] that makes use of the combinatorial representation technique,
which was first invented in the context of subset-sum algorithms [HGJ10,BCJ11].
This BJMM algorithm achieves a worst-case complexity of 20.1019n by computing
a binary depth-3 search tree T . The choice of depth-3 is not really justified
in [BJMM12]. However, some computations show that shortening T to depth-2
yields inferior results, while extending T to depth-4 yields the same results as
in depth-3, albeit with a slightly more complex algorithm. Hence, depth-3 seems
to be optimal.

In 2015, May and Ozerov showed that by replacing the last computation step
in BJMM’s search tree T by some Hamming distance Nearest Neighbor search
improves the complexity to 20.0967n. Their analysis uses a depth-3 T like in the
original BJMM. However, we show that the combination of BJMM with Nearest
Neighbor search achieves its optimal complexity 20.0953n with a depth-4 tree. We
also verify that depth-4 is sufficient by showing that depth-5 leads to the same
result.

So besides our slight improvement for ISD decoding, a message of our paper
is that one should rather consider the BJMM algorithm as a family of algorithms
BJMM(m), parametrized by depth-m of its search tree, that has to be optimized
anew for any modifications.

We also provide optimizations of BJMM(m) with and without Nearest Neigh-
bors for other settings of interest, e.g. for common instantiations of the McEliece
cryptosystem as proposed in Bernstein, Lange and Peters [BLP08]. Our results
give some indication that the proposed instantiations with Goppa codes of di-
mensions n = 1632, 2960, 6624 might actually lead to smaller bit security levels
than the targeted 80, 128, 256.

As part of our results, we publish our C-code for optimizing BJMM(m)
with or without Nearest Neighbors at https://github.com/LeifBoth/bjmm2.

0-code.

Our paper is organized as follows. In Section 2, we describe the general realm
of Information Set Decoding. Section 3 introduces a formulation of BJMM(m)
with parametrized depth. In Section 4, we present our results for optimizing
BJMM(m) within different decoding settings.

2 Preliminaries

Let us first give some preliminaries on decoding random binary linear codes, and
especially on ISD algorithms.

Let x,y ∈ Fn2 . Then we denote by ∆(x,y) the Hamming distance of x and
y. The Hamming weight ∆(x) of x is defined as the Hamming distance of x to
the all-zero point 0.

2

https://github.com/LeifBoth/bjmm2.0-code
https://github.com/LeifBoth/bjmm2.0-code


Let C ⊆ Fn2 be a k-dimensional subspace, i.e. a binary linear code. We de-
note by d the distance of C, which is defined as the minimal Hamming distance
between two different codewords in C. Let C be specified by a random parity

check matrix P ∈ F(n−k)×n
2 , i.e. we choose each entry of P from F2 uniformly at

random. By the definition of a parity check matrix we have

C = {c ∈ Fn2 | Pc = 0}.

Moreover, let y = c + e ∈ Fn2 , c ∈ C be an arbitrary point in space. By linearity,
we have s := Py = Pe, which is called the syndrome of y. In the syndrome
decoding problem, one is given P,y, ω and has to output a small Hamming weight
e with ∆(e) = ω such that Pe = s.

Let us assume w.l.o.g. that the last n − k columns of P are linearly inde-
pendent, which could be arranged via column permutations. Using Gaussian
elimination – that can be expressed as left multiplication by some invertible

G ∈ F(n−k)×(n−k)
2 – we can transform P into systematic form (H | In−k), where

In−k is the (n−k)-dimensional identity matrix. Our parity check identity there-
fore becomes

GPe = (H | In−k)e = He′ + e′′ = Gs, where e = (e′, e′′) ∈ Fk2 × Fn−k2 .

Set s̄ := Gs. Then the identity

He′ = s̄ holds for all n− k but ∆(e′′) coordinates. (1)

All ISD algorithms enforce a special weight distribution on e via some col-
umn permutation π of H. For instance, in Prange’s original ISD algorithm, one
chooses ∆(e′) = 0. Thus, one simply has to check – after applying π – whether

∆(̄s) = ∆(e′′) = ω.

Starting with Dumer’s algorithm [Dum91], all Information Set Decoding algo-
rithms allowed weight ∆(e′) = p > 0 for some parameter p and introduced
some parameter ` ≤ n − k − ∆(e′′) such that Eq. (1) holds on ` coordinates.
Mathematically, one transforms P via Gaussian elimination G′ into

G′P =

(
H1 0
H2 In−k−`

)
, where H1 ∈ F`×(k+`)2 and H2 ∈ F(n−k−`)×(k+`)

2 .

Set s̄ := G′s = (s1, s2) ∈ F`2×Fn−k−`2 . Choosing some suitable e′ = e1 + e2 with
e′, e1, e2 ∈ Fk+`2 and ∆(e′) = p, we can write Eq. (1) as

H1e1 = H1e2 + s1 and (2)

∆(H2e1, H2e2 + s2) = ω − p. (3)

The BJMM algorithm [BJMM12] constructs two lists L
(1)
1 , L

(1)
2 containing

candidates (e1, H1e1) and (e2, H1e2 + s1) for solutions of Eq. (2). Originally

3



in the BJMM algorithm, Eq. (3) is checked naively by testing candidates in

L
(1)
1 × L

(1)
2 .

May and Ozerov [MO15] proposed a more involved Nearest Neighbor search

(NNS) that finds elements in L
(1)
1 × L

(1)
2 satisfying Eq. (3). Its run time is sub-

quadratic in the list size, thereby improving the original BJMM algorithm.
Hence, in a nutshell, BJMM provides an efficient algorithm for solving Eq. (2),

whereas May-Ozerov provides an efficient algorithm for solving Eq. (3). At first
sight, one might independently try to find optimal solutions for Eq. (2) and
Eq. (3). This was done in the work of May, Ozerov [MO15], which mainly de-
scribes that the original BJMM can be generically sped up via Nearest Neigbor
Search (NSS).

However, Eq. (2) and Eq. (3) are linked by the optimization parameters p, `.
Therefore, it is unclear whether optimized parameters for BJMM without NNS
also yield an optimal combination of BJMM with NNS. In fact, we will show
in Section 4 that in the important Full Distance (FD) decoding setting, where
ω = d, an optimized version of BJMM with NNS requires a depth-4 search tree.
This is in contrast to the original BJMM without NNS, which is optimal for a
depth-3 search tree.

In the following section, we describe the BJMM algorithm with a flexible
search tree depth m, as opposed to the original description in [BJMM12] that
fixes depth m = 3.

3 A General Description of BJMM with Arbitrary Depth

As described in Section 2, our goal is to construct two lists L
(1)
1 , L

(1)
2 that contain

candidates of the form (e1, H1e1) and (e2, H1e2 + s1), respectively. The reader
is advised to follow the construction steps also via Fig. 1.

Tree construction in depth 1. In BJMM, the vectors e1, e2 have weight

p1 ≥
p

2
for some p1 that has to be optimized.

Recall from Eq. (2) that we construct e′ = e1 + e2 with ∆(e′) = p. Hence, we
call (e1, e2) a representation of e′ if the sum e1 + e2 has the correct weight p.

Vice versa, every fixed e′ ∈ Fk+`2 with weight p has

R1 :=

(
p

p/2

)(
k + `− p
p1 − p/2

)
representations.

Namely, the p 1-coordinates in e′ can be represented as 0 + 1 or 1 + 0 additions
from the corresponding coordinates in e1, e2. Hence fixing p/2 ones (and p/2
zeros) in e1 in the 1-coordinates of e′ already determines the entries in e2 in
those coordinates.

Similarly, the k + ` − p 0-coordinates in e′ can be represented as 0 + 0 or
1+1 additions from e1, e2. Hence fixing the remaining p1−p/2 ones in e1 in the

4



./ ./

./

./ ./

�(e
(1)
i ) = p1

�(e
(2)
i ) = p2

r2

�(e00) = w � p

�(e0) = p0 = p

r2 r2 r2

S3

S2

S1

T1

T2

T3

L
(3)
1 L

(3)
2 L

(3)
7 L

(3)
8

L
(2)
1 L

(2)
2 L

(2)
3 L

(2)
4

L
(1)
1 L

(1)
2

r1r1

r0 = `

n - k - ` `

�(e
(3)
i ) = p2

2

Fig. 1: The original BJMM(3) algorithm without Nearest Neighbors.

0-coordinates of e′ determines the entries in e2 also to ones in the corresponding
coordinates.

The goal in BJMM is now to construct only an 1
R1

-fraction of L
(1)
1 , L

(1)
2 , since

then in expectation one representation of the desired solution e′ of the syndrome
decoding problem survives. This is done by constructing only those candidates
(e1, H1e1) and (e2, H1e2 + s1), for which H1e1 and H1e2 + s̄1 take a certain

(random) value t
(1)
1 on their last r1 = blog2R1c coordinates. In expectation this

leads to at least an 1
R1

-fraction of all R1 representations of e′.

More precisely, we define by v[r1] ∈ Fr12 the projection of any vector v ∈ F`2
onto its last r1 coordinates. Then we compute for some random t

(1)
1 ∈R Fr12 and

t
(1)
2 := s1[r1] + t

(1)
1 the lists

L
(1)
i = {(e(1)

i , H1e
(1)
i ) ∈ Fk+`2 ×F`2 | ∆(e

(1)
i ) = p1 ∧ (H1e

(1)
i )[r1] = t

(1)
i } for i = 1, 2.

As discussed before, the expected size of the lists is

S1 := E[|L(1)
1 |] =

(
k+`
p1

)
2r1

.

Recall that by Eq. (2) we are looking for solutions to H1e
(1)
1 = H1e

(1)
2 +s1 ∈ F`2.

Since the elements in L
(1)
1 , L

(2)
2 already fulfill this identity on r1 coordinates, we

5



are looking for matching vectors in L
(1)
1 × L

(2)
2 on the remaining `− r1 bits. As

was shown in [BJMM12], this can be done by a simple matching algorithm in
expected time

T1 := max{S1,
S2
1

2`−r1
}.

This ends the description of the tree construction in depth 1.

Tree construction in depth 2, . . . ,m− 1. In depth 2, the process from

depth 1 is repeated recursively. Let us describe the construction of lists L
(j)
1 , L

(j)
2

in depth j with 2 ≤ j < m. The remaining lists L
(j)
3 , . . . , L

(j)
2j are constructed

analogously.

We define vectors e
(j)
1 , e

(j)
2 of weight

pj ≥
pj−1

2
for some pj that has to be optimized.

This definition also holds for j = 1 if we set p0 := p. For every fixed e
(j−1)
1 =

e
(j)
1 + e

(j)
2 ∈ Fk+`2 with weight pj−1 this results in

Rj :=

(
pj−1
pj−1/2

)(
k + `− pj−1
pj − pj−1/2

)
representations. Set rj = blogRjc.

One chooses t
(j)
1 ∈R Frj2 and sets t

(j)
2 := t

(j)
1 + t

(j−1)
1 . Then one defines the lists

L
(j)
i = {(e(j)

i , H1e
(j)
i ) ∈ Fk+`2 ×F`2 | ∆(e

(j)
i ) = pj ∧ (H1e

(j)
i )[rj ] = t

(j)
i } for i = 1, 2

with expected list sizes of

Sj := E[|L(j)
i |] =

(
k+`
pj

)
2rj

.

The matching of L
(j)
1 , L

(j)
2 to L

(j−1)
1 can be done in expected time

Tj := max{Sj ,
S2
j

2rj−1−rj }.

This formula also holds for j = 1 by setting r0 := `.

Tree construction in depth m. Let us describe how to construct L
(m−1)
1 out

of two lists L
(m)
1 , L

(m)
2 . The construction of L

(m)
3 , . . . , L

(m)
2m is analogous.

We represent e
(m−1)
1 = e

(m)
1 + e

(m)
2 ∈ Fk+`2 , where

pm = ∆(e
(m)
1 ) = ∆(e

(m)
2 ) :=

pm−1
2

and e
(m)
1 ∈ 0

k+`
2 ×F

k+`
2

2 , e
(m)
2 ∈ F

k+`
2

2 ×0
k+`
2 .

Let us define the lists

L
(m)
i = {(e(m)

i , H1e
(m)
i ) ∈ Fk+`2 × F`2 | ∆(e

(m)
i ) = pm} for i = 1, 2

6



with size

Sm :=

(k+`
2

pm

)
.

The matching of L
(m)
1 , L

(m)
2 to L

(m−1)
1 can be done in expected time

Tm := max{Sm,
S2
m

2rm−1
}.

The formula for Tm coincides with the general formula for Tj by setting rm := 0.

Total complexity of the generalized BJMM. On every level j of our search
tree we consume expected time Tj and space Sj . Thus in total, we obtain

time T = max
1≤j≤m

{Tj} and space S = max
1≤j≤m

{Sj}.

If we are using BJMM with Nearest Neighbor Search (NNS) from [MO15], we
have to replace T1 with

T1 := 2y(
log |S1|
n−k−` ,

ω−p
n−k−` )(n−k−`), where y(λ, γ) := (1−γ)

(
1−H

(
H−1(1− λ)− γ

2

1− γ

))
.

This results in a slight modification on level 1 of the search tree, as shown in

Fig. 2 for BJMM(4). The lists L
(1)
1 and L

(1)
2 are now merged via NNS on n−k−`

bits.

./ ./

./

./ ./

./ ./

�(e
(1)
i ) = p1

�(e
(2)
i ) = p2

�(e
(3)
i ) = p3

r3

r2

�(e00) = w � p
�(e0) = p0 = p

r3 r3 r3

r2 r2 r2

S4

S3

S2

S1

T1

T2

T3

T4

L
(4)
1 L

(4)
2

L
(4)
15 L

(4)
16

L
(3)
1 L

(3)
2 L

(3)
7 L

(3)
8

L
(2)
1 L

(2)
2 L

(2)
3 L

(2)
4

L
(1)
1 L

(1)
2

r1 = ` r1 = `

`n - k - `

�(e
(4)
i ) = p3

2

Fig. 2: The BJMM(4) algorithm with Nearest Neighbors.

7



Total complexity of decoding. As described in Section 2, any algorithm suc-
ceeds in constructing a solution of Eq. (2) if and only if the column permutation
π induces the correct weight distribution

∆(e′) = p, ∆(e′′) = ω − p on e′ = (e′, e′′) ∈ Fk+`2 × Fn−k−`2 .

This happens with probability

Psucc =

(
k+`
p

)(
n−k−`
ω−p

)(
n
ω

) .

Thus, the total expected running time of our decoding algorithm is T · P−1succ.

4 Results

In this section, we state upper bounds for the complexity of decoding k-dimensional
binary linear codes of length n in various settings. Random linear codes asymp-
totically achieve relative distance d

n = H−1
(
1− k

n

)
, equal to the Gilbert Var-

shamov bound. Thus, for Full Distance decoding we set ω = d, whereas for Half
Distance decoding we set ω = d/2.

We optimize BJMM(m) for running time T over a large range of rates k
n ,

where we eventually only state the result for the worst-case rate. Running times
for other rates may be significantly lower, but can be analyzed in the same man-
ner, e.g. using our code from https://github.com/LeifBoth/bjmm2.0-code.
Moreover, we state T in the form 2cn for some complexity exponent c that we
round up to the 4th digit after the decimal point. This rounding takes account of
all polynomial factors that are neglected in our analysis, and provides an upper
bound for the running time.

In the following analysis, we use the notion and formulas derived in Section 3.

Theorem 1. Full Distance decoding for random binary linear codes can be achieved
in expected time 20.0953n using 20.0915n space.

Proof. We use BJMM(4) in combination with Nearest Neighbors. The maximal
running time is achieved at rate

k

n
= 0.423 with relative distance

ω

n
=
d

n
= H−1

(
1− k

n

)
= 0.1373.

For this rate we obtain minimal running time using the (relative) parameters

`

n
= 0.2635,

p0
n

= 0.0825,
p1
n

= 0.0734,
p2
n

= 0.0521,
p3
n

= 0.0298.

This results in the following number of representations

R1 = 20.2635n, R2 = 20.1771n, R3 = 20.0856n

8

https://github.com/LeifBoth/bjmm2.0-code


and list sizes

S1 = 20.0731n, S0.0888n
2 , S3 = 20.0915n, S4 = 20.0915n.

The running times for each level of the search tree are balanced out as

T1 = 20.0915n, T2 = 20.0913n, T3 = 20.0915n, T4 = 20.0915n.

Since the probability for the correct weight distribution is

Psucc = 2−0.0038n,

we obtain an overall running time and space consumption of

T = 20.0953n and S = 20.0915n. ut

m k w log(T ) log(S) ` p0 p1 p2 p3 p4
3 0.422 0.1376 0.0967 0.0873 0.1901 0.0649 0.0528 0.0304 (0.0152) -
4 0.423 0.1373 0.0953 0.0915 0.2635 0.0825 0.0734 0.0521 0.0298 (0.0149)
5 0.420 0.1384 0.0953 0.0910 0.2632 0.0820 0.0732 0.0522 0.0301 0.0153

(FD)

m k w log(T ) log(S) ` p0 p1 p2 p3
2 0.458 0.0622 0.0492 0.0282 0.0310 0.0107 0.0075 (0.0038) -
3 0.474 0.0594 0.0473 0.0363 0.0663 0.0177 0.0150 0.0090 (0.0045)
4 0.475 0.0592 0.0473 0.0351 0.0635 0.0168 0.0143 0.0085 0.0043

(HD)

m k w log(T ) log(S) ` p0 p1 p2 p3
2 0.775 0.02 0.0370 0.0255 0.0509 0.0087 0.0060 (0.0030) -
3 0.775 0.02 0.0362 0.0262 0.0610 0.0096 0.0074 0.0038 (0.0019)
4 0.775 0.02 0.0362 0.0271 0.0631 0.0100 0.0077 0.0039 0.0020

(McEliece
w/o NNS)

m k w log(T ) log(S) ` p0 p1 p2 p3
2 0.775 0.02 0.0362 0.0264 0.0280 0.0087 0.0063 (0.0031) -
3 0.775 0.02 0.0350 0.0280 0.0429 0.0103 0.0086 0.0048 (0.0024)
4 0.775 0.02 0.0350 0.0280 0.0429 0.0103 0.0086 0.0048 0.0048

(McEliece
w/ NNS)

Fig. 3: Upper bounds for time and space, and their optimized parameters. All
values are stated relative to n. The optimized parameters all have precision 10−4.

Fig. 3 provides optimized parameters as well as the resulting run time and
space consumption for Full Distance (FD) decoding, half distance (HD) decod-
ing and McEliece. For McEliece, we took parameters k

n = 0.775, w
n = 0.02 as

suggested in the Goppa code instantiations in Section 7 of [BLP08]. Fig. 4 pro-
vides more fine-grained information for the time and space consumption on each
level of the search tree in FD.

9



m log(T1) log(T2) log(T3) log(T4) log(T5) log(S1) log(S2) log(S3) log(S4) log(S5)

3 0.0873 0.0873 0.0873 - - 0.0692 0.0873 0.0873 - -
4 0.0915 0.0913 0.0915 0.0915 - 0.0731 0.0888 0.0915 0.0915 -
5 0.0910 0.0910 0.0910 0.0909 0.0910 0.0725 0.0881 0.0909 0.0727 0.0910

(FD)

Fig. 4: Run time and space for all search tree levels (all values relative to n).

FD decoding. We reproduce the complexity exponent 0.0967 for BJMM(3)
from [MO15]. However as already shown in Theorem 1, we achieve an improved
exponent 0.0953 for BJMM(4), whereas BJMM(5) does not improve further
on time – but slightly on space. Interestingly, for BJMM(4) the running times
T1, . . . , T4 in Fig. 4 equal the large space consumption S and also `, p are quite
large. This means that – up to the outer loop for finding a suitable permutation
π – BJMM(4) consumes in the inner loop as much space as time, and almost all
work is shifted to the inner loop.

Remark on the quantum complexity of ISD algorithms. Recently, there
has been progress on transferring ISD algorithms to the quantum setting. For
some time, the only known quantum ISD version was Prange’s algorithm en-
hanced with a Grover search for π on the outer loop [Ber10]. Recently, Kachigar
and Tillich [KT17] showed that the inner loop – with algorithms like [MMT11]
and [BJMM12] – can also be sped up quantumly using quantum random walks.
However, Kachigar and Tillich also point out that the complexity improvement
is not as significant as in the classical ISD setting.

Our computations provide some explanation for this behavior. Whereas in
Prange’s ISD algorithm, all computation is done in the outer loop for π,
BJMM(4) shifts almost all computation to the inner loop (according to Fig. 3
0.0915 out of 0.0953 is spent in the inner loop). But Grover search for the outer
loop yields a square root improvement, where as quantum random walks yield
only a 2

3 -root improvement.

Thus, recent classical ISD algorithms are not optimal in the sense of allowing
a complexity preserving transfer to the quantum setting, both in terms of time
and space.

HD decoding. As opposed to FD, in the HD case we obtain optimality of the
running time already for BJMM(3), thereby reproducing the result of [MO15].
However, while BJMM(4) does not improve the run time, it nevertheless provides
a small improvement in space consumption.

McEliece. [BJMM12] already analyzed McEliece parameters for BJMM(3), but
the authors inadvertently make the choice ω

n = d
n ≈ 0.04, instead of ω

n = t
n ≈

d
2n ≈ 0.02 for t introduced errors in McEliece encryption, leading to largely
overestimated run times.

10



We achieve log(T ) = 0.0362n without NNS and log(T ) = 0.0350n with NNS.
Bernstein, Lange and Peters [BLP08] suggest to use

n = 1632, 2960, 6624 for respective bit security levels of 80, 128, 256.

Naively plugging these values of n into

• log(T ) = 0.0362n yields (rounded) values 59, 107, 240,
• log(T ) = 0.0350n yields (rounded) values 57, 104, 232.

These values are certainly not the bit security levels of the suggested McEliece in-
stantiations in practice, since our asymptotic analysis neglects all polynomial fac-
tors. Nevertheless, they give some cryptanalytic hope that the proposed McEliece
instances can be attacked with significant less effort than predicted a decade ago.

References

Al 01. A. Kh. Al Jabri. A statistical decoding algorithm for general linear block
codes. In Bahram Honary, editor, 8th IMA International Conference on
Cryptography and Coding, volume 2260 of Lecture Notes in Computer Sci-
ence, pages 1–8, Cirencester, UK, December 17–19, 2001. Springer, Heidel-
berg, Germany.

Ale03. Michael Alekhnovich. More on average case vs approximation complexity. In
44th Annual Symposium on Foundations of Computer Science, pages 298–
307, Cambridge, Massachusetts, USA, October 11–14, 2003. IEEE Com-
puter Society Press.

Bar97. Alexander Barg. Complexity issues in coding theory. 1997.
BCJ11. Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic

algorithms for hard knapsacks. In Kenneth G. Paterson, editor, Advances
in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Com-
puter Science, pages 364–385, Tallinn, Estonia, May 15–19, 2011. Springer,
Heidelberg, Germany.

Ber10. Daniel J Bernstein. Grover vs. mceliece. In International Workshop on
Post-Quantum Cryptography, pages 73–80. Springer, 2010.

BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. De-
coding random binary linear codes in 2n/20: How 1 + 1 = 0 improves in-
formation set decoding. In David Pointcheval and Thomas Johansson, edi-
tors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 520–536, Cambridge, UK, April 15–19,
2012. Springer, Heidelberg, Germany.

BLP08. Daniel J Bernstein, Tanja Lange, and Christiane Peters. Attacking and
defending the mceliece cryptosystem. In International Workshop on Post-
Quantum Cryptography, pages 31–46. Springer, 2008.

BLP11. Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding
exponents: Ball-collision decoding. In Phillip Rogaway, editor, Advances in
Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer
Science, pages 743–760, Santa Barbara, CA, USA, August 14–18, 2011.
Springer, Heidelberg, Germany.

DT17. Thomas Debris-Alazard and Jean-Pierre Tillich. Statistical decoding.
CoRR, abs/1701.07416, 2017.

11



Dum91. Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th
Joint Soviet-Swedish Int. Workshop Inform. Theory, pages 50–52, 1991.

FKI07. Marc P. C. Fossorier, Kazukuni Kobara, and Hideki Imai. Modeling bit
flipping decoding based on nonorthogonal check sums with application to
iterative decoding attack of mceliece cryptosystem. IEEE Trans. Informa-
tion Theory, 53(1):402–411, 2007.

HGJ10. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for
hard knapsacks. In Henri Gilbert, editor, Advances in Cryptology – EURO-
CRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages
235–256, French Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Ger-
many.

KT17. Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set decod-
ing algorithms. arXiv preprint arXiv:1703.00263, 2017.

McE78. RJ McEliece. A public-key system based on algebraic coding theory, 114-
116. deep sace network progress report, 44. Jet Propulsion Laboratory,
California Institute of Technology, 1978.

MMT11. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random
linear codes in õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes
in Computer Science, pages 107–124, Seoul, South Korea, December 4–8,
2011. Springer, Heidelberg, Germany.

MO15. Alexander May and Ilya Ozerov. On computing nearest neighbors with
applications to decoding of binary linear codes. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part
I, volume 9056 of Lecture Notes in Computer Science, pages 203–228, Sofia,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

Ove06. Raphael Overbeck. Statistical decoding revisited. In Lynn Margaret Batten
and Reihaneh Safavi-Naini, editors, ACISP 06: 11th Australasian Confer-
ence on Information Security and Privacy, volume 4058 of Lecture Notes
in Computer Science, pages 283–294, Melbourne, Australia, July 3–5, 2006.
Springer, Heidelberg, Germany.

Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th An-
nual ACM Symposium on Theory of Computing, pages 84–93, Baltimore,
Maryland, USA, May 22–24, 2005. ACM Press.

Ste88. Jacques Stern. A method for finding codewords of small weight. In In-
ternational Colloquium on Coding Theory and Applications, pages 106–113.
Springer, 1988.

12


	Optimizing BJMM with Nearest Neighbors:  Full Decoding in 22n/21 and McEliece Security 

