Diskrete Mathematik I

Alexander May

Fakultät für Mathematik Ruhr-Universität Bochum

Wintersemester 08/09

Organisatorisches

- Vorlesung: Di 10-12 in HNC 30 , Mi 12-14 in HZO 50 (4+2 SWS, 9 CP)
- Übung: Di 8-10 in HZO 60 und Mi 8-10 in NA 02/99
- Klausur: Ende Februar

Zusammensetzung des Auditoriums?

Übungsbetrieb

- Assistentin: Maike Ritzenhofen
- Korrektoren: M. Mansour Al-Sawadi, A. Meurer
- Übungsaufgaben werden korrigiert.
 Abgabe: Mo 14:00, 2 Kästen NA 02
- Aufgaben 1+2 und 3+4 separat in je einen Kasten.
- Gruppenabgaben bis 4 Personen
- Bonussystem:
 - 1 Notenstufe für 50%, 2 Notenstufe für 75% Gilt nur, falls man die Klausur besteht!
- Musterlösungen zu Übungsaufgaben
- Präsenzaufgaben ohne Musterlösungen!

Themen

Thematische Gebiete

- Kombinatorik: Abzählprobleme, Ziehen von Elementen
- Graphen: Traversierung, Matching, Planarität, Färbung
- Algebra: Modulare und Polynomarithmetik
- Komplexität: Algorithmik, Laufzeitanalyse
- Wahrscheinlichkeit: Diskrete Verteilungen

Was bedeutet diskret?

- Intuitiv: Alles, was man mit Computern exakt darstellen kann.
- Gegenteil von analog
- Probleminstanzen sind aus Menge mit endlicher Kardinalität

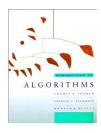
Literatur

Vorlesung richtet sich nach

- A. Steger, "Diskrete Strukturen, Band 1: Kombinatorik, Graphentheorie, Algebra", Springer Verlag
- T. Schickinger, A. Steger, "Band 2: Wahrscheinlichkeitstheorie"

Zusätzliche Literatur:

- Cormen, Leiserson, Rivest, Stein, "Introduction to Algorithmus", MIT Press
- T. Ihringer, "Diskrete Mathematik", Teubner Verlag
- Aigner, "Diskrete Mathematik", Vieweg Studium, 2006



Notationen für Mengen

- N: natürliche Zahlen ohne Null
- N₀: natürliche Zahlen mit Null
- \mathbb{Z}_n : $\{0, 1, ..., n-1\}$
- $[n]: \{1, 2, \ldots, n\}$
- Q: rationale Zahlen

Operationen auf Mengen

- Vereinigung $A \cup B := \{x \mid x \in A \text{ oder } x \in B\}$
- Schnittmenge $A \cap B := \{x \mid x \in A \text{ und } x \in B\}$
- Differenz $A \setminus B := \{x \mid x \in A \text{ und } x \notin B\}$
- Symmetrische Differenz $A \triangle B := (A \backslash B) \cup (B \backslash A)$
- Kartesisches Produkt $A \times B := \{(a, b) \mid a \in A \text{ und } b \in B\}$
- Potenzmenge $\mathcal{P}(M) := \{N \mid N \subseteq M\}$

 $\mathbf{Bsp:} M = \{ \text{rot,blau} \}, \ \mathcal{P}(M) = \{ \emptyset, \{ \text{rot} \}, \{ \text{blau} \}, \{ \text{rot,blau} \} \}$

Relation

Definition Relation

Eine Relation zwischen A und B ist eine Teilmenge $R \subseteq A \times B$. Falls A=B, spricht man von einer Relation auf A.

Eigenschaften von Relationen auf einer Menge

Reflexiv: $\forall a \in A : (a, a) \in R$

Symmetrisch: $\forall a, b \in A : (a, b) \in R \Rightarrow (b, a) \in R$

Antisymetrisch: $\forall a, b \in A : (a, b) \in R \land (b, a) \in R \Rightarrow a = b$

Transitiv: $\forall a, b, c \in A : (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R$

Bsp.:

- $R_1 := \{(a, b) \in \mathbb{N}^2 \mid a \text{ teilt } b\}$: r,a,t (partielle Ordnung)
- $R_2 := \{(a, b) \in \mathbb{Z}^2 \mid a = b \mod 3\}$: r,s,t (Äquivalenzrelation)
- $R_3 := \{(a, b) \in \mathbb{Z}^2 \mid a \text{ teilt } b\}$: r,t (Quasiordnung)
- $R_4 := \{(a, b) \in [8]^2 \mid a = b \mod 3, a \le b\}$: r,a,t

Abbildungen/Funktionen

Definition Abbildung/Funktion

Eine Abbildung/Funktion ist eine Relation $R \subseteq A \times B$, falls für alle $a \in A$ gilt

$$|\{b \in B \mid (a,b) \in R\}| = 1.$$

Wir schreiben $f: A \to B, a \mapsto f(a)$. Die Menge der *Urbilder* eines Elements $b \in B$ bezeichnen wir mit $f^{-1}(b) := \{a \in A \mid f(a) = b\}$.

Wir definieren für $A' \subseteq A, B' \subseteq B$ eine Erweiterung auf Mengen:

$$f(A') = \bigcup_{a \in A'} \{f(a)\}$$

$$f(B') = \bigcup_{b \in B'} f^{-1}(b)$$

Eigenschaften von Funktionen, Isomorphie

Definition Eigenschaften von Funktionen

Sei f eine Funktion. Wir bezeichnen f als

- injektiv gdw für alle $b \in B : |f^1(b)| \le 1$.
- 2 surjektiv gdw für alle $b \in B : |f^1(b)| \ge 1$.
- 3 bijektiv gdw f injektiv und f surjektiv ist.

Isomorphismus

Seien $R_1 \subseteq A_1^2$, $R_2 \subseteq A_2^2$ Relationen. R_1 und R_2 heißen *isomorph* gdw eine bijektive Funktion $f: A_1 \to A_2$ existiert, so dass für alle $(a,b) \in A_1^2$:

$$(a,b) \in R_1 \Leftrightarrow (f(a),f(b)) \in R_2.$$

Indirekter Beweis/ Widerspruchsbeweis

Satz

Sei $n \in \mathbb{N}$. Dann gilt

$$n^2$$
 gerade $\Rightarrow n$ gerade.

Beweis:

- Kontraposition: $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$
- D.h. es genügt zu zeigen: n ungerade $\Rightarrow n^2$ ungerade
- Wir schreiben n in der Form $n = 2k + 1, k \in \mathbb{N}_0$
- Daher gilt $n^2 = 4k^2 + 4k + 1 = 2(k^2 + 2k) + 1$.
- D.h. n² ist ungerade.

Induktionsbeweis

Satz Primfaktorzerlegung

Jede natürliche Zahl $n \ge 2$ lässt sich als Produkt von Primzahlen darstellen.

Beweis: Induktion über n

- (IV) Induktionsverankerung: n=2 prim.
- (IA) Induktionsannahme: Jede Zahl $\leq n$ lässt sich als Produkt von Primzahlen darstellen.
- (IS) Induktionsschrift n→ n+1: Fallunterscheidung
 - Fall 1: n + 1 prim, d. h. n + 1 ist Produkt von Primzahlen.
 - ▶ Fall 2: n + 1 zusammengesetzt, d. h. $n + 1 = a \cdot b$ mit $1 < a, b \le n$. Wende Induktionsannahme auf a und b an.

Widerspruchsbeweis

Satz Anzahl Primzahlen

Es gibt unendlich viele Primzahlen.

Annahme: \exists endlich viele Primzahlen $p_1...,p_n$ (n beliebig, aber fest).

- Setze $m = 1 + \prod_{i=1}^{n} p_i$.
- Es gilt $m = 1 \mod p_i$ für $i = 1, \ldots, n$.
- D.h. p_i teilt m nicht (wegen $p_i \ge 2$).
- Insbesondere ist $m \neq p_i$, i = 1, ..., n
- Daraus folgt, dass m prim.
- Damit existieren mindestens n + 1 Primzahlen.
 (Widerspruch: Nach Annahme existieren genau n Primzahlen.)

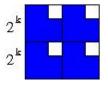
Induktionsbeweis

Satz Kacheln eines Schachbretts

Jedes Schachbrett mit Seitenlänge 2^k lässt sich durch 3-Felder große, L-förmige Teile so kacheln, dass die rechte obere Ecke frei bleibt.

Beweis: Induktion über k

- IA: Satz sei korrekt bis k.
- IS (k→ k+1):



Landau-Notation O

Definition Landau Notation O

Seien f(n), g(n) Funktionen. Wir schreiben $f(n) = \mathcal{O}(g(n))$ gdw

$$\exists c>0, n_0\in \mathbb{N} \ \forall n\geq n_0: |f(n)|\leq c\cdot |g(n)|.$$

Alternativ:
$$f(n) = \mathcal{O}(g(n)) \Leftrightarrow \lim_{n \to \infty} \sup \frac{|f(n)|}{|g(n)|} < \infty$$

Beispiele:

- $3n^2 + n + 2 = \mathcal{O}(n^2)$
- $3n^2 + n + 2 = \mathcal{O}(n^3 \log n)$
- $\sum_{i=1}^{n} i = \mathcal{O}(n^2)$
- $\sum_{i=1}^d a_i n^i = \mathcal{O}(n^d)$
- $\bullet \sum_{i=1}^n \frac{1}{i} = \mathcal{O}(\log n)$
- $\log_2 n = \mathcal{O}(\log_e n)$

Landau-Notation Ω

Definition Landau Notation Ω

Seien f(n), g(n) Funktionen. Wir schreiben $f(n) = \Omega(g(n))$ gdw

$$\exists c > 0, n_0 \in \mathbb{N} \ \forall n \geq n_0 : |f(n)| \geq c \cdot |g(n)|.$$

Alternativ:
$$f(n) = \mathcal{O}(g(n)) \Leftrightarrow \lim_{n \to \infty} \inf \frac{|f(n)|}{|g(n)|} > 0$$

Beispiele:

- $3n^2 + n + 2 = \Omega(n^2)$
- $3n^2 + n + 2 = \Omega(n \log n)$
- $\bullet \sum_{i=1}^n i = \Omega(n^2)$
- $\bullet \ \sum_{i=1}^d a_i n^i = \Omega(n^d)$
- $\bullet \sum_{i=1}^n \frac{1}{i} = \Omega(\log n)$
- $\log_2 n = \Omega(\log_e n)$

Landau-Notation ⊖

Definition Landau Notation ⊖

Seien f(n), g(n) Funktionen. Wir schreiben $f(n) = \Theta(g(n))$ gdw

$$f(n) = \mathcal{O}(g(n))$$
 und $f(n) = \Omega(g(n))$.

Bsp:

- $\bullet \ \sum_{i=1}^d a_i n^i = \Theta(n^d)$
- $\log_2 n = \Theta(\log_e n)$

Landau-Notation o, ω

Definition Landau Notation o

Seien f(n), g(n) Funktionen. Wir schreiben f(n) = o(g(n)) gdw

$$\forall c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |f(n)| \leq c \cdot |g(n)|.$$

Alternativ:
$$f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{|f(n)|}{|g(n)|} = 0.$$

Bsp:

• $n = o(n^2)$, $10n^2/\log\log n = 0(n^2)$

Definition Landau Notation ω

Seien f(n), g(n) Funktionen. Wir schreiben $f(n) = \omega(g(n))$ gdw

$$\forall c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |f(n)| \geq c \cdot |g(n)|.$$

Alternativ:
$$f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{|f(n)|}{|g(n)|} \to \infty$$
.

Bsp:

• $n^2 = \omega(n)$, $10n^2 \log \log n = \omega(n^2)$

Ziehen von Elementen

Kombinatorik: Bestimmung der Anzahl Anordnungsmöglichkeiten einer (endlichen) Menge von Objekten.

Bsp: Ziehen 2 Elemente aus einer 3-elementigen Menge {1,2,3}.

	geordnet	ungeordnet
mit Zurücklegen	(1,1), (1,2), (1,3),	{1,1},{1,2},
	(2,1),(2,2),(2,3),	{1,3},{2,2},
	(3,1),(3,2),(3,3)	{2,3}, {3,3}
ohne Zurücklegen	(1,2),(1,3),	{1,2},
	(2,1),(2,3),	{1,3},
	(3,1),(3,2)	{2,3}

Frage: Wieviele Möglichkeiten bestehen für das Ziehen von k Elementen aus einer n-elementigen Menge?

mit Zurücklegen, geordnet

$$(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)$$

- Anzahl Möglichkeiten für 1. Element: n
- Anzahl Möglichkeiten für 2. Element: n

:

Anzahl Möglichkeiten für k. Element: n

Gesamt: n^k Möglichkeiten

Bsp: Für jede EC-Karte gibt es 10⁴ mögliche PINs.

ohne Zurücklegen, geordnet

- Anzahl Möglichkeiten für 1. Element: n
- Anzahl Möglichkeiten für 2. Element: n-1

÷

Anzahl Möglichkeiten für k. Element: n-(k-1)

Gesamt: $n \cdot (n-1) \cdot ... \cdot (n-k+1) = \prod_{i=0}^{k-1} n - i =: n^{\underline{k}}$

Sprechweise: k-te untere Faktorielle von n

Bsp: Anzahl vierstelliger Dezimalzahlen mit verschiedenen Ziffern:

$$10^{4} = 5040.$$

Geordnetes Ziehen aller Elemente

Beim geordneten Ziehen aller Elemente betrachten wir den Spezialfall

$$n^n = \prod_{i=0}^{n-1} n - i = \prod_{i=1}^n i := n!$$

Wir definieren weiterhin

- $n^{\underline{0}} = \prod_{i=0}^{-1} n i := 1$
- $0^0 = 0! := 1$

Bsp: Anzahl Worte der Länge 3 über $\{a, b, c\}$ mit verschiedenen Buchstaben ist 3! = 6:

abc,acb,bac,bca,cab,cba

ohne Zurücklegen, ungeordnet

ungeordnet:
$$\{1,2\}$$
, $\{1,3\}$, $\{2,3\}$ geordnet: $(1,2),(2,1)$, $(1,3),(3,1)$, $(2,3),(3,2)$

- Anzahl geordneter Teilmengen: $n^{\underline{k}}$
- Fassen *k*-Tupel mit gleichen Elementen zusammen.
- Wieviele k-Tupel mit gleichen Elementen gibt es?
 Anordnung von k-Teilmengen: k!

Gesamt:
$$\frac{n^k}{k!} = \frac{n \cdot (n-1) \cdot ... \cdot (n-(k-1))}{k!} = \frac{n!}{k!(n-k)!} =: \binom{n}{k}$$

Bsp:

- Anzahl der Strings $s \in \{0, 1\}^5$ mit genau 3 Nullen: $\binom{5}{3}$.
- Anzahl des Auftauchens von a^2b^2 in $(a+b)^4$: $\binom{4}{2}$.

mit Zurücklegen, ungeordnet

$$\{1,1\},\{1,2\},\{1,3\},\{2,2\},\{2,3\},\{3,3\}$$

Multimenge:

- Einzelne Elemente dürfen mit Vielfachheiten vorkommen.
- $M = \{1, 1, 2, 3, 3, 3\}$ ist Multimenge über $G = \{1, 2, 3, 4, 5\}$.
 - ▶ Vielfachheit von 1 in *M* ist 2.
 - ▶ Kardinalität von M: Anzahl Elemente mit Vielfachheit, d.h. |M| = 6.

Kodierung einer Multimenge:

- Definiere Ordnung auf Grundmenge G, z. B. 1,2,3,4,5.
- Für jedes Element e der Multimenge:
 - ► Falls e mit Vielfachheit v(e) auftaucht, notiere v(e) Sterne *.
 - ► Trenne einzelne Elemente mit einem Trennstrich |.
- Bsp: Kodierung von M über G:

 Kodierungen entsprechen eindeutig den Multimengen, d. h. die Kodierungsabbildung ist ein Isomorphismus.

mit Zurücklegen, ungeordnet

Frage: Wieviele verschiedene Kodierungen gibt es?

- Kodierung besitzt n + k 1 Zeichen
 - ▶ k Sterne *: Wir ziehen k Elemente.
 - ▶ *n* − 1 Trennstriche |: Wir müssen n verschiedene Elemente trennen.
- Es müssen k Sterne an beliebigen Stellen der Kodierung platziert werden:
 - Jede Kombination von k Sternen und n-1 Trennstrichen entspricht einer Multimenge.
- Ziehen k-elementige Menge aus (n + k 1)-elementiger Menge.

Gesamt:

$$\binom{n+k-1}{k}$$

Bsp: 25 Eissorten, wir kaufen 3 Kugeln: $\binom{27}{3}$ Möglichkeiten

Zusammenfassung: Ziehe *k* aus *n* Elementen

	geordnet	ungeordnet
mit Zurücklegen	n ^k	$\binom{n+k-1}{k}$
ohne Zurücklegen	n <u>k</u>	$\binom{n}{k}$

Kombinatorische Beweisprinzipien

Satz Binomischer Lehrsatz

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Beweis

- Multipliziere $(a+b)^n$ aus: $(a+b) \cdot (a+b) \cdot \dots \cdot (a+b)$.
- Aus jedem der *n* Faktoren wird entweder *a* oder *b* verwendet.
- Alle Summanden sind von der Form $a^k b^{n-k}$, k = 0, ..., n.
- Multiplikation ist kommutativ, d. h. $b \cdot a \cdot b^2 \cdot a = a^2b^3$.
- Für $a^k b^{n-k}$ muss genau k-mal ein a verwendet werden.
- Ziehen k Positionen für a. Das Ziehen erfolgt
 - ohne Zurücklegen (jede Position darf nur einmal gezogen werden)
 - ungeordnet (aufgrund der Kommutativität der Multiplikation)
- D.h. der Summand $a^k b^{n-k}$ taucht $\binom{n}{k}$ -mal als Summand auf.

Summenregel

Lemma Summenregel für disjunkte Vereinigung

Seien S_1, \ldots, S_n disjunkte Mengen. Dann gilt für deren Vereinigung $S = \biguplus_{i=1}^n S_i$

$$|S| = \sum_{i=1}^n |S_i|.$$

Bsp: Sei $S = \{S_i \subseteq [10] \mid |S_i| = 5 \text{ und } |S_i \cap \{1,2\}| = 1\} \subseteq \mathcal{P}([10])$. Bestimme |S|.

- Wir definieren $S = S_1 \cup S_2$ für folgende Mengen $S_1, S_2 \subseteq \mathcal{P}(S)$.
 - ▶ S_1 : Enthält Mengen $S_{1i} \subseteq [10]$ mit Element 1 und 4 weiteren Elemente aus $\{3, ..., 10\}$.
 - ▶ S_2 : Enthält Mengen $S_{2j} \subseteq [10]$ mit Element 2 und 4 weiteren Elemente aus $\{3, ..., 10\}$.
- Die Mengen S_1 , S_2 sind disjunkt, da die Elemente S_{1i} und S_{2j} paarweise verschieden sind.
- Die Mengen S_1 und S_2 enthalten jeweils $\binom{8}{4}$ Elemente.
- Mit der Summenregel folgt $|S| = |S_1| + |S_2| = 2 \cdot {8 \choose 4}$.

Produktregel

Lemma Produktregel für das kartesische Produkt

Seien S_1, \ldots, S_n Mengen. Dann gilt für das kartesische Produkt $S = S_1 \times \ldots \times S_n$, dass

$$|S| = \prod_{i=1}^n |S_i|.$$

Bsp: Bestimmen die Anzahl fünfstelliger Zahlen, deren i-te Ziffer durch i + 1 teilbar ist.

- 1. Ziffer: $S_1 = \{0, 2, 4, 6, 8\}$ mit $|S_1| = 5$.
- 2. Ziffer: $S_2 = \{0, 3, 6, 9\}$ mit $|S_2| = 4$.
- 3. Ziffer: $S_3 = \{0, 4, 8\}$ mit $|S_3| = 3$.
- 4. Ziffer: $S_4 = \{0, 5\}$ mit $|S_2| = 2$.
- 5. Ziffer: $S_5 = \{0, 6\}$ mit $|S_1| = 2$.
- Für $S = S_1 \times ... \times S_5$ erhalten wir mit Produktregel $|S| = 5! \cdot 2 = 240$.

Produktregel

Bsp aus der Laufzeitanalyse:

Algorithmus Verschachtelte Schleifen

- for i=1 to 5 do
- of for j=1 to 10 do
- $x \leftarrow x+1;$
 - $S_1 = \{1, 2, 3, 4, 5\}, S_2 = \{1, 2, \dots, 10\}$
 - Schleife in Schritt 4 durchläuft alle (i,j) mit $i \in S_1$, $j \in S_2$.
 - Produktregel liefert für $S = S_1 \times S_2$ eine Anzahl von $|S| = |S_1| \cdot |S_2| = 5 \cdot 10$ Schleifendurchläufen.

Gleichheitsregel

Lemma Gleichheitsregel für Bijektionen

Seien S, T Mengen und $f: S \rightarrow T$ eine Bijektion. Dann gilt

$$|S|=|T|.$$

Bsp:

Algorithmus Wieder verschachtelte Schleifen

- for i=1 to 5 do
- for j=1 to 10 do
- Sei $S = [5] \times [10]$. Die Variablen (i, j) nehmen alle Werte aus S an.
- Die Abbildung $f: [5] \times [10] \rightarrow [50], (i,j) \mapsto x$ in Schritt 4 ist bijektiv.
- x nimmt in Schritt 4 Werte aus [50] an.
- Gleichheitsregel: Anzahl Schleifendurchläufe ist |S| = |T| = 50.

Weiteres Beispiel zur Gleichheitsregel

Bereits bekanntes Beispiel: Ziehen mit Zurücklegen, ungeordnet

- Es existiert eine bijektive Abbildung f zwischen
 - Multimengen der Kardinalität k über einer Grundmenge mit n Elementen und
 - ▶ Kodierungen in Form von k Sternen * und n-1 Trennstrichen |.
- Anstatt die Anzahl der möglichen Multimengen zu zählen, haben wir die Anzahl der Kodierungen gezählt.

Doppeltes Abzählen

Lemma Doppeltes Abzählen

Seien S, T Mengen und $R \subseteq S \times T$ eine Relation. Dann gilt

$$\textstyle \sum_{s \in \mathcal{S}} |\{t \in T \mid (s,t) \in R\}| = \textstyle \sum_{t \in T} |\{s \in \mathcal{S} \mid (s,t) \in R\}|.$$

Relation in Form einer Matrix: Dann gilt Zeilensumme=Spaltensumme.

Algorithmus Verschachtelte Schleife, die Dritte

- x ← 0;
- for i=1 to 5 do
- j=1 to i do
- $x \leftarrow x+1;$
 - Definiere $R = \{(i, j) \in [5]^2 \mid j \le i\}.$
 - Zeilensumme: $\sum_{i \in [5]} |\{j \in [5] \mid j \le i\}| = 1 + 2 + 3 + 4 + 5$.
 - Spaltensumme: $\sum_{i \in [5]} |\{i \in [5] \mid i \ge j\}| = 5 + 4 + 3 + 2 + 1$.

Schubfachprinzip (Pigeonhole principle)

Satz Schubfachprinzip

Sei $f: X \to Y$ eine Abbildung mit |X| > |Y|.

Dann gibt es ein $y \in Y$ mit

$$|f^{-1}(y)|\geq 2.$$

Anders gesagt: Verteilt man n Elemente auf m, m < n, Fächer, so gibt es stets ein Fach, das mehr als ein Element enthält.

Bsp:

Unter 367 Leuten gibt es stets zwei Personen, die am gleichen Tag Geburtstag haben.

Schubfachprinzip

Satz

In jeder Menge *P* von Personen gibt es stets zwei Personen, die die gleiche Anzahl von anderen Personen in *P* kennen.

Beweis

- Sei $P = \{p_1, p_2, \dots, p_n\}$.
- Wir setzen voraus, dass die Relation "kennen" symmetrisch ist, d.h. für alle p_i, p_j gilt: p_i kennt p_j ⇔ p_j kennt p_i.
- Betrachte $f: P \to \mathbb{Z}_n$ mit $f(p_i) = j \Leftrightarrow p_i$ kennt j Personen.
- Problem: $|P| = |\mathbb{Z}_n| = n$, d. h. f könnte Bijektion sein.
- Annahme: f bijektiv.
 - ► $\exists p_j, p_i \text{ mit } f(p_i) = 0 \text{ und } f(p_j) = n 1.$
 - ▶ Widerspruch: p_j kennt jeden, insbesondere p_i , aber p_i kennt keinen.
- f ist nicht surjektiv und wegen $|\bigcup_{p \in P} \{f(p)\}| < n$ nicht injektiv (Anwendung des Schubfachprinzips).
- Es gibt $i, j \in [n]$, $i \neq j$ mit $f(p_i) = f(p_j)$.

Verallgemeinertes Schubfachprinzip

Satz Verallgemeinertes Schubfachprinzip

Sei
$$f: X \to Y$$
. Dann gibt es ein $y \in Y$ mit $|f^{-1}(y)| \ge \left\lceil \frac{|X|}{|Y|} \right\rceil$.

Anders gesagt: Verteilt man n Elemente auf m Fächer, so gibt es ein Fach, dass mindestens $\left\lceil \frac{n}{m} \right\rceil$ Elemente enthält.

Beweis

- Annahme: Für alle $y \in Y$ gilt: $|f^{-1}(y)| \le \left| \frac{|X|}{|Y|} \right| 1$
- Damit folgt $\sum_{y \in Y} |f^{-1}(y)| \le |Y| \cdot \left(\left\lceil \frac{|X|}{|Y|} \right\rceil 1 \right) < |Y| \cdot \frac{|X|}{|Y|} = |X|$.
- Widerspruch durch das Prinzip des Doppelten Abzählens:

Spaltensumme =
$$\sum_{y \in Y} |f^{-1}(y)|$$

 $< |X| = \sum_{x \in X} 1 = \sum_{x \in X} |\{f(x)\}|$ = Zeilensumme

Anwendung des Verallgemeinerten Schubfachprinzips

Szenario:

- Teams t_1, \ldots, t_n spielen ein Turnier jeder gegen jeden.
- Gewinner erhalten 2 Punkte, bei Remis erhalten beide 1 Punkt.
- Frage: Wieviele Punkte hat der Gewinner mindestens?
- Definiere Punkteverteilungs-Funktion $f: [2] \times [n]^2 \to [n]$ mit $f(1,i,j) = f(2,i,j) = i \Leftrightarrow i \text{ schlägt } j$ $f(1,i,j) = f(2,i,j) = j \Leftrightarrow j \text{ schlägt } i$ $f(1,i,j) = i \text{ und } f(2,i,j) = j \Leftrightarrow \text{Remis}$
- Urbildraum: $|X| = 2 \cdot \binom{n}{2}$, Bildraum: |Y| = n
- Verallg. Schubfachprinzip: Der Sieger besitzt mindestens

$$\left\lceil \frac{|X|}{|Y|} \right\rceil = \frac{2n(n-1)}{2n} = n-1 \text{ Punkte.}$$

Verallg. Schubfachprinzip – Ramsey-Theorie

Satz Ramsey

In jeder Gruppe *P* von 6 Personen gibt es entweder 3 Personen, die sich alle kennen oder 3 Personen, die sich alle nicht kennen.

Beweis

- Definieren $f: \{p_2, \ldots, p_6\} \rightarrow \{0, 1\}$ mit $f(p_i) = 1 \Leftrightarrow p_1$ kennt p_i .
- Das Verallg. Schubfachprinzip liefert:
- Fall 1: p_1 kennt mindestens $\lceil 5/2 \rceil = 3$ Personen oder
- Fall 2: p_1 kennt mindestens $\lceil 5/2 \rceil = 3$ Personen nicht.
- Betrachte nur Fall 1 (Fall 2 analog): OBdA p_1 kennt p_2, p_3, p_4 .
- Weitere Fallunterscheidung:
- Fall 1a: p_2, p_3, p_4 kennen sich nicht untereinander nicht. Dann gibt es 3 Personen die sich nicht kennen.
- Fall 1b: Von p_2 , p_3 , p_4 kennen sich mindestens 2 Personen, oBdA seien dies p_2 , p_3 . Dann kennen sich die 3 Personen p_1 , p_2 , p_3 .

Prinzip der Inklusion- Exklusion

Ziel: Zählen von Elementen in nicht-disjunkten Mengen.

- 2 Mengen A₁, A₂: Zählen zunächst die Elemente in A₁.
- Addieren dazu die Anzahl der Elemente in A₂.
- Zählen damit den Schnitt von A₁ und A₂ doppelt.

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

- 3 Mengen: Zählen die Elemente in A_1 , A_2 und A_3 einzeln.
- Subtrahieren Anzahl der Elemente in $A_1 \cap A_2$, $A_1 \cap A_3$ und $A_2 \cap A_3$.
- Damit wurden die Elemente in $A_1 \cap A_2 \cap A_3$ dreimal gezählt und dreimal abgezogen.

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - (|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|) + |A_1 \cap A_2 \cap A_3|$$

Prinzip der Inklusion-Exklusion

Satz Inklusion-Exklusion

Seien A_1, \ldots, A_n endliche Mengen. Dann gilt

$$|\bigcup_{i=1}^{n} A_{i}| = \sum_{r=1}^{n} (-1)^{r-1} \sum_{1 \leq i_{1} < \dots < i_{r} \leq n} |\bigcap_{j=1}^{r} A_{i_{j}}|.$$

Beweis

- Idee: Zeigen, dass jedes Element a genau einmal gezählt wird.
- Sei *a* in *k* Mengen *A_i* enthalten.
- a kommt im Schnitt der A_{i_j} vor, gdw $a \in A_{i_j}$ für alle i_j .
- Damit kommt a in genau $\binom{k}{r}$ Schnittmengen vor.
- Insgesamt z\u00e4hlen wir damit jedes a mit der H\u00e4ufigkeit

$$\sum_{r=1}^{n} (-1)^{r-1} {k \choose r} = -\sum_{r=1}^{n} {k \choose r} (-1)^r = 1 - \sum_{r=0}^{n} {k \choose r} (-1)^r$$
$$= 1 - \sum_{r=0}^{k} {k \choose r} (-1)^r 1^{k-r} = 1 - (1-1)^k = 1.$$

Anwendung Inklusion-Exklusion

Bsp: Sei $A = \{x \in [100] \mid (2|x) \text{ oder } (3|x) \text{ oder } (5|x)\}$. Bestimme |A|.

- Definieren $A_k := \{n \in [100] \mid k \text{ teilt } n\}$. Damit gilt $A = A_2 \cup A_3 \cup A_5$.
- Für die Kardinalität von A_k erhalten wir $|A_k| := \lfloor \frac{100}{k} \rfloor$.
- Außerdem gilt $A_i \cap A_j = A_{\operatorname{kgV}\{i,j\}}$
- Damit erhalten wir insgesamt

$$|A| = |A_2 \cup A_3 \cup A_5|$$

$$= |A_2| + |A_3| + |A_5| - (|A_6| + |A_{10}| + |A_{15}|) + |A_{30}|$$

$$= 50 + 33 + 20 - (16 + 10 + 6) + 3 = 74$$

Permutationen

Definition Permutation, Fixpunkt, Symmetrische Gruppe

Sei $\pi: A \rightarrow A$ eine Funktion.

- **1** Wir bezeichnen π als *Permutation* gwd π bijektiv ist.
- ② Für eine Permutation π bezeichnen wir alle $a \in A$ mit $\pi(a) = a$ als Fixpunkte. π heißt fixpunktfrei, falls π keine Fixpunkte enthält.
- ① Die Menge der Permutationen auf A = [n] bezeichen wir als symmetrische Gruppe G_n .
 - Es gilt $|\mathcal{G}_n| = n!$.
 - Schreibweise für ein $\pi \in \mathcal{G}_5$: $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix}$
 - Das Element 4 ist der einzige Fixpunkt der Permutation π .
 - Bei fester Anordnung von $a_1, \ldots, a_n \in A$ würde die zweite Zeile

$$(\pi(a_1)\pi(a_2)\dots\pi(a_n))$$

genügen. Vorsicht: Verwechslungsgefahr mit Zyklenschreibweise.

Fixpunktfreie Permutationen

Definition Derangementzahl

Wir bezeichnen mit D_n die Anzahl fixpunktfreier Permutationen in \mathcal{G}_n . D_n heißt auch *Derangementzahl*. Mit ζ_n bezeichnen wir die Anzahl der Permutationen in \mathcal{G}_n mit mindestens einem Fixpunkt.

- Offenbar gilt: $D_n = |\mathcal{G}_n| \zeta_n$.
- Um D_n zu bestimmen, genügt es ζ_n zu bestimmen.
- A_i bezeichne die Menge der Bijektionen $\{\pi \in \mathcal{G}_n \mid \pi(i) = i\}$.
- Es gilt $\zeta_n = \bigcup_{i=1}^n A_i$.

Derangementzahl *D_n*

Satz Derangementzahl D_n

Für die Derangementzahl D_n gilt

$$D_n = n! \cdot \sum_{r=0}^{n} (-1)^r \frac{1}{r!}$$

 $\zeta_n = |\bigcup_{i=1}^n A_i| = \sum_{r=1}^n (-1)^r \sum_{1 \le i_1 < \dots < i_r \le n} |\bigcap_{j=1}^r A_{i_j}|.$

Anwendung des Inklusion-Exklusion Prinzips liefert

- Schnittmengen A_{i_j} beinhalten π mit $\pi(i_j) = i_j$ für alle $j = 1, \ldots, r$.
- Alle anderen n-r Elemente dürfen von π beliebig abgebildet werden. Dafür gibt es (n-r)! Möglichkeiten, die Anzahl der Permutation auf $[n] \setminus \{i_1, \ldots, i_r\}$.
- Wir erhalten

$$\zeta_n = |\bigcup_{i=1}^n A_i| = \sum_{r=1}^n (-1)^{r-1} \binom{n}{r} \cdot (n-r)! = \sum_{r=1}^n (-1)^{r-1} \frac{n!}{r!}.$$

• Damit gilt $D_n = n! - \zeta_n = n! (1 + \sum_{r=1}^n (-1)^r \frac{n!}{r!}) = n! \cdot \sum_{r=0}^n (-1)^r \frac{1}{r!}$.

Zyklen von Permutationen

Definition Zyklus einer Permutation

Sei $\pi \in \mathcal{G}_n$. Wir bezeichnen $(i_1 \dots i_t)$ mit $i_j \in [n]$ als Zyklus der Länge t in π falls

$$\pi(i_j) = i_{j+1} \text{ für } 1 \le j < t \text{ und } \pi(i_t) = i_1.$$

Bsp:

$$\bullet \ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 5 & 7 & 1 & 6 & 4 \end{pmatrix}$$

- (1235) ist Zyklus der Länge 4 in π .
- Man beachte, dass (1235) = (2351) = (3512) = (5123).
- Hingegen gilt (1234) ≠ (2135).
- (47) und (6) sind Zyklen der Längen 2 und 1 in π .
- Wir können π schreiben als $\pi = (1235)(47)(6)$.

Stirlingzahl erster Art

Definition Stirlingzahl 1. Art

Die *Stirlingzahl erster Art* $s_{n,k}$ bezeichne die Anzahl von Permutationen $\pi \in \mathcal{G}_n$ mit genau k Zyklen.

Es gilt

- $s_{n,k} = 0$ für n < k
- $s_{n,0} = 0$
- $s_{0,0} := 1$ nach Definition

Satz Summe der Stirlingzahlen für festes n

$$\sum_{k=1}^{n} s_{n,k} = n!$$

Beweis

- Jede Permutation besitzt mindestens 1 und höchstens n Zykel.
- Die Anzahl aller Permutation $\pi \in \mathcal{G}_n$ ist n!.
- Da $s_{n,k}$ und $s_{n,\ell}$ für $k \neq \ell$ disjunkt sind, folgt der Satz durch Anwendung der Summenregel.

Berechnung der ersten Stirlingzahl

Satz Berechnung $s_{n,k}$

Sei $s_{n,k} = \{ \pi \in \mathcal{G}_n \mid \pi \text{ besitzt } k \text{ Zyklen.} \}$. Für alle $k, n \in \mathbb{N}$ gilt

$$s_{n,k} = s_{n-1,k-1} + (n-1)s_{n-1,k}.$$

Beweis

- Fallunterscheidung für $\pi \in \mathcal{G}_n$
- Fall 1: n ist in π in einem Zyklus (n) der Länge 1. Dann gibt es für die restlichen k-1 Zyklen genau $s_{n-1,k-1}$ Möglichkeiten.
- Fall 2: n ist in π in einem Zyklus der Länge mindestens 2. Wir können π darstellen, indem wir n in einen Zyklus von $\pi' \in \mathcal{G}_{n-1}$ mit k Zyklen einfügen. Es gibt $s_{n-1,k}$ Möglichkeiten für π' und n-1 Möglichkeiten zum Einfügen von n in einen der Zyklen.
- Da beide Fälle disjunkt sind, folgt der Satz aus der Summenregel.

Beispielkonstruktion: Rekusives Splitten von $s_{4,2}$

Bsp: $s_{4,2}$

- Fall 1: π enthält einen Zyklus (n) und einen Zyklus über [3].
 - **▶** (123)(4), (132)(4).
- Fall 2: Betrachten 2 Zykel über [3] und fügen 4 ein.
 - (12)(3): (412)(3), (142)(3), (12)(43)
 - ► (13)(2): (413)(2), (143)(2), (13)(42)
 - (1)(23): (41)(23), (1)(423), (1)(243)
- Insgesamt gilt: $s_{4,2} = s_{3,1} + 3 \cdot s_{3,2} = 2 + 3 \cdot 3 = 11$.

Stirling-Dreieck erster Art

Rekursionsformel: $s_{n,k} = s_{n-1,k-1} + (n-1) \cdot s_{n-1,k}$

n=0						1					
<i>n</i> = 1					0		1				
<i>n</i> = 2				0		1		1			
<i>n</i> = 3			0		2		3		1		
n = 4		0		6		11		6		1	
<i>n</i> = 5	0		24		50		35		10		1

Berechnung von Teilmengen

Satz Anzahl der Teilmengen

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

Beweis

- Korollar aus Binomischem Lehrsatz $(1+1)^n = \sum_{k=0}^n \binom{n}{k} 1^k 1^{n-k}$.
- Oder kombinatorisch: Sei M Menge mit |M| = n.
- Die Kardinalität der Potenzmengen $\mathcal{P}(M)$ ist $|\mathcal{P}(M)| = 2^n$.
- In $\mathcal{P}(M)$ sind alle k-elementigen Teilmengen von M enthalten.
- Sei S_k die Menge der k-elementigen Teilmengen von M.
- Es gilt $|S_k| = \binom{n}{k}$ für $k = 0, \dots, n$.
- Ferner ist $\mathcal{P}(M) = \biguplus_{k=0}^{n} S_k$ und damit nach Summenregel

$$2^{n} = |\mathcal{P}(M)| = \sum_{k=0}^{n} |S_{k}| = \sum_{k=0}^{n} {n \choose k}.$$

Rekursive Berechnung von Binomialkoeffizienten

Satz Rekursion Binomialkoeffizienten

Für alle $n, k \in \mathbb{N}$ mit n > k gilt

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Beweis

- Wir partitionieren die k-elementigen Teilmengen S_k von [n]:
- Fall 1: S_k enthält n. Damit enthält S_k noch k-1 Elemente aus [n-1]. Dafür gibt es $\binom{n-1}{k-1}$ Möglichkeiten.
- Fall 2: S_k enthält n nicht. Damit enthält S_k insgesamt k Elemente aus [n-1], wofür es $\binom{n-1}{k}$ Möglichkeiten gibt.
- D.h. die $\binom{n}{k}$ vielen k-elementigen S_k lassen sich in $\binom{n-1}{k-1}$ und $\binom{n-1}{k}$ Teilmengen partitionieren.
- Aus der Summenregel folgt $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

Pascal'sches Dreieck

Rekursionsformel: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

n=0						1					
n = 0 $n = 1$					1		1				
n = 2				1		2		1			
<i>n</i> = 3			1		3		3		1		
n = 4		1		4		6		4		1	
<i>n</i> = 5	1		5		10		10		5		1

Vandermonde'sche Identität

Satz Vandermonde Identität

Für alle $k, m, n \in \mathbb{N}_0$ gilt:

$$\binom{n+m}{k} = \sum_{t=0}^{k} \binom{n}{t} \binom{m}{k-t}.$$

Beweis

- Sei $M = \{1, 2, \dots, n+m\}$.
- Die Anzahl der k-elementigen Teilmengen von M ist $\binom{n+m}{k}$.
- Partitionieren M in $M_1 = \{1, \ldots, n\}$ und $M_2 = \{n+1, \ldots, n+m\}$.
- Die k-elementigen Teilmengen von M lassen sich darstellen als Vereinigung von t-elementigen Teilmengen von M₁ und (k - t)-elementigen Teilmengen von M₂ für t = 0,...,k.
- Anzahl der *t*-elementigen Teilmengen von M_1 : $\binom{n}{t}$.
- Anzahl der (k-t)-elementigen Teilmengen von M_2 : $\binom{m}{k-t}$.
- Summenregel: Aus $M=M_1\biguplus M_2$ folgt die Vandermonde Identität.

k-Partition, Stirlingzahl zweiter Art

Definition *k*-Partition, Stirlingzahl zweiter Art

Sei $A = \{a_1, \ldots, a_n\}$. Eine k-Partition von A ist eine Zerlegung von A in k paarweise disjunkte $A_1, \ldots, A_k \subseteq A$ mit $A = \bigcup_{i=1}^k A_i$. Wir bezeichnen mit $S_{n,k}$ die Anzahl von k-Partitionen einer n-elementigen Menge. $S_{n,k}$ heisst auch die Sterlingzahl zweiter Art.

Bsp:
$$A = \{1, 2, 3\}$$
 und $k = 2$

- $\bullet \ \{1\} \cup \{2,3\}, \, \{1,2\} \cup \{3\}, \, \{1,3\} \cup \{2\}$
- D.h. $S_{3,2} = 3$.

Spezialfälle:

- $S_{n,k} = 0$ für k > n
- $S_{n,n} = S_{n,1} = 1$, $S_{n,0} = 0$
- $S_{0.0} := 1$

Rekursive Berechnung von $S_{k,n}$

Satz Rekursive Berechnung der Stirlingzahl 2. Art

Für alle $k, n \in \mathbb{N}$ mit $n \ge k$ gilt

$$S_{n,k} = S_{n-1,k-1} + k \cdot S_{n-1,k}.$$

Beweis:

- Sei $A = \{a_1, \dots, a_n\}$.
- Wir teilen die k-Partitionen A₁,..., A_k in zwei Klassen auf.
- Fall 1: $A_i = \{a_n\}$ für ein $i \in [k]$. Dann befinden sich a_1, \ldots, a_{n-1} in einer (k-1)-Partition. Dafür gibt es $S_{n-1,k-1}$ Möglichkeiten.
- Fall 2: $a_n \in A_i$ und $|A_i| > 1$. Die Mengen $A_1, \ldots, A_{i-1}, A_i \setminus a_n, A_{i+1}, \ldots, A_k$ bilden eine k-Partition für $\{a_1, \ldots, a_{n-1}\}$. Dafür gibt es $S_{n-1,k}$ Möglichkeiten. Zum Einsortieren von a_n in eine der Teilmengen gibt es k Möglichkeiten. Insgesamt also $k \cdot S_{n-1,k}$ Möglichkeiten.
- Die Summenregel liefert $S_{n,k} = S_{n-1,k-1} + k \cdot S_{n-1,k}$.

Beispiel: Rekursives Berechnen von $S_{4,2}$

Bsp:

- Anzahl der 2-Partitionen von A = [4]
- Fall 1: {4} ist eine Teilmenge. Die andere Teilmengen ist {1, 2, 3}.
- Fall 2: {4} ist in einer der drei 2-Partitionen von {1,2,3}:
 - $ightharpoonup \{1\} \cup \{2,3\} : \{1,4\} \cup \{2,3\}, \{1\} \cup \{2,3,4\}$
 - $\blacktriangleright \ \{1,2\} \cup \{3\} : \{1,2,4\} \cup \{3\}, \{1,2\} \cup \{3,4\}$
 - $\blacktriangleright \ \{1,3\} \cup \{2\} : \{1,3,4\} \cup \{2\}, \{1,3\} \cup \{2,4\}$
- D.h. $S_{4,2} = S_{3,1} + 2 \cdot S_{3,2} = 1 + 2 \cdot 3 = 7$.

Stirlingdreieck zweiter Art

Rekursionsformel: $S_{n,k} = S_{n-1,k-1} + k \cdot S_{n-1,k}$

0											
n = 0						1					
<i>n</i> = 1					0		1				
<i>n</i> = 2				0		1		1			
<i>n</i> = 3			0		1		3		1		
<i>n</i> = 4		0		1		7		6		1	
<i>n</i> = 5	0		1		15		25		10		1

Bellzahlen

Definition Bellzahlen

Sei A eine Menge mit n Elementen. Mit B_n bezeichnen wir die Anzahl aller Partitionen von A.

Bsp: $A = \{1, 2, 3\}$

- $\bullet \ \{1,2,3\}, \{1\} \cup \{2,3\}, \{1,2\} \cup \{3\}, \{1,3\} \cup \{2\}, \{1\} \cup \{2\} \cup \{3\}.$
- D.h. $B_3 = 5$.

Korollar Bellzahlen mittels Stirlingzahlen zweiter Art

$$B_n = \sum_{k=0}^n S_{n,k}.$$

• D.h. B_n ist die n-te Zeilensumme im Stirlingdreieck 2. Art.

Geordnete Zahlpartitionen

Definition Geordnete Zahlpartitionen

Sei $n \in \mathbb{N}$. Sei $Z_{n,k}$ die Anzahl der Möglichkeiten, n als Summe k positiver natürlicher Zahlen zu schreiben. Wir nennen $Z_{n,k}$ auch die Anzahl der *geordneten* k-Zahlpartitionen von n.

Bsp: 3-Zahlpartitionen von 5

- \bullet 1 + 1 + 3, 1 + 3 + 1, 3 + 1 + 1, 1 + 2 + 2, 2 + 1 + 2, 2 + 2 + 1
- D.h. $Z_{5,3} = 6$.

Spezialfälle:

- $Z_{n,n} = Z_{n,1} = 1$
- $Z_{n,k} = 0$ für k > n

Berechnung von $Z_{n,k}$

Satz Anzahl geordneter *k*-Zahlpartitionen von *n*

Seien $n, k \in N$. Dann gilt

$$Z_{n,k}=\binom{n-1}{k-1}.$$

Beweis:

Schreiben jede Zahl n als Summe von n Einsen, z.B.

$$5 = 1 + 1 + 1 + 1 + 1$$
.

• Wählen k-1 der n-1 Pluszeichen als Trennzeichen aus, z.B.

$$5 = 1 \oplus 1 + 1 \oplus 1 + 1 = 1 + 2 + 2$$
.

- Ziehen ohne Zurücklegen: Kein doppeltes Pluszeichen.
- ungeordnet: Reihenfolge der Pluszeichen ist ohne Belang.
- D.h. die Anzahl der geordneten k-Partitionen ist $\binom{n-1}{k-1}$.

Beispiel: Zählen von Lösungen

Bsp: Sei
$$X = \{(x_1, ..., x_k) \in \mathbb{N}_0^k \mid x_1 + ... + x_k = n\}$$
. Bestimme $|X|$.

- Problem: Summanden können Null sein.
- Wir addieren zu jedem der k Summanden eine Eins

$$x'_1 + \dots x'_k = n + k \text{ mit } x'_i \ge 1 \text{ für } i = 1, \dots, k.$$

- Jede Summe der x_i, die sich zu n aufaddieren entspricht eineindeutig einer geordneten k-Zahlpartition von n + k. (Isomorphismus)
- Mit Gleichheitsregel ergibt sich $|X| = \binom{n+k-1}{k-1}$.

Ungeordnete Zahlpartitionen

Definition Ungeordnete Zahlpartitionen

Sei $n \in \mathbb{N}$. Sei $P_{n,k}$ die Anzahl der Möglichkeiten n als Summe k positiver Zahlen zu schreiben, wobei die Reihenfolge der Summanden keine Rolle spielt. Wir nennen $P_{n,k}$ die Anzahl ungeordneter k-Zahlpartitionen von <math>n.

Bsp: *P*_{7,3}

- **●** 1+1+5, 1+2+4, 1+3+3, 2+2+3
- D.h. $P_{7,3} = 4$.

Spezialfälle:

- $P_{n,n} = P_{n,1} = 1$
- $P_{n,k} = 0$ für k > n
- $P_{0.0} := 1$

Rekursive Berechnung ungeordneter Zahlpartitionen

Satz Anzahl ungeordneter Zahlpartitionen

Für alle
$$k, n \in \mathbb{N}$$
 mit $k < n$ gilt $P_{n+k,k} = \sum_{j=1}^k P_{n,j}$.

Beweis:

• Wir zerlegen n + k in i Einsen-Summanden und k - i Summanden größer als 1, d.h.

$$n + k = 1 + \ldots + 1 + n_{i+1} + \ldots + n_k \text{ mit } n_j \ge 2 \text{ für } j = 1, \ldots, k.$$

• Wir subtrahieren Eins von jedem der Summanden

$$n = n'_{i+1} + \dots n'_k \text{ mit } n_j \ge 1 \text{ für } j = i+1,\dots,k.$$

- D.h. die n'_i bilden eine ungeordnete (k-i)-Zahlpartition von n.
- Andererseits liefert jede (k i)-Zahlpartition von n eineindeutig eine k-Zahlpartition von n mit genau i Einsen (Isomorphismus).
- Mit Gleichheitsregel: $P_{n+k,k}$ mit genau i Einsen ist $P_{n,k-i}$.
- Mit Summenregel: $P_{n+k,k} = \sum_{i=0}^{k-1} P_{n,k-i} = \sum_{i=1}^{k} P_{n,i}$.

Verteilen von Bällen auf Urnen

Szenario:

Wir verteilen *n* Bälle auf *m* Urnen, d.h.

$$f: B \rightarrow U \text{ mit } B = \{b_1, \dots, b_n\} \text{ und } U = \{u_1, \dots, u_m\}.$$

Dabei unterscheiden wir alle Kombinationen der folgenden Fälle

- Die Bälle sind unterscheidbar oder nicht unterscheidbar.
- Die Urnen sind unterscheidbar oder nicht unterscheidbar.

Für alle vier Kombinationen untersuchen wir die Fälle

- f beliebig, d.h. wir verteilen die Bälle beliebig.
- ② f injektiv, d.h. jede Urne enthält höchstens einen Ball.
- f surjektiv, d.h. jede Urne enthält mindestens einen Ball.
- f bijektiv, d.h. jede Urne enthält genau einen Ball.

Bälle und Urnen sind unterscheidbar

f beliebig:

• m Möglichkeiten für jeden der n Bälle, d.h. insgesamt m^n .

- **f** injektiv: Für $|B| = n \le m = |U|$ gilt:
 - m Möglichkeiten für den ersten Ball, m-1 für den zweiten, usw.
 - Insgesamt mⁿ Möglichkeiten.
- **f** bijektiv: Für |B| = n = m = |U| gilt:
 - m Möglichkeiten für den ersten Ball, m-1 für den zweiten, usw.
 - Insgesamt m! Möglichkeiten.

Bälle und Urnen sind unterscheidbar

f surjektiv: Für $|B| = n \ge m = |U|$ gilt:

- Definieren die Urbildmengen $T_u := \{f^{-1}(u) \mid u \in U\}.$
- Die T_u bilden eine m-Partition der Menge B.
- Damit gibt es S_{n,m} Möglichkeiten für die Urbildmenge B.
- Für jede m-Partition B_1, \ldots, B_m von B landen jeweils die Bälle aus einer Menge B_i gemeinsam in einer Urne.
- *m*! Möglichkeiten, eine *m*-Partition auf *m* Urnen zu verteilen.
- D.h. wir erhalten insgesamt $S_{n,m} \cdot m!$ Möglichkeiten.

Urnen unterscheidbar, Bälle nicht

Idee: Wir zählen nur die Anzahl der Bälle pro Urne.

f beliebig:

- Kodieren die Anzahl der Bälle mit insgesamt n Sternen.
- Unterscheiden die Urnen mit m-1 Trennstrichen.
- z.B. **|***| bedeutet 2 Bälle in u_1 , 3 in u_2 und 0 in u_3 .
- Anzahl Kodierungen mit *n* Sternen und m-1 Trennstrichen

Urnen unterscheidbar, Bälle nicht

- **f** injektiv: Für $|B| = n \le m = |U|$ gilt:
 - Wählen *n* aus den *m* Urnen aus, die genau einen Ball enthalten.
 - Insgesamt $\binom{m}{n}$ Möglichkeiten.
- **f** surjektiv: Für $|B| = n \ge m = |U|$ gilt:
 - Die Urne u_i enthalte x_i Bälle für i = 1, ..., m.
 - Die x_i bilden eine geordnete m-Zahlpartition von n, da

$$x_1 + x_2 + \ldots + x_m = n$$
.

• D.h. wir erhalten $\binom{n-1}{m-1}$ Möglichkeiten.

- **f** bijektiv: Für |B| = n = m = |U| gilt:
 - Jede Urne enthält einen Ball: Genau eine Möglichkeit.

Bälle und Urnen nicht unterscheidbar

Idee: Anzahl Bälle in Urnen entscheidend, Reihenfolge belanglos.

f beliebig:

- Angenommen, es werden genau k der n Urnen belegt.
- Sei B_1, \ldots, B_k eine k-Partition von Bällen, so dass jeweils alle Bälle aus B_i gemeinsam in einer Urne landen.
- $|B_1| + \ldots + |B_k| = n$, d.h. die $|B_i|$ bilden eine Zahlpartition von n.
 - Dies ist eine ungeordnete Zahlpartition (Urnen ununterscheidbar).
- D.h. wir erhalten für ein festes k genau $P_{n,k}$ Möglichkeiten.
- Insgesamt erhalten wir damit $\sum_{k=1}^{m} P_{n,k}$ Möglichkeiten.

f surjektiv: Für $|B| = n \ge m = |U|$ gilt:

• Da m Urnen belegt sind: $P_{n,m}$ Möglichkeiten.

Bälle und Urnen nicht unterscheidbar

- **f** injektiv: Für $|B| = n \le m = |U|$ gilt:
 - Jede der belegten Urnen enthält einen Ball: 1 Möglichkeit.
- **f** bijektiv: Für |B| = n = m = |U| gilt:
 - Alle Urnen enthalten genau einen Ball: 1 Möglichkeit.

Bälle unterscheidbar, Urnen nicht

Idee: Entspricht Partitionierung der Bälle.

f beliebig:

- Seien genau k Urnen belegt.
- Sei B_1, \ldots, B_k eine k-Partition von B, so dass alle Bälle in B_i gemeinsam in einer Urne landen.
- Die Anzahl der k-Partitionen von B beträgt $S_{n,k}$ für festes k.
- Insgesamt $\sum_{k=1}^{m} S_{n,k}$ Möglichkeiten.

f surjektiv: Für $|B| = n \ge m = |U|$ gilt:

• Entspricht einer m-Partition von B, d.h $S_{n,m}$ Möglichkeiten.

Bälle unterscheidbar, Urnen nicht

f injektiv: Für
$$|B| = n \le m = |U|$$
 gilt:

• In jeder Urne höchstens ein Ball: 1 Möglichkeit.

f bijektiv: Für
$$|B| = n = m = |U|$$
 gilt:

In jeder Urne genau ein Ball: 1 Möglichkeit.

Zusammenfassung

B =n,	beliebig	injektiv	surjektiv	bijektiv
U =m		$n \leq m$	$n \ge m$	n = m
Bälle und				
Urnen	m ⁿ	<i>m</i> <u>n</u>	$S_{n,m} \cdot m!$	<i>m</i> !
unterscheidbar				
Bälle gleich,				
Urnen	$\binom{n+m-1}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$	1
unterscheidbar		(11)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Bälle unter-				
scheidbar,	$\sum_{k=1}^m S_{n,k}$	1	$S_{n,m}$	1
Urnen nicht	,			
Bälle und				
Urnen ununter-	$\sum_{k=1}^{m} P_{n,k}$	1	$P_{n,m}$	1
scheidbar				

Überblick über Graphentheorie

Ungerichtete Graphen:

- Baum, Spannbaum, Prüfercode
- Traversierung von Graphen: Breiten- und Tiefensuche
- Besuchen aller Kanten, Besuchen aller Knoten
- Färben von Knoten und Kanten, Matching

Gerichtete Graphen:

- Kreisfreiheit, topologische Sortierung
- Wurzelbaum

Ungerichtete Graphen

Definition Ungerichteter Graph

Ein ungerichteter Graph ist ein Tupel G = (V, E) mit

- der Knotenmenge $V = \{v_1, \dots, v_n\}$ und
- der Kantenmenge $E = \{e_1, \dots, e_m\} \subseteq \{\{u, v\} \mid u, v \in V, u \neq v\}.$

D.h. insbesondere sind **nicht** erlaubt:

- Schlingen bzw. Selbstkanten $\{v, v\} \in E$
- Mehrere Kanten zwischen denselben Knoten, d.h. E ist keine Multimenge.

Motivation für Graphprobleme

Szenario:

- Wir veranstalten ein Turnier mit fünf Teilnehmern a, b, c, d, e.
- Jeder soll gegen jeden Spielen, d.h. $\binom{5}{2} = 10$ Partien.
- Keiner soll in aufeinanderfolgenden Spielen antreten.

Modellierung als Graph:

- Wir stellen alle Paarungen als Knoten in einem Graph dar.
- Wir verbinden zwei Knoten, falls sie disjunkte Mannschaften enthalten.

Graphproblem:

- Bestimme einen Pfad, der alle Knoten genau einmal besucht.
- Der Pfad bestimmt die Reihenfolge der Partien.

Isomorphie von Graphen

Definition Isomorphe Graphen

Seien $G_1 = (V_1, E_1)$ und $G_2 = (V_2, E_2)$ ungerichtete Graphen. G_1 ist isomorph zu G_2 , falls es eine Bijektion $f: V_1 \rightarrow V_2$ gibt mit

$$\{u,v\} \in E_1 \Leftrightarrow \{f(u),f(v)\} \in E_2.$$

Bsp: Anzahl der isomorphen Graphen mit *n* Knoten

- n = 1: Nur ein Graphen möglich.
- n = 2: Zwei Graphen, mit einer und keiner Kante.
- n = 3: Vier Graphen, mit Kantenzahl 0, 1, 2, 3.

Anzahl der Isomorphieklassen für Graphen bis n = 9

•					•				
n	1	2	3	4	5	6	7	8	9
Anzahl Graphen	1	2	4	11	34	156	1044	12344	308168

Spezielle Graphen

vollständiger Graph K_n :

• K_n enthält n vollständig miteinander verbundene Knoten.

Pfad P_n :

- P_n enthält n Knoten v_1, \ldots, v_n .
- $E = \{\{v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_{n-1}, v_n\}\}$

Kreisgraph C_n:

- C_n enthält n Knoten v_1, \ldots, v_n .
- $\bullet \ E = \{\{v_1,v_2\},\{v_2,v_3\},\dots,\{v_{n-1},v_n\},\{v_n,v_1\}\}$

Spezielle Graphen

Gittergraph $M_{n,m}$:

- M_{n,m} enthält n Zeilen mit jeweils m Knoten.
- Die Knoten jeder Zeile sind als Pfad verbunden.
- Die Knoten jeder Spalte sind ebenfalls als Pfad verbunden.

d-dimensionaler Hyperwürfel Q_n :

- $V = \{0, 1\}^d$
- $E = \{\{u, v\} \in V^2 \mid u, v \text{ unterscheiden sich in einer Stelle.}\}$

Nachbarschaft, Grad, regulär, Inzidenz

Definition Eigenschaften von Graphen

Sei G = (V, E) ein ungerichteter Graph.

- ① Die Nachbarschaftschaft $\Gamma(u)$ eines Knoten $u \in V$ ist $\Gamma(u) := \{ v \in V \mid \{u, v\} \in E \}.$
- ② Der *Grad* deg(u) eines Knotens u ist deg(u) := $|\Gamma(u)|$.
- G heißt k-regulär gdw jeder Knoten in G Grad k besitzt.
- Falls $e = \{u, v\} \in E$, dann heißen u and v adjazent. Man nennt die Endpunkte u und v von e die zu e inzidenten Knoten.

Handschlaglemma

Satz Handschlaglemma

Für jeden Graphen G = (V, E) gilt $\sum_{v \in V} \deg(v) = 2 \cdot |E|$.

Beweis:

Zählen für jeden Knoten die Anzahl seiner Nachbarn

$$\textstyle \sum_{v \in V} \mathsf{deg}(v) = \textstyle \sum_{v \in V} |\Gamma(v)| = \textstyle \sum_{u \in V} |\{v \in V \mid \{u,v\} \in E\}|.$$

• Zählen dabei jede Kante $e = \{u, v\}$ genau zweimal: Einmal bei den Nachbarn von v und einmal bei den Nachbarn von u.

Handschlaglemma Teil 2

Lemma Knoten mit geradem Grad

Sei G = (V, E) ein ungerichteter Graph. Die Anzahl der Knoten in G mit ungeradem Grad ist gerade.

- Wir partitionieren V in Knoten mit geradem/ungeradem Grad: $V_g := \{v \in V \mid \deg(v) \text{ gerade }\}, \ V_u := \{v \in V \mid \deg(v) \text{ ungerade}\}.$
- Es gilt $2|E| = \sum_{v \in V} \deg(v) = \sum_{v \in V_q} \deg(v) + \sum_{v \in V_u} \deg(v)$.
- $\sum_{v \in V_a} \deg(v)$ ist gerade, da jeder Summand gerade ist.
- Daher ist $\sum_{v \in V_u} \deg(v)$ ebenfalls gerade, sonst könnte die Summe nicht gerade sein.
- $\sum_{v \in V_u} \deg(v)$ enthält nur ungerade Summanden.
- D.h. $|V_u|$ muss gerade sein.

Weg, Pfad, Kreis

Definition Weg, Pfad, Kreis

Sei G ein ungerichteter Graph.

- Eine Knotenfolge $(v_0, \ldots, v_k) \in V^{k+1}$ mit $\{v_i, v_{i+1}\} \in E$ für $0 \le i < k$ heißt *Weg der Länge* k mit Anfangsknoten v_0 und Endknoten v_k .
- Ein knotendisjunkter Weg heißt Pfad.
- Ein u-v Weg/Pfad ist ein Weg/Pfad mit Anfangsknoten u und Endknoten v.
- **③** Ein Kreis der Länge k, k > 2 ist eine knotendisjunkte Folge (v_0, \ldots, v_{k-1}) mit $\{v_i, v_{i+1 \mod k}\}$ ∈ E für $0 \le i < k$.

Schwacher/induzierter Teilgraph

Definition Schwacher und induzierter Teilgraph

Sei G = (V, E) ein ungerichteter Graph und $V' \subseteq V$.

- Sei $E_1 \subseteq \{\{u, v\} \in E \mid u, v \in V'\}$. Dann heißt $G_1 = (V', E_1)$ schwacher Teilgraph von G.
- Sei $E_2 = \{\{u, v\} \in E \mid u, v \in V'\}$. Dann heißt $G_2 = (V', E_2)$ der von V' induzierte Teilgraph. Wir schreiben auch $G_2 = G[V']$.

Zusammenhang

Definition Zusammenhängend, Zusammenhangskomponente

Sei G = (V, E) ein ungerichteter Graph.

- **1** G ist zusammenhängend gdw für alle $u, v \in V$ ein u-v Pfad in G existiert.
- ② Sei G nicht zusammenhängend und $V' \subseteq V$ maximal mit der Eigenschaft, dass für alle $u, v \in V'$ ein u-v Pfad in G[V'] existiert. Dann heißt G[V'] Zusammenhangskomponente (ZHK).

Beispiel:

- Wir betrachten die Relation $R = \{(u, v) \in V^2 \mid \{u, v\} \in E\}.$
- Sei $R^* = \{(u, v) \in V^2 \mid \text{Es existiert ein } u\text{-}v \text{ Pfad in G}\}.$
- R* heißt reflexive, transitive Hülle von R.
- R* ist Äquivalenzrelation, d.h. reflexiv, symmetrisch und transitiv.
- Die Äguivalenzklassen definieren die ZHKs von G.

Anzahl Zusammenhangskomponenten

Satz Anzahl ZHKs

Sei G = (V, E) mit $V = \{v_1, \dots, v_n\}$ und $E = \{e_1, \dots, e_m\}$. Dann besitzt G mindestens n - m Zusammenhangskomponenten.

- Induktion über die Kantenanzahl m.
- IV für m = 0: Dann besitzt G die ZHKs $G[v_1], \ldots, G[v_n]$.
- **IS** $(m-1 \to m)$: Sei $e_m = \{u, v\}$ und $E' = E \setminus \{e_m\}$.
- Nach IA besitzt G' = (V, E') mindestens n (m 1) ZHKs.
- Fall 1: u, v liegen in derselben ZHK von G'.
 - ▶ Dann besitzt G mindestens n − m + 1 ZHKs.
- Fall 2: *u*, *v* liegen in verschiedenen ZHKs von *G'*.
 - ightharpoonup Dann besitzt G mindestens n-m Zusammenhangskomponenten.

Für zusammenhängende Graphen

Korollar Kanten in zusammenhängendem Graph

Sei G = (V, E) ein ungerichteter, zusammenhängender Graph. Dann gilt $|E| \ge |V| - 1$.

- In jedem Graph ist die Anzahl der ZHKs mindestens |V| |E|.
- Da G zusammenhängend ist, besitzt G genau eine ZHK. Damit $\#(ZHK(G))=1 \ge |V|-|E|.$
- Es folgt $|E| \ge |V| 1$.

Bäume und Wälder

Definition Baum und Wald

Sei G ein ungerichteter Graph.

- G heißt kreisfrei gdw kein schwacher Teilgraph von G ein Kreis ist.
- ② G heißt Baum gdw G kreisfrei und zusammenhängend ist.
- G heißt Wald gdw die ZHKs von G Bäume sind.
- 4 Jeder Knoten v eines Baums mit deg(v) = 1 heißt Blatt.

Eigenschaften von Bäumen

Satz Eigenschaft von Bäumen

Sei G = (V, E) ein ungerichteter Graph. Folgende Aussagen sind äquivalent:

- G ist ein Baum.
- ② Für alle $u, v \in V$ existiert genau ein u-v Pfad in G.
- ③ G ist zusammenhängend, aber $G' = (V, E \setminus \{e\})$ ist für alle $e \in E$ nicht zusammenhängend.
- 4 G ist zusammenhängend und besitzt genau n-1 Kanten.
- **o** G ist kreisfrei und besitzt genau n-1 Kanten.
- **o** G ist kreisfrei und für alle nicht adjazenten $u, v \in V$ gilt

 $G' = (V, E \cup \{u, v\})$ enthält einen Kreis.

Beweis: Durch Ringschluss $1 \Rightarrow 2 \Rightarrow ... \Rightarrow 6 \Rightarrow 1$.

Ringschluss $1 \Rightarrow 2$

Lemma Ringschluss 1 ⇒ 2

Sei G ein Baum. Dann existiert für alle $u, v \in V$ genau ein u-v Pfad.

Beweis:

Da G zusammenhängend ist, existiert ein u-v Pfad

$$p = (v_0 = u, \dots, v_k = v) \text{ in } G.$$

• Annahme: Es existiert ein zweiter *u-v* Pfad

$$p' = (v'_0 = u, \dots, v'_t = v)$$
 in G.

- Sei r minimal mit $v_{r+1} \neq v'_{r+1}$, d.h. die Pfade gabeln sich bei v_r .
- Sei v_{ℓ} , $\ell > r$ der erste Knoten im Pfad (v_{r+1}, \ldots, v_k) , der auch im Pfad (v'_{r+1}, \ldots, v'_t) auftritt.
- D.h. beide Pfade werden bei v_ℓ wieder zusammengeführt.
- Man beachte, dass ein solcher Knoten v_ℓ existieren muss, da p und p' denselben Endknoten besitzen.
- Damit ist $(v_r, v_{r+1}, \dots, v_{\ell}, \dots, v'_{r+2}, v'_{r+1})$ ein Kreis in G. (Widerspruch zur Kreisfreiheit eines Baums G).

Ringschluss $2 \Rightarrow 3$

Lemma Ringschluss 2 ⇒ 3

Falls für alle $u, v \in V$ genau ein u-v Pfad existiert, dann ist G zusammenhängend, aber $G' = (V, E \setminus \{e\})$ ist für alle $e \in E$ nicht zusammenhängend.

- G ist zusammenhängend nach Definition.
- Sei $e = \{u, v\}$ beliebig.
- Nach Voraussetzung ist (u, v) der einzige u-v Pfad.
- D.h. $G' = (V, E \setminus \{e\})$ besitzt keinen u-v Pfad.
- Damit ist G' nicht zusammenhängend.

Ringschluss $3 \Rightarrow 4$

Lemma Ringschluss 3 ⇒ 4

Sei G zusammenhängend, aber $G' = (V, E \setminus \{e\})$ für alle $e \in E$ nicht zusammenhängend. Dann ist G zusammenhängend und besitzt genau n-1 Kanten.

- Durch Entfernen jeder beliebigen Kante aus E erhöht sich die Anzahl der ZHKs um Eins.
- G ist zusammenhängend, besitzt also eine ZHK.
- $G_1 = (V, E \setminus \{e_1\})$ besitzt 2 ZHKs.
- $G_2 = (V, E \setminus \{e_1, e_2\})$ besitzt 3 ZHKs, usw.
- Damit besitzt $G_{n-1} = (V, \emptyset)$ genau n ZHKs.
- G_{n-1} entsteht durch Entfernen aller m = n 1 Kanten.

Ringschluss $4 \Rightarrow 5$

Lemma Ringschluss $4 \Rightarrow 5$

G ist zusammenhängend mit genau n-1 Kanten gdw G kreisfrei mit genau n-1 Kanten ist.

Beweis: Richtung $4 \Rightarrow 5$

- Annahme: *G* besitzt einen Kreis $K = (v_0, \dots, v_{k-1})$.
- Da G zusammenhängend ist, müssen die n-k Knoten außerhalb des Kreises von den k Kreisknoten aus erreichbar sein.
- Einbinden der Nicht-Kreisknoten erfordert eine Kante pro Knoten.
- Damit besitzt G mindestens k + (n k) Kanten. (Widerspruch: G besitzt genau n - 1 Kanten.)

Rückrichtung 5 ⇒ 4

Beweis: Richtung $5 \Rightarrow 4$

- Fügen n-1 Kanten aus E sukzessive zu $G_0 = (V, \emptyset)$ hinzu.
- G_0 besitzt n Zusammenhangskomponenten.
- Müssen zeigen, dass jede Kante $e = \{u, v\}$ zwei verschiedene ZHKs verbindet.
- Annahme: u, v sind bereits durch einen u-v Pfad p verbunden.
- Dann schließt p zusammen mit e einen Kreis in G.
 (Widerspruch zur Kreisfreiheit von G)
- Damit verringert jede Kante die Anzahl der ZHKs um Eins.
- Da wir genau n-1 Kanten einfügen, besitzt G genau eine ZHK.
- D.h. G ist zusammenhängend.

Ringschluss $5 \Rightarrow 6$

Lemma Ringschluss 5 ⇒ 6

Sei G kreisfrei mit genau n-1 Kanten. Dann ist G kreisfrei und für alle nicht adjazenten $u,v\in V$ enthält $G'=(V,E\cup\{u,v\})$ einen Kreis.

- Wegen $5 \Rightarrow 4$ folgt, dass G zusammenhängend ist.
- D.h. für alle nicht adjazenten $u, v \in V$ existiert ein u-v Pfad p in G.
- Damit bildet p zusammen mit der Kante $\{u, v\}$ einen Kreis.

Ringschluss 6 ⇒ 1

Lemma Ringschluss 6 ⇒ 1

Sei G kreisfrei und für alle nicht adjazenten $u, v \in V$ enthalte $G' = (V, E \cup \{u, v\})$ einen Kreis. Dann ist G ein Baum.

- Fallunterscheidung für alle disjunkten $u, v \in V$:
- Fall 1: $\{u, v\} \in E$. Damit existiert ein u-v Pfad in G.
- Fall 2: $\{u,v\} \notin E$. Damit ist $\{u,v\}$ in einem Kreis K von G' enthalten. Entfernt man $\{u,v\}$ aus G', so erhält man G. Es existiert noch immer ein u-v Pfad in G, nämlich der Rest des Kreises K.
- Damit existiert f
 ür alle u, v ein u-v Pfad in G.
- D.h. G ist zusammenhängend und nach Voraussetzung kreisfrei, d.h. G ist ein Baum.

Anzahl von Kanten in Wäldern

Satz Anzahl Kanten im Wald

Sei G = (V, E) ein Wald mit k Bäumen. Dann besitzt G genau |V| - k Kanten.

- Seien $G[V_1], \ldots, G[V_k]$ die Bäume in G.
- Jeder Baum $G[V_i]$, $i \in [k]$ besitzt $|V_i| 1$ Kanten, d.h.

$$m = \sum_{i=1}^{k} (|V_i| - 1) = (\sum_{i=1}^{k} |V_i|) - k = |V| - k.$$

Spannbäume

Definition Spannbaum

Sei G = (V, E) ein zusammenhängender, ungerichteter Graph. Ein schwacher Teilgraph $T = (V, E_T)$ von G heißt Spannbaum gdw T ein Baum ist.

- Jeder zusammenhängende Graph G besitzt einen Spannbaum.
- Spannbäume von G sind im Allgemeinen nicht eindeutig.
- Konstruktion eines Spannbaumes durch Entfernen von Kreisen.

Berechnung von Spannbäumen

Algorithmus SPANNBAUM

EINGABE: G = (V, E) zusammenhängend

- Solange G = (V, E) einen Kreis K enthält.
 - **1** Wähle eine beliebige Kreiskante e aus K. Setze $E \leftarrow E \setminus \{e\}$.

AUSGABE: Spannbaum T = (V, E) von G

Satz Korrektheit von SPANNBAUM

Sei G = (V, E) zusammenhängend. Dann berechnet SPANNBAUM einen Spannbaum T von G in |E| - |V| + 1 Schleifendurchläufen.

Korrektheit und Laufzeit von SPANNBAUM

- Korrektheit: Wir zeigen, dass G stets zusammenhängend bleibt.
- Sei $K = (v_0, \dots, v_{k-1})$ ein Kreis in G.
- Wir entfernen eine Kreiskante $e = \{v_i, v_{i+1 \mod k}\}, i \in \mathbb{Z}_k$.
- Seien u, v Knoten mit einem u-v Pfad, der e verwendet.
- Ersetze e durch den Restkreis $(v_i, v_{i-1}, \dots, v_0, \dots, v_{i+1})$.
- Bei Terminierung ist G zusammenhängend und kreisfrei.
- SPANNBAUM muss terminieren, da die Kantenzahl sukzessive verringert wird.
- Laufzeit: T ist ein Spannbaum und besitzt daher |V| 1 Kanten.
- Jeder Schleifendurchlauf verringert die Kantenanzahl um Eins.
- D.h. die Anzahl Schleifendurchläufe ist |E| (|V| 1).

Markierte und isomorphe Spannbäume

Bsp:

- Der vollständige Graph K₂ ist selbst ein Spannbaum.
- Der K₃ besteht aus einem Kreis der Länge 3.
- Durch Entfernen einer Kanten entsteht ein Spannbaum.
- Alle 3 Spannbäume sind isomorph, sie unterscheiden sich lediglich durch die Knotenmarkierungen.
- Der K_4 besitzt 2 nicht-isomorphe Spannbäume, den C_4 und einen Sterngraphen mit einem Knoten vom Grad 3.

# Bäume \ V	2	3	4	5	6	7	8
markiert	1	3	16	125	1296	16807	262144
nicht-isomorph	1	1	2	3	6	11	23

Satz von Cayley

Satz von Cayley

Für $n \ge 2$ gibt es genau n^{n-2} markierte Bäume.

Beweisidee:

- Sei V = [n].
- Sei T_n die Menge der markierten Bäume mit n Knoten.
- Wir definieren eine bijektive Kodierung $f: T_n \to [n]^{n-2}$.
- Diese Kodierung bezeichnen wir als den Prüfercode eines Baums.
- Anwenden von *f* entspricht dem Kodieren im Prüfercode.
- Anwenden von f^{-1} entspricht dem Dekodieren im Prüfercode.
- Da *f* bijektiv ist, folgt $|T_n| = n^{n-2}$.

Berechnung von f

Algorithmus KODIERUNG

EINGABE: Baum $T = ([n], E) \in T_n$

- Setze *i* ← 1
- 2 Solange |V| > 2
 - Sei $v \in V$ das Blatt mit kleinster Markierung.
 - 2 $t_i \leftarrow \text{Nachbar von } v \text{ in } T.$

AUSGABE: Prüfercode (t_1, \ldots, t_{n-2})

Laufzeit:

- In jedem Schleifendurchlauf wird ein Knoten entfernt.
- D.h. Kodierung terminiert nach |V| 2 Durchläufen.

Korrektheit von KODIERUNG

Korrektheit:

- Zeigen: In jedem Baum T mit n > 2 Knoten existiert ein Blatt.
- T besitzt genau |E| = n 1 Kanten.
- Annahme: Alle Knoten besitzen Grad mindestens 2.
- Mit Handschlaglemma gilt

$$2 \cdot |E| = 2(n-1) = \sum_{v \in v} \deg(v) \ge 2n.$$

- Widerspruch, d.h. es muss einen Knoten mit Grad 1 geben.
- Zeigen nun: Durch Entfernen eines Blattes w bleibt T ein Baum.
- Seien $u, v \neq w$ Knoten mit u-v Pfad $p = (v_0 = u, \dots, v_k = v)$.
- w kann nicht in p enthalten sein, da alle inneren Knoten v_1, \ldots, v_{k-1} des Pfades mindestens Grad 2 besitzen.

Prüfercode und Grad der Knoten

Lemma Knoten im Prüfercode

Sei T = (V, E) ein Baum. Jedes $v \in V$ kommt im Prüfercode von T genau (deg(v) - 1)-mal vor.

- Blätter von T kommen im Prüfercode nicht vor.
- Sei ν ein innerer Knoten von T, d.h. $deg(\nu) \ge 2$.
- Fall 1: v ist bei Terminierung von KODIERUNG entfernt.
 - Dann war v im Laufe des Algorithmus ein Blatt.
 - ▶ Dazu wurden zunächst deg(v) 1 Nachbarn von v entfernt.
 - ▶ Pro Entfernen eines Nachbarn taucht *v* einmal im Prüferkode auf.
- Fall 2: v ist bei Terminierung nicht entfernt.
 - ▶ Analog zu Fall 1: deg(v) 1 Nachbarn wurden bereits entfernt.

Dekodieren des Prüfercodes

Algorithmus DEKODIERUNG

- EINGABE: $t_1, ..., t_{n-2} \in [n]$
 - $0 V \leftarrow [n]$
- 2 for $i \leftarrow 1$ to n
 - $odeg(i) \leftarrow 1$
 - 2 for $j \leftarrow 1$ to n-2
 - if $(i = t_j)$ then $\deg(i) \leftarrow \deg(i) + 1$
- **③** for i ← 1 to n − 2
 - Sei v kleinster Knoten mit deg(v) = 1.
 - $E \leftarrow E \cup \{v, t_i\}$
 - **3** deg(v) ← deg(v) − 1; deg(t_i) ← deg(t_i) − 1
- **③** Seien u, v die verbliebenen Knoten mit Grad 1. $E \leftarrow E \cup \{u, v\}$.

AUSGABE: Baum T = (V, E)

Korrektheit der DEKODIERUNG

Laufzeit:

• Terminierung nach $\mathcal{O}(n^2)$ Schleifendurchläufen.

Korrektheit:

- Schritt 1: Rekonstruktion der Knotenanzahl |V| = n.
- Schritt 2: Rekonstruktion aller Knotengrade aus T. Korrektheit folgt aus zuvor gezeigtem Lemma.
- Schritt 3: Erfolgt analog zur Kodierung:
 - Bestimmung des Blattes v mit kleinster Markierung.
 - ▶ Hinzufügen anstatt Entfernen der Kante $\{v, t_i\}$.
 - ▶ Anpassen der verbleibenden Nachbarzahl von v, t_i .
- D.h. DEKODIERUNG fügt in der i-ten Iteration von Schritt 3 diejenige Kante {v, t_i} in T ein, die im i-ten Schritt von KODIERUNG entfernt wurde.

Speicherung von Graphen

Definition Adjazenzmatrix und Adjazenzliste

Sei G = ([n], E) ein ungerichteter Graph.

① Die Adjazenzmatrix $A = (a_{u,v}) \in \{0,1\}^{n \times n}$ von G ist definiert als

$$a_{u,v} = \begin{cases} 1 & \text{falls } \{u,v\} \in E \\ 0 & \text{sonst} \end{cases}$$
.

Die Adjazenzliste A[1 ... n] von G ist ein Array von n verketteten Listen. Die i-te verkettete Liste A[i] beinhaltet alle Nachbarn von i in aufsteigend sortierter Reihenfolge.

Vergleich der Darstellungen: Sei $min_{u,v} := min\{deg(u), deg(v)\}.$

	Speicherbedarf	{ <i>u</i> , <i>v</i> } ∈ <i>E</i> ?	Bestimme $\Gamma(v)$
Adjazenzmatrix	$\Theta(n^2)$	<i>O</i> (1)	$\mathcal{O}(n)$
Adjazenzliste	$\Theta(n+m)$	$\mathcal{O}(min_{u,v})$	$\Theta(\deg(v))$

Datenstruktur Warteschlange

Datenstruktur Warteschlange

Sei *U* eine Menge. Eine *Warteschlange bzw. Queue Q* ist eine Datenstruktur auf *U* mit den folgenden Operationen:

- Generieren einer Queue: Q ← new Queue.
- ② Einfügen von $u \in U$ in Q: Q.Enqueue(u).
- Prüfung auf Leerheit von Q: Q.Isempty().
- Entfernen des zuerst eingefügten Elements in Q: Q.Dequeue().

Bemerkungen:

- Queue ist eine FIFO-Datenstruktur, d.h. first in, first out.
- Wir nehmen an, dass alle Operationen Laufzeit $\mathcal{O}(1)$ benötigen.

Datenstruktur Stack

Datenstruktur Stack

Sei *U* eine Menge. Ein *Stapel bzw. Stack S* ist eine Datenstruktur auf *U* mit den folgenden Operationen:

- Generieren eines Stacks S: S ← new Stack.
- 2 Einfügen von *u* in *S*: *S*.Push(u).
- Test auf Leerheit von S: S.Isempty()
- Entfernen des zuletzt eingefügten Elements in S: S.Pop()

Bemerkungen:

- Stack ist eine LIFO-Datenstruktur, d.h. last in, first out.
- ullet Wir nehmen an, dass alle Operationen Laufzeit $\mathcal{O}(1)$ benötigen.

Breitensuche BFS (Breadth First Search)

Algorithmus Breitensuche

EINGABE: G = (V, E) als Adjazenzliste, Startknoten $s \in V$

- Für alle $v \in V$
 - If (v = s) then $d[v] \leftarrow 0$ else $d[v] \leftarrow \infty$;
 - ② pred[v] ← nil;
- ② Q ← new Queue; Q.Enqueue(s);
- While (Q.Isempty() \neq TRUE)
 - $v \leftarrow Q$. Dequeue(Q);
 - 2 Für alle $u \in \Gamma(v)$
 - **1** If $d[u] = \infty$ then $d[u] \leftarrow d[v] + 1$; pred[u] ← v; Q.Enqueue(u);

AUSGABE: Arrays d[v], pred[v] für alle $v \in V$

Kürzeste u-v Pfade

Satz Kürzeste u-v Pfade

BREITENSUCHE berechnet bei Eingabe G = (V, E), v für jeden Knoten $u \in V$ einen kürzesten u-v Pfad $p = (u, \operatorname{pred}[u], \operatorname{pred}[\operatorname{pred}[u]], \dots, v)$ in Zeit $\mathcal{O}(|V| + |E|)$.

Beweis: Korrektheit

- p ist ein Pfad, denn kein Knoten wird zweimal in Q eingefügt.
- Wegen $d[\operatorname{pred}[u]] = d[u] 1, \dots, d[v] = 0$ besitzt p Länge d[u].
- Annahme: \exists Pfad $p' = (u = v_0, \dots, v = v_k)$ mit Länge k < d[u].
- Für jede Kante $\{u', v'\} \in E$ gilt $d[u'] \le d[v'] + 1$. Damit folgt $d[u] \le d[v_1] + 1 \le \ldots \le d[v_k] + k = k.$ (Widerprush $v_k \in d[v_k]$)

(Widerspruch zu k < d[u].)

Laufzeit Breitensuche

Beweis: Laufzeit

- Schritt 1: $\mathcal{O}(|V|)$, Schritt 2: $\mathcal{O}(1)$.
- Schritt 3: Sei s in der ZHK $V' \subset V$.
- Für alle $v \in V'$ werden alle Nachbarn $u \in \Gamma(v)$ besucht, d.h.

$$\textstyle \sum_{v \in V'} |\Gamma(v)| \leq \textstyle \sum_{v \in V} \deg(v) = 2|E|.$$

Damit ist die Laufzeit von Schritt 3 $\mathcal{O}(|E|)$.

Spannbaum mit kürzesten u-v Pfaden

Satz Spannbaum mit kürzesten *u-v* Pfaden

BREITENSUCHE berechnet bei Eingabe eines zusammenhängenden G=(V,E) und $v\in V$ in Zeit $\mathcal{O}(|V|+|E|)$ einen Spannbaum $T=(V,E'), E'=\{\{u,\operatorname{pred}(u)\}\mid u\in V\setminus\{v\}\}$ mit kürzesten u-v Pfaden.

- Kürzeste u-v Pfade in G sind von der Form $(u, \text{pred}[u], \dots, v)$.
- Wegen $E' = \{\{u, \operatorname{pred}(u)\} \mid u \in V \setminus \{v\}\}\ \text{gilt } |E'| = n 1.$
- Zeigen nun, dass G zusammenhängend ist. Damit folgt zusammen mit |E'| = n 1, dass T ein Baum ist.
- Für alle $u, w \in V$ sind $p_u = (u, \operatorname{pred}[u], \dots, v)$ und $p_w = (w, \operatorname{pred}[w], \dots, v)$ ein u-v bzw. ein w-v Pfad.
- Fall 1: p_u, p_w sind bis auf v knotendisjunkt. Dann ist $p = (u, \text{pred}[u], \dots, v_k, \dots, \text{pred}[w], w)$ ein u-w Pfad.
- Fall 2: p_u, p_w sind nicht knotendisjunkt. Dann ist p aus Fall 1 ein u-w Weg. Dieser kann zu einem u-w Pfad verkürzt werden.

Zusammenhangskomponenten

Algorithmus Vollständige Breitensuche

- EINGABE: G = (V, E)
 - **○** Setze $i \leftarrow 1$.
 - ② While $V \neq \emptyset$
 - Starte Breitensuche in beliebigem Startknoten $s \in V$.
 - $2 V_i \leftarrow \{v \in V \mid d[v] < \infty\}.$

AUSGABE: ZHKs $G[V_1], \ldots, G[V_k]$

Laufzeit für ZHKs

Satz Berechnung von ZHKs

VOLLSTÄNDIGE BREITENSUCHE berechnet bei Eingabe G = (V, E) die ZHKs von G in Zeit $\mathcal{O}(|V| + |E|)$.

- Laufzeit: Jeder Knoten wird genau einmal in Q eingefügt. Laufzeit: $\mathcal{O}(|V|)$.
- Jede Kante $\{u, v\}$ wird einmal bei den Nachbarn von u und einmal bei den Nachbarn von v betrachtet. Laufzeit: $\mathcal{O}(|E|)$.
- Korrektheit: Folgt aus den Sätzen zuvor.

Tiefensuche DFS (Depth First Search)

Algorithmus TIEFENSUCHE

EINGABE: G = (V, E) als Adjazenzliste, Startknoten $s \in V$

- Für alle $v \in V$
 - pred[v] \leftarrow nil;
- 2 $S \leftarrow \text{new Stack}; S.\text{Push}(s);$
- **3** While (S.Isempty() \neq TRUE)
 - $v \leftarrow S.Pop();$
 - 2 If $(\exists u \in \Gamma(v) \setminus \{s\} \text{ mit pred}[u] = \text{nil})$ then
 - S.Push(v); S.Push(u);
 - 2 pred[u] $\leftarrow v$;

AUSGABE: pred[v] für alle $v \in V$

Rekursive Version von DFS

Algorithmus Rekursive Tiefensuche

EINGABE: G = (V, E) als Adjazenzliste, Startknoten $s \in V$

- Für alle $v \in V$
 - pred[v] \leftarrow nil;
- OFS-rekursiv(s);

Funktion DFS-rekursiv(v)

- **○** While $(\exists u \in \Gamma(v) \setminus \{s\} \text{ mit pred}[u] = \text{nil})$
 - pred[u] $\leftarrow v$;
 - OFS-rekursiv(u);

AUSGABE: pred[v] für alle $v \in V$

Anmerkung:

• Die rekursiven Aufrufe simulieren den Stack S.

Berechnung eines Spannbaums

Satz Berechnung eines Spannbaums

TIEFENSUCHE berechnet bei Eingabe eines zusammenhängenden G = (V, E) und $v \in V$ in Zeit $\mathcal{O}(|E|)$ einen Spannbaum T = (V, E') mit $E' = \{\{u, \operatorname{pred}[u]\} \mid u \in V \setminus \{v\}\}.$

- Korrektheit: Es gilt |E'| = n 1.
- Falls T zusammenhängend ist, so ist T ein Baum.
- Für jeden Knoten $u \in V \setminus \{v\}$ ist $(u, \operatorname{pred}[u], \operatorname{pred}[pred[u]], \dots, v)$ ein u-v Pfad.
- Konstruktion von u-w Pfaden für alle u, $w \in V$ analog zu BFS.
- Laufzeit: Analog zur Analyse bei BFS.

Wurzelbäume

Definition Wurzelbaum

Sei T = (V, E) ein Baum und $v \in V$. Wir definieren den in v gewurzelten Baum T_v wie folgt.

- v heißt Wurzel des Baums.
- Alle zu v adjazenten Knoten u heißen Kinder des Vater-/bzw. Elternknotens v.
- Sinder mit gleichem Elternknoten heißen Geschwister.
- Sei u ein Kind von v. Dann ist u Wurzel eines Teil-Baums, dessen Kinder die Elemente der Menge $\Gamma(u) \setminus \{v\}$ sind.
- **5** Sei u ein Knoten mit u-v Pfad der Länge k. Dann gilt Tiefe[u] = k.
- **1** Die *Höhe* des Baums T_v ist $h(T_v) = \max_{u \in V} \{\text{Tiefe}[u]\}.$

Binärbäume

Definition Binärbaum

Sei $T_v = (V, E)$ ein in v gewurzelter Baum.

- T_v heißt Binärbaum, falls jeder Knoten höchstens zwei Kinder besitzt.
- Ein Binärbaum heißt *vollständig*, falls jedes Nicht-Blatt genau zwei Kinder besitzt und alle Blätter gleiche Tiefe haben.

Bemerkungen:

- Vollständige Binärbäume können als Array realisiert werden.
- Dabei erhalten Knoten in Tiefe t Indizes $2^t, \ldots, 2^{t+1} 1$.
- Die Kinder eines Nicht-Blatts i besitzen Indizes 2i und 2i + 1.
- Der Vaterknoten eines Knotens i ist $\lfloor \frac{i}{2} \rfloor$.
- Vollständige Bäume mit n Knoten besitzen Höhe $\Theta(\log n)$.

Binäre Suchbäume

Definition Binärer Suchbaum

Sei $T_v = (V, E)$ ein Binärbaum mit $V \subseteq \mathbb{Z}$. T_v heißt *Suchbaum*, falls für alle $u \in V$ gilt

- Für alle u_l im linken Teilbaum von u gilt $u_l \le u$.
- ② Für alle u_r im rechten Teilbaum von u gilt $u_r \ge u$.

Suche in Binärbäumen

Algorithmus SUCHE-ELEMENT

```
EINGABE: Suchbaum T_V = (V, E), u
```

- While ($w \neq u$ und w ist kein Blatt)
 - If $(u \le w)$ then $w \leftarrow$ linkes Blatt von w.
 - 2 Else $w \leftarrow$ rechtes Kind von w.

```
AUSGABE: \begin{cases} u \text{ gefunden} & \text{, falls } w = u \\ u \text{ nicht gefunden} & \text{, sonst} \end{cases}
```

Laufzeit:

- Die Laufzeit ist $\mathcal{O}(h(T_v))$.
- Verschiedene Strategien, um $h(T_v) = \mathcal{O}(\log |V|)$ zu erzwingen: höhen-/gewichtsbalancierte Bäume, Rot-Schwarz-Bäume, etc.

Hamiltonscher Kreis

Definition Hamiltonscher Kreis

Sei G = (V, E) ein zusammenhängender Graph.

- Ein Hamiltonscher Kreis in G ist ein Kreis, der alle Knoten enthält.
- 2 Graphen mit Hamiltonkreis bezeichnet man als hamiltonsch.

Bsp:

- 5 Personen setzen sich an einen runden Tisch.
- Frage: Gibt es zwei Konstellationen, bei denen jeder andere Nachbarn besitzt?
- Modellierung als Graphproblem: u, v sind Nachbarn, falls $\{u, v\}$ Kante eines Hamiltonkreises ist.
- D.h. wir suchen zwei Konstellationen mit kantendisjunkten Hamiltonkreisen.
- Der K_5 besitzt zwei kantendisjunkte Hamiltonkreise.

Naiver Algorithmus für Hamiltonkreis

Algorithmus HAMILTON

EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung

- **1** Für alle Permutationen $\pi : [n] \rightarrow [n]$.
 - Falls $(\pi(1), \pi(2), \dots, \pi(n))$ ein Kreis in G ist, AUSGABE "G hamiltonsch", EXIT.
- 2 AUSGABE "G nicht hamiltonsch".
 - Korrektheit: HAMILTON testet alle möglichen Hamiltonkreise.
 - Laufzeit: Schleife 1 durchläuft n! viele Iterationen.
 - Stirling-Formel liefert $n! = \Theta\left(\sqrt{n}\left(\frac{n}{e}\right)^n\right)$.
 - D.h. die Laufzeit ist exponentiell in n.
 - In Diskrete Mathematik 2: Vermutlich gibt es für allgemeine Graphen keinen Algorithmus mit Laufzeit polynomiell in n.

Hamiltonkreis in dichten Graphen

Satz Hinreichendes Kriterium für hamiltonsch

Sei G = (V, E) mit $deg(u) + deg(v) \ge |V|$ für alle $u, v \in V$. Dann ist G hamiltonsch.

- Annahme: G = (V, E) besitze keinen Hamiltonkreis.
- Sei *E* maximal, so dass *G* nicht hamiltonsch ist.
- D.h. für alle $\{u, v\} \notin E$ ist $G' = (V, E \cup \{u, v\})$ hamiltonsch.
- Sei $K = (u = v_{\pi(1)}, v_{\pi(2)}, \dots, v = v_{\pi(n)})$ ein Hamiltonkreis in G'.
- Wir definieren $S = \Gamma(u)$ und $T = \{v_{\pi(i)} \in K \mid \{v, v_{\pi(i-1)}\} \in E\}.$
- Es gilt $u \notin S$ und $u \notin T$. Damit ist $|S \cup T| \le n 1$.
- Andererseits gilt $|S| + |T| = \deg(u) + \deg(v) \ge n$.
- Schubfachprinzip: Es gibt ein $j \in \{2, ..., n-1\}$ mit $v_{\pi(j)} \in S \cap T$.
- Damit ist sowohl $\{u, v_{\pi(j)}\} \in E$ als auch $\{v, v_{\pi(j-1)}\} \in E$.
- D.h. $(u, v_{\pi(j)}, v_{\pi(j+1)}, \dots, v, v_{\pi(j-1)}, \dots, v_{\pi(2)})$ ist Hamiltonkreis. (Widerspruch zur Annahme, dass G nicht hamiltonsch ist.)

Algorithmus für dichte Graphen

Algorithmus DENSE-HAMILTON

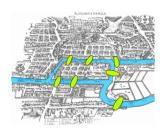
EINGABE: G = ([n], E) mit $deg(u) + deg(v) \ge n$ für alle $u, v \in V$.

- Setze $K = (v_0, v_1, \dots, v_{n-1}) \leftarrow (1, 2, \dots, n)$
- 2 While (K ist kein Kreis in G)
 - Wende auf K die Konstruktion aus dem Beweis zuvor an.

AUSGABE: Hamiltonkreis K

- Korrektheit: Fügen in jeder Iteration zwei Kreiskanten hinzu.
- Laufzeit: $\mathcal{O}(n)$ Iterationen.

Königsberger Brückenproblem (Euler 1736)



Frage: Gibt es einen Rundweg durch Königsberg, der alle Brücken genau einmal verwendet?

Definition Eulertour

Sei G = (V, E) zusammenhängend.

- Eine *Eulertour* in *G* ist ein Weg, der alle Kanten genau einmal besucht und bei dem Anfangs- und Endknoten übereinstimmen.
- 2 Falls G eine Eulertour enthält, heißt G eulersch.

Kriterium für eulersche Graphen

Satz Eulerscher Graph

Sei G = (V, E) zusammenhängend. G ist eulersch gdw $\deg(v)$ gerade ist für alle $v \in V$.

Beweis: ⇒

- Sei G eulersch mit Eulertour $p = (v_0, v_1, \dots, v_k, v_0)$.
- Jeder Knoten $v \neq v_0$ komme t-mal in p vor.
- Dann ist deg(v) = 2t gerade.
- Der Knoten v_0 komme t + 2-mal, $t \ge 0$, in p vor.
- Dann ist $deg(v_0) = 2t + 2$ ebenfalls gerade.

deg(v) gerade \Rightarrow *G* eulersch

Algorithmus EULERTOUR

EINGABE: G = (V, E) zusammenhängend mit geraden Knotengraden

- **○** Wähle Weg $W_0 \leftarrow (v)$ für ein beliebiges $v \in V$. Setze $i \leftarrow 0$.
- While (nicht alle Kanten von G besucht)
 - $0 i \leftarrow i + 1$
 - ② Wähle Knoten v_i in $W_{i-1} = (v_0, \dots, v_k = v_0)$, der zu nicht besuchter Kante $\{v_i, u\}$ inzident ist.
 - **3** Konstruiere Weg $W'_i = (v_i, u, \dots, v_i)$.

AUSGABE: Eulertour W_i

Korrektheit von EULERTOUR

Korrektheit:

- Bei Terminierung sind alle Kanten besucht.
- EULERTOUR terminiert, da G zusammenhängend ist.
- Die Anzahl besuchter Kanten pro Knoten ist für jedes W_i gerade:
 - ▶ Jeder der inneren Knoten $v_1, ..., v_{k-1}$ wird über eine Kante besucht und wieder verlassen.
 - Da jedes der W_i ein nicht knotendisjunkter Kreis ist, wird auch der Startknoten v₀ verlassen und wieder besucht.
- D.h. jeder Knoten $v \in V$ besitzt geraden Restgrad deg(v).
- W'_i kann in Schritt 3.3 konstruiert werden, da alle besuchten Knoten auch wieder verlassen werden k\u00f6nnen.
- Ein solcher Weg muss schließlich wieder in v_i enden.

Planare Graphen

Definition Planarer Graph

Sei G = (V, E) ein ungerichteter Graph. G heißt planar, falls er in den \mathbb{R}^2 einbettbar ist. D.h. falls seine Kanten so dargestellt werden können, dass sie sich paarweise nicht schneiden.

Eine planare Darstellung von *G* bezeichnen wir als *ebenes Diagramm*.

Anmerkung:

- Der Einfachheit halber verstehen wir hier Kanten als Kurven.
- Die Verwendung von Strecken als Kanten liefert dieselbe Klasse planarer Graphen (Fary's Theorem).

Bsp:

- Der K₄ ist ein planarer Graph.
- Ein bipartiter Graph $G = K_{n,n'}$ besteht aus zwei Knotenmengen V_1, V_2 mit $|V_1| = n, |V_2| = n'$ und $E = \{\{u, v\} \mid u \in V_1, v \in V_2\}.$
- Die bipartiten Graphen $K_{n,2}$ sind planar.

Anzahl Flächen planarer Graphen

Satz Eulersche Polyederformel

Sei G = (V, E) zusammenhängend und planar. Sei f die Anzahl der Flächen eines ebenen Diagramms von G. Dann gilt f = |E| - |V| + 2.

Beweis: per Induktion über |E|

- IV für |E| = n 1, da G für |E| < n 1 nicht zusammenhängend.
 - ▶ Da G zusammenhängend mit |E| = n 1, ist G ein Baum.
 - ▶ Damit gilt für ein ebenes Diagramm f = 1 = (n-1) n + 2.
- IS $|E| 1 \rightarrow |E|$.
 - G = (V, E) muss einen Kreis K enthalten. Sei e eine Kreiskante.
 - ▶ $G' = (V, E \setminus \{e\})$ besitzt |E| 1 Kanten und daher f' = |E| |V| + 1 Flächen. (Anwendung der IA)
 - ▶ In G werden zwei Flächen von G' durch e getrennt.
 - ▶ Damit besitzt *G* genau f' + 1 = |E| |V| + 2 Flächen.

Nicht zusammenhängende Graphen

Korollar Allgemeine Eulersche Polyederformel

Sei G = (V, E) planar mit k ZHKs. Dann besitzt ein ebenes Diagramm von G genau f = |E| - |V| + k + 1 Flächen.

- Sei $G[V_1] = (V_1, E_1), \dots, G[V_k] = (V_k, E_k)$ die ZHKs.
- Für jedes ebene Diagramm von $G[V_i]$ gilt $f_i = |E_i| |V_i| + 2$.
- Dabei wird die Außenfläche für jede ZHK gezählt. D.h.

$$f = \left(\sum_{i=1}^{k} |E_i| - |V_i| + 2\right) - (k-1)$$

$$= \left(\sum_{i=1}^{k} |E_i| - \sum_{i=1}^{k} |V_i|\right) + 2k - k + 1 = |E| - |V| + k + 1.$$

Kriterium für nicht-planare Graphen

Satz Anzahl Kanten in planaren Graphen

Für jeden planaren Graphen G = (V, E) gilt $|E| \le 3(|V| - 2)$.

Beweis:

- Wir bezeichnen mit $R = \{r_1, \dots, r_f\}$ die Flächen von G.
- Definieren Relation $A = \{(e, r) \in E \times R \mid e \text{ ist in Fläche } r\}.$
- Dabei ist eine Kante e auch in r, falls sie r begrenzt.
- Prinzip des doppelten Abzählens:
 - ▶ Zeilensumme: Jedes e begrenzt höchstens zwei Flächen, d.h. $|A| \le 2|E|$.
 - ▶ Spaltensumme: Jede Fläche wird von mindestens 3 Kanten begrenzt, d.h. $|A| \ge 3f$.
- Daraus folgt $3f = 3(|E| |V| + 2) \le 2|E|$ bzw. $|E| \le 3(|V| 2)$.

Für planare G ohne Kreise der Länge 3 folgt sogar die Ungleichung

$$4(|E|-|V|+2) \le 2|E| \iff |E| \le 2(|V|-2).$$

Nicht-planare Graphen

Korollar K_5 und $K_{3,3}$

Die Graphen K_n , $n \ge 5$ und $K_{3,3}$ sind nicht planar.

- Der K_n besitzt $\binom{n}{2}$ Kanten.
- Es gilt $\binom{n}{2} \ge 3(n-2)$ für $n \ge 5$.
- Zeigen: Bipartite Graphen besitzen keine Kreise der Länge 3.
- Annahme: $K_{n,n'}$ besitzt Kreis $K = (v_1, v_2, v_3)$ der Länge 3.
- v_1 und v_3 sind in derselben Knotenpartition von $K_{n,n'}$.
- Daher kann keine Kante $\{v_3, v_1\}$ existieren (Widerspruch).
- Damit gilt für den $K_{3,3}$ die stärke Schranke $|E| \le 2(|V| 2)$.
- Für den $K_{3,3}$ folgt aber $|E| = 9 > 2 \cdot 4 = 2(|V| 2)$.

Satz von Kuratowski

Definition Unterteilung eines Graphen

Sei G = (V, E) und $e = \{u, v\} \in E$.

- ① Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen $G' = (V \cup \{w\}, E \setminus e \cup \{\{u, w\}, \{w, v\}\}).$
- ② Der Graph H = (V', E') heißt *Unterteilung von G*, falls H aus G durch Einfügen von Knoten konstruiert werden kann.

Satz von Kuratowski

Ein Graph G=(V,E) ist planar gdw G keine Unterteilung von K_5 oder $K_{3,3}$ als schwachen Teilgraphen enthält.

Grad eines Knoten in planaren Graphen

Satz Knoten kleinen Grads

Sei G = (V, E) planar. Dann existiert $v \in V$ mit $deg(v) \le 5$.

- Annahme: $deg(v) \ge 6$ für alle $v \in V$.
- Dann folgt $2|E| = \sum_{v \in V} \deg(v) \ge 6|V|$ bzw. $|E| \ge 3|V|$. (Widerspruch: |E| < 3(|V| 2))

Färben von Knoten eines Graphen

Definition *k*-Färbbarkeit und chromatische Zahl

Sei G = (V, E) ein Graph. G heißt k-färbbar, falls es eine Abbildung $c: V \to [k]$ gibt mit $c(u) \neq c(v)$ für alle $\{u, v\} \in E$. Die *chromatische Zahl* von G ist definiert als $\chi(G) = \min\{k \in \mathbb{N} \mid G \text{ ist } k\text{-färbbar.}\}$

Bsp:

- Jeder Graph mit n Knoten ist n-färbbar.
- Die chromatische Zahl des K_n ist n.
- Jeder Kreis der Form C_{2n} ist 2-färbbar.
- Jeder Kreis der Form C_{2n+1} ist 3-färbbar.
- Bipartite Graphen $K_{n,n'}$ sind 2-färbbar.
- Jeder Baum ist 2-färbbar.

Anwendungen:

- Verteilen von Senderfrequenzen
- Färben von Landkarten

Bipartite Graphen

Satz 2-Färbbarkeit und Kreise

Sei G = (V, E) ein Graph. G ist 2-färbbar gwd G keine Kreise ungerader Länge enthält.

- " \Rightarrow ": **Annahme:** *G* enthält Kreis $K = (v_1, \dots, v_{2k+1})$.
- Sei $c: V \rightarrow [2]$ eine 2-Färbung von G.
- Dann gilt $c(v_1) = c(v_3) = \ldots = c(v_{2k+1})$, aber $\{v_{2k+1}, v_1\} \in E$. (Widerspruch: c ist eine Färbung.)
- " \Leftarrow ": Starte Breitensuche in beliebigem $s \in V$.
- Definiere Färbung $c: V \to [2]$ mit $c(v) = (d[v] \mod 2) + 1$.
- c ist eine 2-Färbung für den durch die Breitensuche definierten Baum mit den Kanten $\{v, \text{pred}[v]\}$ für alle $v \in V$, $v \neq s$.
- Alle weiteren Kanten in G schließen Kreise gerader Länge.
- D.h. alle benachbarten Knoten erhalten unterschiedliche Farben.

5-Färbbarkeit

Satz von Heawood

Sei G = (V, E) planar. Dann ist G ein 5-färbbarer Graph.

Beweis: per Induktion über |V|

- IV: Satz ist für $|V| \le 5$ sicherlich korrekt.
- IS $|V| 1 \rightarrow |V|$: Betrachten ebenes Diagramm von G = (V, E).
- G enthält einen Knoten v mit $deg(v) \le 5$.
- Nach IS existiert für $G[V \setminus \{v\}]$ eine 5-Färbung c.
- Fall 1: *G* besitzt höchstens 4 Nachbarn. Dann kann *v* mit einer Farbe gefärbt werden, die für keinen der Nachbarn verwendet wird.
- Fall 2: *G* besitzt 5 Nachbarn v_1, \ldots, v_5 mit $\{c(v_1), \ldots, c(v_5)\} \neq [5]$. Dann kann v mit einer Restfarbe gefärbt werden.
- Fall 3: *G* besitzt 5 Nachbarn v_1, \ldots, v_5 mit Farben $c(v_i) = i$ für $i \in [5]$. Idee: Färbe einen der Nachbarn von v um. (s. nächste Folie)

Fall 3: Alle Nachbarn unterschiedlich gefärbt.

- Definieren $V_i = \{v \in V \mid c(v) = i\}.$
- Fall 3(a): v_1 und v_3 sind in verschiedenen ZHKs von $G[V_1 \cup V_3]$.
- Tausche Farben 1 und 3 in der ZHK von $G[V_1 \cup V_3]$ in der v_1 liegt.
- Danach besitzt kein Nachbar von v Farbe 1. Färbe c(v) = 1.
- Fall 3(b): v_1 und v_3 liegen in derselben ZHK von $G[V_1 \cup V_3]$.
- Dann existiert ein v_1 - v_3 Pfad ausschließlich mit Farben 1 und 3.
- Damit existiert kein v₂-v₄ Pfad mit den Farben 2 und 4, da dieser wegen der Planarität Knoten des v₁-v₃ Pfades kreuzen muss.
- Vertausche analog zu Fall 3(a) die Farben 2 und 4 in der ZHK von $G[V_2 \cup V_4]$, in der v_2 liegt. Färbe v mit Farbe 2.

Vierfarbensatz

Satz Vierfarbensatz von Appel, Haken (1977)

Sei G planar. Dann ist G ein 4-färbbarer Graph.

Bemerkungen:

- Beweis der Korrektheit durch massiven Computereinsatz.
- Beweis liefert $\mathcal{O}(|V^2|)$ -Algorithmus für planare Graphen.
- Für allgemeine Graphen G = (V, E) gibt es vermutlich keinen effizienten Algorithmus, der für gegebenes k entscheidet, ob $\chi(G) \le k$.

Nicht-optimale Färbung

Algorithmus GREEDY-FÄRBUNG

- EINGABE: G = ([n], E)
- ② For $i \leftarrow 2$ to n
 - $c[i] = \min_{k \in \mathbb{N}} \{k \neq c[v] \text{ für alle bereits gefärbten } v \in \Gamma(i)\}.$
 - ▶ If (c[i] > C) $C \leftarrow c[i]$;

AUSGABE: Färbung $c: V \rightarrow [C]$

- **Korrektheit:** *c* ist Färbung, da alle Nachbarknoten verschiedene Farben erhalten.
- Laufzeit: O(|V|) Iterationen.
- Güte der Lösung: Sei $\Delta(G) = \max_{v} \{ \deg(v_i) \}.$
- Es gilt $\chi(G) \leq C \leq \Delta(G) + 1$.
- Für K_n oder C_{2n+1} gilt $\chi(G) = \Delta(G) + 1$.
- Für alle andere Graphen gibt es einen effizienten Algorithmus, der eine Färbung mit höchstens $\Delta(G)$ Farben liefert.

Kantenfärbung von Graphen

Definition Kantenfärbung

Sei G = (V, E) ein Graph. Eine *Kantenfärbung* von G ist eine Abbildung $c : E \to [k]$ mit $c(e) \neq c(e')$ für $e, e' \in E$ mit $e \cap e' \neq \emptyset$. Der *chromatische Index* ist $\chi'(G) = \min_{k \in \mathbb{N}} \{G \text{ besitzt } k\text{-Kantenfärbung.}\}$.

- Es ist leicht zu sehen, dass $\chi'(G) \ge \Delta(G)$.
- Der sogenannte Satz von Vinzing zeigt, dass $\chi'(G) \leq \Delta(G) + 1$.
- Das Problem zu entscheiden ob $\chi'(G) = \Delta(G)$ ist, gehört zu den algorithmisch schweren Problemen.
- Es gibt allerdings einen Algorithmus, der in Zeit $\mathcal{O}(|V|\cdot|E|)$ eine k-Kantenfärbung berechnet mit $\Delta(G) \leq \chi'(G) \leq k \leq \Delta(G) + 1$.

Das Heiratsproblem

Szenario:

- Gegeben: n Frauen und m > n Männer.
- Bekanntschaftsbeziehungen zwischen allen M\u00e4nnern und Frauen.

Fragestellung:

- Wann gibt es für jede der Frauen einen Heiratspartner?
- Modellierung als bipartiter Graph $K_{n,m}$.
- Gesucht ist knotendisjunkte Kantenmenge E der Größe n.

Definition Matching

Sei G = (V, E) ein Graph. Ein *Matching* $M \subseteq E$ ist eine knotendisjunkte Kantenmenge, d.h. dass für alle verschiedenen $e, e' \in M$ gilt $e \cap e' = \emptyset$. Die Größe von M ist |M|.

- **1** M überdeckt ein $v \in V$ gdw $v \cap e \neq \emptyset$ für ein $e \in M$.
- ② M ist perfekt, falls M alle Knoten überdeckt, d.h. falls $|M| = \frac{|V|}{2}$.

Heiratssatz

Satz von Hall

Sei $G=(A\biguplus B,E)$ bipartit mit Knotenpartitionen $A\biguplus B.$ G enthält ein Matching M der Größe |M|=|A| gdw $|X|\leq |\bigcup_{x\in X}\Gamma(x)|$ für alle $X\subseteq A$.

- Sei $\Gamma(X) = \bigcup_{x \in X} \Gamma(x)$ für alle $X \subseteq A$
- " \Rightarrow ": Sei M ein Matching der Größe |M| = |A|.
- Wir betrachten den vom Matching definierten schwachen Teilgraph $G' = (A \uplus B, M)$.
- In G' besitzt jedes $X \subseteq A$ genau |X| Nachbarn.
- Damit besitzt in *G* jedes $X \subseteq A$ mindestens |X| Nachbarn.

Rückrichtung des Heiratssatzes

- " \Leftarrow ": **Annahme:** *G* besitzt maximales Matching *M* mit |M| < |A|.
- Dann existiert ein nicht-überdecktes a₁ ∈ A.
- Wegen $|\Gamma(a_1)| \ge 1$ besitzt a_1 mindestens einen Nachbarn.
- Falls $b_1 \in \Gamma(a_1)$ nicht-überdeckt ist, füge $\{a_1, b_1\}$ zu M hinzu. (Widerspruch: M ist ein maximales Matching.)
- Sonst wähle überdecktes b₁ und starte folgenden Algorithmus AUGMENTIERENDER-PFAD.

Algorithmus AUGMENTIERENDER-PFAD

Algorithmus Augmentierender-Pfad

EINGABE:
$$G = (A \uplus B, E), M, a_1, b_1$$

- 0 k ← 1
- 2 While (b_k wird von M überdeckt)
 - **1** $a_{k+1} \leftarrow \text{Nachbar von } b_k \text{ im Matching } M$
 - 2 If $(\exists$ nicht-überdecktes $v \in \Gamma(\{a_1, \ldots, a_{k+1}\}) \setminus \{b_1, \ldots, b_k\})$
 - $\mathbf{0}$ $b_{k+1} \leftarrow v$
 - $b_{k+1} \leftarrow \text{beliebiges } v \in \Gamma(\{a_1, \ldots, a_{k+1}\}) \setminus \{b_1, \ldots, b_k\}$

AUSGABE: augmentierender Pfad $p_a = (a_1, b_1, \dots, a_k, b_k)$

Korrektheit von Augmentierender-Pfad

Korrektheit:

- Zeigen zunächst, dass b_{k+1} in Schritt 2.2 stets existiert. Es gilt $|\Gamma(\{a_1,\ldots,a_{k+1}\})\setminus\{b_1,\ldots,b_k\}|\geq (k+1)-k=1.$
- Für alle $\{a_i, b_i\}$, $i \in [k]$ gilt, dass $\{a_i, b_i\} \in E \setminus M$.
- Damit sind diese k Kanten nicht im Matching enthalten.
- Die k-1 Kanten $\{b_i, a_{i+1}\}$ sind dagegen alle in M.
- D.h. durch Entfernen aller $\{b_i, a_{i+1}\}$ aus M und Hinzunahme aller $\{a_i, b_i\}$ zu M wird das Matching um Eins vergrößert.

(Widerspruch: *M* ist nach Annahme maximal.)

Konstruktion eines maximalen Matchings

Algorithmus Maximales-Matching

EINGABE:
$$G = (A \cup B, E)$$
 mit $|X| \le |\Gamma(X)|$ für alle $X \subseteq A$

- ② While (es gibt ein nicht-überdecktes $a_1 \in A$)
 - $\mathbf{0}$ $b_1 \leftarrow \text{Nachbar von } a_1$
 - 2 $p = (a_1, b_1, \dots, a_k, b_k) \leftarrow \text{Augmentierender-Pfad}(G, M, a_1, b_1)$
 - **③** For $i \leftarrow 1$ to k

1 *M* ← *M* ∪ {
$$a_i, b_i$$
}; If ($i > k$) $M \leftarrow M \setminus \{b_i, a_{i+1}\}$;

AUSGABE: Matching M mit |M| = |A|

Korrektheit und Laufzeit:

- M wird in jeder Iteration um ein Element vergrößert.
- Nach |A| Iterationen gilt |M| = |A|.

k-reguläre bipartite Graphen

Satz Perfekte Matchings für bipartite Graphen

Sei $G = (A \biguplus B, E)$ ein k-regulärer bipartiter Graph. Dann gilt:

- G besitzt ein perfektes Matching.
- ② Der chromatische Index von G beträgt $\chi'(G) = k$.

Beweis: von (1)

- Falls $|X| \leq |\Gamma(X)|$ für alle $X \subseteq A$, verwende Satz von Hall.
- Liefert Matching für alle $a \in A$. Falls |A| = |B|, dann ist M perfekt.
- In jedem k-regulären bipartiten $G = (A \biguplus B, E)$ gilt |A| = |B|, denn $|E| = \sum_{a \in A} \deg(a) = |A| \cdot k = \sum_{b \in B} \deg(b) = |B| \cdot k$.
- **Annahme:** Es existiert ein $X \subseteq A$ mit $|\Gamma(X)| < |X|$.
- Wir betrachten die Multimenge $M = \bigcup_{x \in X} \Gamma(x)$.
- Da G ein k-regulärer Graph ist, gilt $|M| = k \cdot |X|$.
- Schubfachprinzip: $\exists b \in \Gamma(X)$ mit $\deg(b) \ge \left\lceil \frac{|M|}{|\Gamma(X)|} \right\rceil > \frac{k \cdot |X|}{|X|} = k$. (Widerspruch: G ist k-regulär, d.h. $\deg(b) = k$ für alle $b \in B$.)

$\chi'(G) = k$ in k-regulären bipartiten Graphen

Beweis: von (2)

- Wir beweisen $\chi'(G) = k$ per Induktion über k.
- IV für k = 1: G besitzt nach (1) ein perfektes Matching M.
- Daher sind alle $a \in A$ mit genau einem $b \in B$ verbunden.
- D.h. M = E und alle Kanten können mit Farbe 1 gefärbt werden.
- IS $k-1 \rightarrow k$: G besitzt nach (1) ein perfektes Matching M.
- $G' = (A \biguplus B, E \setminus M)$ ist (k-1)-regulär.
- D.h. G' besitzt nach IA eine (k-1)-Kantenfärbung.
- Wir färben alle Kanten des Matchings *M* mit der Farbe *k*.

Gerichtete Graphen

Definition Gerichteter Graph bzw. Digraph

Ein gerichteter Graph bzw. Digraph ist ein Tupel D = (V, E) mit

- der Knotenmenge $V = \{v_1, \dots, v_n\}$ und
- der Kantenmenge $E = \{(u, v) \subseteq V \times V \mid u \neq v\}.$

Anmerkung: Wir definieren analog zu ungerichteten Graphen

- Weg, Pfad, u-v Pfad, Kreis, kürzester Pfad
- Nachbarschaft $\Gamma(v) = \{u \in V \mid (v, u) \in E\}.$

Definition DAG

Sei D = (V, E) ein Digraph. D heißt DAG (Directed Acyclic Graph), falls D kreisfrei ist.

DAGs und die topologische Sortierung

Algorithmus Topologische Sortierung (DFS-Variante)

EINGABE: DAG D = (V, E) in Adjazenzlistendarstellung

- For alle $v \in V$: pred $[v] \leftarrow \text{nil}$; $f[v] \leftarrow 0$;
- $i \leftarrow n; S \leftarrow \text{new Stack};$
- **3** While (es gibt unbesuchte Knoten $s \in S$)
 - \bullet s \leftarrow minimaler unbesuchter Knoten; S.Push(s);
 - 2 While (S.Isempty() \neq TRUE)

 - If (es gibt ein u ∈ Γ mit pred[u] =nil) then S.Push(v); S.Push(u); pred[u] ← v;
 - 3 else if (f[v] = 0) then
 - $f[v] \leftarrow i; i \leftarrow i-1;$

AUSGABE: pred[v], f[v] für alle $v \in V$

Finish-Zahl f[v]

Satz Finish-Zahl

Sei D=(V,E) ein DAG und sei f[v] für alle $v\in V$ definiert durch Anwendung von TOPOLOGISCHE SORTIERUNG auf D. Für $u,v\in V$ gilt: Falls f[u]>f[v], dann folgt $(u,v)\not\in E$.

- Annahme: $(u, v) \in E$
- Es gibt keinen v-u Pfad in G, denn dieser würde mit (u, v) zusammen einen Kreis schließen.
- Jedem w ∈ V wird ein Wert f[w] > 0 zugewiesen, sobald alle Nachbarn von w besucht sind und w vom Stack entfernt wird. (Fortsetzung auf nächster Folie.)

Finish-Zahl f[v]

- Fall 1: Knoten v wird vor Knoten u besucht.
- Damit wird v vom Stack entfernt, bevor u auf den Stack kommt.
- Da der Zähler i für die Finishzahl dekrementiert wird, gilt f[v] > f[u]. (Widerspruch: f[u] > f[v] nach Voraussetzung)
- Fall 2: Knoten u wird vor Knoten v besucht.
- Wegen $\{u, v\} \in E$ liegt u im Stack unter v.
- Sobald v vom Stack entfernt wird, erhält v ein f[v] > 0.
- Danach erst wird u eine Finish-Zahl f[u] zugewiesen.
- Daraus folgt wiederum f[u] < f[v]. (Widerspruch)

Anwendung der Topologischen Sortierung

Szenario:

- **Gegeben:** n Aufgaben und Abhängigkeiten $(u, v) \in [n]^2$ mit der Bedeutung, dass u vor v ausgeführt werden muss.
- Gesucht: Gültige Reihenfolge, alle Aufgaben abzuarbeiten.
- Modellierung als Digraph D mit gerichteten Kanten (u, v).
- Falls D kein DAG ist, dann existiert ein Kreis in D. Dann sind die Abhängigkeiten widersprüchlich und es existiert keine Lösung.
- Sei also D ein DAG. Dann kann mit TOPOLOGISCHE SORTIERUNG für jeden Knoten $v \in V$ eine Finish-Zahl f[v] berechnet werden.
- Ordne die Knoten nach steigender Finish-Zahl f[v].
- Für d[u] > d[v] gilt $\{u, v\} \notin E$.
- D.h. Aufgabe *u* kann nach Aufgabe *v* ausgeführt werden.
- Damit können alle Aufgaben in der Reihenfolge steigender Finish-Zahl durchgeführt werden.

Relationen und Graphen, starker Zusammenhang

Anmerkung:

- Sei D = (V, E). Dann ist $A \subseteq V \times V$ eine Relation auf V.
- Sei andererseits $R \subseteq S \times S$ eine Relation auf S.
- Dann definiert D = (S, R) einen gerichteten Graphen.
- D.h. Gerichtete Graphen sind Darstellungen von Relationen.

Definition starker und schwacher Zusammenhang

Sei D=(V,E) ein gerichteter Graph. Der ungerichtete G=(V,E') mit $E'=\{\{u,v\}\in V^2\mid (u,v)\in E \text{ oder } (v,u)\in E\}$ heißt zugrundeliegender Graph von D.

- **1** D ist stark zusammenhängend, falls für alle $u, v \in V$ ein u-v Pfad in D existiert.
- ② *D* ist *schwach zusammenhängend*, falls der zugrundeliegende Graph *G* von *D* zusammenhängend ist.

Starker Zusammenhang algorithmisch

Zwei Algorithmen zum Testen von starkem Zusammenhang:

- Führe Tiefensuche für alle Startknoten $s \in V$ durch.
- Falls stets alle Knoten erreicht werden, dann ist *G* stark zusammenhängend.
- Laufzeit dieses Algorithmus: $\mathcal{O}(|V| \cdot (|V| + |E|))$.
- Verbesserter Algorithmus: Verwendung von Ruckwärtsgraph \bar{D} .
- Digraph $\bar{D} = (V, \bar{E})$ besitzt $\bar{E} = \{(u, v) \in V^2 \mid (v, u) \in E\}.$
- Man kann zeigen, dass eine Anwendung von Tiefensuche auf D und auf \bar{D} genügt. (Beweis ist nicht-trivial)
- Führt zu einem Algorithmus mit Laufzeit $\mathcal{O}(|V| + |E|)$.

Berechnung der transitiven Hülle

Algorithmus SIMPLE-TRANSITIV

EINGABE: Relation $R \subseteq S \times S$ in Adjazenzmatrix-Darstellung

1 While $(\exists x, y, z \text{ mit } (x, y), (y, z) \in R \text{ und } (x, z) \notin R)$ **1 a** $A \leftarrow B \cup \{(x, z)\}$

AUSGABE: Transitive Hülle $R^+ = R$

diese zur Relation R hinzugefügt.

Korrektheit: Solange transitive Beziehungen fehlen, werden

- Laufzeit: Die Menge R^+ enthält höchstens $|S|^2$ Tupel aus $S \times S$.
- In jeder Iteration wird ein Tupel (x, z) hinzugefügt.
- \bullet D.h. die Schleife durchläuft maximal $\mathcal{O}(|\mathcal{S}|^2)$ Iterationen.
- Pro Iteration: Prüfe für alle $x, y, z \in S$, ob für die Einträge in der Adjazenzmatrix (x, y) = (y, z) = 1 und (x, z) = 0 gilt.
- Die Anzahl aller möglichen $x, y, z \in S$ ist $\mathcal{O}(|S|^3)$.
- Damit ist die Gesamtlaufzeit von SIMPLE-TRANSITIV $\mathcal{O}(|S|^5)$.

Mit Dynamischer Programmierung

• Sei D = (V, E). Die transitive Hülle $D^+ = (V, E^+)$ besitzt die Kantenmenge $E^+ = \{(u, v) \in V^2 \mid \exists u \text{-} v \text{ Pfad in } D.\}$.

Definition Wege mit eingeschränkten inneren Knoten

Sei D = ([n], E) Wir definieren für $k, u, v \in [n]$

$$W_k[u, v] = \begin{cases} 1 & \exists u - v \text{ Pfad in } D \text{ mit inneren Knoten aus } [k] \\ 0 & \text{sonst} \end{cases}$$

- Für k = 0 gilt $\{(u, v) \in V^2 \mid W_0[u, v] = 1\} = E$.
- Für k = n gilt $\{(u, v) \in V^2 \mid W_n[u, v] = 1\} = E^+$.
- Berechnen $W_k[u, v]$ rekursiv aus W_{k-1} . $W_k[u, v] = 1$, falls
 - ▶ Es gibt einen u-v Pfad mit inneren Knoten aus [k 1].
 - ▶ Es gibt einen u-k Pfad und k-v Pfad mit inneren Knoten aus [k-1].
- D.h. $W_k[u, v] = \max\{W_{k-1}[u, v], W_{k-1}[u, k] \cdot W_{k-1}[k, v]\}.$

Algorithmus von Warschall

Algorithmus WARSCHALL

EINGABE: D = ([n], E) in Adjazenzmatrix-Darstellung

- Für alle $u, v \in V$
 - If $(u, v) \in E$ then $W[u, v] \leftarrow 1$ else $W[u, v] \leftarrow 0$;
- 2 For $k \leftarrow 1$ to n
 - Für alle $u, v \in V$
- AUSGABE: $D^+ = (V, E^+)$ mit $E^+ = \{(u, v) \mid W[u, v] = 1\}$

Transitive Hülle in kubischer Laufzeit

Satz Transitive Hülle

Sei D=(V,E). Dann berechnet WARSCHALL die transitive Hülle $D^+=(V,E^+)$ in Zeit $\mathcal{O}(|V|^3)$ und mit Speicherbedarf $\mathcal{O}(|V|^2)$.

Korrektheit:

- Wissen $W_k[u, v] = \max\{W_{k-1}[u, v], W_{k-1}[u, k] \cdot W_{k-1}[k, v]\}.$
- ullet Warschall verwendet nur ein zweidimensionales Array für W.
- D.h. die benötigten Zwischenwerte $W_{k-1}[u, k]$ bzw. $W_{k-1}[k, v]$ werden durch $W_k[u, k]$ bzw. $W_k[k, v]$ überschrieben.
- Zeigen: $W_{k-1}[u,k] = 1$ gdw $W_k[u,k] = 1$. (analog für $W_{k-1}[k,v]$)
 - ▶ "⇒": Jeder u-k Pfad mit inneren Knoten aus [k-1] ist auch ein u-k Pfad mit inneren Knoten aus [k].
 - ▶ "⇐": Sei $p = (u, v_1, ..., v_\ell, k)$ ein u-k Pfad. Aufgrund der Pfadeigenschaft sind die inneren Knoten $v_1, ..., v_\ell$ aus [k-1].

Laufzeit und Speicherplatz

- Laufzeit Schritt 1: $\mathcal{O}(|V|^2)$, Schritt 2: $\mathcal{O}(|V|^3)$.
- Speicherbedarf für Array $W: \mathcal{O}(|V|^2)$.

Einführung in Algebra und Zahlentheorie

Definition Teiler, ggT, kgV, Primzahlen

Seien $a, b \in \mathbb{Z}$.

- **1** a teilt b, geschrieben a|b, falls ein $k \in \mathbb{Z}$ existiert mit ak = b.
- Falls a die Zahl b nicht teilt, schreiben wir a ∤ b.
- Ober größte gemeinsame Teiler von a und b ist

$$ggT(a,b) = \max_{k \in \mathbb{N}} \{k | a \text{ und } k | b\}.$$

Das kleinste gemeinsame Vielfache von a und b ist

$$kgV(a, b) = \min_{k \in \mathbb{N}} \{a | k \text{ und } b | k\}.$$

- **⑤** a > 1 heißt *Primzahl*, falls die einzigen Teiler $k \in \mathbb{N}$ von a die Zahlen 1 und a sind.
- **1** a, b heißen teilerfremd, falls ggT(a, b) = 1.

Modulare Arithmetik

Definition Modulare Arithmetik

Seien $a, b \in \mathbb{Z}$ und $m \in \mathbb{N}$. Wir nennen a und b kongruent modulo m, falls m|a-b. Wir schreiben $a \equiv b \mod m$ oder auch $a = b \mod m$.

Satz Äquivalenzklassen der modularen Arithmetik

Sei $m \in \mathbb{N}$. $R = \{(a, b) \in \mathbb{Z}^2 \mid a = b \bmod m\}$ ist eine Äquivalenzrelation auf \mathbb{Z} .

- Reflexivität: $a = a \mod m$, denn m | (a a).
- Symmetrie: $a = b \mod m$, d.h. a b = km für ein $k \in \mathbb{Z}$.
- Damit gilt b a = (-k)m bzw. $b = a \mod m$.
- Transitivität: Seien $a = b \mod m$ und $b = c \mod m$.
- Damit gilt $a b = k_1 m$ und $b c = k_2 m$. Es folgt $a c = (a b) + (b c) = (k_1 + k_2) m$ und daher $a = c \mod m$.

Form der Äquivalenzklassen

Anmerkung:

- Es gilt $a = a \pm m = a \pm 2m = \ldots = a + km \mod m$ für alle $k \in \mathbb{Z}$.
- Wir schreiben auch $\{x \in \mathbb{Z} \mid x = a + mk, k \in \mathbb{Z}\} = a + m\mathbb{Z}$.
- Es gibt *m* verschiedene Äquivalenzklassen modulo *m*:

$$0+m\mathbb{Z}, 1+m\mathbb{Z}, \ldots, (m-1)+m\mathbb{Z}.$$

- Sei $a = \lfloor \frac{a}{m} \rfloor m + r$ mit $r \in \mathbb{Z}_m$. Es gilt $r = a \mod m$.
- Wir repräsentieren $a + m\mathbb{Z}$ durch eindeutiges $r \in \mathbb{Z}_m$.

Anwendung: modularer Arithmetik

- Pseudozufallszahlen mittels Linearem Kongruenzgenerator.
- Beginne mit zufälligem Startwert $x_0 \in \mathbb{Z}_m$.
- Berechne iterativ für festes $a, b \in \mathbb{Z}_m : x_i = ax_{i-1} + b \mod m$.
- x_1, x_2, x_3, \ldots definieren eine Pseudozufallsfolge.

Teilbarkeit durch 3

Satz Teilbarkeit durch 3

Sei $n \in \mathbb{N}$. Dann gilt $3 \mid n$ gwd 3 die Quersumme von n teilt.

- Sei $n_k \dots n_1 n_0$ die Dezimaldarstellung von n, d.h. $n = \sum_{i=0}^k n_i 10^i$.
- Modulo 3 gilt

$$n = \sum_{i=0}^{k} n_i 10^i = \sum_{i=0}^{k} n_i (10 \mod 3)^i = \sum_{i=0}^{k} n_i \mod 3.$$

- D.h. $n = 0 \mod 3$ genau dann wenn $\sum_{i=0}^{k} n_i = 0 \mod 3$.
- Damit gilt 3|n genau dann wenn 3 die Quersumme $\sum_{i=0}^{k} n_i$ teilt.

Teilbarkeit von Linearkombinationen

Lemma Linearkombination

Seien $a, b, d \in \mathbb{N}$. Falls d sowohl a als auch b teilt, dann teilt d ebenfalls ax + by für alle $x, y \in \mathbb{Z}$.

- Es gilt nach Voraussetzung $a = dk_a$ und $b = dk_b$ für $k_a, k_b \in \mathbb{Z}$.
- Daraus folgt $ax + by = dk_ax + dk_by = d(k_ax + k_by)$.
- Damit teilt d die ganzzahlige Linearkombination ax + by.

Lemma von Bézout

Lemma von Bézout

Seien $a, b \in \mathbb{Z}$. Dann gilt $ggT(a, b) = min\{ax + by \in \mathbb{N} \mid x, y \in \mathbb{Z}\}.$

- Sei $S = \{ax + by \in \mathbb{Z} \mid x, y \in \mathbb{Z}\}$ und $s \in S \cap \mathbb{N}$ minimal.
- Wir zeigen zunächst, dass $ggT(a, b) \le s$.
- Lemma Linearkombination: ggT(a,b)|s und damit $ggT(a,b) \le s$.
- Bleibt zu zeigen, dass ebenfalls $ggT(a, b) \ge s$ gilt.
- Sei $q = \lfloor \frac{a}{s} \rfloor$. Dann gilt $a \mod s = a qs = a q(ax + by) = a(1 qx) + b(-qy)$.
- D.h. $a \mod s \in S$ und $a \mod s < s$.
- Aufgrund der Minimalität von s muss $a \mod s = 0$ gelten.
- Damit folgt s|a. Analog kann s|b gezeigt werden.
- D.h. s ist ein gemeinsamer Teiler von a, b und $s \leq ggT(a, b)$.

Korollar für den größten gemeinsamen Teiler

Korollar ggT-Korollar

Seien $a, b \in \mathbb{Z}$. Falls d sowohl a als auch b teilt, dann teilt d ebenfalls ggT(a, b).

- Lemma Linearkombination: d teilt ax + by für alle $x, y \in \mathbb{Z}$.
- Lemma von Bézout: $ggT(a, b) = min\{ax + by \in \mathbb{N} \mid x, y \in \mathbb{Z}\}.$
- Damit teilt d ebenfalls ggT(a, b).

Teilerfremde Zahlen

Satz zur Teilerfremdheit

Seien $a, b, p \in \mathbb{Z}$. Falls ggT(a, p) = 1 und ggT(b, p) = 1, dann gilt ggT(ab, p) = 1.

- Nach Lemma von Bézout existieren Zahlen $x, y, x', y' \in \mathbb{Z}$ mit ax + py = ggT(a, p) = 1 und bx' + py' = ggT(b, p) = 1.
- Multiplikation der beiden Gleichungen liefert axbx' + axpy' + pybx' + pypy' = ab(xx') + p(axy' + ybx' + ypy') = 1.
- Daraus folgt ggT(ab, p) = 1.

ISBN-Code

Anwendung: ISBN-Code

- Format: Ländercode-Verlagsnummer-laufendeNr-Prüfziffer
- ISBN ist 10-stellig mit Ziffern z₁,..., z₁₀.
- Prüfziffer $z_{10} = \sum_{i=1}^{9} iz_i \mod 11$, d.h. $\sum_{i=1}^{10} iz_i = 0 \mod 11$.

Satz Fehlererkennung des ISBN-Codes

Der ISBN-Code erkennt einen Fehler und einen Zahlendreher.

- Fehler: Sei $z_j'=z_j+e_j$ fehlerhaft mit Fehlerterm $e_j\in\mathbb{Z}_{10}.$
- Prüfung liefert $(\sum_{i=1}^{10} iz_i) + je_j \mod 11$. Benötigen $je_j \neq 0 \mod 11$.
- Da ggT(j, 11) = 1 und $ggT(e_j, 11) = 1$ gilt $ggT(je_j, 11) = 1$.
- D.h. $je_j \neq 0 \mod 11$.
- **Dreher** $z_j \leftrightarrow z_{j+1}$: Erhalten $(\sum_{i=1}^{10} iz_i) + z_j z_{j+1} \mod 11$.
- Für den Fehlerterm gilt $z_j z_{j+1} \neq 0 \mod 11$, sofern $z_j \neq z_{j+1}$.

Der Teilersatz

Satz Teilersatz

Seien $a, b \in \mathbb{Z}$ und p prim. Falls p|ab, dann gilt p|a oder p|b.

- **Annahme:** *p* teilt weder *a* noch *b*.
- Dann gilt ggT(a, p) = 1 und ggT(b, p) = 1, da p prim ist.
- Daraus folgt ggT(ab, p) = 1. (Widerspruch: Nach Voraussetzung gilt p|ab und damit ggT(ab, p) = p.)

Fundamentalsatz der Arithmetik

Satz Fundamentalsatz der Arithmetik

Jedes natürliche Zahl n > 1 lässt sich eindeutig als Produkt von Primzahlen darstellen, d.h. $n = \prod_{i=1}^k p_i^{e_i}$ für prime p_i .

- Existenz der Darstellung $\prod_{i=1}^{k} p_i^{e_i}$ per Induktion über n (Folie 12).
- Eindeutigkeit: Sei $n = p_1 \cdot p_2 \cdot \ldots \cdot p_k = q_1 \cdot q_2 \cdot \ldots q_r$.
- Teilersatz: $p_1 | \prod_{i=1}^r q_i$ und damit teilt p_1 ein q_i .
- Da q_i prim ist, gilt $p_1 = q_i$. Wir teilen beide Darstellungen durch p_1 .
- Iterierung des Arguments liefert für jedes p_j ein passendes q_i .
- Damit sind beide Darstellungen identisch.

Satz zur Berechnung des ggTs

Satz ggT-Satz

Sei $a \in \mathbb{N}_0$, $b \in \mathbb{N}$. Dann gilt $ggT(a, b) = ggT(b, a \mod b)$

- Wir zeigen zunächst $ggT(a, b)|ggT(b, a \mod b)$.
- Sei d = ggT(a, b), d.h. d teilt sowohl a als auch b.
- Damit teilt d jede ganzzahlige Linearkombination von a und b.
- Es gilt $a \mod b = a qb \mod p = \lfloor \frac{a}{b} \rfloor$. Damit teilt d auch $a \mod b$.
- ggT-Korollar: d teilt $ggT(b, a \mod b)$.
- Zeigen nun, dass $ggT(b, a \mod b)|ggT(a, b)$.
- Sei $d = ggT(b, a \mod b)$, d.h. $d|b \mod d \pmod b$.
- Schreibe $a = qb + (a \mod b)$. Damit teilt d auch a.
- ggT-Korollar: d teilt ggT(a, b).

Euklidischer Algorithmus (300 v. Chr.)

Algorithmus EUKLID

EINGABE: $a, b \in \mathbb{N}$

If (b = 0) then return a;

2 Else return EUKLID(b, a mod b)

AUSGABE: ggT(a, b)

Korrektheit:

• Schritt 1: ggT(a, 0) = a. Schritt 2: folgt aus ggT-Satz.

Laufzeit:

Für die Laufzeitanalyse benötigen wir die Fibonaccizahlen

$$F_0 := 0, \ F_1 := 1, \ F_i := F_{i-1} + F_{i-2} \text{ für } i \ge 2.$$

Laufzeit von EUKLID

Satz Laufzeit von EUKLID

Seien $a, b \in \mathbb{N}$ mit a > b. Sei k die Anzahl der Rekursionen von EUKLID(a, b). Dann gilt $a \ge F_{k+2}$ und $b \ge F_{k+1}$.

Beweis: per Induktion über k

- **IV** für k = 1: $b \ge 1 = F_2$ und a > b. D.h. $a \ge 2 = F_3$.
- IS $k-1 \rightarrow k$: EUKLID(a,b) ruft EUKLID $(b,a \mod b)$ auf.
- EUKLID(b, $a \mod b$) benötigt k-1 Rekursionen, d.h. nach IA gilt $b \ge F_{k+1}$ und $(a \mod b) \ge F_k$.
- $b + (a \mod b) = b + (a \lfloor \frac{a}{b} \rfloor b) \le a$, da $\lfloor \frac{a}{b} \rfloor \ge 1$ wegen a > b.
- Damit erhalten wir $a \ge b + (a \mod b) \ge F_{k+1} + F_k = F_{k+2}$.

Logarithmische Laufzeit von EUKLID

Satz Laufzeit von EUKLID

Seien $a, b \in \mathbb{N}$ mit $a \ge F_{k+1} > b$. Dann benötigt EUKLID(a, b) Laufzeit $\mathcal{O}(\log^3 a)$.

Beweis:

- Wegen $b < F_{k+1}$ benötigt EUKLID weniger als k Rekursionen.
- Am Ende von Dima I: Herleitung expliziter Formel für F_k .
- Es gilt $F_k = \Omega(\phi^k)$, wobei $\phi = \frac{1+\sqrt{5}}{2}$ der goldene Schnitt ist.
- Daraus folgt $\phi^k = \mathcal{O}(F_k)$ bzw. $k = \mathcal{O}(\log F_k) = \mathcal{O}(\log a)$.
- D.h. Euklid(a, b) benötigt weniger als $k = O(\log a)$ Aufrufe.
- Multiplikation und Division mit Operanden der Bitlänge $\mathcal{O}(\log a)$ benötigen Zeit $\mathcal{O}(\log^2 a)$. D.h. die Gesamtlaufzeit ist $\mathcal{O}(\log^3 a)$.

Anmerkungen:

- Die Operanden in Euklid werden sukzessive kleiner.
- Eine exakte Analyse liefert eine Schranke von $\mathcal{O}(\log^2 a)$.

Erweiterter Euklidischer Algorithmus

Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA)

EINGABE: $a, b \in \mathbb{N}$

- If (b = 0) then return (a, 1, 0);
- $(d, x, y) \leftarrow \mathsf{EEA}(b, a \bmod b);$

AUSGABE: d = ggT(a, b) = xa + yb

Korrektheit:

- Schritt 1: Für b = 0 gilt d = a = ggT(a, 0) = 1a + 0b.
- Schritt 2: $d = ggT(a, b) = ggT(b, a \mod b)$ folgt aus dem ggT-Satz.
- Schritt 3: Für die Koeffizienten gilt $d = \operatorname{ggT}(b, a \bmod b) = xb + y(a \lfloor \frac{a}{b} \rfloor b) = ya + (x \lfloor \frac{a}{b} \rfloor y)b.$
- D.h. $(x, y) \leftarrow (y, x \lfloor \frac{a}{b} \rfloor y)$ erhält die Invariante d = xa + yb.

Laufzeit:

• $\mathcal{O}(\log^2(\max\{a,b\}))$ analog zu EUKLID(a,b)

Beispiel ggT(15, 11)

Tabellarische Schreibweise:

а	b	$\lfloor \frac{a}{b} \rfloor$	Х	У
15	11	1	3	-4
11	4	2	-1	3
4	3	1	1	-1
3	1	3	0	1
1	0	-	1	0

Schreibweise als Gleichungen:

$$15 - 1 \cdot 11 = 4$$
 $1 = 11 + 3(15 - 1 \cdot 11) = 3 \cdot 15 - 4 \cdot 11$
 $11 - 2 \cdot 4 = 3$ $1 = 4 - 1(11 - 2 \cdot 4) = -11 + 3 \cdot 4$
 $4 - 1 \cdot 3 = 1$ $1 = 4 - 1 \cdot 3$
 $3 - 3 \cdot 1 = 0$

Abelsche Gruppen

Definition Abelsche Gruppe

Eine abelsche Gruppe ist ein Tupel (G, \circ) bestehend aus einer Menge G und einer Verknüpfung \circ mit den folgenden Eigenschaften

- **1** Abgeschlossenheit: $\circ: G \times G \rightarrow G$, $(a,b) \mapsto a \circ b$
- **2** Kommutativität: $a \circ b = b \circ a$ für alle $a, b \in G$
- **3** Assoziativität: $(a \circ b) \circ c = a \circ (b \circ c)$ für alle $a, b, c \in G$
- **1** Neutrales Element: $\exists ! e \in G : a \circ e = a$ für alle $a \in G$
- Inverses Element: Schreibweisen
 - multiplikativ: $\forall a \in G \exists ! a^{-1} \in G \text{ mit } a \circ a^{-1} = e$
 - additiv: $\forall a \in G \exists ! (-a) \in G \text{ mit } a \circ (-a) = e$

Wir schreiben auch abkürzend G statt (G, \circ) , wenn \circ bekannt ist.

Falls nicht anders bezeichnet, so schreiben wir G multiplikativ mit der Verknüpfung $\circ = \cdot$.

Beispiele für Gruppen

Bsp: Unendliche Gruppen

- ullet ($\mathbb{Z},+$) ist eine additive Gruppe
 - Addition ganzer Zahlen liefert eine ganze Zahl.
 - a+b=b+a für alle $a,b\in\mathbb{Z}$

 - 4 Neutrales Element ist $0 \in \mathbb{Z}$.
 - **1** Inverses von $a \in Z$ ist $(-a) \in Z$, denn a + (-a) = 0.
- $(\mathbb{Q} \setminus \{0\}, \cdot)$ ist eine multiplikative Gruppe
 - Produkt von Null verschiedener rationaler Zahlen ist nicht Null.
 - **3** Kommutativität: $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} = \frac{c}{d} \cdot \frac{a}{b}$ für $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$.
 - Assoziativität gilt analog in Q.
 - 4 Neutrales Element ist $1 \in \mathbb{Q} \setminus \{0\}$.
 - **1** Inverses von $\frac{a}{b} \in \mathbb{Q} \setminus \{0\}$ ist $\frac{b}{a} \in \mathbb{Q} \setminus \{0\}$.
- \bullet (\mathbb{Z}, \cdot) ist keine Gruppe, denn 2 besitzt kein Inverses.
- (N, +) ist keine Gruppe, denn 1 besitzt kein Inverses.

Wir betrachten nun Gruppen G mit endlicher Kardinalität |G|.

Die additive Gruppe ($\mathbb{Z}_m, +$)

Satz $(\mathbb{Z}_m, +)$ ist eine Gruppe

Sei $m \in \mathbb{N}$. Dann ist \mathbb{Z}_m zusammen mit der Addition modulo m

$$+: \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m, (a, b) \mapsto a + b \mod m$$

eine additive Gruppe.

- **1** Sei a + b = qm + r mit $r \in \mathbb{Z}_m$. Dann gilt a + b = r in \mathbb{Z}_m .
- Folgt aus Kommutativität der Addition in Z.
- \odot Folgt aus Assoziativität der Addition in \mathbb{Z} .
- **1** Neutrales Element ist $0 \in \mathbb{Z}_m$, denn $a + 0 = a \mod m$.
- Inverses von a ist

$$(-a) = \begin{cases} m-a & \text{für } a \neq 0 \\ 0 & \text{sonst.} \end{cases}$$

Definition \mathbb{Z}_n^*

Definition Eulersche φ-Funktion

Sei $n \in \mathbb{N}$. Wir definieren $\mathbb{Z}_n^* := \{a \in \mathbb{Z}_n \mid \operatorname{ggT}(a, n) = 1\}$. Die *Eulersche phi-Funktion* bezeichnet die Kardinalität von \mathbb{Z}_n^* , d.h. $\phi(n) = |\mathbb{Z}_n^*|$.

Bsp:

- Sei p prim. Dann gilt $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ und $\phi(p) = p 1$.
- Sei n=pq mit p,q prim. Dann gilt $\mathbb{Z}_n^*=\mathbb{Z}_n\setminus\{0,p,2p,\ldots,(q-1)p,q,2q,(p-1)q\}.$
- Damit folgt $\phi(n) = |\mathbb{Z}_n^*| = n 1 (q 1) (p 1) = (p 1)(q 1)$.

Die multiplikative Gruppe \mathbb{Z}_n^*

Satz (\mathbb{Z}_n^*, \cdot) ist eine Gruppe

Sei $n \in \mathbb{N}$. Dann ist \mathbb{Z}_n^* zusammen mit der Multiplikation modulo n

$$\cdot: \mathbb{Z}_n^* \times \mathbb{Z}_n^* \to \mathbb{Z}_n^*, \ (a, b) \mapsto a \cdot b \bmod n$$

eine multiplikative Gruppe.

- Abschluss: Seien $a, b \in \mathbb{Z}_n^*$, d.h. ggT(a, n) = ggT(b, n) = 1.
- Aus Satz zur Teilerfremdheit folgt damit ggT(ab, n) = 1.
- $ggT(ab, n) = ggT(ab \mod n, n) = 1$, d.h. $(ab \mod n) \in \mathbb{Z}_n^*$.
- Kommutativität und Assoziativität folgen aus der Kommutativität und Assoziativität der Multiplikation über \mathbb{Z} .
- $1 \in \mathbb{Z}_n^*$ ist neutrales Element, denn $1 \cdot a = a \mod n$ für alle $a \in \mathbb{Z}_n^*$.

Berechnung von Inversen in \mathbb{Z}_n^*

Fortsetzung Beweis: Inverse in \mathbb{Z}_n^*

- Lemma von Bézout: $\exists x, y \in \mathbb{Z} \text{ mit } 1 = \operatorname{ggT}(a, n) = ax + ny$.
- OBdA gilt $x \in \mathbb{Z}_n$, denn 1 = a(x + kn) + n(y ak) für alle $k \in \mathbb{Z}$.
- Es gilt $ax = 1 ny = 1 \mod n$, d.h. $x = a^{-1} \in \mathbb{Z}_n$.
- Ferner gilt $x \in \mathbb{Z}_n^*$, da xa + ny = 1 = ggT(x, n) nach Lemma von Bézout.

Korollar Berechnung von Inversen

Sei $a \in \mathbb{Z}_n^*$. Dann kann $a^{-1} \in \mathbb{Z}_n^*$ in Zeit $\mathcal{O}(\log^2 n)$ berechnet werden.

- Berechne mit EEA Zahlen $x, y \in \mathbb{Z}$ mit ggT(a, n) = ax + ny.
- Setze $a^{-1} = x \mod n$.

Eine nicht-abelsche Gruppe

Satz Die symmetrische Gruppe

Sei \mathcal{G}_n die Menge aller Permutation auf [n]. Dann ist (\mathcal{G}_n, \circ) mit $\pi \circ \pi' = \pi(\pi')$ als Hintereinanderausführung von Permutationen eine nicht-abelsche Gruppe.

Beweis:

- **1** Abgeschlossenheit: $\pi(\pi')$ ist eine Permutation.
- Nicht-kommutativ, d.h. nicht-abelsch:

$$\left(\begin{array}{cccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) \circ \left(\begin{array}{cccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) \neq \left(\begin{array}{cccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) \circ \left(\begin{array}{cccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right)$$

Assoziativität:

$$\pi \circ (\pi' \circ \pi'') = \pi \circ (\pi'(\pi'')) = \pi(\pi'(\pi'')) = \pi(\pi') \circ \pi'' = (\pi \circ \pi') \circ \pi''.$$

- Neutrales Element ist die Identität $\pi_{id} = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$

Lösbarkeit von linearen Gleichungen

Satz Eindeutige Lösung

Sei $n \in \mathbb{N}$ und $a \in \mathbb{Z}$ mit ggT(a, n) = 1. Dann besitzt die Gleichung az = b für jedes $b \in \mathbb{Z}_n$ genau eine Lösung $z \in \mathbb{Z}_n$.

- Existenz: EEA liefert $x, y \in \mathbb{Z}$ mit ax + ny = 1.
- Dann gilt $a^{-1} = x \mod n$ und damit $z = a^{-1}b \mod n$.
- **Eindeutigkeit:** Seien z und z' Lösungen.
- Dann gilt $az b = az' b \mod n$ bzw. $a(z z') = 0 \mod n$.
- Wegen ggT(a, n) = 1 folgt n|(z z') und damit $z = z' \mod n$.

Ordnung einer Gruppe

Definition Ordnung einer Gruppe

Sei G eine (multiplikative) endliche Gruppe mit neutralem Element 1.

- Die Ordnung von G ist ord(G) := |G|.
- ② Die *Ordnung* eines Elements $a \in G$ ist $\operatorname{ord}_G(a) := \min\{i \in \mathbb{N} \mid a^i = 1\}.$
- **3** $H \subseteq G$ heißt *Untergruppe* von G, falls H eine Gruppe ist.
- Wir bezeichnen mit $\langle a \rangle := \{a, a^2, a^3, \dots, a^{\operatorname{ord}_G(a)}\}$ die von a erzeugte Untergruppe.
- Die von einem Element a erzeugten Gruppen heißen zyklisch. Das Element a heißt Generator oder auch primitives Element.

Beispiel für Ordnungen und Untergruppen

Beispiel: $G = \mathbb{Z}_7^*$

- Die Ordnung von \mathbb{Z}_7^* ist $ord(\mathbb{Z}_7^*) = |\{1, 2, 3, 4, 5, 6\}| = 6.$
- $\operatorname{ord}_G(4) = 3$, denn $4^1 = 4$, $4^2 = 2$ und $4^3 = 1$.
- $H = \{1, 2, 4\}$ ist eine Untergruppe.
- In H gilt $2 \cdot 4 = 1$, d.h. $2^{-1} = 4$ und $4^{-1} = 2$.
- $H = \langle 4 \rangle$ ist eine zyklische Untergruppe der Ordnung 3 mit Generatoren 2 und 4.
- $\mathbb{Z}_7^* = \langle 3 \rangle$ ist ebenfalls zyklisch.
- $\langle 6 \rangle = \{1,6\}$ ist eine Untergruppe der Ordnung 2.
- $\langle 1 \rangle = \{1\}$ ist eine Untergupppe der Ordnung 1.

Satz von Euler

Satz von Euler

Sei G eine (multiplikative) Gruppe mit neutralem Element 1. Dann gilt für alle $a \in G$ die Identität $a^{|G|} = 1$.

- Sei $G = \{g_1, \dots, g_n\}$, d.h. n = ord(G) = |G|.
- Wir betrachten die Abbildung $f: G \rightarrow G, g \mapsto ag$.
- f ist bijektiv mit Umkehrabbildung $f^{-1}: G \to G, g \mapsto a^{-1}g$.
- Da f bijektiv ist, gilt G = f(G) bzw. $\{g_1, \ldots, g_n\} = \{ag_1, \ldots, ag_n\}$.
- Daraus folgt $\prod_{i=1}^n g_i = \prod_{i=1}^n ag_i = a^n \prod_{i=1}^n g_i$.
- Damit gilt $a^n = a^{|G|} = 1$.

Elementordnung

Satz Elementordnung

Sei G eine endliche (muliplikative) Gruppe. Dann gilt für alle $a \in G$ die Ungleichung $\operatorname{ord}_G(a) \leq \operatorname{ord}(G)$.

- Annahme: Sei a ein Element mit $k = \operatorname{ord}_G(a) \ge |G| + 1$.
- Wir betrachten die Abbildung $f:[k] \to G$, $i \mapsto a^i$.
- Nach Schubfachprinzip muss es i < j mit $i, j \in [k]$ geben mit f(i) = f(j), d.h. $a^i = a^j$.
- Multiplikation mit $(a^i)^{-1}$ liefert $a^{j-i} = 1$ mit 0 < j i < k. (Widersprich: ord_G(a) = k nach Voraussetzung)

Elementordnung teilt Gruppenordnung

Satz Elementordnung teilt Gruppenordnung

Sei G eine endliche (multiplikative) Gruppe. Dann gilt für alle $a \in G$, dass $\operatorname{ord}_G(a)|\operatorname{ord}(G)$.

Beweis:

- Annahme: $ord_G(a)$ teilt ord(G) nicht
- Division mit Rest liefert $ord(G) = q \cdot ord_G(a) + r$ mit

$$0 < r < \text{ord}_{G}(a)$$
.

• Es gilt $a^r = a^{\operatorname{ord}(G) - q \cdot \operatorname{ord}_G(a)} = (a^{\operatorname{ord}(G)})(a^{\operatorname{ord}_G(a)})^{-q} = 1 \cdot (1^q)^{-1} = 1$. (Widerspruch zur Minimalität von $\operatorname{ord}_G(a)$)

Nebenklassen von Untergruppen

Definition Nebenklasse

Sei (G, \cdot) eine abelsche Gruppe und $H \subseteq G$ eine Untergruppe von G. Für jedes $b \in G$ heißt $b \cdot H = \{b \cdot h \mid h \in H\}$ Nebenklasse von H.

Bsp:

- Betrachte $G = (\mathbb{Z}_8, +)$. $H = \{0, 4\}$ ist eine Untergruppe von G.
- Nebenklassen sind

$$1 + H = \{1, 5\}, 2 + H = \{2, 6\}, 3 + H = \{3, 7\}, 4 + H = H.$$

- Betrachte $G = (\mathbb{Z}_7^*, \cdot)$ mit Untergruppe $H = \{1, 2, 4\}$.
- Nebenklassen sind

$$2H = \{2,4,1\} = H = 4H, 3H = \{3,6,5\} = 6H = 5H.$$

Eigenschaften von Nebenklassen

Satz Eigenschaften von Nebenklassen

Sei (G, \cdot) eine abelsche Gruppe und $H \subseteq G$ eine Untergruppe.

- \bullet hH = H für alle $h \in H$.
- ② Für $a, b \in G$ gilt entweder aH = bH oder $aH \cap bH = \emptyset$.
- 3 |aH| = |H| für alle $a \in G$.
- **1** Die Nebenklassen aH für $a \in G$ partitionieren G.

- ad 1: Die Abgeschlossenheit von H liefert $hH \subseteq H$.
- Bleibt zu zeigen, dass $H \subseteq hH$. Sei $g \in H$ beliebig.
- Dann gilt $g = 1g = hh^{-1}g = h(h^{-1}g) \in hH$.
- ad 2: Sei $a, b \in G$ mit $aH \cap bH \neq \emptyset$.
- Dann gibt es $h_1, h_2 \in H$ mit $ah_1 = bh_2$.
- Damit gilt $aH = (bh_1^{-1}h_2)H = b(h_1^{-1}h_2H) = bH$.

Eigenschaften von Nebenklassen

Beweis Fortsetzung:

- ad 3: Sei $a \in G$. Betrachten die Abbildung $f : H \rightarrow aH, h \mapsto ah$.
- f ist eine Bijektion in G, d.h. |H| = |aH| nach Gleichheitsregel.
- ad 4: $1 \in H$, da H eine Gruppe ist.
- Daher gilt $a \in aH$ für alle $a \in G$. D.h. $G \subseteq \bigcup_{a \in G} aH$.
- Aufgrund der Abgeschlossenheit von G gilt auch $\bigcup_{a \in G} aH \subseteq G$.
- Aufgrund von 2. bilden die Nebenklassen aH eine Partition von H.

Index einer Untergruppe

Definition Index einer Untergruppe

Sei G eine abelsche Gruppe und $H \subseteq G$ eine Untergruppe. Wir bezeichnen mit G/H die Menge der Nebenklassen von G. Die Kardinalität von G/H heißt *Index von H* in G, d.h. $\operatorname{ind}_G(H) = |G/H|$. Alternativ verwendet man für den Index auch die Notation [G:H].

Bsp:

- Sei $G = (\mathbb{Z}_8, +)$ und $H = \{0, 4\}.$
- Dann gilt $G/H = \{H, 1 + H, 2 + H, 3 + H\}$, d.h. $ind_G(H) = 4$.
- Sei $G = (\mathbb{Z}_7^*, \cdot)$ und $H = \{1, 2, 4\}$.
- Dann gilt $G/H = \{H, 3H\}$, d.h. $ind_G(H) = 2$.

Untergruppenordnung teilt Gruppenordnung

Satz von Lagrange

Sei G eine abelsche Gruppe und $H \subseteq G$ eine Untergruppe. Dann gilt $|G| = |H| \cdot \operatorname{ind}_G(H)$, d.h. insbesondere $\operatorname{ord}_G(H)$ teilt $\operatorname{ord}(G)$.

- Alle Nebenklassen von H besitzen dieselbe Kardinalität |H|.
- Es gibt ind_G(H) viele verschiedene Nebenklassen von H in G.
- Alle Nebenklassen bilden eine Partition von G.

Die Faktorgruppe *G/H*

Satz Faktorgruppe *G/H*

Sei G eine abelsche Gruppe mit Untergruppe $H \subseteq G$. Dann ist G/H zusammen mit der Multiplikation $\cdot : G/H \times G/H \to G/H$, $(aH, bH) \mapsto abH$ eine Gruppe, die sogenannte Faktorgruppe.

- Wir zeigen zunächst die Repräsentanten-Unabhängigkeit der Multiplikation, d.h. die Multiplikation ist wohldefiniert.
- Seien aH = a'H, bH = b'H.
- Es gilt $a \in aH = a'H$ und $b \in bH = bH'$.
- Damit gibt es $h_1, h_2 \in H$, so dass $a = a'h_1$ und $b = b'h_2$.
- Es folgt $abH = (a'h_1b'h_2)H = a'b'(h_1h_2H) = a'b'H$.
- Damit ist die Multiplikation unabhängig von den Repräsentanten.
- **Neutrales** Element von G/H ist H, denn $aH \cdot H = aH$.
- **Inverses** Element von aH in G/H ist $a^{-1}H$, wobei a^{-1} das inverse Element von a in G ist. Es gilt $a^{-1}H \cdot aH = a^{-1}aH = H$.

Beispiele für Faktorgruppen

Bsp:

- $G = (\mathbb{Z}, +)$ mit Untergruppe $H = 3\mathbb{Z}$.
- Nebenklassen sind $H = 3\mathbb{Z}, 1 + H = 1 + 3\mathbb{Z}$ und $2 + H = 2 + 3\mathbb{Z}$.
- Repräsentanten-Unabhängigkeit: H = 6 + H und 2 + H = 5 + H.
- Dann gilt H + 2 + H = 2 + H = (6 6 + 5 3) + H= 6 + 5 + (-6 - 3 + H) = 6 + 5 + H.
- Neutrales Element ist H, denn H + a + H = a + H.
- Inverses Element zu $a + H \neq H$ ist (-a) + H, denn a + H + (-a) + H = 0 + H = H.
- Man beachte: Unsere Gruppe $(\mathbb{Z}_m, +)$ ist lediglich eine alternative Notation für die Faktorgruppe $(\mathbb{Z}/m\mathbb{Z}, +)$.
- $G = \mathbb{Z}_7^*$ mit Untergruppe $H = \{1, 2, 4\} = 2H = 4H$
- Nebenklassen sind H und $H_2 = \{3, 5, 6\} = 3H = 5H = 6H$.
- *H* ist neutrales Element, denn $H \cdot H = H$ und $H \cdot H_2 = H_2$.
- $(H_2)^{-1} = (3^{-1}H) = 5H = H_2$, denn $H_2 \cdot H_2 = H$.

Isomorphismus

Definition Gruppen-Isomorphismus

Seien (G, +) und (G', \cdot) Gruppen. Die Abbildung $f : G \rightarrow G'$ heißt *Gruppen-Isomorphismus*, falls gilt

- f ist bijektiv
- ② $f(u+v) = f(u) \cdot f(v)$ für alle $u, v \in G$, die sogenannte Homomorphismus-Eigenschaft von f.

Wir nennen G und G' isomorph, falls ein solcher Gruppen-Isomorphismus existiert. Notation: $G \cong G'$.

Zyklische Gruppen und $(\mathbb{Z}_m, +)$

Satz Isomorphie zu \mathbb{Z}_m

Sei G eine zyklische Gruppe mit Ordnung m. Dann gilt $G \cong (\mathbb{Z}_m, +)$.

Beweis:

- Da *G* zyklisch ist, gibt es ein $a \in G$ mit $G = \{a^i \mid i \in \mathbb{Z}_m\}$.
- Wir betrachten die Abbildung $f: \mathbb{Z}_m \to G, i \mapsto a^i$.
- Wegen $G = \{a^i \mid i \in \mathbb{Z}_m\}$ ist f surjektiv.
- Da $|G| = |\mathbb{Z}_m|$, ist f ebenfalls bijektiv.
- f ist ein Homomorphismus, da für alle $i, j \in \mathbb{Z}_m$ gilt

$$f(i+j)=a^{i+j}=a^i\cdot a^j=f(i)\cdot f(j).$$

• Damit ist f ein Gruppen-Isomorphismus und $G \cong (\mathbb{Z}_m, +)$.

Diskreter Logarithmus Problem

DLP: Diskreter Logarithmus Problem

Gegeben: *G* mit Generator $a \in G$, Element $b \in G$

Gesucht: $i \in \mathbb{Z}_{|G|}$ mit $a^i = b$

Lösung des DLP:

- Betrachten den Gruppen-Isomorphismus $f: i \mapsto a^i$.
- Für die Umkehrfunktion $f^{-1}: a^i \mapsto i$ gilt f(b) = i.
- D.h. f^{-1} löst das Diskrete Logarithmus Problem.
- Da DLP in einigen Gruppen als schweres Problem gilt, kann f nicht immer in beiden Richtungen effizient berechenbar sein.

Komplexität modularer Arithmetik

Satz Modulare Addition

Sei $m \in \mathbb{N}$ mit Bitlänge n und $a, b \in \mathbb{Z}_m$. Dann kann $a + b \mod m$ in Zeit $\mathcal{O}(n)$ berechnet werden.

Beweis: Schulmethode

- Schreibe alle Operanden in Binärform $a = a_{n-1} \dots a_0 = \sum_{i=0}^n a_i 2^i$.
- Addiere a, b bitweise mit Übertrag, beginnend bei a₀, b₀.
- Falls a + b > m, subtrahiere bitweise m vom Ergebnis.
- Laufzeitkomplexität dieser Methode: $O(n) = O(\log m)$.
- D.h. Addition/Subtraktion besitzen Laufzeit linear in der Größe der Operanden.

Komplexität modularer Multiplikation

Satz Modulare Multiplikation

Sei $m \in \mathbb{N}$ mit Bitlänge n und $a, b \in \mathbb{Z}_m$. Dann kann $a \cdot b \mod m$ in Zeit $\mathcal{O}(n^2)$ berechnet werden.

Beweis:

Algorithmus Multiplikation Schulmethode

EINGABE: $a = a_{n-1} ... a_{n-1}, b, m$

- $0 c \leftarrow 0; h \leftarrow b;$
- 2 For $i \leftarrow 0$ to n-1
 - If $(a_i = 1)$ then $c \leftarrow c + h \mod m$
 - ② $h \leftarrow 2h \mod m$

AUSGABE: $a + b \mod m$

- Korrektheit: $a \cdot b = \left(\sum_{i=0}^n a_i 2^i\right) \cdot b = \sum_{i=0}^n a_i \cdot \left(b \cdot 2^i\right) \mod m$.
- In Schritt 2.1 wird $h = b \cdot 2^i \mod m$ addiert.
- Laufzeit: $n \cdot \mathcal{O}(n) = \mathcal{O}(n^2) = \mathcal{O}(\log^2 m)$

Komplexität modularer Division

Korollar Modulare Division

Sei $m \in \mathbb{N}$ mit Bitlänge n und $a \in \mathbb{Z}_m$, $b \in \mathbb{Z}_m^*$. Dann kann $\frac{a}{b} \mod m$ in Zeit $\mathcal{O}(n^2)$ berechnet werden.

- Berechne $b^{-1} \mod m$ mit EEA in Zeit $\mathcal{O}(\log^2 m)$.
- Berechne $a \cdot b^{-1} \mod m$ in Zeit $\mathcal{O}(\log^2 m)$.

Die Karatsuba Methode

Satz von Karatsuba

Sei $m \in \mathbb{N}$ mit Bitlänge n und $a, b \in \mathbb{Z}_m$. Dann kann $a \cdot b \mod m$ in Zeit $\mathcal{O}(n^{\log_2 3})$ berechnet werden.

- Vereinfachende Annahme: Bitlänge ist Zweierpotenz $n = 2^k$.
- Teilen Operanden in der Mitte, d.h. $a = A_1 2^{\frac{n}{2}} + A_0$ mit

$$A_1 = \sum_{i=\frac{n}{2}}^{n-1} a_i 2^i$$
 und $A_0 = \sum_{i=0}^{\frac{n}{2}-1} a_i 2^i$. Dann gilt

$$a \cdot b = \left(A_1 2^{\frac{n}{2}} + A_0\right) \left(B_1 2^{\frac{n}{2}} + B_0\right)$$

$$= A_1 B_1 2^n + (A_1 B_0 + A_0 B_1) 2^{\frac{n}{2}} + A_0 B_0$$

$$= A_1 B_1 2^n + ((A_0 + A_1)(B_0 + B_1) - A_0 B_0 - A_1 B_1) 2^{\frac{n}{2}} + A_0 B_0$$

- D.h. die Multiplikation von n-Bit Zahlen a, b kann zurückgeführt werden auf 3 Multiplikationen von $\frac{n}{2}$ -Bit Zahlen.
- Rekursiv: $\frac{n}{2}$ -Bit mittels 3 Multiplikationen mit $\frac{n}{4}$ -Bit Zahlen, usw.

Laufzeit Karatsuba

Beweis: Laufzeit der Karatsuba-Methode

- Rekursiver Aufruf erfordert Aufwand von 6 Additionen und 2 Shifts.
- Sei T(n) die Laufzeit zum Multiplizieren zweier n-Bit Zahlen.
- Dann gilt $T(n) = 3T(\frac{n}{2}) + c \cdot n$ für festes c > 0.

$$T(n) = 3\left(3T\left(\frac{n}{4}\right) + c\frac{n}{2}\right) + cn = 3^{2}T\left(\frac{n}{4}\right) + cn\left(1 + \frac{3}{2}\right)$$

$$= 3^{2}\left(3T\left(\frac{n}{8}\right) + c\frac{n}{4}\right) + cn\left(1 + \frac{3}{2}\right)$$

$$= 3^{3}T\left(\frac{n}{8}\right) + cn\left(1 + \frac{3}{2} + \left(\frac{3}{2}\right)^{2}\right)$$

$$= \vdots$$

$$= 3^{i}T\left(\frac{n}{2^{i}}\right) + cn\sum_{i=0}^{i-1}\left(\frac{3}{2}\right)^{i}$$

• Abbruch der Rekursion für T(1), d.h. $n = 2^i$ bzw. $i = \log_2 n$.

Laufzeit Karatsuba

Beweis: Fortsetzung Laufzeit Karatsuba-Methode

• Wir erhalten für $i = \log_2 n$ und $T(1) = \mathcal{O}(1)$

$$T(n) = 3^{\log_2 n} \cdot T(1) + cn \sum_{j=0}^{\log_2 n-1} \left(\frac{3}{2}\right)^j$$

$$= n^{\log_2 3} \cdot \mathcal{O}(1) + cn \cdot \frac{\left(\frac{3}{2}\right)^{\log_2 n} - 1}{\frac{3}{2} - 1}$$

$$= \mathcal{O}(n^{\log_2 3}) + \mathcal{O}\left(n \cdot \frac{3^{\log_2 n}}{2^{\log_2 n}}\right)$$

$$= \mathcal{O}(n^{\log_2 3}) \approx \mathcal{O}(n^{1.59})$$

Anmerkung:

• Wir lernen bald ein Verfahren kennen mit Komplexität $\mathcal{O}(n \log n \log \log n) = \mathcal{O}(n^{1+\epsilon})$ für jedes $\epsilon > 0$.

Modulare Exponentiation

Satz Modulare Exponentiation

Sei $m \in \mathbb{N}$ mit Bitlänge n und $a, b \in \mathbb{Z}_m$. Dann kann $a^b \mod m$ in Zeit $\mathcal{O}(n^3)$ berechnet werden.

Beweis:

Algorithmus SQUARE & MULTIPLY

EINGABE: $a, b = b_{n-1} ... b_0, m$

- $0 c \leftarrow 1$
- ② For $i \leftarrow 0$ to n-1
 - **1** If $(b_i = 1)$ then $c \leftarrow c \cdot a \mod m$
 - $a \leftarrow a^2 \bmod m$

AUSGABE: $c = a^b \mod m$

- Korrektheit: $a^b = a^{\sum_{i=0}^{n-1} b_i 2^i} = \prod_{i=0}^{n-1} a_i^{b_i 2^i} = \prod_{i=0}^{n-1} \left(a_i^{2^i}\right)^{b_i}$
- Laufzeit: $n \cdot \mathcal{O}(n^2) = \mathcal{O}(n^3) = \mathcal{O}(\log^3 m)$

Kleiner Satz von Fermat

Satz von Fermat

Sei p prim. Dann gilt

- 2 $a^p = a \mod p$ für alle $a \in \mathbb{Z}_p$.

- ad 1: Nach Satz von Euler gilt $a^{|G|} = a^{|\mathbb{Z}_p^*|} = a^{p-1} = 1$.
- ad 2: Für alle $a \in \mathbb{Z}_p^*$ folgt damit $a^p = a \mod p$.
- Weiterhin gilt für a = 0 die Identität $0^p = 0 \mod p$.

Primzahltest

- Wir wollen testen, ob eine gegebene Zahl n eine Primzahl ist.
- Effizienter Algorithmus zum Faktorisieren ist unbekannt.
- Kontraposition des Kleinen Satzes von Fermat liefert: Falls $a^{n-1} \neq 1 \mod n$ für ein $a \in \mathbb{Z}_n^*$, dann ist n nicht prim.
- Leider muss ein solcher Zeuge $a \in \mathbb{Z}_n^*$ nicht immer existieren.

Definition Carmichael-Zahl

Sei $n \in \mathbb{N}$ zusammengesetzt. Wir bezeichnen n als Carmichael-Zahl falls $a^{n-1} = a \mod n$ für alle $a \in \mathbb{Z}_n^*$.

Bsp:

- Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, 2465.
- Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994).

Definition Fermatsche Pseudoprimzahl-Basis

Sei $n \in \mathbb{N}$ zusammengesetzt. Wir bezeichnen $a \in \mathbb{Z}_N^*$ als Pseudoprimzahl-Basis für n, falls $a^{n-1} = 1 \mod n$.

Dichte der Pseudoprimzahl-Basen

Satz Pseudoprimzahlen-Basen bilden Untergruppe

Sei $n \in \mathbb{N}$ zusammengesetzt und keine Carmichael-Zahl. Dann ist höchstens die Hälfte aller $a \in \mathbb{Z}_N^*$ eine Pseudoprimzahl-Basis für n.

- Pseudoprimzahl-Basen $P = \{a \in \mathbb{Z}_n^* \mid a^{n-1} = 1 \mod n\}.$
- Wir zeigen nun, dass P eine echte Untergruppe von \mathbb{Z}_n^* ist.
- Abgeschlossenheit: Seien $a, b \in P$. Dann ist $(ab)^{n-1} = a^{n-1}b^{n-1} = 1 \mod n$, d.h. $ab \in P$.
- Neutrales Element: $1 \in P$, denn $1^{n-1} = 1 \mod n$.
- Inverses Element zu $a \in P$ ist $a^{n-2} \mod n$, denn
 - $a \cdot a^{n-2} = a^{n-1} = 1 \mod n$.
 - $a^{n-2} \in P$, da $(a^{n-2})^{n-1} = (a^{n-1})^{n-2} = 1 \mod n$.
- Da *n* keine Carmichael-Zahl ist, gilt $P \neq \mathbb{Z}_n^*$.
- Nach Satz von Lagrange gilt $|\mathbb{Z}_n^*| = |P| \cdot \operatorname{ind}_{\mathbb{Z}_n^*}(P)$.
- D.h. $\operatorname{ind}_{\mathbb{Z}_n^*}(P) \geq 2$ und damit $|P| \leq \frac{1}{2} |\mathbb{Z}_n^*|$.

Primzahltest für Nicht-Carmichael-Zahlen

Satz Fermattest

Sei $n \in \mathbb{N}$ keine Carmichael-Zahl und $k \in \mathbb{N}$. Dann kann in Zeit $\mathcal{O}(k\log^3 n)$ mit Fehlerwahrscheinlichkeit $\approx 2^{-k}$ entschieden werden, ob n prim ist.

Beweis:

Algorithmus FERMATTEST

EINGABE: $n, k \in \mathbb{N}$

- **①** For i ← 1 to k
 - $\bullet \quad \text{W\"ahle } a \in_R \mathbb{Z}_n \setminus \{0\}.$
 - ② Falls ggT(a, n) > 1, Ausgabe "n zusammengesetzt".
 - **3** Falls $a^{n-1} \neq 1 \mod n$, Ausgabe "n zusammengesetzt".
- Ausgabe "n prim".
 - Laufzeit: $\mathcal{O}(k \log^3 n) = \mathcal{O}(\log^3 n)$ für konstantes k.
 - In der Praxis genügt die Wahl k = 80.

Korrektheit von FERMATTEST

Beweis: Fehlerwahrscheinlichkeit

- Falls *n* prim ist, dann ist die Ausgabe stets korrekt.
- Schritt 2.2: Falls $a \in \mathbb{Z}_n \setminus \mathbb{Z}_n^*$, dann ist Teiler von n gefunden.
- Schritt 2.3: Falls $a^{n-1} \neq 1 \mod n$, dann ist a ein Zeuge für die Zusammengesetztheit von n.
- Für zusammengesetzte *n* ist fehlerhafte Ausgabe "prim" möglich.
- Pro Iteration:

Ws(Ausgabe "n zusammengesetzt" | n zusammengesetzt)
$$\geq \frac{1}{2}$$
.

Nach k Iterationen:

```
\epsilon := Ws(Ausgabe "n prim" | n zusammengesetzt)
= (1 - Ws(Ausgabe "n zusammengesetzt" | n zusammengesetzt))^k
\leq 2^{-k}
```

Fehlerwahrscheinlichkeit

```
Ws(n zusammengesetzt | Ausgabe "n prim") \approx \epsilon.
```

Spezieller Chinesischer Restsatz

Satz Spezieller Chinesischer Restsatz

Seien $m,n\in\mathbb{N}$ teilerfremd und $a,b\in\mathbb{Z}$. Dann existiert genau eine Lösung $x\in\mathbb{Z}_{mn}$ des Gleichungssystems

$$\left|\begin{array}{ccc} x & = & a \bmod m \\ x & = & b \bmod n \end{array}\right|.$$

- Existenz: EEA liefert $r, s \in \mathbb{Z}$ mir mr + ns = ggT(m, n) = 1.
- D.h. $mr = 1 \mod n$ und $ns = 1 \mod m$.
- Wir definieren $x = ans + bmr \mod mn$.
- Damit gilt $x = a \mod m$ und $x = b \mod n$.
- **Eindeutigkeit:** Seien x, x' Lösungen des Gleichungssystems.
- Dann gilt $x = a = x' \mod m$ und $x = b = x' \mod n$.
- Damit wird die Differenz x x' sowohl von m als auch n geteilt.
- Da ggT(m, n) = 1, folgt $mn \mid x x'$ und damit $x = x' \mod mn$.

Chinesischer Restsatz

Satz Chinese Remainder Theorem (CRT)

Seien $m_1, \ldots, m_n \in \mathbb{N}$ paarweise teilerfremd und $a_1, \ldots, a_n \in \mathbb{Z}$. Dann existiert genau eine Lösung $x \in \mathbb{Z}_{m_1 \cdot \ldots \cdot m_n}$ des Gleichungssystems

$$\begin{vmatrix} x & = & a_1 \mod m_1 \\ x & = & a_2 \mod m_2 \\ & \vdots \\ x & = & a_n \mod m_n \end{vmatrix}.$$

Beweis: Induktion über n

- IV für n = 2 liefert der Spezielle Chinesische Restsatz.
- IS für $n-1 \to n$. Nach IA existiert für die ersten n-1 Gleichungen eine eindeutige Lösung $y \in \mathbb{Z}_{m_1 \cdot ... \cdot m_n}$.
- Spezieller CRT-Satz liefert eindeutiges $x \in \mathbb{Z}_{m_1 \cdot ... \cdot m_n}$ mit

$$\left|\begin{array}{ccc} x & = & y \mod m_1 \cdot \ldots \cdot m_{n-1} \\ x & = & a_n \mod m_n \end{array}\right|.$$

Additiver CRT-Isomorphismus

Satz Additiver CRT-Isomorphismus

Sei $N=m_1\cdot\ldots\cdot m_n$ für paarweise teilerfremde m_1,\ldots,m_n . Dann gilt

$$\mathbb{Z}_N\cong\mathbb{Z}_{m_1}\times\ldots\times\mathbb{Z}_{m_n}.$$

- Wir definieren $f: \mathbb{Z}_N \to \mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_n}$ vermöge $x \mod N \mapsto (x \mod m_1, \ldots, x \mod m_n).$
- CRT-Satz liefert zu jedem f(x) das eindeutige x, d.h. f ist injektiv.
- Da $|\mathbb{Z}_N| = N = m_1 \cdot \ldots \cdot m_n = |\mathbb{Z}_{m_1}| \cdot \ldots \cdot |\mathbb{Z}_{m_n}|$, ist f bijektiv.
- Ferner ist *f* ein Homomorphismus, denn

$$f(x + y) = ((x + y \mod N) \mod m_1, ..., (x + y \mod N) \mod m_n)$$

= $(x + y \mod m_1, ..., x + y \mod m_n) = f(x) + f(y).$

- Damit ist *f* ein Isomorphismus.
- Man beachte: Sowohl f als auch f^{-1} sind effizient berechenbar.

Anwendung des CRT-Isomorphismus

Korollar Anwendung des CRT-Isomorphismus

Sei $N = m_1 \cdot \ldots \cdot m_n$ für paarweise teilerfremde m_1, \ldots, m_n . Dann gilt für alle $x, a \in \mathbb{Z}$, dass $x = a \mod N$ gdw

$$\begin{array}{rcl}
x & = & a \bmod m_1 \\
x & = & a \bmod m_2 \\
& \vdots \\
x & = & a \bmod m_n
\end{array}$$

Anwendung:

- Seien die m_i , $i \in [n]$ Primzahlen oder Primzahlpotenzen.
- Für viele Probleme sind effiziente Algorithmen in \mathbb{Z}_N nicht bekannt, wohl aber in \mathbb{Z}_{m_i} . Vorgehensweise zum Lösen in \mathbb{Z}_N :
 - ▶ Berechne mittels Isomorphismus f Darstellung in $\mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_n}$.
 - ▶ Löse die algorithmischen Probleme für alle \mathbb{Z}_{m_i} , $i \in [n]$ separat.
 - ▶ Berechne mittels Isomorphismus f^{-1} die Lösungen in \mathbb{Z}_N .

Multiplikativer CRT-Isomorphismus

Satz Multiplikativer CRT-Isomorphismus

Sei $N = m_1 \cdot \ldots \cdot m_n$ für paarweise teilerfremde m_1, \ldots, m_n . Dann gilt

$$\mathbb{Z}_N^*\cong \mathbb{Z}_{m_1}^*\times \ldots \times \mathbb{Z}_{m_n}^*.$$

- Definieren denselben Isomorphismus f wie zuvor.
- Zeigen zunächst, dass für $a \in \mathbb{Z}_N^*$ gilt $f(a) \in \mathbb{Z}_{m_1}^* \times \ldots \times \mathbb{Z}_{m_n}^*$.
- Es gilt ggT(a, N) = 1, d.h. es gibt $x, y \in \mathbb{Z}$ mit ax + Ny = 1.
- Damit ist $ax + m_1 \cdot \ldots \cdot m_n y = 1$ bzw. $ggT(a, m_i) = 1$ für $i \in [n]$.
- Sei umgekehrt $ggT(a, m_i) = 1$ für alle $i \in [n]$.
- Aus dem Satz zur Teilerfremdheit folgt damit ggT(a, N) = 1.
- f ist nach CRT-Satz injektiv und für teilerfremde m_i gilt $|\mathbb{Z}_N^*| = \phi(N) = \phi(m_1 \cdot \ldots \cdot m_n) = \phi(m_1) \cdot \ldots \cdot \phi(m_n) = |\mathbb{Z}_{m_1}^*| \cdot \ldots \cdot |\mathbb{Z}_{m_n}^*|$. (Übungsaufgabe)
- Dass *f* ein Homomorphismus ist, folgt analog zum vorigen Beweis.

Anzahl Nullstellen modularer Gleichungen

Satz Nullstellen einer Quadratischen Gleichung

Sei $N \in \mathbb{N}$ ungerade mit Primfaktorzerlegung $N = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$. Dann existieren 2^k Lösungen der Gleichung $x^2 = 1 \mod N$ in \mathbb{Z}_N^* .

- CRT-Isomorphismus: $x^2 = 1 \mod N$ gdw $x^2 = 1 \mod p_i^{e_i}$, $i \in [n]$.
- Für jede Gleichung $x^2 = 1 \mod p_i^{e_i}$ sind $x = \pm 1$ Lösungen.
- 1 \neq (-1) mod $p_i^{e_i}$, da $p_i^{e_i}$ > 2. D.h. die Lösungen sind verschieden.
- Damit sind alle möglichen Vektoren $v \in \{-1,1\}^k$ Lösungen in $\mathbb{Z}_{p_1^{e_1}}^* \times \ldots \times \mathbb{Z}_{p_k^{e_k}}^*$.
- CRT-Satz: Diese 2^k Lösungen führen zu 2^k Lösungen in \mathbb{Z}_N .

Spezialfall RSA-Modul N = pq

Korollar Anzahl Lösungen für RSA-Modul

Sei N = pq mit p, q prim. Dann besitzt die Gleichung $x^2 = 1 \mod N$ vier Lösungen in \mathbb{Z}_N^* .

Bsp:

• $x^2 = 1 \mod 15$ besitzt die Lösungen

$$\left| \begin{array}{c|c} x_1 = 1 \mod 3 \\ x_1 = 1 \mod 5 \end{array} \right|, \left| \begin{array}{c|c} x_2 = 1 \mod 3 \\ x_2 = 4 \mod 5 \end{array} \right|, \left| \begin{array}{c|c} x_3 = 2 \mod 3 \\ x_3 = 1 \mod 5 \end{array} \right|, \left| \begin{array}{c|c} x_4 = 2 \mod 3 \\ x_4 = 4 \mod 5 \end{array} \right|.$$

• In \mathbb{Z}_N^* entspricht dies $x_1 = 1, x_2 = 4, x_3 = 11, x_4 = 14$.

Faktorisieren mit nicht-trivialen Wurzeln

Satz Faktorisieren mit nicht-trivialen Wurzeln

Sei N=pq ungerade mit p,q prim. Sei $x\in\mathbb{Z}_N^*$ eine Lösung von $x^2=1 \mod N$ mit $x\neq \pm 1 \mod N$. Dann kann die Faktorisierung von N in Zeit $\mathcal{O}(\log^2 N)$ berechnet werden.

Beweis:

• $x^2 = 1 \mod N$ besitzt die vier Wurzel

$$1 = (1, 1), -1 = (-1, -1), (1, -1) \text{ und } (-1, 1).$$

- OBdA sei x = (1, -1), d.h. $x = 1 \mod p$ und $x = (-1) \mod q$.
- D.h. x 1 = (0, -2) und $x 1 = 0 \mod p$, $x 1 = (-2) \mod q$.
- Damit gilt p teilt x 1 und q teilt x 1 nicht wegen q > 2.
- Daraus folgt ggT(N, x 1) = p.
- p kann in Zeit $\mathcal{O}(\log^2 N)$ mittels EUKLID berechnet werden.
- Analog kann man ggT(N, x + 1) = q zeigen.

RSA Parameter

RSA Parameter
$$\begin{cases} & \text{offentlich:} \quad N = pq \text{ mit } p, q \text{ prim und } e \in \mathbb{Z}_{\phi(N)}^* \\ & \text{geheim:} \quad d \in \mathbb{Z}_{\phi(N)}^* \text{ mit } ed = 1 \text{ mod } \phi(N). \end{cases}$$

Satz RSA Parameter Generierung

RSA-Parameter (N, e, d) können in Zeit $\mathcal{O}(\log^4 N)$ generiert werden.

Algorithmus RSA Schlüsselgenerierung

EINGABE: 1^k , wobei k ein Sicherheitsparameter ist.

- $\bigcirc p, q \leftarrow$ Wähle mittels Primzahltest zwei zufällige k-Bit Primzahlen.
- N ← pq
- **③** $\phi(N)$ ← (p-1)(q-1)
- **④** $e \leftarrow \text{W\"ahle zuf\"alliges } e' \in \mathbb{Z}_{\phi(N)} \text{ bis } ggT(e', \phi(N)) = 1.$
- **5** $d \leftarrow e^{-1} \mod \phi(N)$.

AUSGABE: (N, e, d)

Laufzeit RSA Parameter Generierung

Erwartete Laufzeit:

- Schritt 1: $\mathcal{O}(k^3 \cdot k)$, da eine k-Bit Zahl mit Ws $\approx \frac{1}{k}$ prim ist. (Folgt aus dem Gaußschen Primzahlsatz)
- D.h. wir müssen ca. k Zahlen wählen, bis eine Zahl prim ist.
- Schritt 2-5: $\mathcal{O}(k^2)$, d.h. gesamt $\mathcal{O}(k^4) = \mathcal{O}(\log^4 N)$.
- Man beachte: Laufzeit ist polynomiell im Sicherheitsparameter 1^k.

Definition RSA Ver- und Entschlüsselung

Seien (N, e, d) RSA Parameter.

- **①** Verschlüsselung: $E: \mathbb{Z}_N \to \mathbb{Z}_N$ mit $m \mapsto m^e \mod N$
- ② Entschlüsselung: $D: \mathbb{Z}_N \to \mathbb{Z}_N$ mit $c \mapsto c^d \mod N$

Laufzeit:

• E und D können in Zeit $\mathcal{O}(\log^3 N)$ berechnet werden.

Korrektheit RSA Ver- und Entschlüsselung

Satz Korrektheit RSA

Seien (N, e, d) RSA-Parameter. Dann gilt D(E(m)) = m für alle $m \in \mathbb{Z}_N$.

- Nach CRT-Isomorphismus gilt $D(E(m)) = m^{ed} = m \mod N$ gdw $m^{ed} = m \mod p$ und $m^{ed} = m \mod q$.
- Wir zeigen die Korrektheit modulo p. (Beweis analog modulo q)
- Wir schreiben $ed = 1 \mod \phi(N)$ als $ed = 1 + k\phi(N)$ für ein $k \in \mathbb{N}$.
- D.h. $m^{ed}=m^{1+k\phi(N)}=m\cdot (m^{p-1})^{k(q-1)}=m \ \mathrm{mod}\ p$ für $m\in\mathbb{Z}_p^*.$
- Für $m = 0 \notin \mathbb{Z}_p^*$ gilt ebenfalls $0^{ed} = 0 \mod p$.

Faktorisieren und Berechnen von d

Definition Polynomialzeit-Äquivalenz

Wir nennen zwei Probleme *Polynomialzeit-äquivalent*, falls ein Polynomialzeit-Algorithmus für das eine Problem einen Polynomialzeit-Algorithmus für das andere Problem impliziert.

Satz Faktorisieren und RSA

Die folgenden drei Probleme sind Polynomialzeit-äquivalent.

- Faktorisieren von N
- **2** Berechnen von $\phi(N)$
- Berechnen von d aus (N, e)

- 1 \Rightarrow 2: Berechne $\phi(N) = (p-1)(q-1)$.
- 2 \Rightarrow 3: Berechne $d = e^{-1} \mod \phi(N)$.
- 3 \Rightarrow 1: Müssen zeigen, dass (N, e, d) das Tupel (p, q) liefert.

Ringschluss: Faktorisieren mit Hilfe von d

Beweisidee: $3 \Rightarrow 1$

- Sei $ed 1 = k(p 1)(q 1) = 2^r t$ für $r \ge 2$ und t ungerade.
- Satz von Euler: Für beliebiges $a \in \mathbb{Z}_N^*$ gilt $a^{2^rt} = 1 \mod N$.
- Wir ziehen nun sukzessive Quadratwurzel von $a^{2^rt} = 1 \mod N$.
- Fall 1: Die Quadratwurzeln $a^{2^{r-1}t}, \ldots, a^t \mod N$ sind alle 1.
 - ▶ In diesem Fall muss ein anderes $a \in \mathbb{Z}_N^*$ gewählt werden.
- Fall 2: $a^{2^{\ell}t} = (-1) \mod N$ für ein $\ell \in \mathbb{Z}_r$.
 - ▶ In diesem Fall wird ebenfalls ein anderes $a \in \mathbb{Z}_N^*$ gewählt.
- Fall 3: $a^{2^{\ell}t} \neq (\pm 1) \bmod N$ und $a^{2^{\ell+1}t} = 1 \bmod N$ für ein $\ell \in \mathbb{Z}_r$.
 - D.h. es wurde eine nicht-triviale Quadratwurzel der Eins gefunden.
 - ▶ Damit liefert $ggT(a^{2^{\ell}t} \pm 1, N)$ die Faktoren p, q.
- Man kann zeigen, dass Fall 3 für $a \in_R \mathbb{Z}_N^*$ mit Ws mind. $\frac{1}{2}$ eintritt.
- D.h. im Erwartungswert wählt man zwei $a \in_R \mathbb{Z}_N^*$.
- Die erwartete Laufzeit zum Faktorisieren ist damit $\mathcal{O}(\log^3 N)$.

Sicherheit von RSA

RSA Problem:

Gegeben: $N, e, c = m^e \mod N$

Gesucht: $m \in \mathbb{Z}_N$

Anmerkungen:

- D.h. $m = c^{\frac{1}{e}}$ ist die *e*-te Wurzel von *c* in \mathbb{Z}_N .
- Das RSA-Problem ist nicht für alle *m*, *e* schwer.
- Z.B. kann für $m^e < N$, die Wurzel $c^{\frac{1}{e}}$ effizient berechnet werden.
- Das RSA-Problem ist nicht NP-schwer. (unter geeigneten Komplexitätsannahmen)
- RSA-Problem besitzt auf Quantenrechnern Laufzeitkomplexität $\mathcal{O}(\log^2 N \cdot \log \log N \cdot \log \log \log N)$.
- Offenes Problem: Sind das RSA Problem und das Faktorisierungsproblem Polynomialzeit-äquivalent?

Polynome

Definition Polynom

Sei $R \in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$. Wir bezeichnen die Elemente der Menge

$$R[x] = \{\sum_{i=1}^{n} a_i x^i \mid n \ge (-1), a_i \in R \text{ und } a_n \ne 0\}$$

als Polynome über R. Sei $p(x) = \sum_{i=1}^{n} a_i x^i \in R[x]$.

- \bullet a_0, \ldots, a_n heißen Koeffizienten von p(x).
- **2** a_n heißt führender Koeffizient. p(x) heißt monisch falls $a_n = 1$.
- ③ p(x) besitzt $Grad\ grad(p) = n$. Das Nullpolynom $p'(x) = \sum_{i=0}^{-1} a_i x_i$ besitzt $Grad\ -1$.
- **1** Evaluation von p(x) ist die Abbildung eval : $R \to R$ mit $x_0 \mapsto p(x_0)$.

Abkürzende Notation: p statt p(x).

Anmerkungen

• Wir nehmen vereinfachend an, dass die Operationen $(+, -, \cdot, :)$ auf Elementen aus R in Zeit $\mathcal{O}(1)$ ausgeführt werden können.

Komplexität von eval, Addition und Subtraktion

Evaluation:

- Naives Auswerten von p(x) mit Grad n liefert $\sum_{i=0}^{n+1} = \mathcal{O}(n^2)$ Multiplikationen und n Additionen, d.h. Komplexität $\mathcal{O}(n^2)$.
- Das sogenannte **Horner-Schema** wertet p(x) wie folgt aus $p(x) = (\dots((a_nx + a_{n-1})x + a_{n-2})x + \dots + a_1)x + a_0.$
- Dies erfordert *n* Multiplikationen und *n* Additionen.
- eval besitzt damit lineare Komplexität $\mathcal{O}(n)$.

Addition/Subtraktion:

- Sei $a(x), b(x) \in R[x]$ mit n = grad(a) > grad(b) = m.
- Wir setzen $b_{m+1} = ... = b_n = 0$.
- Berechne $(a \pm b)(x) = \sum_{i=0}^{n} c_i x^i$ mit $c_i = a_i \pm b_i$ für $i \in [n+1]$.
- Damit besitzt die Addition/Subtraktion lineare Komplexität $\mathcal{O}(n)$.

Multiplikation mit Schulmethode

Multiplikation:

- Seien $a(x), b(x) \in R[x]$ mit Grad n bzw. m und $n \ge m$.
- Wir setzen $a_{n+1} = \dots = a_{n+m} = 0$ und $b_{m+1} = \dots = b_{n+m} = 0$.
- Dann gilt

$$(ab)(x) = (a_nb_m)x^{n+m} + (a_{n-1}b_m + a_nb_{m-1})x^{n+m-1} + \dots + (a_0b_1 + a_1b_0)x + a_0b_0.$$

- D.h. $(ab)(x) = \sum_{i=0}^{n+m} c_i x^i$ mit $c_i = \sum_{j=0}^{i} a_j b_{i-j}$.
- (ab)(x) besitzt $n + m + 1 = \mathcal{O}(n)$ Koeffizienten.
- Pro Koeffizient benötigt man $\mathcal{O}(n)$ Additionen und Multiplikationen.
- Damit erhalten wir insgesamt eine Komplexität von $\mathcal{O}(n^2)$.

Division mit Schulmethode

Satz Division mit Rest von Polynomen

Seien $a(x), b(x) \in \mathbb{Q}[x]$ mit $b(x) \neq 0$. Dann gibt es eindeutige $q(x), r(x) \in \mathbb{Q}[x]$ mit $a(x) = q(x) \cdot b(x) + r(x)$ und grad(r) < grad(b).

- Sei grad(a) = n und grad(b) = m.
- Für n < m setze q(x) = 0 und r(x) = a(x). Sei also $n \ge m$.
- Existenz: Beweis per Induktion über n.
- **IA:** Für n = 0 gilt m = 0. Setze $q(x) = \frac{a_0}{b_0}$ und r(x) = 0.
- **IS** $n 1 \to n$: Sei grad(a) = n.
- Dann besitzt $a'(x) = a(x) \frac{a_n}{b_m} x^{n-m} b(x)$ Grad höchstens n-1.
- IV: $\exists q'(x), r'(x) \text{ mit } a'(x) = q'(x)b(x) + r'(x), \text{ grad}(r') < \text{grad}(b).$
- D.h. $a(x) = a'(x) + \frac{a_n}{b_m} \cdot b(x) = (q'(x) + \frac{a_n}{b_m} x^{n-m}) b(x) + r'(x)$ mit grad(r') < grad(b).

Eindeutigkeit von Quotient und Rest

Beweis: Eindeutigkeit

- Sei a = qb + r = q'b + r' mit $(q, r) \neq (q', r')$ und grad(r), grad(r') < b.
- D.h. b(q q') = r' r.
- Wegen $grad(r' r) \le max\{grad(r), grad(r')\} < b \text{ folgt } q = q'.$
- Damit ist 0 = r' r und daher r = r'.

Anmerkung:

• Beweis liefert Komplexität $\mathcal{O}(n^2)$ der Division mit Rest.

Definition Point-value Form

Sei $a \in R[x]$ mit $\operatorname{grad}(a) \leq n$. Seien $x_0, \ldots, x_n \in R$ paarweise verschieden und $y_i = a(x_i)$ für $i = 0, \ldots, n$. Dann bezeichnen wir die Menge $\{(x_0, y_0), \ldots, (x_n, y_n)\}$ als *Point-value Form* von a.

Koeffizienten aus Point-value Form

Satz Berechnung der Koeffizienten

Sei $\{(x_0, y_0), \dots, (x_n, y_n)\}$ eine Point-value Form. Dann existiert ein eindeutiges $a \in R[x]$ mit $grad(a) \le n$ und $a(x_i) = y_i$ für $i = 0, \dots, n$.

Beweis:

• Wir definieren die Koeffizienten a_0, \ldots, a_n von a als Lösung von

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

- Die Matrix heißt Vandermonde-Matrix V.
- V ist invertierbar für paarweise verschiedene x_i .
- Damit existiert genau eine Lösung

$$(a_0,\ldots,a_n)^t = V^{-1}(y_0,\ldots,y_n)^t.$$

Lagrange Interpolation

Beweis: alternativ mittels Lagrange Interpolation

- Wir setzen $p_i(x) = \frac{\prod_{j \neq i} x x_j}{\prod_{i \neq i} x_i x_i}$ und $a(x) = \sum_{i=0}^n y_i p_i(x)$.
- Jedes Polynom p_i besitzt Grad n und damit $grad(a) \le n$.
- Es gilt $p_i(x_k) = \begin{cases} 1 & \text{für } i = k \\ 0 & \text{sonst} \end{cases}$.
- Daraus folgt $a(x_i) = y_i$ für i = 0, ..., n.

Arithmetik in Point-value Form

Addition/Subtraktion:

- Sei $a(x) = \{(x_0, y_0), \dots, (x_n, y_n)\}, b(x) = \{(x_0, y_0'), \dots, (x_n, y_n')\}.$
- Dann gilt $(a \pm b)(x) = \{(x_0, y_0 \pm y_0'), \dots, (x_n, y_n \pm y_n')\}.$
- D.h. Addition/Subtraktion besitzt lineare Komplexität $\mathcal{O}(n)$.

Multiplikation:

- Seien $grad(a), grad(b) \leq n$ und
 - $a(x) = \{(x_0, y_0), \dots, (x_{2n}, y_{2n})\}, b(x) = \{(x_0, y'_0), \dots, (x_{2n}, y'_{2n})\}.$
- Dann gilt $(ab)(x) = \{(x_0, y_0y_0'), \dots, (x_{2n}, y_{2n}y_{2n}')\}.$
- D.h. die Multiplikation besitzt ebenfalls lineare Komplexität $\mathcal{O}(n)$.

n-te Einheitswurzeln

Problem:

- Konvertierung von Koeffizientenform in Point-value Form erfordert das Evaluieren an n Stellen, d.h. $\mathcal{O}(n^2)$ mit Horner-Schema.
- Konvertierung von Point-value Form in Koeffizientenform erfordert Lagrange Interpolation, d.h. wiederum Komplexität $\mathcal{O}(n^2)$.

Lösung:

• Werte Polynome an geeigneten Stellen aus, den Einheitswurzeln.

Definition *n*-te Einheitswurzel

Sei $\omega \in \mathbb{C}$. Wir nennen ω eine *n-te Einheitswurzel* falls $\omega^n = 1$

Anmerkungen:

- Die Werte $e^{2\pi i \frac{k}{n}}$, k = 0, ..., n-1 sind genau die n-ten Einheitswurzeln. Es gilt $e^{2\pi i k} = (e^{2\pi i})^k = 1$.
- Erinnerung: $e^{i\alpha} = \cos(\alpha) + i\sin(\alpha)$. Die *n*-ten Einheitswurzeln teilen den Einheitskreis in *n* Segmente.
- Wir bezeichnen $\omega_n = e^{\frac{2\pi i}{n}}$ als primitive *n*-te Einheitswurzel.

Einheitswurzeln bilden Gruppe

Satz Gruppe der Einheitswurzeln

Sei $\omega_n = e^{\frac{2\pi i}{n}}$. Dann ist $(\langle \omega_n \rangle, \cdot)$ eine zyklische Gruppe der Ordnung n.

Beweis:

- Die Ordnung von ω_n ist n. Es gilt $\omega_n^n = e^{2\pi i} = 1$.
- Die Gruppe ist abgeschlossen, denn $\omega_n^i \cdot \omega_n^j = \omega_n^{i+j \mod n}$.
- Das neutrale Element der Gruppe ist 1.
- Das zu ω_n^i inverse Element ist ω_n^{n-i} .

Lemma Eliminationslemma

Für alle $n, k \in \mathbb{N}_0$ und $d \in \mathbb{N}$ gilt $\omega_{dn}^{dk} = \omega_n^k$.

Beweis:

• Es gilt $\omega_{dn}^{dk} = e^{2\pi i \frac{dk}{dn}} = e^{2\pi i \frac{k}{n}} = \omega_n^k$.

Halbierungslemma

Korollar zum Eliminationslemma

Sei $n \in \mathbb{N}$ gerade. Dann gilt $\omega_n^{\frac{n}{2}} = (-1)$.

Beweis:

• Es gilt
$$\omega_n^{\frac{n}{2}} = \omega_2 = e^{\pi i} = \cos(\pi) + i\sin(\pi) = (-1).$$

Lemma Halbierungslemma

Sei $n \in \mathbb{N}$ gerade. Dann sind die Quadrate der n-ten Einheitswurzeln genau die $\frac{n}{2}$ -ten Einheitswurzeln.

- Eliminationslemma liefert $(\omega_n^k)^2 = \omega_n^{2k} = \omega_{\frac{n}{2}}^k$ für $k \in [n]$.
- Je zwei n-te Einheitswurzeln besitzen dasselbe Quadrat, denn

$$(\omega_n^k)^2 = (-\omega_n^k)^2 = (\omega_n^{\frac{n}{2}} \cdot \omega_n^k)^2 = (\omega_n^{k+\frac{n}{2}})^2$$
 für alle $k \in [n]$.

Die Diskrete Fourier-Transformation (DFT)

Definition Diskrete Fourier-Transformation

Sei $a(x) = \sum_{i=1}^{n} a_i x^i \in R[x]$ vom Grad n-1. Sei $y_k = a(\omega_n^k)$ für $k = 0, \dots, n-1$.

- **1** Der Vektor $a = (a_0, \dots, a_{n-1})$ heißt *Koeffizientenvektor* von a(x).
- ② $(y_0, \ldots, y_{n-1}) \in \mathbb{C}^n$ heißt diskrete Fouriertransfomierte von a.

Wir schreiben $y = DFT_n(a, \omega)$.

Idee der Schnellen Fourier-Transformation (FFT)

Idee: FFT

- Sei $a(x) = \sum_{i=0}^{n-1} a_i x^i$. Wir nehmen vereinfachend $n = 2^k$ an.
- Wir definieren $a_g(x) = a_0 + a_2x + a_4x^2 + \ldots + a_{n-2}x^{\frac{n}{2}-1}$ und $a_u(x) = a_1 + a_3x + a_5x^2 + \ldots + a_{n-1}x^{\frac{n}{2}-1}$.
- Dann gilt $a(x) = a_g(x^2) + x \cdot a_u(x^2)$.
- D.h. anstatt a(x) an den n-ten Einheitswurzeln auszuwerten, werten wir $a_g(x)$ und $a_u(x)$ an deren Quadraten aus.
- Quadrate der *n*-ten Einheitswurzeln sind $\frac{n}{2}$ -te Einheitswurzeln.
- D.h. wir evaluieren 2 Polynome vom Grad kleiner $\frac{n}{2}$ an $\frac{n}{2}$ Stellen.
- Danach kombinieren wir die Auswertungen von a_g und a_u .
- Sei $y = (y_0, \dots, y_{n-1}) = \mathrm{DFT}(a, \omega)$. Dann gilt: $y_k = a(\omega_n^k) = a_g(\omega_n^{2k}) + \omega_n^k \cdot a_u(\omega_n^{2k}) = a_g(\omega_{\frac{n}{2}}^k) + \omega_n^k \cdot a_u(\omega_{\frac{n}{2}}^k).$

FFT-Algorithmus

Algorithmus FFT

EINGABE:
$$(a_0, ..., a_{n-1}, n)$$
 mit $n = 2^k$

- If (n = 1) return $a = (a_0)$
- $(y_0^g, y_1^g, \dots, y_{\frac{n}{2}-1}^g) \leftarrow FFT(a_0, a_2, \dots, a_{n-2}, \frac{n}{2})$
- $(y_0^u, y_1^u, \dots, y_{\frac{n}{2}-1}^u) \leftarrow FFT(a_1, a_3, \dots, a_{n-1}, \frac{n}{2})$
- - $2 y_{k+\frac{n}{2}} \leftarrow y_k^g \omega y_k^u$
- AUSGABE: $(y_0, \ldots, y_n) = DFT(a, \omega)$

Laufzeit FFT

Satz FFT

Sei $a = (a_0, \dots, a_{n-1})$ ein Koeffizientenvektor mit $n = 2^k$. Algorithmus FFT berechnet bei Eingabe von (a, n) in Zeit $\mathcal{O}(n \log n)$ die Ausgabe DFT(a, n).

Laufzeit: Sei T(n) die Gesamtlaufzeit.

- Rekursion in Schritt 3 und 4: $2T(\frac{n}{2})$.
- Kosten pro Rekursionsschritt in Schritt 2 und 5: $\mathcal{O}(n)$.
- Kosten für T(1) in Schritt 1: $\mathcal{O}(1)$.
- Liefert Rekursionsgleichung $T(n) = 2T(\frac{n}{2}) + \mathcal{O}(n)$, $T(1) = \mathcal{O}(1)$.
- Daraus folgt eine Laufzeit von $T(n) = \mathcal{O}(n \log n)$. (Übungsaufgabe)

Korrektheit FFT

Korrektheit:

- Schritt 1: $y = DFT(a_0) = a(\omega_1) = a_0\omega_1^0 = a_0$.
- Schritt 2+5.2: ω enthält stets ω_n^k . Die Inititialisierung mit k=0 erfolgt in Schritt 2, das Update erfolgt in Schritt 5.2.
- Schritt 3+4:
 - $\qquad \qquad (y_0^g,y_1^g,\ldots,y_{\frac{n}{2}-1}^g) = \mathrm{DFT}_{\frac{n}{2}}(a_g,\omega), \, \mathrm{d.h.} \, y_k^g = a_g(\omega_{\frac{n}{2}}^k) = a_g(\omega_n^{2k}).$
 - $(y_0^u, y_1^u, \dots, y_{\frac{n}{2}-1}^{u}) = \mathrm{DFT}_{\frac{n}{2}}(a_u, \omega), \, \mathrm{d.h.} \, y_k^u = a_u(\omega_{\frac{n}{2}}^{k}) = a_u(\omega_n^{2k}).$
- Schritt 5.1: Es gilt für $k = 0, \dots, \frac{n}{2} 1$

$$y_k = y_k^g + \omega_n^k \cdot y_k^u = a_g(\omega_n^{2k}) + \omega_n^k \cdot a_u(\omega_n^{2k}) = a(\omega_n^k).$$

• Schritt 5.2: Es gilt für $k + \frac{n}{2} = \frac{n}{2}, \dots, n-1$

$$y_{k+\frac{n}{2}} = y_k^g - \omega_n^k y_k^u = y_k^g + \omega_n^{k+\frac{n}{2}} y_k^u$$

$$= a_g(\omega_n^{2k}) + \omega_n^{k+\frac{n}{2}} a_u(\omega_n^{2k})$$

$$= a_g(\omega_n^{2k+n}) + \omega_n^{k+\frac{n}{2}} a_u(\omega_n^{2k+n}) = a(\omega_n^{k+\frac{n}{2}}).$$

Die inverse Diskrete Fourier Transformation

- Konvertierung von der Point-value Form in Koeffizientenform.
- Dazu stellen wir die DFT als Matrix-Vektor Produkt dar

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_n & \omega_n^2 & \dots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \dots & \omega_n^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \dots & \omega_n^{(n-1)(n-1)} \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{pmatrix}.$$

- D.h. die Vandermonde-Matrix besitzt Einträge $v_{ij} = \omega_n^{ij}$ für $i, j \in \mathbb{Z}_n$.
- Man beachte, dass $V = V^T$. D.h. $v_{ij} = v_{ji}$ für alle i, j.
- V ist invertierbar (s. Übung). Damit ist die inverse DFT

$$a = DFT_n^{-1}(y, \omega) = V^{-1}y.$$

Summationslemma

Lemma Summationslemma

Für alle $n, i \in \mathbb{N}$ mit $n \nmid i$ gilt $\sum_{k=0}^{n-1} (\omega_n^i)^k = 0$.

$$\sum_{k=0}^{n-1} (\omega_n^i)^k = \frac{(\omega_n^i)^n - 1}{\omega_n^i - 1} = \frac{(\omega_n^n)^i - 1}{\omega_n^i - 1} = \frac{1^i - 1}{\omega_n^i - 1} = 0.$$

Berechnung der inversen DFT

Lemma Invertieren von *V*

Sei
$$V^{-1}=(v_{i,j}')_{1\leq i,j\leq n}$$
. Dann gilt $v_{i,j}'=\frac{1}{n}\cdot\omega_n^{-ij}$.

Beweis:

- Wir zeigen, dass $V \cdot V^{-1} = I_n$, d.h. die $(n \times n)$ -Einheitsmatrix.
- Wir betrachten dazu den (i,j)-Eintrag von $V \cdot V^{-1}$ für $i,j \in \mathbb{Z}_n$ $\sum_{k=0}^{n-1} \omega_n^{ik} \cdot \frac{1}{n} \cdot \omega_n^{-kj} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_n^{k(i-j)}.$
- Fall 1: i = j. Dann ist $\omega_n^{k(i-j)} = 1$ und die Summation liefert 1.
- Fall 2: $i \neq j$. Es gilt |i j| < n und damit $n \nmid (i j)$.
- Summationslemma liefert in diesem Fall $\sum_{k=0}^{n-1} (\omega_n^{(i-j)})^k = 0$.

Korollar Berechnung der inversen DFT

Für die inverse DFT gilt $\mathrm{DFT}_n^{-1}(y,\omega) = \frac{1}{n} \cdot \mathrm{DFT}_n(y,\omega^{-1})$.

D.h. DFT_n und DFT_n^{-1} lassen sich beide in Zeit $\mathcal{O}(n\log n)$ berechnen.

Multiplizieren von Polynomen

Satz FFT Polynom-Multiplikation

Seien $a, b \in R[x]$ vom Grad kleiner n. Dann lässt sich $ab \in R[x]$ in Zeit $\mathcal{O}(n \log n)$ berechnen.

Beweis:

- Seien $a = (a_0, \ldots, a_{n-1}), b = (b_0, \ldots, b_{n-1})$ Koeffizientenformen.
- Berechne in Zeit $O(n \log n)$ die Point-value Formen
 - $(a(\omega_{2n}^0), \dots, a(\omega_{2n}^{2n-1})) = DFT_{2n}((a_0, \dots, a_{n-1}, 0, \dots, 0), \omega)$ und
 - $(b(\omega_{2n}^{0}), \ldots, b(\omega_{2n}^{2n-1})) = DFT_{2n}((b_0, \ldots, b_{n-1}, 0, \ldots, 0), \omega)$
- Multipliziere in Zeit $\mathcal{O}(n)$ punktweise

$$(a(\omega_{2n}^0)\cdot b(\omega_{2n}^0),\ldots,a(\omega_{2n}^{2n-1})\cdot b(\omega_{2n}^{2n-1}))=:(c(\omega_{2n}^0),\ldots,c(\omega_{2n}^{2n-1})).$$

• Berechne in Zeit $O(n \log n)$ die inverse DFT als

$$\frac{1}{2n} \cdot \mathrm{DFT}_{2n}(c(\omega_{2n}^0), \dots, c(\omega_{2n}^{2n-1}), \omega^{-1}) := (c_0, \dots, c_{2n-1}).$$

• (c_0, \ldots, c_{2n-1}) ist die Koeffizientenform von *ab*.

Körper und Ring

Definition Körper und Ring

Sei K eine Menge. Das Tupel $(K, +, \cdot)$ ist ein $K\"{o}rper$ falls

- (K, +) ist eine additive abelsche Gruppe mit neutralem Element 0.
- $\textbf{②} \ (K\setminus\{0\},\cdot) \text{ ist eine multiplikative abelsche Gruppe}.$
- **3** Distributivität: $a \cdot (b + c) = a \cdot b + a \cdot c$ für alle $a, b, c \in K$.

Wir bezeichnen $(K, +, \cdot)$ als *Ring*, falls unter Punkt 2 *nicht* die Existenz von multiplikativen Inversen gefordert wird.

Notation: Wir schreiben abkürzend K statt $(K, +, \cdot)$.

Beispiele:

- ℚ, ℝ und ℂ sind Körper.
- Z ist kein Körper, aber ein Ring.
- $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x], \mathbb{Z}[x]$ sind ebenfalls Ringe.

Endlicher Körper

Satz Primkörper

Sei p prim. Dann ist $(\mathbb{Z}_p, +, \cdot)$ ein Körper mit p Elementen. Wir bezeichnen diesen Körper als $Primkörper \mathbb{F}_p$.

- $(\mathbb{Z}_p,+)$ ist eine additive abelsche Gruppe.
- ② $(\mathbb{Z}_p \setminus \{0\}, \cdot) = (\mathbb{Z}_p^*, \cdot)$ ist eine multiplikative Gruppe.
- 3 Die Distributivität folgt aus der Distributivität über Z.

Nullteilerfreiheit in Körpern

Lemma Multiplikation mit Null

Sei K ein Körper. Dann gilt für alle $a \in K$, dass $a \cdot 0 = 0 \cdot a = 0$.

Beweis:

- Es gilt $a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0$.
- Subtraktion von $a \cdot 0$ auf beiden Seiten liefert $a \cdot 0 = 0$.
- 0 ⋅ a = 0 folgt aus der Kommutativität.

Satz Nullteilerfreiheit

Sei K ein Körper. Dann gilt für alle $a, b \in K$, dass ab = 0 gdw a = 0 oder b = 0.

- ◆: Folgt aus obigem Lemma.
- \Rightarrow : Sei ab = 0 und $a \neq 0$. Dann gilt

$$b = 1 \cdot b = a^{-1} \cdot a \cdot b = a^{-1} \cdot 0 = 0.$$

Polynome über Körpern

Definition Polynome über Körpern

Sei K ein Körper. Dann bezeichnen wir ein Polynom $a(x) \in K[x]$ mit Koeffizienten aus K als *Polynom über* K.

Anmerkungen:

- Arithmetik $+, -, \cdot$, eval ist für $a(x) \in K[x]$ kanonisch definiert.
- Erinnerung: Für $a, b \in \mathbb{Q}[x]$ mit $b \neq 0$ gibt es $q, r \in \mathbb{Q}[x]$ mit $a = q \cdot b + r$ und grad(r) < grad(b).
- Gilt analog, falls $\mathbb Q$ durch einen anderen Körper K ersetzt wird.

Fundamentalsatz der Algebra

Satz Fundamentalsatz der Algebra

Sei K ein Körper. Sei $p(x) \in K[x]$ mit $grad(p) = n \ge 0$. Dann besitzt p(x) höchstens n Nullstellen.

Beweis: per Induktion über n.

- IV für n = 0: Es gilt $p(x) \neq 0$, d.h. p(x) besitzt keine Nullstelle.
- **IS** für $n-1 \rightarrow n$.
- Fall 1: p(x) besitzt keine Nullstelle und damit h\u00f6chstens n.
- Fall 2: Sei p(x) vom Grad $n \ge 1$ mit Nullstelle x_0 .
- Euklidische Division liefert q, r mit

$$p = q \cdot (x - x_0) + r \text{ mit } \operatorname{grad}(r) < 1.$$

• Wir werten p(x) an der Nullstelle x_0 aus

$$0 = p(x_0) = q(x_0) \cdot (x_0 - x_0) + r(x_0) = r(x_0).$$

- Damit folgt r(x) = 0 und $p(x) = q(x) \cdot (x x_0)$ mit grad(q) = n 1.
- Nach IA besitzt q höchstens n − 1 Nullstellen.
- Damit besitzt p höchstens n Nullstellen.

Ordnungen und Teilbarkeit

Ziel: Wir wollen zeigen, dass (K^*, \cdot) für jeden Körper K zyklisch ist.

Lemma Teilbarkeit der Ordnung

Sei G eine abelsche (multiplikative) Gruppe. Dann gilt für alle $a \in G$ und $k \in N$, dass $a^k = 1$ gdw ord(a)|k.

- \Leftarrow : Sei $k = \operatorname{ord}(a)q$ für ein $q \in \mathbb{N}$. Dann ist $a^k = (a^{\operatorname{ord}(a)})^q = 1$.
- \Rightarrow : Falls $a^k = 1$, dann gilt $k \ge \operatorname{ord}(a)$.
- Euklidische Division: q, r mit $k = q \cdot \operatorname{ord}(a) + r$ und $r < \operatorname{ord}(a)$.
- Es gilt $1 = a^k = a^{q \cdot \operatorname{ord}(a) + r} = 1^q \cdot a^r = a^r \text{ mit } r < \operatorname{ord}(a)$. (Widerspruch zur Minimalität von $\operatorname{ord}(a)$)

Multiplikativität der Ordnung

Lemma Multiplikativität der Ordnung

Sei G eine abelsche Gruppe. Seien a, b in G mit ggT(ord(a), ord(b)) = 1. Dann gilt $ord(ab) = ord(a) \cdot ord(b)$.

- Es gilt $\operatorname{ord}(ab)|\operatorname{ord}(a)\cdot\operatorname{ord}(b)$ wegen $(ab)^{\operatorname{ord}(a)\cdot\operatorname{ord}(b)}=(a^{\operatorname{ord}(a)})^{\operatorname{ord}(b)}\cdot(b^{\operatorname{ord}(b)})^{\operatorname{ord}(a)}=1.$
- Ann: $ord(ab) \cdot k = ord(a) \cdot ord(b)$ mit k > 1.
- OBdA $k' = \operatorname{ggT}(\operatorname{ord}(a), k) > 1$ mit k'|k. Dann gilt $1 = (ab)^{\frac{\operatorname{ord}(a)\operatorname{ord}(b)}{k'}} = a^{\frac{\operatorname{ord}(a)\operatorname{ord}(b)}{k'}} \cdot (b^{\operatorname{ord}(b)})^{\frac{\operatorname{ord}(a)}{k}'} = a^{\frac{\operatorname{ord}(a)\operatorname{ord}(b)}{k'}}.$
- D.h. $\operatorname{ord}(a)|\frac{\operatorname{ord}(a)\operatorname{ord}(b)}{k'}$ und $\operatorname{ggT}(\operatorname{ord}(a),\operatorname{ord}(b))=1$.
- Damit folgt $\operatorname{ord}(a)|\frac{\operatorname{ord}(a)}{k'}$. (Widerspruch wegen k' > 1)

Elementordnung teilt maximale Ordnung

Lemma Ordnung teilt maximale Ordnung

Sei G eine endliche abelsche Gruppe. Sei $a \in G$ mit maximaler Ordnung. Dann gilt für alle $b \in G$, dass ord(b)|ord(a).

- Annahme: ord(b) ∤ ord(a)
- D.h. es existiert eine Primzahlpotenz pⁱ mit

$$p^{i+1} \mid \operatorname{ord}(b) \text{ und } p^i \mid \operatorname{ord}(a) \text{ aber } p^{i+1} \nmid \operatorname{ord}(a).$$

- Wir definieren $a' = a^{p^i}$ und $b' = b^{\frac{\operatorname{ord}(b)}{p^{i+1}}}$.
- Damit gilt $\operatorname{ord}(a') = \frac{\operatorname{ord}(a)}{p^i}$ und $\operatorname{ord}(b') = p^{i+1}$.
- Wegen $p \nmid \operatorname{ord}(a')$ folgt $\operatorname{ggT}(\operatorname{ord}(a'), \operatorname{ord}(b')) = 1$.
- Lemma zur Multiplikativität: $\operatorname{ord}(a'b') = \operatorname{ord}(a) \cdot p > \operatorname{ord}(a)$. (Widerspruch zur Maximalität von $\operatorname{ord}(a)$)

K* ist zyklisch

Satz K* ist zyklisch

Sei K ein endlicher Körper. Dann ist die multiplikative Gruppe $(K^*, \cdot) = (K \setminus \{0\}, \cdot)$ zyklisch.

- Sei $a \in K^*$ ein Element maximaler Ordnung.
- Die Elementordnung teilt die Gruppenordnung, d.h. $ord(a)||K^*|$.
- Wir betrachten das Polynom $p(x) = x^{\text{ord}(a)} 1$.
- Für alle $b \in K^*$ gilt ord $(b) \mid \operatorname{ord}(a)$.
- Damit ist $p(b) = b^{ord(a)} 1 = 0$, d.h. jedes b ist eine Nullstelle.
- D.h. p(x) besitzt mindestens $|K^*|$ viele Nullstellen.
- Fundamentalsatz: Jedes Polynom vom Grad ord(a) besitzt höchstens ord(a) viele Nullstellen über einem Körper K.
- Es folgt $|K^*| \leq \operatorname{ord}(a)$. Mit $\operatorname{ord}(a) \mid |K^*|$ gilt daher $\operatorname{ord}(a) = |K^*|$.
- D.h. das Element a ist ein Generator für K*.

Anzahl der Generatoren

Satz Anzahl Generatoren eines Körpers

Sei K ein Körper mit q Elementen. Dann besitzt K^* genau $\phi(q-1)$ viele Generatoren.

- K^* ist zyklisch, d.h. K^* besitzt einen Generator a mit $K = \{a, a^2, \dots, a^{|K^*|}\}.$
- Wir bestimmen $\operatorname{ord}(a^j)$ für ein $j \in \mathbb{Z}_{|K^*|}$. D.h. wir suchen ein minimales $k = \operatorname{ord}(a^j)$ so dass jk ein Vielfaches von $|K^*|$ ist.
- Für $k = \frac{|K^*|}{\operatorname{ggT}(j,|K^*|)}$ gilt $jk = \frac{j}{\operatorname{ggT}(j,|K^*|)} \cdot |K^*| = 0 \mod |K^*|$.
- k ist minimal mit dieser Eigenschaft, d.h. $\operatorname{ord}(a^{j}) = \frac{|K^{*}|}{\operatorname{ggT}(j,K^{*})}$.
- D.h. falls $ggT(j, |K^*|) = 1$, dann gilt $ord(a^j) = |K^*| = q 1$.
- Es existieren $|\{j \in \mathbb{Z}_{|K^*|} \mid ggT(j, |K^*|) = 1\}| = \phi(|K^*|) = \phi(q-1)$ viele Elemente mit Ordnung q-1.
- D.h. es gibt $\phi(q-1)$ viele Generatoren in K^* .

Konstruktion von Generatoren

Satz Konstruktion von Generatoren

Sei K^* zyklisch. Ein Element $a \in K^*$ ist ein Generator falls $a^k \neq 1$ für alle nicht-trivialen Teiler k von $|K^*|$.

Beweis:

- Da K^* zyklisch ist, besitzt es einen Generator mit Ordnung $|K^*|$.
- Die Ordnung jeden Elements a teilt die maximale Ordnung $|K^*|$.
- ullet D.h. es genügt, für $\mathrm{ord}(a)$ alle möglichen Teiler von $|\mathcal{K}^*|$ zu testen.

Beispiel: zyklische Gruppe \mathbb{Z}_{11}^*

- \mathbb{Z}_{11}^* besitzt 10 Elemente und $\phi(10) = 4$ Generatoren.
- 2 ist ein Generator, denn $2^2 = 4$ und $2^5 = 10$.
- Da $\mathbb{Z}_{10}^* = \{1, 3, 7, 9\}$, sind auch die Elemente $2^3 = 8, 2^7 = 7$ und $2^9 = 6$ Generatoren von \mathbb{Z}_{11}^* .

Teilbarkeitsbegriff für Polynome

Definition Teilbarkeit von Polynomen

Sei K ein Körper und $f, g, \pi \in K[x]$. Wir definieren

- $g \mid f$ gdw ein $h \in K[x]$ existiert mit gh = f.
- $f = g \mod \pi$ gdw π die Differenz f g teilt.
- ggT(f, g) ist ein Polynom maximalen Grads, das sowohl f als auch g teilt. Vorsicht: ggT(f, g) ist im allgemeinen nicht eindeutig.

Anmerkungen:

- ullet Bei der Reduktion modulo π erhalten wir Äquivalenzklassen.
- Repräsentanten der Äquivalenzklassen sind

$$R = \{ f \in K[x] | \operatorname{grad}(f) < \operatorname{grad}(\pi) \}.$$

- Sei K ein Körper mit p Elementen und $grad(\pi) = n$.
- Dann gilt $|R| = p^n$. Wir schreiben $R = K[x]/(\pi(x))$.

Erweiterter Euklischer Algorithmus für Polynome

Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA)

- EINGABE: $a(x), b(x) \in K[x]$
 - If (b = 0) then return (a, 1, 0);
 - $(d, r, s) \leftarrow \mathsf{EEA}(b, a \bmod b);$

AUSGABE: d = ggT(a, b) = ra + sb

Korrektheit:

ullet Analog zu EEA über \mathbb{Z} .

Beispiel für EEA

Beispiel:
$$ggT(x^3 + 2x^2 - 1, x^2 + x)$$
 in $\mathbb{F}_3[x]$

а	b	$\lfloor \frac{a}{b} \rfloor$	r	S
$x^3 + 2x^2 - 1$	$x^2 + x$	x + 1	1	-x - 1
$x^2 + x$	2 <i>x</i> – 1	2 <i>x</i>	0	1
2 <i>x</i> – 1	0	-	1	0

- D.h. ggT(a, b) = 2x 1. Man beachte, dass der ggT eindeutig bis auf Multiplikation mit Elementen aus \mathbb{F}_3^* ist.
- Z.B. ist 2(2x 1) = x + 1 ebenfalls ein Teiler von a, b.
- x (-1) teilt a, b, da (-1) gemeinsame Nullstelle von a, b ist.
- Der EEA für Polynome liefert die Linearkombination $ggT(a,b) = ra + sb = x^3 + 2x^2 1 (x+1)(x^2 + x) = -x 1 = 2x 1.$

Irreduzible Polynome

Definition Irreduzibilität von Polynomen

Sei K ein Körper und $\pi \in K[x]$. Wir bezeichnen π als *irreduzibel über* K gdw jede Zerlegung $\pi = \pi_1 \cdot \pi_2$ mit $\pi_1, \pi_2 \in K[x]$ impliziert dass $\operatorname{grad}(\pi_1) = 0$ oder $\operatorname{grad}(\pi_2) = 0$.

Andernfalls bezeichen wir π als *reduzibel über K*.

Beispiel: Polynom $f(x) = x^2 + 1$

- f ist irreduzibel über \mathbb{R} , denn f(x) > 0 für alle $x \in R$.
- D.h. f besitzt keine Nullstelle x_0 in \mathbb{R} und damit können wir keinen Linearfaktor $(x x_0)$ von f(x) abspalten.
- f ist reduzibel über \mathbb{C} , denn f(x) = (x + i)(x i).
- f ist irreduzibel über \mathbb{F}_3 , denn weder 0, 1 noch 2 sind Nullstellen von f(x) in \mathbb{Z}_3 .
- f ist reduzibel über \mathbb{F}_2 , denn f(x) = (x+1)(x+1).

Polynomringe modulo reduziblen Polynomen

- Sei K ein Körper und $\pi \in K[x]$ reduzibel.
- Dann gilt $\pi = \pi_1 \cdot \pi_2$ mit $0 < \operatorname{grad}(\pi_1), \operatorname{grad}(\pi_2) < \operatorname{grad}(\pi)$.
- Wir definieren den Ring $K[x]/(\pi)$.
- Es gilt $\pi_1, \pi_2 \in K[x]/(\pi)$.
- Ferner gilt $\pi_1 \cdot \pi_2 = \pi = 0$ in $K[x]/(\pi)$.
- D.h. das Produkt von zwei von Null verschiedenen Elementen liefert Null in $K[x]/(\pi)$. Damit sind π_1, π_2 Nullteiler in $K[x]/(\pi)$.
- Es folgt, dass der Ring $K[x]/(\pi)$ kein Körper sein kann.

Galoiskörper

Satz Galoiskörper

Sei K ein Körper mit p Elementen. Sei $\pi \in K[x]$ irreduzibel vom Grad n. Dann ist $K[x]/(\pi)$ ein Körper mit $q=p^n$ Elementen.

Notation: $K[x]/(\pi) = \mathbb{F}_{p^n} = \mathbb{F}_q$ oder auch *Galoiskörper GF*(q).

Beweisskizze:

- Additiv: $(K[x]/(\pi), +)$ ist eine abelsche Gruppe.
- Dazu definieren wir $H = \{k \cdot \pi \mid k \in K[x]\}.$
- H ist eine Untergruppe von K[x].
- $K[x]/(\pi)$ ist isomorph zur Faktorgruppe K[x]/H.
- **Multiplikativ:** $((K[x] \setminus \{0\})/(\pi), \cdot)$ ist eine abelsche Gruppe.
- Abgeschlossenheit: Seien $f, g \in K[x] \setminus \{0\}$.
- Annahme: $fg = 0 \mod \pi$. Dann folgt $\pi \mid fg$ und damit $\pi \mid f$ oder $\pi \mid g$. (Widerspruch, da $f, g \neq 0$)
- Berechnen von Inversen liefert der EEA f
 ür Polynome.
- **Distributivgesetz:** Folgt aus Distributivität von K[x].

Beispiel: Körper F₄

Beispiel: $\mathbb{F}_{2^2} = \mathbb{F}_4$

- Der Körper F₄ ist eine Körpererweiterung des Körpers F₂.
- Über \mathbb{F}_2 ist $\pi = x^2 + x + 1$ irreduzibel, denn $\pi(0) = \pi(1) = 1$.
- D.h. wir können den \mathbb{F}_4 definieren als $\mathbb{F}_2[x]/(x^2+x+1)$.
- Die Repräsentanten des \mathbb{F}_4 sind $\{0, 1, x, x + 1\}$.
- Berechnung des Inversen von x mittels $EEA(\pi, x)$ liefert

$$1 \cdot (x^2 + x + 1) + (x + 1) \cdot x = 1.$$

- Das Inverse von x in \mathbb{F}_4 ist x+1, denn $(x+1)x=1 \mod \pi$.
- Alternativ können wir $x^{-1} = ax + b$ setzen und a, b ermitteln:

$$1 = (ax + b)x = ax^2 + bx = a(-x - 1) + bx = (a + b)x + a \text{ in } \mathbb{F}_4.$$

- Koeffizientenvergleich liefert a = 1 und a + b = 0, d.h. b = 1.
- Damit ist ax + b = x + 1 das Inverse von x in \mathbb{F}_4 .
- \mathbb{F}_4 besitzt die $\phi(3) = 2$ Generatoren x und x + 1.

Existenz und Eindeutigkeit der Galoiskörper \mathbb{F}_{p^n}

Satz Existenz von irreduziblen Polynomen

Für jedes prime p und jedes $n \in \mathbb{N}$ existiert ein irreduzibles Polynom $\pi \in \mathbb{F}_p[x]$ vom Grad n.

(ohne Beweis)

Korollar Existenz eines Galoiskörpers \mathbb{F}_{p^n}

Für jedes prime p und jedes $n \in \mathbb{N}$ existiert ein Galoiskörper $\mathbb{F}_{p^n} = \mathbb{F}_p[x]/(\pi)$ für ein irreduzibles $\pi \in \mathbb{F}_p[x]$.

Satz Eindeutigkeit der Galoiskörper

Je zwei endliche Körper mit gleicher Anzahl von Elementen sind isomorph.

(ohne Beweis)

Abschnitt: Algorithmendesign und Laufzeitanalyse

Definition Divide-and-Conquer Paradigma

Divide-and-Conquer Algorithmen verwenden die Strategien

- **Divide:** Teile das Problem *rekursiv* in Subproblem gleicher Struktur auf. Sofern die Größe der Subprobleme hinreichend klein ist, verwende trivialen Algorithmus zum Lösen.
- Conquer: Kombiniere Lösungen der Subprobleme zur Lösung des Ausgangsproblems.

Beispiele:

- Multiplikation von zwei n-Bit Zahlen mit Karatsuba-Methode.
 - ▶ Divide: Teile in Multiplikation von drei $\frac{n}{2}$ -Bit Zahlen.
 - ▶ Conquer: Kombiniere die $\frac{n}{2}$ -Bit Ergebnisse zur n-Bit Lösung.
- Multiplikation von zwei Polynomen vom Grad n mittels FFT.
 - ▶ Divide: Teile in zwei Polynome a_g , a_u vom Grad $\frac{n}{2}$.
 - ► Conquer: Kombiniere $a(x) = a_g(x^2) + x \cdot a_u(x^2)$.

Idee der Binären Suche

Problem Suche eines Elements

Gegeben: Sortiertes Array $a[1 \dots n]$ mit $a[1] < \dots < a[n]$, Element x

Gesucht: Index $i \in \mathbb{Z}_{n+1}$ mit $i = \begin{cases} j & \text{falls } x = a[j] \text{ für ein } j \in [n] \\ 0 & \text{sonst.} \end{cases}$

Lösung mittels Divide and Conquer

- Wir treffen die vereinfachende Annahme $n = 2^k$.
- **Divide:** Teile $a[1 \dots n]$ in Teilarrays $a[1 \dots \frac{n}{2}]$ und $a[\frac{n}{2} + 1 \dots n]$.
- Conquer: Falls $x \le a[\frac{n}{2}]$, ist x im linken Teilarray.
- Falls $x > a[\frac{n}{2}]$, ist x im rechten Teilarray.
- Das Problem wird rekursiv im korrekten Teilarray gelöst.
- Kombination erfordert die korrekte Verwaltung der Indizes.

Binäre Suche

Algorithmus BINÄRE-SUCHE

EINGABE: Array a aufsteigend sortiert, x, Intervallgrenzen ℓ , r

- If $(\ell = r)$ then
 - If (x = a[r]) return r;
 - else return 0;
- else

 - ② If $x \leq a[m]$ then BINÄRE-SUCHE (a, x, ℓ, m) ;
 - **3** else BINÄRE-SUCHE(a, x, m+1, r);

AUSGABE: Index
$$i \in \mathbb{Z}_{n+1}$$
 mit $i = \begin{cases} j & \text{falls } x = a[j] \text{ für ein } j \in [n] \\ 0 & \text{sonst.} \end{cases}$

- Initialer Aufruf ist BINÄRE-SUCHE(a, x, 1, n).
- Korrektheit folgt aus der Überlegung auf der vorigen Folie.

Laufzeit Binäre Suche

Satz Laufzeit BINÄRE-SUCHE

BINÄRE-SUCHE benötigt für Arrays der Länge $n = 2^k$ genau $k + 1 = \log_2 n + 1$ Elementvergleiche.

Beweis: per Induktion über k

- IV für k = 0, d.h. n = 1: Benötigen einen Vergleich in Schritt 1.1.
- IS $k 1 \leftarrow k$: Wir benötigen einen Vergleich $x \le a[m]$.
- Rekursion liefert Teilarray der Größe $\frac{n}{2} = 2^{k-1}$.
- Nach IA benötigen wir für das Teilarray (k-1)+1 Vergleiche.
- Damit erhalten wir insgesamt k + 1 Elementvergleiche.

Anmerkung für beliebiges n

 Wir erhalten [log n] durch Auffüllen von a auf die nächste 2er-Potenz.

Sortieren von *n* Elementen

Problem Sortieren von *n* Elementen

Gegeben: Array $a[1 \dots n]$

Gesucht: $a[1 \dots n]$ mit $a[1] \le a[2] \le \dots \le a[n]$

Idee: Sortiere a[i] in a[1 ... i - 1] ein für i = 2, ..., n.

Algorithmus Insertion-Sort

EINGABE: *a*[1 . . . *n*]

- For $i \leftarrow 2$ to n do

 - ② While $(j > 0 \text{ and merk} < a[j]) \text{ do } a[j+1] \leftarrow a[j]; j \leftarrow j-1;$
 - $a[j+1] \leftarrow \mathsf{merk};$

AUSGABE: a[1 . . . n] aufsteigend sortiert

Korrektheit und Laufzeit INSERTION-SORT

- Korrektheit: Nach der i-ten Iteration ist a[1...i] sortiert.
- D.h. für i = n ist das Array $a[1 \dots n]$ aufsteigend sortiert.
- Laufzeit: In der *i*-ten Iteration werden $\leq i 1$ Vergleiche benötigt.
- Damit ist die Gesamtzahl der Vergleiche höchstens

$$\sum_{i=2}^{n} i - 1 = \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2} = \mathcal{O}(n^2).$$

• Man beachte: Im best-case, d.h. für aufsteigend sortierte Arrays, werden nur $n-1=\mathcal{O}(n)$ Vergleiche benötigt.

Divide and Conquer Version von Insertion-Sort

- Wir formulieren Insertion-Sort mittels Divide and Conquer.
- **Divide:** Splitte $a[1 \dots n]$ in $a[1 \dots n-1]$ und a[n].
- Conquer: Sortiere $a[1 \dots n-1]$ rekursiv. Abbruch für a[1].
- Kombination: Sortiere a[i] in sortiertem a[1 ... i 1] ein.
- Sei T(i) die Anzahl der Vergleiche, um a[i] einzusortieren.
- Dann gilt $T(i) \le i 1$ mit naivem Verfahren.
- Damit erhalten wir wie zuvor

$$T(n) \le T(n-1) + n - 1 \le \ldots \le T(1) + \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}.$$

- Frage: Was passiert, wenn man statt des naiven Verfahrens BINÄRE-SUCHE verwendet?
- Dann kann mit nur $\mathcal{O}(\log i)$ Vergleichen der korrekte Index j zum Einsortieren für a[i] gefunden werden.
- Allerdings benötigt das Verschieben des Arrays Zeit $\mathcal{O}(i-j)$.

Das Mergesort Verfahren

Idee des Mergesort Verfahrens

- Mergesort verwendet eine Divide and Conquer Strategie.
- Wir treffen die vereinfachende Annahme $n = 2^k$.
- Divide: Teile a in zwei Teilarrays gleicher Größe.
- Conquer: Sortiere die Teilarrays rekursiv.
- Ein Abbruch der Rekursion erfolgt für Arraylänge 1.
- Kombination: Verschmelze, d.h. merge, zwei sortierte Teilarrays der Länge $\frac{n}{2}$ zu einem sortierten Array der Länge n.

Verschmelzen von zwei Teilarrays

Algorithmus MERGE

EINGABE: $a[\ell \dots m]$, $a[m+1 \dots r]$ jeweils aufsteigend sortiert

- $② While <math>(p_1 \leq m \text{ and } p_2 \leq r)$
 - If $(a[p_1] < a[p_2])$ then $b[i] \leftarrow a[p_1]$; $p_1 \leftarrow p_1 + 1$;
 - else $b[i] \leftarrow a[p_2]; p_2 \leftarrow p_2 + 1;$
- If $(p_1 \le m)$ then kopiere $a[p_1 \dots m]$ nach $b[i \dots r \ell + 1]$.
- else kopiere $a[p_2 \dots r]$ nach $b[i \dots r \ell + 1]$.
- Solution Series 5 Series 5 Series 5 Series 5 Series 5 Series 5 Series 6 Se

AUSGABE: a[1...r] aufsteigend sortiert

Korrektheit und Laufzeit von MERGE

- Korrektheit: Array b enthalte i Elemente.
- Dann gilt $b[i] \le a[j]$ für $j = p_1, \dots, m$ und $j = p_2, \dots, r$.
- D.h. *b*[1 . . . *i*] ist aufsteigend sortiert und enthält die *i* kleinsten Elemente beider Teilarrays.
- Damit ist $b[1 \dots r \ell + 1] = a[\ell \dots r]$ aufsteigend sortiert.
- Laufzeit: Wir benötigen höchstens $r \ell$ Vergleiche.
- D.h. die Anzahl der Vergleiche ist linear in der Intervallänge von a.

Mergesort

Algorithmus MERGESORT

```
EINGABE: a[1 \dots n], \ell, r
```

- If $(\ell < r)$

 - **2** MERGESORT(a, ℓ, m);
 - **3** MERGESORT(a, m + 1, r);

AUSGABE: a[1 ... n] aufsteigend sortiert

- Korrektheit: Folgt aus Korrektheit von MERGE.
- Laufzeit: Sei T(n) die Anzahl der Vergleiche.
- Dann gilt $T(n) = 2 \cdot T(\frac{n}{2}) + \mathcal{O}(n)$ mit $T(1) = \mathcal{O}(1)$.
- Lösung der Rekursion liefert $T(n) = \mathcal{O}(n \log n)$.
- Man beachte, dass MERGESORT im best-case ebenfalls $\mathcal{O}(n \log n)$ Vergleiche benötigt.

Das Quicksort-Verfahren

Idee des Quicksort-Verfahrens

- **Divide:** Wähle sogenanntes Pivotelement p = a[i] für ein $i \in [n]$.
- Partitioniere das Array a[n] in zwei nicht-leere Teilarrays $a[1 \dots j], a[j+1 \dots n]$ mit Elementen kleiner bzw. größer als p.
- D.h. $a[k] \le p$ für $k = 1, \dots, j$ und $a[k] \ge p$ für $k = j + 1, \dots, n$.
- Conquer: Sortiere beide Teilarrays rekursiv.
- Kombination: $a[n] = a[1 \dots j]a[j+1 \dots n]$ ist bereits sortiert.

Algorithmus QUICKSORT

EINGABE: $a[1 \dots n], \ell, r$

- If $(\ell < r)$
 - **1** j ← Partition(a, ℓ , r);
 - **2** QUICKSORT(a, ℓ, j);
 - 3 QUICKSORT(a, j + 1, r);

AUSGABE: a[1...n] aufsteigend sortiert

Die Partitionierung eines Arrays

Algorithmus Partition

```
EINGABE: a[\ell \dots r]
```

- While (TRUE)
 - Repeat $(i \leftarrow i + 1)$ until $a[i] \ge p$;
 - 2 Repeat $(j \leftarrow j 1)$ until $a[j] \le p$;
 - **3** If (i < j) vertausche $a[i] \leftrightarrow a[j]$;
 - else return j;

AUSGABE:
$$j$$
 mit $a[\ell], \ldots, a[j] \le p$ und $p \le a[j+1], \ldots, a[r]$.

- Korrektheit: $a[\ell ... i 1]$ enthält stets nur Elemente $\leq p$.
- Teilarray a[j+1...r] enthält stets nur Elemente $\geq p$.
- Ein Abbruch der While-Schleife erfolgt für $i \ge j$.
- Laufzeit: Wir benötigen maximal $r \ell + 1$ Vergleiche.
- D.h. die Anzahl der Vergleiche ist linear in der Intervallänge von a.

Eigenschaften von Quicksort

Laufzeit:

- Im worst-case: $T(n) = T(1) + T(n-1) + O(n) = O(n^2)$.
- Im best-case: $T(n) = 2 \cdot T(\frac{n}{2}) + \mathcal{O}(n) = \mathcal{O}(n \log n)$.
- Im average-case: Man kann zeigen, dass $T(n) = \mathcal{O}(n \log n)$ bei zufälliger Wahl des Pivotelements gilt.

Vorteile:

- Die Konstanten in der O-Notation sind klein.
- QUICKSORT sortiert in place, d.h. QUICKSORT benötigt keinen zusätzlichen Speicherplatz.
- MERGESORT: Verwendung von zusätzlichem Array zum Mergen.
- QUICKSORT ist in der Praxis oft der schnellste Algorithmus.

Entscheidungsbäume

Frage: Gibt es einen Sortieralgorithmus mit $o(n \log n)$ Vergleichen?

Definition Entscheidungsbaum

Sei T ein Binärbaum und $A = \{a_1, \ldots, a_n\}$ eine zu sortierenden Menge. T ist ein *Entscheidungsbaum* für A, falls

- innere Knoten einen Vergleich von $a_i, a_j \in A$ enthalten. Falls $a_i < a_j$ wird nach links verzweigt, sonst nach rechts.
- ② Blätter eine Permutation $a_{\pi(1)}, \dots, a_{\pi(n)}$ enthalten, die direkt aus den Vergleichen folgt.

Beispiel: Entscheidungsbaum T für a_1, a_2, a_3

- 3 paarweise Vergleiche genügen, um 3 Elemente zu sortieren.
- Damit besitzt T Tiefe 3.
- Ferner besitzt T als Blätter die 3! = 6 Permutationen von A.

Untere Schranke für die Anzahl Vergleiche

Satz Untere Schranke für die Anzahl Vergleiche

Jeder vergleichsbasierte Sortieralgorithmus benötigt zum Sortieren von n Elementen $\Omega(n \log n)$ Vergleiche im worst-case.

- Sei T ein Entscheidungsbaum für A, |A| = n der Höhe h.
- Damit muss T als Blätter alle Permutationen von A enthalten.
- D.h. T besitzt mindestens n! Blätter. Jeder Binärbaum der Höhe h besitzt andererseits höchstens 2^h Blätter.
- Daher gilt $2^h \ge n!$ bzw. $h \ge \log_2(n!)$.
- Aus der Stirling-Formel folgt $n! > \left(\frac{n}{e}\right)^n$ und damit $h \ge n \log_2\left(\frac{n}{e}\right) = n \log n n \log e = \Omega(n \log n).$
- D.h. es gibt einen Pfad in T mit $\Omega(n \log n)$ Vergleichen.

Berechnung von Binomialkoeffizienten

Problem: Berechne aus $n, k \in \mathbb{N}_0$ effizient $\binom{n}{k}$.

- Wir kennen bereits die Rekursion $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.
- Berechnen Binomialkoeffizienten mittels Divide and Conquer.

Algorithmus DIV-BINOM

EINGABE: $n, k \in N_0$

- If (k = 0) return 1;
- ② If (n < k) return 0;
- **1** return DIV-BINOM(n-1, k-1) + DIV-BINOM(n-1, k);

AUSGABE: $\binom{n}{k}$

• Korrektheit: Folgt aus obiger Rekursionsformel.

Laufzeit von DIV-BINOM

Satz Laufzeit von DIV-BINOM

DIV-BINOM benötigt zur Berechnung von $\binom{2n}{n}$ mindestens $\frac{4^n}{2n+1}$ Aufrufe.

Beweis:

- DIV-BINOM bricht die Rekursion mit Werten 0 und 1 ab.
- $\binom{n}{k}$ wird als Summe der Rückgabewerte 0 und 1 berechnet.
- Damit benötigt man mindestens $\binom{n}{k}$ viele Aufrufe.
- Es gilt $\binom{2n}{n} \ge \binom{2n}{i}$ für $i = 0, \dots, 2n$.
- Daraus folgt

$$(2n+1)\binom{2n}{n} \ge \sum_{i=0}^{2n} \binom{2n}{i} = 2^{2n} = 4^n.$$

• D.h. DIV-BINOM benötigt mindestens $\frac{4^n}{2n+1}$ Aufrufe.

Dynamische Programmierung

Nachteile des Divide and Conquer Ansatzes

- Subprobleme sind nicht unabhängig voneinander.
- Zwischenergebnisse werden nicht gespeichert.
- Damit werden die Subprobleme oft mehrfach gelöst.

Definition Paradigma Dynamische Programmierung

Dynamische Programmierung verwendet die Strategien

- Bottom-up Ansatz: Man beginnt bei trivialen Subproblemen.
- **Kombination** gespeicherter Lösungen von Subproblemen: Setze Lösungen zu Lösungen größerer Probleme zusammen.

Beispiel aus der Vorlesung

- Warschall-Algorithmus berechnet Erreichbarkeit in (V, E).
 - ▶ Bottom-up: $W_0[u, v] = 1$ falls $(u, v) \in E$. Sonst $W_0[u, v] = 0$.
 - ► **Kombination**: $W_k[u, v] = \max\{W_{k-1}[u, v], W_{k-1}[u, k] \cdot W_{k-1}[k, v]\}.$

Binomialkoeffizienten revisited

Algorithmus DYN-BINOM

```
EINGABE: n, k \in \mathbb{N}_0
```

- If (k > n) return 0;
- 2 For $i \leftarrow 0$ to n
 - \bullet a[i,0] = 1; a[i,i] = 1;
- **③** For i ← 1 to n
 - - **1** a[i,j] ← a[i-1,j-1] + a[i-1,j];
- return a[n, k];

AUSGABE: $\binom{n}{k}$

- Korrektheit: Zeilenweise Berechnung des Pascal'schen Dreiecks.
- Schritt 1 initialisiert die Grenzen des Pascal'schen Dreiecks.
- Schritt 2 berechnet die *i*-te Zeile des Pascal'schen Dreiecks.
- Laufzeit: $\mathcal{O}(nk)$ für $k \leq n$, d.h. $\mathcal{O}(n^2)$.

Motivation von Optimierungsproblemen

Definition Vollständig geklammertes Matrixprodukt

Sei $M = A_1 \cdot ... \cdot A_n$ ein Produkt von Matrizen. M heißt vollständig geklammertes Matrixprodukt, falls n = 1 oder M ein geklammertes Produkt von zwei vollständig geklammerten Matrixprodukten ist.

Beispiel: n = 4

- Es existieren die 5 vollständig geklammerten Matrixprodukte $(((A_1A_2)A_3)A_4), ((A_1(A_2A_3))A_4), (A_1((A_2A_3)A_4)), (A_1(A_2(A_3A_4))), ((A_1A_2)(A_3A_4)).$
- Man kann zeigen, dass die Anzahl der vollständig geklammerten Matrixprodukte exponentiell in n ist.

Kosten einer Lösung

Definition Kosten einer Matrixmultiplikation

Sei $A_1 = (a_{i,j})$ eine (n_1, n_2) -Matrix und A_2 eine $(n_2 \times n_3)$ -Matrix. Dann definieren wir die Kosten der Berechnung von $A_1 \cdot A_2$ als $n_1 n_2 n_3$.

Die Kosten eines vollständigen geklammerten Matrixprodukts sind definiert als die Summe der Kosten aller Matrixprodukte.

Begründung:

- Seien $a_{i,j}^{(1)}$, $a_{i,j}^{(2)}$ die Einträge von A_1 bzw. A_2
- Sei $m_{i,j} = \sum_{k=1}^{n_2} a_{i,k}^{(1)} \cdot a_{k,j}^{(2)}$ für $i \in [n_1], j \in [n_3]$.
- Die Berechnung aller $m_{i,j}$ erfordert $n_1 \cdot n_2 \cdot n_3$ Multiplikationen.

Beispiel: $A_1 \in \mathbb{Z}^{10 \times 5}, A_2 \in \mathbb{Z}^{5 \times 10}$ und $A_3 \in \mathbb{Z}^{10 \times 10}$

- $((A_1A_2)A_3)$ liefert Kosten von 500 + 1000 = 1500.
- $(A_1(A_2A_3))$ liefert dagegen nur Kosten von 500 + 500 = 1000.

Optimierungsprobleme

Definition Optimierungsproblem

Sei Π ein Problem mit Lösungsraum L und $c:L\to\mathbb{R}$ eine Kostenfunktion. Wir bezeichnen Π als *Optimierungsproblem*, falls eine Lösung $\ell\in L$ mit optimalen Kosten $c(\ell)$ gesucht wird.

- lacktriangle Falls $c(\ell)$ maximiert wird, nennen wir Π ein *Maximierungsproblem*.
- ② Falls $c(\ell)$ minimiert wird, nennen wir Π ein *Minimierungsproblem*.

Problem Minimierungsproblem Matrizenklammerung Π_M

Gegeben: $(p_i \times p_{i+1})$ -Matrizen für $i \in [n]$.

Gesucht: Vollständige Klammerung mit minimalen Kosten.

Aufsplitten einer optimalen Lösung

- Sei ℓ eine optimale vollständige Klammerung für Π_M .
- Wir verwenden die Notation $A_{1...n}$ für $A_1 \cdot ... \cdot A_n$.
- In ℓ werden $A_{1...k}$ und $A_{k+1...n}$ für ein $k \in [n-1]$ berechnet.

Lemma Optimalität der Subprobleme

Sei Π_M ein Matrizenklammerungs-Problem mit $M=A_1\ldots A_n$ und ℓ eine optimale Lösung, die $A_{1\ldots k},\,A_{k+1\ldots n}$ berechnet. Dann liefert ℓ für diese Subprobleme optimale Lösungen.

Beweis:

- Annahme: Sei ℓ' eine bessere Lösung für A_{1...k}.
- Seien $c(\ell(A_{i...j}))$ die Kosten der Lösung ℓ für $A_{i...j}$.
- Berechne in ℓ das Produkt $A_{1...k}$ gemäß ℓ' mit $c(\ell') < c(\ell(A_{1...k}))$.
- Dann gilt $c(\ell') + c(\ell(A_{k+1...n})) < c(\ell(A_{1...k})) + c(\ell(A_{k+1...n})) = c(\ell)$. (Widerspruch zur Minimalität der Lösung ℓ für Π_M)
- Beweis liefert analog die Optimalität von ℓ für $A_{k+1...n}$.

Dynamische Programmierung für Π_M

Lösung mittels Dynamischer Programmierung

- Seien m[i, j] die minimalen Kosten zur Berechnung von $A_{i...j}$.
- **Bottom-up:** m[i, i] = 0 für i = 1, ..., n.
- **Kombination:** Berechnung von $A_{i...j}$ für alle i < j.
- Bestimme k mit $i \le k < j$, das folgende Kosten minimiert:
 - ▶ Berechne $A_{i...k}$ und $A_{k+1...j}$ mit Kosten m[i, k] + m[k+1, j].
 - ▶ Berechne $A_{i...k} \cdot A_{k+1...j}$ mit Kosten $p_i p_{k+1} p_{j+1}$
- D.h. wähle $m[i,j] = \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_i p_{k+1} p_{j+1} \}.$
- Die Gesamtkosten für $M = A_1 \cdot ... \cdot A_n$ sind m[1, n].

Algorithmus DYN-MATRIXKLAMMERUNG

Algorithmus DYN-MATRIXKLAMMERUNG

- EINGABE: $p_1, \ldots, p_{n+1} \in \mathbb{N}$
- $\bullet \quad \text{For } i \leftarrow 1 \text{ to } n$
- 2 For $\ell \leftarrow 2$ to n
 - $\bullet \quad \text{For } i \leftarrow 1 \text{ to } n (\ell 1)$

 - 2 $m[i,j] \leftarrow \min_{i \leq k < j} \{ m[i,k] + m[k+1,j] + p_i p_{k+1} p_{j+1} \}.$
 - $s[i,j] \leftarrow k$, an dem das Minimum angenommen wird.

AUSGABE: Arrays m und s

- Korrektheit: Die Intervalllängen ℓ wachsen stetig.
- Dadurch werden in Schritt 2.1.2 nur bekannte Werte verwendet.
- Bei Terminierung stehen in m[1, n] die minimalen Kosten.
- Übung: s liefert die optimale Klammerung.
- Laufzeit für die Schleifen über ℓ , i, k : $\mathcal{O}(n^3)$.

 $//\ell$ ist die Länge des Intervalls [i, j]

Beispiel für ein Maximierungsproblem

Problem Maximierungsproblem Rucksack Π_R

Gegeben: n Gegenstände mit Gewichten $w_i \in \mathbb{N}$ und

Profiten $p_i \in \mathbb{N}$ für $i \in [n]$.

Kapazitätsschranke B

Gesucht: $\max_{J\subseteq [n]}\{\sum_{j\in J}p_j\mid \sum_{j\in J}w_j\leq B\}$, bzw. dasjenige J,

an dem das Maximum angenommen wird.

Anmerkungen:

- Lösung von Rucksack mit Dynamischer Programmierung möglich.
- Liefert einen Algorithmus mit Laufzeit $\mathcal{O}(n \sum_{i \in [n]} p_i)$.
- Man beachte: Eingabelänge der p_i ist nur $\Theta(\sum_{i \in [n]} \log p_i)$.
- D.h. der Algorithmus ist exponentiell in der Eingabelänge.
- Π_R gehört zu den algorithmisch schweren Problemen (s. DiMa II).

Greedy-Strategie

Definition Paradigma Greedy

Der Greedy-Ansatz verwendet die Strategie

Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung erhält.

Definition Kompatible Veranstaltungen

S = [n] heißt eine Menge von *Veranstaltungen*, falls jedes $i \in [n]$ eine Startzeiten s_i und eine Endzeiten $f_i \geq s_i$ besitzt. Wir nennen $i, j \in S$ kompatibel, falls $[s_i, f_i)$ und $[s_j, f_j)$ nicht-überlappend sind. $J \subseteq S$ heißt kompatibel, falls je zwei verschiedene Elemente aus J kompatibel sind.

Problem Scheduling

Gegeben: S=[n] Menge von Veranstaltungen

Gesucht: $J \subseteq S$ kompatibel mit maximaler Größe |J|

Greedy Lösung für das Scheduling-Problem

Annahme: Die Veranstaltungen seien aufsteigend nach f_i sortiert.

Algorithmus GREEDY-SCHEDULING

EINGABE:
$$s[1 \dots n], f[1 \dots n] \text{ mit } f[1] \leq \dots \leq f[n]$$

- 2 For $i \leftarrow 2$ to n
 - If $(s_i \ge f_j)$ then $J \leftarrow \{i\}; j \leftarrow i$;

AUSGABE: J

Anmerkung:

- Korrektheit: Wir zeigen zunächst, dass *J* kompatibel ist.
- Invariante: j ist ein Element maximaler Endzeit f_j in J.
- Schritt 2.1: Falls i zu j kompatibel ist, dann auch zu allen anderen Elementen in J, da $f_i \ge f_k$ für alle $k \in J$.
- Laufzeit: $\mathcal{O}(n)$.

Optimalität der Greedy-Lösung

Satz Optimalität von GREEDY-SCHEDULING

GREEDY-SCHEDULING liefert ein kompatibles *J* maximaler Größe.

Beweis: Beweisstruktur

- Es gibt eine optimale Lösung J mit $1 \in J$.
- ② $J \setminus \{1\}$ ist eine optimale Lösung für $S_1 = \{i \in S \mid s_i \geq f_1\}$.

Der Satz folgt per Induktion über die Anzahl der gewählten Elemente.

- ad 1: Sei J' eine optimale Lösung mit $1 \notin J'$ und k minimal in J'.
- D.h. $f_k \ge f_1$ bzw. 1 ist kompatibel zu jedem Element in $J' \setminus \{k\}$.
- Damit ist $J = J' \setminus \{k\} \cup \{1\}$ eine optimale Lösung mit $1 \in J$.
- ad 2: Annahme: Sei J optimal für S mit $1 \in J$. Sei J' eine bessere Lösung für S_1 als $J \setminus \{1\}$, d.h. |J'| > |J| 1.
- $J' \cup \{1\}$ ist kompatibel, d.h. eine gültige Lösung für S.
- Damit folgt $|J' \cup \{1\}| = |J'| + 1 > |J|$. (Widerspruch zur Optimalität von J)

Eigenschaften von Greedy-Problemen

Struktur: Optimale Lösungen mit Greedy-Ansatz erfordern

- Optimalität der Greedy-Wahl
 - Es existiert ein optimale Lösung, die das lokale Optimimum enthält.
 - ▶ Gierige Wahl hängt *nicht* von der Lösung der Subprobleme ab.
 - D.h. die Wahl hängt nur von bisherigen Entscheidungen ab. (Top-down Ansatz)
- Optimalität der Subprobleme
 - Optimale Lösung beinhaltet optimale Lösungen der Subprobleme.

Anmerkungen:

- Nicht jeder Greedy-Ansatz liefert eine optimale Lösung.
- Nicht erfolgreich beim Scheduling sind z.B. die gierige Wahl von kürzester Dauer und kleinster Überlappung. (Übungsaufgabe)
- Das Scheduling-Problem kann auch mittels Dynamischer Programmierung gelöst werden. (Übungsaufgabe)
- Diese Lösung liefert aber eine schlechtere Laufzeit.

Greedy versus Dynamische Programmierung

Problem Rucksack Π_R

Gegeben: *n* Gegenstände mit Gewichten und Profiten $w_i, p_i \in \mathbb{N}$,

Kapazitätsschranke B

Gesucht: $\alpha \in \{0,1\}^n$ mit Profit $\max_{\alpha} \{\sum_{i=1}^n \alpha_i p_i \mid \sum_{i=1}^n \alpha_i w_i \leq B\}.$

Problem Rationale Variante Rucksack Π'_R

Gegeben: n Gegenstände mit Gewichten und Profiten $w_i, p_i \in \mathbb{N}$,

Kapazitätsschranke B

Gesucht: $\alpha \in [0,1]^n$ mit Profit $\max_{\alpha} \{ \sum_{i=1}^n \alpha_i p_i \mid \sum_{i=1}^n \alpha_i w_i \leq B \}.$

Anmerkung: Beide Probleme besitzen Optimalität der Subprobleme.

- Π_R : Entscheide, ob *i* in optimaler Lösung *L* ist, d.h. ob $\alpha_i = 1$.
 - ▶ Falls $i \notin L$: Bestimme optimale Lösung des Subproblems ohne i.
 - ▶ Falls $i \in L$: Bestimme optimale Lösung ohne i mit Schranke $B w_i$.
- Π'_R : Sei Bruchteil α_i des Gegenstands i in optimaler Lösung.
 - Bestimme optimale Lösung ohne *i* mit Schranke $B \alpha_i w_i$.

(Nicht-)Optimalität der Greedy-Wahl

Algorithmus Greedy-Rationaler-Rucksack

- EINGABE: $n, p_1, \ldots, p_n, w_1, \ldots, w_n, B$
- Sortiere die Elemente absteigend nach $\frac{p_i}{w_i}$.
- ② For $j \in [n]$ in Reihenfolge absteigender Quotienten $\frac{p_i}{w_i}$
 - **1** Nimm von j maximalen Bruchteil α_j , der in den Rucksack passt.

AUSGABE: $\alpha \in [0, 1]^n$

- Korrektheit: Algorithmus liefert eine optimale Lösung. (Übung)
- Laufzeit: $\mathcal{O}(n \log n)$.

Anmerkung:

- Greedy-Strategie funktioniert nicht für Π_R . Gegenbeispiel: $(w_1, p_1) = (1, 3), (w_2, p_2) = (2, 4), (w_3, p_3) = (4, 4)$ und B = 6.
- Greedy wählt die Gegenstände 1 und 2. Optimal ist aber 2 und 3.

Greedy-Algorithmus Minimaler Spannbaum (MST)

Definition Minimaler Spannbaum

Sei G=(V,E) ein ungerichteter Graph und $w:E\to\mathbb{N}$. Das Gewicht w(T) eines Spannbaums $T=(V,E_T)$ ist $\sum_{e\in E_T} w(e)$. Ein minimaler Spannbaum (MST) ist ein Spannbaum minimalen Gewichts.

Algorithmus KRUSKAL

EINGABE: G = (V, E) mit $w : E \rightarrow \mathbb{N}$

- Sortiere die Kanten aufsteigend nach Gewicht
- For $e \in E$ in Reihenfolge aufsteigenden Gewichts
 - If $((V, E_T \cup \{e\}))$ ist kreisfrei) then $E_T \leftarrow E_T \cup \{e\}$.

AUSGABE: MST $T = (V, E_T)$

- Korrektheit: *T* ist ein Spannbaum. Minimalität s. nächste Folie.
- Laufzeit: $\mathcal{O}(|E|\log|E|)$.

Optimalität von KRUSKAL

Satz MST-Eigenschaft von KRUSKAL

KRUSKAL berechnet einen minimalen Spannbaum von G.

Beweis:

- Seien $e_1, \ldots, e_m \in E$ aufsteigend nach Gewicht sortiert.
- **Zeigen:** Es existiert ein MST, der *e*₁ enthält.
- Sei T ein MST, der e_1 nicht enthält. Wir fügen e_1 zu T hinzu.
- e_1 schließt einen Kreis in T. Entfernen einer beliebigen Kreiskante e liefert wiederum einen Spannbaum T'.
- Wegen $w(e_1) \le w(e')$ folgt $w(T') \le W(T)$.

Beweis der Optimalität

Beweis: Fortsetzung

- Sei nun *T* ein optimaler Spannbaum mit Kante *e*₁.
- Entfernen von e_1 liefert zwei ZHKs $G[V_1]$ und $G[V_2]$.
- T induziert Spannbäume T_1 , T_2 für $G[V_1]$ und $G[V_2]$.
- Annahme: Sei T' ein MST für $G[V_1]$ mit w(T') < w(T).
- Wir ersetzen in T die Kanten von T₁ durch die Kanten von T'.
- Dies liefert einen Spannbaum von G mit Gewicht kleiner als w(T). (Widerspruch zur Minimalität von T)

Lösen von Rekursionsgleichungen

Ziel: Lösen von Rekursionsgleichungen der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

2
$$x_n = a_1 x_{n-1} + \ldots + a_k x_{n-k} + b_k$$

Beide Gleichungstypen treten häufig in der Laufzeitanalyse auf.

Das Master-Theorem

Satz Master-Theorem

Sei $T(n) = aT(\frac{n}{b}) + f(n)$ mit $a, b \ge 1$. Dann gilt:

11: $f(n) = \mathcal{O}(n^{\log_b a - \epsilon}), \epsilon > 0$:

$$T(n) = \Theta(n^{\log_b a})$$

2 Fall 2: $f(n) = \Theta(n^{\log_b a})$:

$$T(n) = \Theta(n^{\log_b a} \log n)$$

§ Fall 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ und $af(\frac{n}{b}) \le cf(n)$ für ein c < 1: $T(n) = \Theta(f(n))$.

Anmerkung:

• Man kann zeigen, dass $\frac{n}{b}$ sowohl als $\lfloor \frac{n}{b} \rfloor$ als auch als $\lceil \frac{n}{b} \rceil$ interpretiert werden kann, ohne die Analyse zu beeinflussen.

Beispiele bereits bekannter Anwendungen

Mergesort und FFT:

- Rekursionsgleichung $T(n) = 2T(\frac{n}{2}) + \Theta(n)$.
- D.h. wir erhalten die Parameter a = b = 2 und $f(n) = \Theta(n)$.
- Damit gilt $n^{\log_b a} = n$, d.h. wir sind in Fall 2: $f(n) = \Theta(n^{\log_b a})$.
- Es folgt mit Master-Theorem $T(n) = \Theta(n \log n)$.

Karatsuba:

- Rekursionsgleichung $T(n) = 3T(\frac{n}{2}) + \Theta(n)$.
- D.h. wir erhalten die Parameter a = 3, b = 2 und $f(n) = \Theta(n)$.
- Es gilt $n^{\log_b a} = n^{\log_2 3} \approx n^{1.58}$.
- Damit Fall 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ für $0 < \epsilon < \log_2 3 1$.
- Master-Theorem liefert $T(n) = \Theta(n^{\log_2 3})$.

Weitere Beispiele

Binäre Suche:

- Rekursionsgleichung $T(n) = T(\frac{n}{2}) + \Theta(1)$.
- Wir erhalten Parameter a = 1, b = 2 und $f(n) = \Theta(1)$.
- Wegen $n^{\log_b a} = 1$ gilt Fall 2: $f(n) = \Theta(n^0) = \Theta(n^{\log_b a})$.
- Das Master-Theorem liefert $T(n) = \Theta(n^{\log_b a} \log n) = \Theta(\log n)$.

Beispiel für Fall 3:

- Verwende Rekursionsgleichung $T(n) = 3T(\frac{n}{4}) + n \log n$.
- Es gilt $n^{\log_b a} = n^{\log_4 3} \approx n^{0.79}$.
- D.h. wir sind in Fall 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ für $0 < \epsilon \le 1 \log_4 3$.
- Ferner gilt $af(\frac{n}{b}) = 3\frac{n}{4}\log(\frac{n}{4}) \le \frac{3}{4}n\log n = cf(n)$ für $c = \frac{3}{4} < 1$.
- Das Master-Theorem liefert $T(n) = \Theta(f(n)) = \Theta(n \log n)$.

Nicht-Anwendbarkeit des Master- Theorems

Beispiel:

- Betrachten die Rekursionsgleichung $T(n) = 2T(\frac{n}{2}) + n \log n$.
- Es gilt sicherlich $f(n) = \Omega(n^{\log_b a}) = \Omega(n)$, aber **nicht** $f(n) = \Omega(n^{\log_b a + \epsilon})$.
- Man beachte, dass $\frac{f(n)}{n} = \log n = o(n^{\epsilon})$ für jedes $\epsilon > 0$.
- Damit ist Fall 3 nicht anwendbar.
- Fälle 1 und 2 sind nicht anwendbar, da $f(n) = \omega(n)$.
- D.h. es existieren Lücken zwischen den Fällen 1 und 2 bzw. zwischen den Fällen 2 und 3.

Beweis des Master-Theorems

Wir treffen die vereinfachte Annahme $n = b^i$.

Lemma Iterieren der Rekursionsgleichung

Sei
$$T(n) = aT(\frac{n}{b}) + f(n)$$
 und $T(1) = \Theta(1)$. Dann gilt

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} a^i f(\frac{n}{b^i}).$$

Beweis:

$$aT\left(\frac{n}{b}\right) + f(n) = a\left(aT\left(\frac{n}{b^{2}}\right) + f\left(\frac{n}{b}\right)\right) + f(n) = a^{2}T\left(\frac{n}{b^{2}}\right) + af\left(\frac{n}{b}\right) + f(n)$$

$$= a^{3}T\left(\frac{n}{b^{3}}\right) + a^{2}f\left(\frac{n}{b^{2}}\right) + af\left(\frac{n}{b}\right) + f(n)$$

$$\vdots$$

$$= a^{\log_{b}n}T\left(\frac{n}{b^{\log_{b}n}}\right) + \sum_{i=0}^{\log_{b}n-1}a^{i}f\left(\frac{n}{b_{i}}\right)$$

$$= \Theta(n^{\log_{b}a}) + \sum_{i=0}^{\log_{b}n-1}a^{i}f\left(\frac{n}{b^{i}}\right)$$

Interpretation des Master-Theorems

- Wir betrachten den Rekursionsbaum von T(n)
- Die Wurzel besitzt Kosten f(n) und a Kinder mit Kosten $f(\frac{n}{b})$.
- Jedes dieser Kinder besitzt a Kinder mit Kosten $f\left(\frac{n}{b^2}\right)$.
- D.h. in Tiefe 2 sind a^2 Kinder mit Kosten insgesamt $a^2 f\left(\frac{n}{b^2}\right)$.
- In Tiefe *i* sind damit allgemein a^i Kinder mit Kosten $a^i f\left(\frac{n}{b^i}\right)$.
- In den inneren Knoten entstehen Kosten beim Aufsplitten in Subprobleme und beim Zusammensetzen der Lösungen.
- Es existieren $n^{\log_b a}$ Blätter in Tiefe $i = \log_b n$.
- Die Kosten der Blätter sind Kosten zum Lösen der Subprobleme.

Master-Theorem: Gesamtkosten werden je nach Fall dominiert von

- Kosten in den Blättern: $\Theta(n^{\log_b a})$
- ② gleichverteilt über alle Ebenen: $\Theta(n^{\log_b a}) \cdot \log_b n = \Theta(n^{\log_b a} \log n)$
- **3** Kosten in der Wurzel: $\Theta(f(n))$

Beschränken der Summe

Lemma Summation im Master-Theorem

Sei
$$g(n) = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
. Dann gilt

- Fall 1 $f(n) = \mathcal{O}(n^{\log_b a \epsilon}), \epsilon > 0$: $g(n) = \Theta(n^{\log_b a}).$
- **2 Fall 2** $f(n) = \Theta(n^{\log_b a})$: $g(n) = \Theta(n^{\log_b a} \log n)$.
- **3 Fall 3** $af\left(\frac{n}{b}\right) \leq cf(n)$ für ein $c < 1 : g(n) = \Theta(f(n))$.

Folgerung:

Mit vorigem Lemma folgern wir für die Fälle des Master-Theorems

- **11:** $T(n) = \Theta(n^{\log_b a}) + g(n) = \Theta(n^{\log_b a})$
- **3** Fall 2: $T(n) = \Theta(n^{\log_b a}) + g(n) = \Theta(n^{\log_b a} \log n)$
- **§ Fall 3:** $T(n) = \Theta(n^{\log_b a}) + g(n) = \Theta(f(n))$ wegen $f(n) = \Omega(n^{\log_b a + \epsilon})$.

Beweis des Lemmas

Beweis:

- Wir beweisen hier nur Fall 2 & 3, Fall 1 ist Übungsaufgabe.
- Fall 2: Es gilt $g(n) = \Theta\left(\sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}\right)$ mit $\sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} = n^{\log_b a} \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^{\log_b a}}\right)^i = n^{\log_b a} \cdot \log_b n.$
- Fall 3: $g(n) \ge \sum_{i=0}^{0} a^{i} f\left(\frac{n}{b^{i}}\right) = \Omega(f(n)).$
- Aus $af\left(\frac{n}{b}\right) \leq cf(n)$ folgt $a^i f\left(\frac{n}{b^i}\right) \leq c^i f(n)$.
- Hieraus folgt wiederum

$$g(n) \leq \sum_{i=0}^{\log_b n-1} c^i f(n) \leq f(n) \sum_{i=0}^{\infty} c^i = f(n) \cdot \frac{1}{1-c} = \mathcal{O}(f(n)).$$

Lineare Rekursionsgleichungen

Definition Lineare Rekursionsgleichung

Seien $a_1,\ldots,a_{k+1},c_0,\ldots,c_{k-1}\in\mathbb{Z}$. Die Gleichung $x_n=a_1x_{n-1}+\ldots+a_kx_{n-k}+a_{k+1},\,n\geq k$ mit den Anfangsbedingungen $x_i=c_i$ für $i\in[k]$ heißt *lineare Rekursionsgleichung k-ter Ordnung*. Wir bezeichnen die Rekursionsgleichung als *homogen* falls $a_{k+1}=0$.

Beispiel:

- Sei $x_n = ax_{n-1}$ für $n \ge 1$ und $x_0 = b_0$.
- Iteration liefert $x_n = a^2 x_{n-2} = \ldots = a^n x_0 = a^n b_0$.
- Anwendung: Verzinse 1000€ mit j\u00e4hrlich 4\u00bb.
- Nach *n* Jahren besitzt man $x_n = (1,04)x_{n-1} \in \text{mit } x_0 = 1000 \in$.
- D.h. man besitzt $x_n = (1,04)^n \cdot 1000$ €.

Inhomogene Rekursion 1. Ordnung

Satz Rekursion 1. Ordnung

Sei $x_n = ax_{n-1} + b_1$ und $x_0 = b_0$. Dann gilt

$$x_n = \begin{cases} a^n b_0 + b_1 \frac{a^n - 1}{a - 1} & \text{falls } a \neq 1 \\ b_0 + b_1 n & \text{sonst.} \end{cases}$$

Beweis:

Mit Iterationsmethode erhalten wir

$$x_{n} = ax_{n-1} + b_{1} = a(ax_{n-2} + b_{1}) + b_{1} = a^{2}x_{n-2} + b_{1}(1 + a)$$

$$= a^{3}x_{n-3} + b_{1}(1 + a + a^{2})$$

$$\vdots$$

$$= a^{n}b_{0} + b_{1}\sum_{i=0}^{n-1}a^{i}$$

$$(a^{n}-1) \text{ fin } a \neq 1$$

Formale Potenzreihen und Erzeugende Funktion

Rekursionsgleichungen beschreiben Folgen $(x_n)_{n\geq 0}=x_0,x_1,x_2,\ldots$

Definition Potenzreihe und Erzeugende Funktion

Sei $(a_n)_{n\geq 0}$ eine Folge. Wir bezeichnen $A(x)=\sum_{n\geq 0}a_nx^n$ als formale Potenzreihe bzw. als Erzeugende Funktion der Folge.

Den Koeffizienten a_n von x^n in A(x) bezeichnen wir mit $[x^n]A(x)$. Wir definieren $a_n = 0$ für n < 0.

Anmerkung:

- Ziel: Wir suchen eine geschlossene Darstellungen für
 - \rightarrow A(x) als Funktion von x und
 - $ightharpoonup a_n$ als Funktion von n.
- Mit geschlossenen Darstellungen lässt sich einfach rechnen.

Arithmetik auf Potenzreihen

Linearkombinationen von Potenzreihen:

- Seien $(a_n)_{n>0}$, $(b_n)_{n>0}$ Folgen und c, d Konstanten.
- Wir definieren $(c_n)_{n>0}$ vermöge

$$c_n = ca_n + db_n$$
 für alle $n \ge 0$.

• Es gilt für die Erzeugende Funktion

$$\begin{array}{lcl} C(x) & = & \sum_{n \geq 0} (ca_n + db_n) x^n \\ & = & c \sum_{n \geq 0} a_n x^n + d \sum_{n \geq 0} b_n x^n = cA(x) + dB(x). \end{array}$$

Multiplikation von Potenzreihen

Multiplikation von Potenzreihen:

• Seien A(x), B(x) erzeugende Funktionen. Dann gilt

$$\begin{array}{rcl} A(x) \cdot B(x) & = & \left(\sum_{n \geq 0} a_n x^n \right) \cdot \left(\sum_{n \geq 0} b_n x^n \right) \\ & = & \sum_{n \geq 0} \left(\sum_{k \geq 0}^n a_k b_{n-k} \right) x^n. \end{array}$$

- Dies entspricht der Folge $(c_n)_{n\geq 0}$ mit $c_n = \sum_{k=0}^n a_k b_{n-k}$.
- $(c_n)_{n\geq 0}$ heißt Faltung oder Konvolution von $(a_n)_{n\geq 0}$ und $(b_n)_{n\geq 0}$.

Spezialfälle der Multiplikation:

- Sei $B(x) = x^m$. Erhalten $c_n = a_{n-m}$, d.h. $c_m = a_0, c_{m+1} = a_1, ...$
- Liefert eine Verschiebung der Folge $(a_n)_{n\geq 0}$ um m nach rechts.
- Dabei füllen wir die Folge von links mit Nullen auf.
- Mit $B(x) = \sum_{n>0} x^n$ gilt $c_n = \sum_{k=0}^n a_k$. (Kumulative Summe)
- Dies liefert die Summe der ersten n Folgenglieder von $(a_n)_{n>0}$.

Die geometrische Reihe

Definition Geometrische Reihe

Die erzeugende Funktion der Einserfolge 1,1,1,... heißt *geometrische Reihe G*(x) = $\sum_{n>0} x^n$.

Anmerkung: Zusammenhang zur endlichen geometrischen Reihe.

 Wir subtrahieren von der Einserfolge die um m nach rechts verschobene Einserfolge

$$G(x) - x^m G(x) = \sum_{n \ge 0} x^n - \sum_{n \ge 0} x^{n+m} = \sum_{n > 0} x^n - \sum_{n > m} x^n = \sum_{n = 0}^{m-1} x^n.$$

- Entspricht der Folge 1, 1, ..., 1, 0, 0, ... mit genau *m* Einsen.
- $\sum_{n=0}^{m-1} x^n$ ist die endliche geometrische Reihe mit m Elementen.

Einfache Operationen auf Potenzreihen

Operationen auf Potenzreihen:

- Verschieben nach links: $a_0, a_1, a_2, \ldots \mapsto a_m, a_{m+1}, a_{m+2}, \ldots$
- Realisierung als formale Potenzreihe

$$\frac{A(x) - a_0 - a_1 x - \dots - a_{m-1} x^{m-1}}{x^m} = \sum_{n \ge m} a_n x^{n-m} = \sum_{n \ge 0} a_{n+m} x^n.$$

- Alternieren: $a_0, a_1, a_2, a_3, \ldots \mapsto a_0, -a_1, a_2, -a_3, \ldots$
- Realisierung als formale Potenzreihe

$$A(-x) = \sum_{n>0} a_n (-x)^n = \sum_{n>0} (-1)^n a_n x^n.$$

- Index-Koeffizienten: $a_0, a_1, a_2, a_3, \ldots \mapsto a_1, 2a_2, 3a_3, 4a_4, \ldots$
- Realisierung als formale Potenzreihe

$$\frac{d}{dx}A(x) = \sum_{n\geq 1} na_n x^{n-1} = \sum_{n\geq 0} (n+1)a_{n+1}x^n.$$

Invertieren von Potenzreihen

- Sei E(x) die Erzeugende Funktion der Reihe 1, 0, 0, 0,
- E(x) ist neutrales Element der Multiplikation von Potenzreihen.

Definition Inverses einer Potenzreihe

Sei A(x), B(x) formale Potenzreihen. A(x) ist *invers* zu B(x) falls A(x)B(x)=E(x).

Satz Existenz von Inversen

Sei K ein Körper. Sei A(x) die Erzeugende Funktion von $(a_n)_{n\geq 0}$ mit $a_n\in K$. Das Inverse von A(x) existiert gdw $a_0\neq 0$.

Beweis:

- " \Rightarrow " : Sei B(x) invers zu A(x).
- Dann gilt $[x_0]A(x)B(x) = a_0b_0 = 1$, d.h. $a_0 \neq 0$.

Geometrische Reihe

Beweis: Fortsetzung

- " \Leftarrow ": Wir zeigen die Existenz von b_n per Induktion über n.
- IA für n = 0: $b_0 = \frac{1}{a_0}$ existiert wegen $a_0 \neq 0$.
- IS $n-1 \to n$: Wir benötigen $\sum_{k=0}^{n} a_k b_{n-k} = 0$.
- Damit gilt $b_n = -\frac{1}{a_0} \cdot \sum_{k=1}^n a_k b_{n-k}$.

Anwendung:

- Suchen geschlossene Form der geometrischen Reihe 1, 1, 1, . . .
- Dazu bestimmen wir das Inverse B(x) von $G(x) = \sum_{n \geq 0} x^n$.
- Es gilt $b_0 = \frac{1}{g_0} = 1$. Ferner ist $b_n = -\sum_{k=1}^n b_{n-k} = -\sum_{k=0}^{n-1} b_k$.
- Dies liefert $b_1 = (-1)$ und $b_2 = b_3 = ... = 0$.
- Damit folgt (1-x)G(x) = 1.
- Wir erhalten die bekannte geschlossene Form $G(x) = \frac{1}{1-x}$.
- Warnung: Wir vernachlässigen hier den sog. Konvergenzradius.

Weitere geschlossene Formen

Geschlossene Formen:

Endliche geometrische Reihe

$$\sum_{n=0}^{m-1} x^n = G(x) - x^m G(x) = \frac{1}{1-x} - x^m \frac{1}{1-x} = \frac{1-x^m}{1-x}.$$

• Reihe 1, 2, 3, 4, . . .

$$B(x) = \sum_{n \ge 1} nx^{n-1} = \frac{d}{dx} \sum_{n \ge 0} x^n = \frac{d}{dx} G(x)$$
, d.h. $B(x) = \frac{1}{(1-x)^2}$.

Verschiedene Herleitungen der geschlossenen Form von 1, 0, 1, 0, . . .

- **1** Mittels Erzeugende Funktion $B(x) = \sum_{n \ge 0} x^{2n}$.
 - ▶ Wir substitutieren $x \mapsto x^2$ in der geometrischen Reihe.
 - ▶ Dies liefert $B(x) = \frac{1}{1-x^2}$.
- Kumulative Summe der Folge 1, -1, 1, -1 liefert 1, 0, 1, 0, . . .
 - ▶ 1, -1, 1, -1, ... besitzt die Erzeugende Funktion $G(-x) = \frac{1}{1+x}$.
 - ► D.h. $B(x) = G(x)G(-x) = \frac{1}{1+x} \cdot \frac{1}{1-x} = \frac{1}{1-x^2}$
- Addition von 1, −1, 1, −1, ... mit 1, 1, 1, 1, ... liefert 2, 0, 2, 0, ...
 - ▶ 1, -1, 1, -1,... besitzt die Erzeugende Funktion $G(-x) = \frac{1}{1+x}$.
 - ► D.h. $B(x) = \frac{1}{2} \left(\frac{1}{1+x} + \frac{1}{1-x} \right) = \frac{1}{1-x^2}$.

Polyas Geldwechsel

Definition Polyas Geldwechselproblem

Gegeben: Betrag *n* Cent, Münzen 1, 5, 10 Cent

Gesucht: #(Möglichkeiten), n mit den Münzen zu zahlen

Lösungsansatz:

- Sei a_n die Anzahl Möglichkeiten, n mit 1-Cent Münzen zu zahlen.
- Wir erhalten die Folge $(a_n)_{n\geq 0}=1,1,1,1,\ldots$
- Erzeugende Funktion von $(a_n)_{n\geq 0}$ ist $A(x)=\sum_{n\geq 0}x^n=\frac{1}{1-x}$.
- ullet Sei b_n die Anzahl Möglichkeiten, n mit 5-Cent Münzen zu zahlen.
- Dann gilt $(b_n)_{n>0} = 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, \dots$
- Die Erzeugende Funktion ist $B(x) = \sum_{n \ge 0} x^n = \frac{1}{1 x^5}$.
- Analog definieren wir $C(x) = \frac{1}{1-x^{10}}$ für 10-Cent Münzen.

Divide and Conquer Lösung

Divide and Conquer für Polyas Geldwechselproblem:

- Betrachten zunächst nur Zahlungen mit 1- und 5-Cent Münzen.
- Für k = 0, ..., n zahlen wir k mit 1 Cent und (n k) mit 5 Cent.
- Dies liefert $\sum_{k=0}^{n} a_k b_{n-k}$, d.h. die Faltung von $(a_n)_{n\geq 0}$ und $(b_n)_{n\geq 0}$.
- Die Faltung können wir mittels Produkt $A(x) \cdot B(x)$ berechnen.
- [xⁿ]A(x)B(x) liefert die Anzahl der Möglichkeiten, den Betrag n mit 1-Cent und 5-Cent Münzen zu zahlen.
- Nehmen wir noch 10-Cent hinzu, so erhalten wir

$$A(x)B(x)C(x) = \frac{1}{1-x} \cdot \frac{1}{1-x^5} \cdot \frac{1}{1-x^{10}}.$$

• $[x^n]A(x)B(x)C(x)$ ist die Lösung von Polyas Geldwechselproblem.

Ziel: Geschlossene Form für $[x^n]A(x)B(x)C(x)$ als Funktion von n.

Beispiel für eine geschlossene Form

Satz Lineare Rekursion

Sei $a_n=a_{n-1}+1$ für $n\geq 1$, $a_0=1$. Dann gilt $a_n=n+1$ für alle $n\geq 0$.

Beweis:

• Wir stellen die Erzeugenden Funktion A(x) geschlossen dar als

$$A(x) = \sum_{n\geq 0} a_n x^n = a_0 + \sum_{n\geq 1} a_n x^n = a_0 + \sum_{n\geq 1} (a_{n-1} + 1) x^n$$

= $1 + x \sum_{n\geq 1} a_{n-1} x^{n-1} + \sum_{n\geq 1} x^n$
= $x \sum_{n\geq 0} a_n x^n + \sum_{n\geq 0} x^n = x \cdot A(x) + \frac{1}{1-x}.$

- Auflösen nach A(x) liefert $A(x) = \frac{1}{(1-x)^2}$.
- Wir kennen bereits die Reihenentwicklung $\frac{1}{(1-x)^2} = \sum_{n \geq 1} nx^{n-1}$.
- Einsetzen: $\sum_{n>0} a_n x^n = \frac{1}{(1-x)^2} = \sum_{n>1} n x^{n-1} = \sum_{n>0} (n+1) x^n$.
- Koeffizientenvergleich liefert geschlossene Form $a_n = n + 1$.

Strategie für geschlossene Form

Strategie zum Finden einer geschlossenen Form

- **1** Aufstellen der Erzeugenden Funktion $A(x) = \sum_{n>0} a_n x^n$.
- Einsetzen von Anfangswerten und Rekursionsgleichung.
- 3 Darstellung aller a_n durch A(x).
- 4 Auflösen nach A(x) liefert eine geschlossene Form f(x).
- **5** Entwicklung von $f(x) = \sum_{n \ge 0} f_n x^n$ als formale Potenzreihe. Wir verwenden hier als Hilfsmittel die Partialbruchzerlegung.
- **1** Koeffizientenvergleich liefert geschlossene Form $a_n = f_n$.

Ableiten von G(x)

Lemma Partialbruchlemma

Für alle $a \in \mathbb{R}$, $k \in \mathbb{N}$ gilt $\frac{1}{(1-ax)^k} = \sum_{n \geq 0} \binom{n+k-1}{k-1} a^n x^n$.

Beweis:

- Ableiten der geometrischen Reihe liefert $\sum_{n\geq 1} nx^{n-1} = \frac{1}{(1-x)^2}$.
- Erneutes Ableiten führt zu $\sum_{n\geq 2} n(n-1)x^{n-2} = \frac{2}{(1-x)^3}$.
- k-maliges Ableiten ergibt $\sum_{n\geq k} n\cdot\ldots\cdot(n-k+1)x^{n-k}=\frac{k!}{(1-x)^{k+1}}$.
- Daraus folgt $\sum_{n\geq 0} \binom{n+k}{k} x^n = \frac{1}{(1-x)^{k+1}}$.
- Wir erhalten $\frac{1}{(1-ax)^k} = \sum_{n\geq 0} \binom{n+k-1}{k-1} a^n x^n$.

Partialbruchzerlegung

Satz Partialbruchzerlegung

Seien $f, g \in \mathbb{R}[x]$ mit $f = (1 - a_1 x)^{k_1} \cdot \dots (1 - a_r x)^{k_r}$ und $\operatorname{grad}(g) < \operatorname{grad}(f)$. Dann existieren $g_i(x), i \in [r]$ mit $\operatorname{grad}(g_i) < k_i$ und

$$\frac{g(x)}{f(x)} = \frac{g_1(x)}{(1-a_1x)^{k_1}} + \ldots + \frac{g_r(x)}{(1-a_rx)^{k_r}}.$$

Beweis:

- Wir suchen g_i der Form $g(x) = \sum_{i=1}^r g_i(x) \prod_{j \in [r] \setminus \{i\}} (1 a_j x)^{k_j}$.
- $grad(g_i) < k_i$, d.h. jedes g_i besitzt höchstens k_i Koeffizienten.
- Insgesamt gibt es $\sum_{i=1}^{r} k_i = \operatorname{grad}(f)$ viele Koeffizienten der g_i .
- Durch Ausmultiplizieren und Koeffizientenvergleich erhalten wir grad(f) viele Gleichungen für unsere grad(f) viele Unbekannte.

Bsp. Partialbruchzerlegung

Beispiel: Partialbruchzerlegung

• g(x) = x, $f(x) = x^2 - 1$. Dies liefert den Ansatz

$$\frac{x}{x^2-1} = \frac{a}{x+1} + \frac{b}{x-1}$$
.

Multiplikation mit f(x) führt zu

$$x = a(x - 1) + b(x + 1) = (a + b)x - a + b.$$

Koeffizientenvergleich ergibt

$$\begin{vmatrix} a+b & = & 1 \\ -a+b & = & 0 \end{vmatrix}.$$

• Damit erhalten wir $a = b = \frac{1}{2}$, d.h.

$$\frac{x}{x^2-1} = \frac{1}{2} \left(\frac{1}{x+1} + \frac{1}{x-1} \right) = \frac{1}{2} \left(\frac{1}{1-(-x)} + \frac{1}{1-x} \right) = \frac{1}{2} (G(-x) + G(x)).$$

Reflektiertes Polynom

Definition Reflektiertes Polynom

Sei $f(x) = f_0 + f_1 x + \ldots + f_n x^n \in \mathbb{R}[x]$. Dann heißt $f^R(x) = f_n + f_{n-1} x + \ldots + f_n x^n$ das *reflektierte Polynom* von f.

• Es gilt $f^R(x) = x^n \cdot f(\frac{1}{x})$. Daraus folgt $f^R(\frac{1}{x}) = x^{-n} \cdot f(x)$.

Lemma Reflexionslemma

Sei
$$f \in \mathbb{R}[x]$$
 mit $f^R(x) = (x - a_1) \cdot \ldots \cdot (x - a_n)$. Dann gilt $f(x) = (1 - a_1 x) \cdot \ldots \cdot (1 - a_n x)$.

Beweis:

• Es gilt $f(x) = x^n f^R(\frac{1}{x}) = x(\frac{1}{x} - a_1) \cdot \dots \cdot x(\frac{1}{x} - a_n) = (1 - a_1 x) \cdot \dots \cdot (1 - a_n x).$

Partialbruchzerlegung

Beispiel: Partialbruchzerlegung

- Seien g(x) = x und $f(x) = 1 x x^2$.
- $f^R(x) = x^2 x 1$ besitzt die beiden Nullstellen $\frac{1}{2} \pm \sqrt{\frac{1}{4} + 1}$, d.h.

$$\phi = \frac{1+\sqrt{5}}{2}$$
 und $\bar{\phi} = \frac{1-\sqrt{5}}{2}$.

- Damit gilt $f(x) = (1 \phi x)(1 \bar{\phi}x)$.
- Wir erhalten den Partialbruchansatz $\frac{x}{(1-\phi x)(1-\bar{\phi}x)} = \frac{a}{1-\phi x} + \frac{b}{1-\bar{\phi}x}$.
- Multiplikation mit f liefert $x = (1 \bar{\phi}x)a + (1 \phi x)b$.
- Koeffizientenvergleich ergibt $\begin{vmatrix} -\bar{\phi}a \phi b & = & 1 \\ a + b & = & 0 \end{vmatrix}$.
- Dies impliziert $a = \frac{1}{\phi \overline{\phi}} = \frac{1}{\sqrt{5}} = -b$.

Fibonacci-Rekursion

Satz Formel für Fibonacci-Zahlen

Sei $F_0 = 0, F_1 = 1$ und $F_n = F_{n-1} + F_{n-2}$ für $n \ge 2$. Dann gilt

$$F_n = \frac{1}{\sqrt{5}} \left(\phi^n - \bar{\phi}^n \right).$$

Beweis:

- Einsetzen von $F(x) = \sum_{n\geq 0} F_n x^n$ in die Rekursionsgleichung $F(x) = F_0 + F_1 x + \sum_{n\geq 2} F_n x^n = x + \sum_{n\geq 2} (F_{n-1} + F_{n-2}) x^n$.
- Wir stellen die Summen wieder durch F(x) dar.

$$F(x) = x + x \sum_{n \ge 1} F_n x^n + x^2 \sum_{n \ge 0} F_n x^n$$

= $x + x (F(x) - F_0) + x^2 F(x) = x + F(x)(x + x^2).$

- Auflösen nach F(x) ergibt $F(x) = \frac{x}{1-x-x^2}$.
- Partialbruchzerlegung $F(x) = \frac{1}{1-\phi x} + \frac{b}{1-\bar{\phi}x}$ mit $a = (-b) = \frac{1}{\sqrt{5}}$.
- Partialbruchlemma liefert $F(x) = a \sum_{n>0} (\phi x)^n + b \sum_{n>0} (\bar{\phi} x)^n$.
- Durch Koeffizientenvergleich erhalten wir $F_n = \frac{1}{\sqrt{5}} \left(\phi^n \overline{\phi}^n \right)$.

Wahrscheinlichkeitsraum

Definition Wahrscheinlichkeitsraum

Seien ω_1,ω_2,\ldots Elementareignisse mit Wahrscheinlichkeiten $0 \leq \Pr[\omega_1], \Pr[\omega_2],\ldots \leq 1$. Wir bezeichnen $\Omega = \{\omega_1,\omega_2,\ldots\}$ als *Ergebnismenge*. Ω definiert einen diskreten *Wahrscheinlichkeitsraum* falls $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Eine Teilmenge $E \subseteq \Omega$ heißt Ereignis mit $\Pr[E] := \sum_{\omega \in E} \Pr[\omega]$.

Beispiel: Fairer Würfel

- $\omega_i = i, i \in [6]$ bezeichnen die Elementarereignis, i zu würfeln.
- Der Ergebnisraum ist $\Omega = \{1, 2, 3, 4, 5, 6\}$.
- Bei einem fairen Würfel gilt $Pr[i] = \frac{1}{6}$ für alle $i \in [6]$.
- D.h. $\sum_{i \in \Omega} \Pr[i] = 1$. Damit definiert Ω einen Wsraum.
- Sei $E = \{3, 6\}$, d.h. es wird eine durch 3 teilbare Zahl gewürfelt.
- Dann gilt $Pr[E] = Pr[3] + Pr[6] = \frac{1}{3}$.

Beispiel Wsraum

Beispiel: Wsraum

- Wir modellieren 2 Kartenspieler mit je 10 aus 52 Karten.
- Karten $K = \{ \text{Karo, Herz, Pik, Kreuz} \} \times \{2, \dots, 10, B, D, K, A \}.$
- Ergebnismenge $\Omega = \{(X, Y) \subseteq K^2 \mid X \cap Y = \emptyset, |X| = |Y| = 10\}.$
- Elementareignisse $(X, Y) \in \Omega$ entsprechen Kartenverteilungen.
- Es gilt $\Pr(\omega) = \frac{1}{|\Omega|}$ für alle $\omega \in \Omega$. (Übung: Bestimmen Sie $|\Omega|$.)
- Das Ereignis, das Spieler X vier Asse besitzt, ist $E = \{(X, Y) \in \Omega \mid \{(Karo,A), (Herz,A), (Pik,A), (Kreuz,A)\} \subset X\}.$
- Für bessere Lesbarkeit schreiben wir oft E = "Spieler X besitzt 4 Asse." und analog Pr[E] = Pr["Spieler X besitzt vier Asse"].

Unendlicher Wsraum

Problem Laufzeit von probabilistischen Las-Vegas Algorithmen

Gegeben: Algorithmus, der in jeder Iteration eine Ausgabe mit

Ws von $p \in (0, 1)$ liefert.

Gesucht: Ws, dass genau *i* Iterationen durchgeführt werden.

Modellierung als unendlicher Wsraum

- Sei w_i , $i \in \mathbb{N}$ das Elementarereignis, das genau i Iterationen des Algorithmus durchgeführt werden.
- Die Ergebnismenge $\Omega = \{\omega_1, \omega_2, \ldots\}$ ist unendlich.
- Für ω_i benötigt man zunächst i-1 Misserfolge, dann Erfolg.
- D.h. $\Pr[\omega_i] = (1-p)^{i-1}p$. Damit definiert Ω einen Wsraum, denn $\sum_{\omega \in \Omega} \Pr[\omega] = \sum_{i \geq 1} (1-p)^{i-1}p = p \sum_{i \geq 1} (1-p)^i = p \cdot \frac{1}{1-(1-p)} = 1.$

Additionslemma und Gegenereignis

Lemma Additionslemma

Sei Ω ein Wsraum. Für paarweise disjunkte $A_1, \ldots, A_n \subseteq \Omega$ gilt $\Pr[\bigcup_{i=1}^n A_i] = \sum_{i=1}^n \Pr[A_i]$.

Beweis:

• $\Pr[\bigcup_{i=1}^n A_i] = \sum_{a \in A_1} \Pr[a] + \ldots + \sum_{a \in A_n} \Pr[a] = \sum_{i=1}^n \Pr[A_i].$

Lemma Gegenereignis

Sei Ω ein Wsraum. Sei $A\subseteq \Omega$ mit Gegenereignis $\bar{A}=\Omega\setminus A$. Dann gilt $\Pr[\bar{A}]=1-\Pr[A]$.

Beweis:

- $\Pr[A] + \Pr[\bar{A}] = \Pr[A \cup \bar{A}] = \Pr[\Omega] = 1$.
- Daraus folgt $Pr[\bar{A}] = 1 Pr[A]$.

Teilereignisse

Lemma Teilereignis

Sei Ω ein Wsraum und $A, B \subseteq \Omega$ mit $A \subseteq B$. Dann gilt $Pr[A] \leq Pr[B]$.

Beweis:

• $\Pr[B] = \Pr[A \cup (B \cap \bar{A})] = \Pr[A] + \Pr[B \cap \bar{A}] \ge \Pr[A].$

Inklusion/Exklusion für nicht-disjunkte Ereignisse

Satz Additionsformel

Sei Ω ein Wsraum mit Ereignissen A_1, \ldots, A_n . Dann gilt

$$\Pr[\bigcup_{i=1}^n A_i] = \sum_{i=1}^n \Pr[A_i] - \sum_{1 \leq i_1 < i_2 \leq n} \Pr[A_{i_1} \cap A_{i_2}] + \ldots + (-1)^{n-1} \Pr[A_1 \cap \ldots A_n].$$

Beweis:

- Wir zeigen nur n = 2, für allg. n folgt der Beweis per Induktion.
- D.h. zu zeigen ist $Pr[A_1 \cup A_2] = Pr[A_1] + Pr[A_2] Pr[A_1 \cap A_2]$.
- Sei $B = A_1 \setminus A_2$. Dann sind B und $A_1 \cap A_2$ disjunkt.
- Damit gilt $Pr[A_1] = Pr[B \cup (A_1 \cap A_2)] = Pr[B] + Pr[A_1 \cap A_2].$
- Es folgt

$$Pr[A_1 \cup A_2] = Pr[B \cup A_2] = Pr[B] + Pr[A_2]$$

= $Pr[A_1] - Pr[A_1 \cap A_2] + Pr[A_2].$

Boolesche Ungleichung

Satz Boolesche Ungleichung

Sei Ω ein Wsraum mit Ereignissen A_1, \ldots, A_n . Dann gilt

$$\Pr[\bigcup_{i=1}^n A_i] \leq \sum_{i=1}^n \Pr[A_i].$$

Beweis:

• Sei $B = \bigcup_{i=1}^n A_i$. Dann folgt

$$\Pr[B] = \sum_{\omega \in B} \Pr[\omega] \le \sum_{i=1}^n \sum_{\omega \in A_i} \Pr[\omega] = \sum_{i=1}^n \Pr[A_i].$$

Prinzip von Laplace

Definition Prinzip von Laplace

Sei Ω eine Ergebnismenge. Beim *Prinzip von Laplace* setzen wir $\Pr[\omega] = \frac{1}{|\Omega|}$ für alle $\omega \in \Omega$.

Anmerkung:

- Das Prinzip von Laplace liefert eine Gleichverteilung.
- Für alle $E \subseteq \Omega$ gilt $\Pr(E) = \sum_{\omega \in E} \Pr(\omega) = \sum_{\omega \in E} \frac{1}{|E|} = \frac{|E|}{|\Omega|}$.
- D.h. wir erhalten die Faustformel "Günstige durch Mögliche".

Bedingte Wahrscheinlichkeit

Definition Bedingte Wahrscheinlichkeit

Sei Ω ein Wsraum mit $A,B\subseteq \Omega$ und $\Pr[B]>0$. Dann definieren wir die bedingte Wahrscheinlichkeit $\Pr[A|B]:=\frac{\Pr[A\cap B]}{\Pr[B]}$.

Anmerkungen:

- Pr[A|B] bezeichnet die Wahrscheinlichkeit, dass Ereignis A eintrifft unter der Bedingung dass Ereignis B eintrifft.
- Es folgt $Pr[A \cap B] = Pr[A|B] \cdot Pr[B] = Pr[B|A] \cdot Pr[A]$.
- Ferner gilt Pr[A|A] = 1 und $Pr[A|\bar{A}] = 0$.
- Es gilt $\Pr[\omega|B] = \begin{cases} 0 & \text{für } \omega \notin B \\ \frac{\Pr[\omega]}{\Pr[B]} & \text{für } \omega \in B \end{cases}$.
- D.h. für $\omega \in B$ wird der Wsraum mit dem Faktor $\frac{1}{\Pr[B]}$ skaliert.
- Dies liefert einen Wsraum, denn $\sum_{\omega \in \Omega} \Pr[\omega|B] = \sum_{\omega \in \Omega} \frac{\Pr[\omega \cap B]}{\Pr[B]} = \frac{1}{\Pr[B]} \sum_{\omega \in B} \Pr[\omega] = \frac{\Pr[B]}{\Pr[B]} = 1.$

Beispiel bedingte Wahrscheinlichkeiten

Beispiel:

- Wir betrachten einen Laplace-Würfel mit Wsraum $\Omega = [6]$.
- Sei A = "Augenzahl ist durch 3 teilbar".
- Sei B = "Augenzahl ist größer als 2".
- $\Pr[A \cap B] = \frac{|\{3,6\}|}{|\Omega|} = \frac{1}{3} \text{ und } \Pr[B] = \frac{|\{3,4,5,6\}|}{|\Omega|} = \frac{2}{3}.$
- Damit folgt $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{1}{3} \cdot \frac{3}{2} = \frac{1}{2}$.
- Der Skalierungsfaktor $\frac{1}{\Pr[B]}$ ist $\frac{3}{2}$.
- Alternativ können wir Pr[A|B] wie folgt bestimmen.
- Falls *B* eintritt, verändert dies den Wsraum zu $\Omega' = \{3, 4, 5, 6\}$.
- Damit gilt $Pr[A|B] = \frac{|\{3,6\}|}{|\Omega'|} = \frac{1}{2}$.
- Wir betrachten ein weiteres Beispiel aus der Kryptographie.
- Perfekte Sicherheit wird in der Kryptographie definiert als
 Pr[Klartext ist p] = Pr[Klartext ist p | Chiffretext ist c].
- D.h. c liefert keine Information über das zugrundeliegende p.

Das Zweikinderproblem

Definition Zweikinderproblem

Eine Familie besitzt zwei Kinder. Wie groß ist die Wahrscheinlichkeit Pr["Beide Kinder sind Mädchen."|"Eines der Kinder ist ein Mädchen"]?

Lösung:

- Sei A = "Beide Kinder sind M\u00e4dchen."
- Sei B = "Eines der Kinder ist ein Mädchen."
- Wir betrachten den Wsraum $\Omega = \{MM, JM, MJ, JJ\}$.
- Wir treffen die Laplace Annahme, dass $\Pr[\omega] = \frac{1}{4}$ für alle $\omega \in \Omega$.
- Es gilt $Pr[A \cap B] = Pr[A] = \frac{|\{MM\}|}{|\Omega|} = \frac{1}{4}$.
- Wegen $Pr[B] = \frac{|\{MM, JM, MJ\}|}{|O|} = \frac{3}{4} \text{ folgt } Pr[A|B] = \frac{1}{3}.$
- D.h. das zweite Kind ist ein M\u00e4dchen mit Ws \frac{1}{2}.
- **Vorsicht:** Für B' = "Das ältere Kind ist ein Mädchen" gilt $Pr[B'] = \frac{1}{2}$ und damit $Pr[A|B'] = \frac{1}{2}$.
- Analog erhalten wir $Pr[A|B] = \frac{1}{2}$ mit $\Omega' = \{MM, JM, JJ\}$.

Multiplikationssatz

Satz Multiplikationssatz

Seien
$$A_1, \ldots, A_n$$
 Ereignisse mit $\Pr[A_1 \cap \ldots \cap A_n] > 0$. Dann gilt $\Pr[A_1 \cap \ldots \cap A_n] = \Pr[A_1] \cdot \Pr[A_2 | A_1] \cdot \ldots \cdot \Pr[A_n | A_1 \cap \ldots \cap A_{n-1}]$.

Beweis:

- Es gilt $0 < \Pr[A_1 \cap \ldots \cap A_n] \le \Pr[A_1 \cap \ldots \cap A_{n-1}] \le \ldots \le \Pr[A_1]$.
- n-malige Anwendung der Definition für bedingte Ws führt zu

$$\Pr[A_1] \cdot \Pr[A_2|A_1] \cdot \Pr[A_3|A_1 \cap A_2] \cdot \ldots \cdot \Pr[A_n|A_1 \cap \ldots \cap A_{n-1}]$$

$$=\frac{\Pr[A_1]}{1}\cdot\frac{\Pr[A_1\cap A_2]}{\Pr[A_1]}\cdot\frac{\Pr[A_1\cap A_2\cap A_3]}{\Pr[A_1\cap A_2]}\cdot\ldots\cdot\frac{\Pr[A_1\cap\ldots\cap A_n]}{\Pr[A_1\cap\ldots\cap A_{n-1}]}.$$

• Kürzen liefert $Pr[A_1 \cap ... \cap A_n]$.

Geburtstagsproblem

Definition Geburtstagsproblem

Gegeben: *m* Personen

Gesucht: Ws, dass \geq 2 Personen denselben Geburtstag haben

Lösung:

- Wir werfen nacheinander m Bälle in n = 365 Urnen.
- Definieren \bar{A} ="In einer Urne liegen mindestens 2 Bälle."
- Dann gilt A = "Alle B\u00e4lle liegen allein in einer Urne."
- Sei A_i = "Ball i liegt allein in einer Urne."
- Dann gilt $\Pr[A] = \Pr[A_1 \cap ... \cap A_m]$. Der Multiplikationssatz liefert $\Pr[A] = \Pr[A_1] \cdot \Pr[A_2 | A_1] \cdot ... \Pr[A_n | A_1 \cap ... \cap A_{n-1}]$.
- Für $j \in [m]$ gilt $\Pr[A_j | A_1 \cap ... \cap A_{j-1}] = \frac{n (j-1)}{n} = 1 \frac{j-1}{n}$, da der j-te Ball in einer der n (j-1) freien Urnen landen muss.

Geburtstagsproblem: Abschätzen der Ws

Lösung: Fortsetzung

- Wir erhalten $\Pr[A] = \prod_{j=1}^m \Pr[A_j | A_1 \cap \ldots \cap A_{j-1}] = \prod_{j=1}^m \left(1 \frac{j-1}{n}\right)$.
- Die Abschätzung 1 $-x \le e^{-x}$ liefert

$$\Pr[A] \leq \prod_{j=1}^m e^{-\frac{j-1}{n}} = e^{-\frac{1}{n}\sum_{j=0}^{m-1} j} = e^{-\frac{m(m-1)}{2n}}.$$

- Damit erhalten wir $Pr[\bar{A}] = 1 Pr[A] \ge 1 e^{-\frac{m(m-1)}{2n}}$.
- D.h. wir erhalten eine konstante Ws $\Pr[\bar{A}]$ für $m = \Theta(\sqrt{n})$.

Anwendung: Kryptographische Hashfunktion $H: \{0,1\}^* \rightarrow \{0,1\}^n$.

- Wir werten H für verschiedene Urbilder x_1, \ldots, x_m aus.
- Benötigen $m = \Theta(\sqrt{n})$ für eine Kollision $x_i \neq x_j$ mit $H(x_i) = H(x_j)$.

Satz von der totalen Ws

Satz von der totalen Wahrscheinlichkeit

Sei Ω ein Wsraum mit paarweise disjunkten $A_1, \ldots, A_n \in \Omega$ und $B \subseteq A_1 \cup \ldots \cup A_n$. Dann gilt

$$\Pr[B] = \sum_{i=1}^{n} \Pr[B|A_i] \cdot \Pr[A_i].$$

Beweis:

- Aus $B \subseteq A_1 \cup \ldots \cup A_n$ folgt $B = (B \cap A_1) \cup \ldots \cup (B \cap A_n)$.
- A_i sind paarweise disjunkt, d.h. $B \cap A_i$ sind paarweise disjunkt.
- Aus dem Additionssatz folgt

$$Pr[B] = Pr[B \cap A_1] + \ldots + Pr[B \cap A_n] = Pr[B] \cdot Pr[B|A_1] + \ldots + Pr[B] \cdot Pr[B|A_n].$$

Korollar zum Satz der totalen Wahrscheinlichkeit

Für alle $A, B \in \Omega$ gilt $Pr[B] = Pr[B|A] \cdot Pr[A] + Pr[B|\overline{A}] \cdot Pr[\overline{A}]$.

Das Ziegenproblem

Definition Ziegenproblem

In einer Quizshow mit drei verschlossenen Türen stehen hinter 2 Türen eine Ziege, hinter der dritten Tür ein Auto.

- Ein Kandidat K wählt eine der drei Türen aus.
- Der Quizmaster öffnet eine Tür mit einer Ziege.
- Oper Kandidat darf nun die Tür wechseln.

Frage: Soll der Kandidat bei seiner Tür bleiben oder wechseln?

Lösung:

- Uns interessiert Pr[G] für G = "Kandidat gewinnt bei Türwechsel."
- Wir betrachten das Ereignis A = "K wählt in Schritt 1 das Auto aus."
- Es gilt Pr[G|A] = 0] und $Pr[G|\overline{A}] = 1$.
- Der Satz von der totalen Wahrscheinlichkeit liefert $Pr[G] = Pr[G|A] \cdot Pr[A] + Pr[G|\bar{A}] \cdot Pr[\bar{A}] = 0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{2}{3}$
- D.h. K gewinnt beim Türwechsel mit Ws $\frac{2}{3}$, sonst nur mit Ws $\frac{1}{3}$.

Satz von Bayes

Satz von Bayes

Sei Ω ein Wsraum mit A_1,\ldots,A_n und $B\subseteq A_1\cup\ldots\cup A_n$, $\Pr[B]>0$. Dann gilt $\Pr[A_i|B]=\frac{\Pr[A_i\cap B]}{\Pr[B]}=\frac{\Pr[B|A_i]\cdot\Pr[A_i]}{\sum_{j=1}^n\Pr[B|A_j]\cdot\Pr[A_j]}$ für alle $i\in[n]$.

Beweis:

Folgt direkt aus dem Satz von der totalen Wahrscheinlichkeit.

Korollar zum Satz von Bayes

Sei Pr[B] > 0. Dann gilt $Pr[A|B] = \frac{Pr[B|A] \cdot Pr[A]}{Pr[B]}$.

Anmerkung:

- Der Satz von Bayes erlaubt ein Vertauschen der Bedingung.
- D.h. anstatt A_i unter der Bedingung B betrachtet man B unter der Bedingung aller A_i.

Anwendung: Fehlerhafter Datenkanal

Anwendung:

- Über einen fehlerhaften Datenkanal werden Bits 0,1 gesendet.
- Sei S_i ="Bit i wird gesendet" mit $Pr[S_0] = \frac{3}{10}$ und $Pr[S_1] = \frac{7}{10}$.
- Sei R_i ="Bit i wird empfangen" mit $Pr[R_1|S_0] = \frac{3}{10}$, $Pr[R_0|S_1] = \frac{1}{10}$.
- Wir erhalten einen Übertragungsfehler mit Ws $\Pr[S_0 \cap R_1] + \Pr[S_1 \cap R_0] = \Pr[R_1 | S_0] \cdot \Pr[S_0] + \Pr[R_0 | S_1] \cdot \Pr[S_1] = \tfrac{16}{100}.$
- Wir empfangen eine Eins mit der Ws $\Pr[R_1] = \Pr[R_1|S_0] \cdot \Pr[S_0] + \Pr[R_1|S_1] \cdot \Pr[S_1] = \frac{3}{10} \cdot \frac{3}{10} \cdot \frac{9}{10} \cdot \frac{7}{10} = \frac{72}{100}.$
- Falls eine 0 empfangen wird, wurde eine 0 gesendet mit Ws

$$\Pr[S_0|R_0] = \frac{\Pr[R_0|S_0] \cdot \Pr[S_0]}{\Pr[R_0]} = \frac{\frac{7}{10} \cdot \frac{3}{10}}{\frac{28}{100}} = \frac{75}{100}.$$

Würfel sind erinnerungslos

Motivation: Unabhängigkeit

- Wir würfeln zweimal, d.h. $\Omega = [6]^2$ mit $\Pr[\omega] = \frac{1}{36}$ für alle $\omega \in \Omega$.
- Sei A_i ="Augenzahl in Wurf i ist gerade."
- A_2 sollte unabhängig von A_1 sein, d.h. $Pr[A_2|A_1] = Pr[A_2]$.
- Wir rechnen nach, dass $A_1 \cap A_2 = \{2, 4, 6\} \times \{2, 4, 6\}$ und damit

$$\Pr[A_2|A_1] = \frac{\Pr[A_1 \cap A_2]}{\Pr[A_1]} = \frac{\frac{9}{36}}{\frac{1}{2}} = \frac{1}{2} = \Pr[A_2].$$

Definition Unabhängigkeit

Definition Unabhängigkeit

Sei Ω ein Wsraum mit $A, B \in \Omega$. Wir nennen A und B unabhängig falls

$$\Pr[A \cap B] = \Pr[A] \cdot \Pr[B].$$

Anmerkung:

- Für Pr[B] > 0 gilt $Pr[A] = \frac{Pr[A \cap B]}{Pr[B]} = Pr[A|B]$.
- D.h. Eintreffen von B hat keinen Einfluss auf das Eintreffen von A.

Bsp: Szenario wie auf der Folie zuvor

- Sei B = "Summe der Augenzahlen beträgt 7."
- Es gilt $A_1 \cap B = \{(2,5), (4,3), (6,1)\}$ und $\Pr[B] = \frac{|\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}|}{|\Omega|} = \frac{1}{6}.$
- D.h. $Pr[A_1 \cap B] = \frac{3}{36} = \frac{1}{2} \cdot \frac{1}{6} = Pr[A] \cdot Pr[B]$.
- Damit sind die Ereignisse A₁ und B unabhängig.

Paarweise Unabhängigkeit vs. Unabhängigkeit

Beispiel: Wir betrachten das Szenario von zuvor.

- Wissen bereits, dass A₁, A₂ und A₁, B unabhängig sind.
- Analog folgt, dass A₂ und B unabhängige Ereignisse sind.
- Frage: Was ist mit den Ereignisse $A_1 \cap A_2$ und B?
- Für $A_1 \cap A_2$ sind beide Würfe gerade, d.h. die Summe ist gerade.
- Damit gilt $Pr[(A_1 \cap A_2) \cap B] = 0$, aber $Pr[A_1 \cap A_2] \cdot Pr[B] > 0$.
- D.h. die Ereignisse $A_1 \cap A_2$ und B sind abhängig.

Definition Unabhängigkeit von *n* Ereignissen

Sei Ω ein Wsraum mit $A_1, \ldots, A_n \in \Omega$. Wir nennen A_1, \ldots, A_n unabhängig, falls $\Pr[\bigcap_{i \in I} A_i] = \prod_{i \in I} \Pr[A_i]$ für alle $I \subseteq [n]$.

Eigenschaft von Unabhängigkeit

Lemma Unabhängige Ereignisse

Sei Ω ein Wsraum mit unabhängigen Ereignissen A_1, \ldots, A_n . Dann gilt für alle $s \in \{0,1\}^n$ dass $\Pr[A_1^{s_1} \cap \ldots \cap A_n^{s_n}] = \Pr[A_1^{s_1}] \cdot \ldots \cdot \Pr[A_n^{s_n}]$, wobei $A_i^0 = \bar{A}_i$ und $A_i^1 = A_i$.

Beweis: per Induktion über die Anzahl *k* der Nullen in *s*.

• IA für k = 0, d.h. $s = 1^n$. Damit gilt

$$Pr[A_1 \cap \ldots \cap A_n] = Pr[A_1] \cdot \ldots Pr[A_n].$$

- **IS** $k-1 \rightarrow k$: s enthalte k Nullen, oBdA $s_1 = 0$. Es gilt $\Pr[\bar{A}_1 \cap A_2^{s_2} \cap \ldots \cap A_n^{s_n}] = \Pr[A_2^{s_2} \cap \ldots \cap A_n^{s_n}] \Pr[A_1 \cap A_2^{s_2} \cap \ldots \cap A_n^{s_n}].$
- Nach IV können wir dies schreiben als

$$\begin{array}{ll} & \Pr[A_{2}^{s_{2}}] \cdot \ldots \cdot \Pr[A_{n}^{s_{n}}] - \Pr[A_{1}] \cdot \Pr[A_{2}^{s_{2}}] \cdot \ldots \cdot \Pr[A_{n}^{s_{n}}] \\ = & (1 - \Pr[A_{1}]) \cdot \Pr[A_{2}^{s_{2}}] \cdot \ldots \cdot \Pr[A_{n}^{s_{n}}] \\ = & \Pr[\bar{A}_{1}] \cdot \Pr[A_{2}^{s_{2}}] \cdot \ldots \cdot \Pr[A_{n}^{s_{n}}]. \end{array}$$

Anmerkung: Die Rückrichtung des Lemmas gilt ebenfalls.

Unabhängigkeit der Gegenereignisse

Korollar Unabhängigkeit der Gegenereignisse

Sei Ω ein Wsraum mit unabhängigen Ereignisse A_1, A_2 . Dann sind A_1, \bar{A}_2 und \bar{A}_1, A_2 und \bar{A}_1, \bar{A}_2 jeweils unabhängig.

Beweis:

- Aus Unabhängigkeit von A_1 , A_2 folgt für s = (1,0), dass $Pr[A_1 \cap \overline{A}_2] = Pr[A_1] \cdot Pr[\overline{A}_2]$.
- Die beiden anderen Fälle folgen für s = (0, 1) bzw. s = (0, 0).

Schnitt, Vereinigung unabhängiger Ereignisse

Lemma Unabhängigkeit abgeschlossen unter ∩, ∪

Sei Ω ein Wsraum mit unabhängigen Ereignisse A, B, C. Dann sind

- \bullet $A \cap B$, C unabhängig.
- 2 $A \cup B$, C unabhängig.

Beweis:

Schnitt: Es gilt

$$\Pr[(A \cap B) \cap C] = \Pr[A \cap B \cap C] = \Pr[A] \cdot \Pr[B] \cdot \Pr[C] = \Pr[A \cap B] \cdot \Pr[C].$$

Vereinigung: Es gilt

$$Pr[(A \cup B) \cap C] = Pr[(A \cap C) \cup (B \cap C)]$$

$$= Pr[A \cap C] + Pr[B \cap C] - Pr[A \cap B \cap C]$$

$$= (Pr[A] + Pr[B] - Pr[A \cap B]) \cdot Pr[C]$$

$$= Pr[A \cup B] \cdot Pr[C].$$

Rechnen mit unabhängigen Ereignissen

Szenario:

- Routen R_1, R_2 zwischen einem Sender und einem Empfänger.
- R_1 geht durch die beiden Knoten k_1 , k_2 , R_3 führt durch k_3 .
- Jeder Knoten ist unabhängig mit Ws p intakt.
- Frage: Wie groß ist die Ws, dass eine der Routen verfügbar ist?
- Sei R_i ="Route i ist verfügbar" für i = 1, 2.
- Sei K_i = "Knoten j ist verfügbar" für $j \in [3]$.
- Dann gilt $Pr[R_1] = Pr[K_1 \cap K_2] = Pr[K_1] \cdot Pr[K_2] = p^2$.
- Ferner ist $Pr[R_2] = p$. Wir sind interessiert an

$$\Pr[R_1 \cup R_2] = 1 - \Pr[\overline{R_1 \cup R_2}] = 1 - \Pr[\overline{R}_1 \cap \overline{R}_2]
= 1 - \Pr[\overline{R}_1] \cdot \Pr[\overline{R}_2] = 1 - (1 - p^2)(1 - p)
= p + p^2 + p^3.$$

Zufallsvariable und Dichtefunktion

Definition Zufallsvariable

Sei Ω ein Wsraum. Eine Abbildung $X:\Omega\to\mathbb{R}$ heißt *Zufallsvariable* mit Wertebereich $W_X:=X(\Omega)=\{y\in\mathbb{R}\mid\exists\omega\in\Omega\text{ mit }X(\omega)=y\}.$

Sei
$$A = X^{-1}(y) = \{\omega \in \Omega \mid X(\omega) = y\}$$
. Dann definieren wir $\Pr[X = y] := \Pr[A]$ und $\Pr[X \le y] := \sum_{x \in W_X, x \le y} \Pr[X = x]$.

Beispiel: dreimaliger Münzwurf

- Wsraum $\Omega = \{K, Z\}^3$ für Kopf und Zahl.
- $\bullet \ Y:\Omega \to \{0,1,2,3\} \ beschreibe \ die \ Anzahl \ von \ Kopf.$
- Es gilt $Pr[Y = 0] = Pr[(Z, Z, Z)] = \frac{1}{8}$. Ferner gilt $Pr[Y = 1] = Pr[(K, Z, Z)] + Pr[(Z, K, Z)] + Pr[(Z, Z, K)] = \frac{3}{8}$.
- Analog folgern wir $Pr[Y = 2] = \frac{3}{8}$ und $Pr[Y = 3] = \frac{1}{8}$.
- Man beachte, dass die sogenannte Dichtefunktion f_X von X mit $f_X: W_X \to [0,1]$ und $x \mapsto \Pr[X=x]$ einen Wsraum auf W_X definiert.

Erwartungswert

Definition Erwartungswert

Sei X eine Zufallsvariable. Der Erwartungswert von X ist definiert als

$$E[X] := \sum_{x \in W_X} x \cdot \Pr[X = x],$$

sofern $\sum_{x \in W_X} |x| \cdot \Pr[X = x]$ konvergiert.

Beispiel: Sei *Y* definiert wie auf der Folie zuvor.

- Es gilt $E[Y] = \sum_{i=0}^{3} i \cdot \Pr[Y = i] = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{3}{2}$.
- D.h. die erwartete Anzahl von Kopf bei 3 Münzwürfen ist ³/₂.

Beispiel Erwartungswert

Szenario: Münzwurfspiel in einem Spielcasino

- Es wird eine Münze geworfen, bis zum erstem Mal Kopf erscheint.
- Sei k die Anzahl der Würfe.
- Falls $k = \begin{cases} \text{ungerade} & \text{Spieler zahlt } k \text{ Euro an die Bank} \\ \text{gerade} & \text{Bank zahlt } k \text{ Euro an den Spieler} \end{cases}$
- Frage: Was ist der erwartete Gewinn der Bank?
- Wir definieren eine Zufallsvariable $G : \mathbb{N} \to \mathbb{Z}$ für den Gewinn

$$G(k) = \begin{cases} k & \text{falls } k \text{ ungerade} \\ -k & \text{falls } k \text{ gerade} \end{cases}.$$

• Es gilt $Pr[\text{``Anzahl Würfe ist } k\text{'''}] = 2^{-k}$ und damit

$$E[G] = \sum_{k=1}^{\infty} (-1)^{k-1} k \cdot \left(\frac{1}{2}\right)^k = \frac{1}{2} \sum_{k=1}^{\infty} k \cdot \left(-\frac{1}{2}\right)^{k-1} = \frac{1}{2} \cdot \frac{1}{(1+\frac{1}{2})^2} = \frac{2}{9}.$$

Man überprüfe analog die Konvergenz von

$$\sum_{k=1}^{\infty} |(-1)^{k-1}k| \cdot \left(\frac{1}{2}\right)^k = \sum_{k=1}^{\infty} k \cdot \left(\frac{1}{2}\right)^{k-1}.$$

Erwartungswert muss nicht definiert sein

Beispiel:

Wir betrachten ein modifiziertes Spiel mit dem Gewinn

$$G(k) = \begin{cases} 2^k & \text{falls } k \text{ ungerade} \\ 2^{-k} & \text{falls } k \text{ gerade} \end{cases}.$$

- Dann gilt $\sum_{k=1}^{\infty} |(-1)^{k-1} 2^k| \cdot \left(\frac{1}{2}\right)^k = \sum_{k=1}^{\infty} 1^{k-1}$.
- D.h. *E*[*G*] ist nicht definiert, da die Summe nicht konvergiert.
- Casino-Spiel mit einer M\u00fcnze, die mit Ws p Kopf zeigt.
- Sei $X : \mathbb{N} \to \mathbb{N}$ eine Zufallsvariable für die Anzahl der Münzwürfe.
- Es gilt $Pr[X = k] = (1 p)^{k-1}p$ und damit

$$E[X] = \rho \sum_{k=1}^{\infty} k \cdot (1-\rho)^{k-1} = \rho \cdot \frac{1}{(1-(1-\rho))^2} = \frac{1}{\rho}.$$

Linearität des Erwartungswerts

Satz Linearität des Erwartungswerts

Sei X eine Zufallsvariable und $a, b \in \mathbb{R}$. Dann gilt

$$E[aX+b]=a\cdot E[X]+b.$$

Beweis:

$$E[aX + b] = \sum_{x \in W_X} (ax + b) \cdot \Pr[X = x]$$

$$= a \sum_{x \in W_X} x \cdot \Pr[X = x] + b \cdot \sum_{x \in W_X} \Pr[X = x]$$

$$= a \cdot E[X] + b$$

Varianz und Standardabweichung

Definition Varianz und Standardabweichung

Sei X eine Zufallsvariable. Dann definieren wir die Varianz von X als $Var[X] := E[(X - E[X])^2]$. Mit $\sqrt{Var[X]}$ bezeichnen wir die Standardabweichung von X.

Viel Erfolg in der Klausur am Do., den 26.02.09!