Diskrete Mathematik II

Alexander May

Fakultät für Mathematik Ruhr-Universität Bochum

Sommersemester 2011

Organisatorisches

- Vorlesung: Mo 12-14 in HZO 70 , Di 09-10 in NA 6/99 (3+1 SWS, 6.75 CP)
- Ubung: **Di 10-12** in NA 5/99
 - Assistent: Gottfried Herold, Korrektor: Ilya Ozerov
 - Präsenzübung ist zweiwöchentlich: 05.04., 19.04., 03.05., . . .
 - ▶ Vorrechenübung ist zweiwöchentlich: 12.04., 26.04., 10.05., . . . Abgabe der Übungen am selben Tag vor der Vorlesung.
 - Gruppenabgaben bis 3 Personen
 - Bonussystem: 1/3-Notenstufe für 50%, 2/3-Notenstufe für 75% Gilt nur, wenn man die Klausur besteht!
- Klausur: September(?)

Themengebiete

- Komplexitätstheorie
 - Klassen P und NP
 - Reduktionen
 - Anwendung: Sicherheitsbeweise in der Kryptographie
- Algorithmische Zahlentheorie
 - Quadratische Reste
 - Beispiel Anwendungen: Zufallszahlengenerator, Identity-Based Encryption
- Kodierungstheorie
 - Komprimierende Codes
 - Beispiel Anwendungen: Kommunikation (Mobilfunk, Internet), Speicher (MP3)
 - Fehlererkennende Codes
 - Ausfalltolerante Codes
 - Beispiel Anwendungen: Mobilfunk, Internet, CD, Secret Sharing, Kryptosystem

Weiterführende Referenzen

Ziel: Einfaches aber mächtiges Rechnermodell.

- Michael R. Garey, David S. Johnson, "Computers and Intractability", Freeman, 2000
- J. Blömer, "Einführung in Algorithmen und Komplexität", Vorlesungsskript Universität Paderborn, 2002
- N. Koblitz, "A Course in Number Theory and Cryptography", Springer Verlag, 1994
- Steven Roman, "Introduction to Coding and Information Theory", Springer Verlag, 1996

Einführung in die NP-Vollständigkeitstheorie

Notationen

- Alphabet $A = \{a_1, \dots, a_m\}$ aus Buchstaben a_i
- Worte der Länge n sind Elemente aus $A^n = \{a_{i_1} \dots a_{i_n} \mid a_{i_i} \in A\}$.
- $A^0 = \{\epsilon\}$, wobei ϵ das leere Wort ist.
- $A^* = \bigcup_{n=0}^{\infty} A^n, A^+ = A^* \setminus \{\epsilon\}, A^{\leq m} = \bigcup_{n=0}^m A^n$
- Länge $|a_1 \dots a_n| = n$. $bin(a_1)$ ist Binärkodierung von a_1 .

Definition Sprache L

Sei A ein Alphabet. Eine Menge $L\subseteq A^*$ heißt Sprache über dem Alphabet A. Das Komplement von L über A ist definiert als $\bar{L}=A^*\setminus L$.

Turingmaschine (informal)

Turingmaschine besteht aus:

- Einseitig unendlichem Band mit Zellen (Speicher),
- Kontrolle und einem Lesekopf, der auf einer Zelle steht.

Arbeitsweise einer Turingmaschine

- Bandsymbol > steht in der Zelle am linken Bandende.
- Kontrolle besitzt Zustände einer endlichen Zustandsmenge.
- Abhängig vom Zelleninhalt und Zustand schreibt die Kontrolle ein Zeichen und bewegt den Lesekopf nach links oder rechts.
- Zu Beginn der Berechnung gilt:
 - Lesekopf befindet sich auf dem linken Bandende ⊳.
 - ▶ Band enthält $\triangleright a_1 \dots a_n \sqcup \sqcup \dots$, wobei $a_1 \dots a_n$ die Eingabe ist.
- Turingmaschine M hält gdw Kontrolle im Zustand q_a oder q_r.
 - ▶ Falls M in q_a hält, so akzeptiert M die Eingabe $a_1 \ldots a_n$.
 - ▶ Falls M in q_r hält, so verwirft M die Eingabe $a_1 \dots a_n$.
 - Falls M nie in die Zustände q_a, q_r kommt: M läuft unendlich.

Turingmaschine (formal)

Definition Deterministische Turingmaschine (Turing 1936)

Eine deterministische Turingmaschine DTM ist ein 4-Tupel ($Q, \Sigma, \Gamma, \delta$) bestehend aus

- Zustandmenge Q: Enthält Zustände q_a , q_r , s.
- Bandalphabet Γ mit \sqcup , $\triangleright \in \Gamma$
- Eingabealphabet $\Sigma \subseteq \Gamma \setminus \{\sqcup, \rhd\}$.
- **1** Übergangsfunktion $\delta: \mathbb{Q} \setminus \{q_a, q_r\} \times \Gamma \to \mathbb{Q} \times \Gamma \times \{L, R\}$
 - Es gilt stets $\delta(q, \triangleright) = (q', \triangleright, R)$ (am linken Bandende).
 - Es gilt nie $\delta(q, a) = (q', \triangleright, L/R)$ (nicht am linken Bandende).

Beispiel DTM M₁

Bsp: a^n , $n \ge 1$

- $Q = \{q_0, q_1, q_2, q_r\}$ mit $s = q_0$
- $\Sigma = \{a\}$ und $\Gamma = \{\sqcup, \triangleright, a\}$
- Übergangsfunktion

δ	а	Ш	\triangleright
q_0	(q_1, a, R)	(q_r,\sqcup,R)	(q_0, \triangleright, R)
q_1	(q_1, a, R)	(q_a,\sqcup,R)	(q_1, \triangleright, R)

Notation der Konfigurationen bei Eingabe a^2 :

Nachfolgekonfigurationen

Notation Nachfolgekonfiguration

- Direkte Nachfolgekonfiguration: aqb ⊢ a'q'b'
- i-te Nachfolgekonfiguration: agb ⊢ⁱ a'g'b'
- Indirekte Nachfolgekonfiguration agb ⊢* a'b'a', d.h. $\exists i \in \mathbb{N} : aqb \vdash^i a'q'b'.$

Akzeptanz und Ablehnen von Eingaben

- DTM *M* erhalte Eingabe $w \in \Sigma^*$.
 - ▶ M akzeptiert $w \Leftrightarrow \exists a, b \in \Gamma^* \text{ mit } s \triangleright w \vdash^* aq_ab$
 - ▶ M lehnt w ab $\Leftrightarrow \exists a, b \in \Gamma^* \text{ mit } s \rhd w \vdash^* aq_r b$

Akzeptierte Sprache, L rekursiv aufzählbar

Definition Akzeptierte Sprache, Rekursive Aufzählbarkeit

Sei M eine DTM. Dann ist die von M akzeptierte Sprache

$$L(M) = \{ w \in \Sigma^* \mid M \text{ akzeptiert Eingabe } w \}.$$

Eine Sprache L heißt *rekursiv aufzählbar* gdw eine DTM M existiert mit L = L(M).

- Unsere Beispiel-DTM M_1 akzeptiert die Sprache $L(M_1) = \{a\}^+$.
- D.h. $L = \{a\}^+$ ist rekursiv aufzählbar, da für M_1 gilt $L = L(M_1)$.
- Aus der obigen Definition folgt: L ist nicht rekursiv aufzählbar $\Leftrightarrow \nexists$ DTM M mit L = L(M).
- Es gibt Sprachen, die nicht rekursiv aufzählbar sind, z.B. $\bar{H} = \{ \langle M, x \rangle \mid \text{DTM } M \text{ hält bei Eingabe } x \text{ nicht.} \}. \text{ (ohne Beweis)}$

Entscheidbarkeit und rekursive Sprachen

Definition Entscheidbarkeit

Sei M eine DTM, die die Sprache L(M) akzeptiert. M entscheidet die Sprache L(M) gdw M alle Eingaben $w \notin L(M)$ ablehnt. D.h. insbesondere M hält auf allen Eingaben.

Eine Sprache *L* heißt *entscheidbar* gdw eine DTM *M* existiert, die *L* entscheidet.

- Unsere Beispiel-DTM M_1 entscheidet die Sprache $L(M_1) = \{a\}^+$.
- $L = \{a\}^+$ ist entscheidbar, da M_1 die Sprache L entscheidet.

Korollar Entscheidbarkeit impliziert rekursive Aufzählbarkeit Sei *L* eine entscheidbare Sprache. Dann ist *L* rekursiv aufzählbar.

Die Rückrichtung stimmt nicht:
 Es gibt rekursiv aufzählbare L, die nicht entscheidbar sind, z.B.
 H = {\langle M, x \rangle | DTM M h\text{ält auf Eingabe x.}}. (ohne Beweis)

Entscheiden versus Berechnen

Definition Berechnung von Funktionen

Eine DTM M berechnet die Funktion $f: \mathbb{N}^n \to \mathbb{N}$, falls M für jedes (a_1, \ldots, a_n) bei Eingabe $bin(a_1) \# \ldots \# bin(a_n)$ den Bandinhalt $bin(f(a_1, \ldots, a_n))$ berechnet und in q_a hält.

 Werden der Einfachheit halber Sprachen entscheiden, nicht Funktionen berechnen.

Laufzeit einer DTM, Klasse DTIME

Definition Laufzeit einer DTM

Sei M eine DTM mit Eingabealphabet Σ , die bei jeder Eingabe hält. Sei $T_M(w)$ die Anzahl der Rechenschritte – d.h. Bewegungen des Lesekopfes von M – bei Eingabe w. Dann bezeichnen wir die Funktion $T_M(n): \mathbb{N} \to \mathbb{N}$ mit $T_M(n) = \max\{T_M(w) \mid w \in \Sigma^{\leq n}\}$ als Zeitkomplexität bzw. Laufzeit der DTM M.

- Die Laufzeit wächst monoton in n.
- Unsere Beispiel-DTM M_1 mit $L(M_1) = \{a\}^*$ besitzt Laufzeit $\mathcal{O}(n)$.

Definition DTIME

Sei $t: \mathbb{N} \to \mathbb{N}$ eine monoton wachsende Funktion. Die Klasse DTIME ist definiert als

 $DTIME(t(n)) := \{L \mid L \text{ wird von DTM mit Laufzeit } \mathcal{O}(t(n)) \text{ entschieden.} \}.$

• Es gilt $L(M_1) \in DTIME(n)$.

Registermaschine RAM

Registermaschine RAM besteht aus den folgenden Komponenten:

- Eingabe-/ und Ausgabe-Register
- Speicherregister
- Programm
- Befehlszähler
- Akkumulator

Funktionsweise einer RAM:

- Liest Eingabe aus Eingaberegister und lässt Programm auf Eingabe laufen.
- Führt Arithmetik im Akkumulator aus.
- Ergebnisse können im Speicherregister gespeichert werden.
- Befehlszähler realisiert Sprünge, Schleifen und bedingte Anweisungen im Programm.
- Ausgabe erfolgt im Ausgaberegister.

DTMs versus RAMs, Churchsche These

Fakt Polynomielle Äquivalenz von DTMs und RAMs

Sei $t : \mathbb{N} \to \mathbb{N}$ eine monoton wachsende Funktion mit $t(n) \ge n$. Jede RAM mit Laufzeit t(n) kann durch eine DTM M mit Laufzeit $\mathcal{O}(t(n)^3)$ simuliert werden.

Churchsche These (1936)

"Die im intuitiven Sinne berechenbaren Funktionen sind genau die durch Turingmaschinen berechenbaren Funkionen."

- These ist nicht beweisbar oder widerlegbar.
- Alle bekannten Berechenbarkeitsbegriffe führen zu DTM-berechenbaren Funktionen

Die Klasse \mathcal{P}

Definition Klasse \mathcal{P}

Die Klasse \mathcal{P} ist definiert als

$$\mathcal{P} = \bigcup_{k \in \mathbb{N}} DTIME(n^k).$$

- $L \in \mathcal{P}$ gdw eine DTM existiert, die L in Laufzeit $\mathcal{O}(n^k)$ entscheidet.
- \bullet \mathcal{P} ist die Klasse aller in Polynomialzeit entscheidbaren Sprachen. (auf DTMs, RAMs, etc.)
- Hintereinanderausführung/Verzahnung von DTMs mit polynomieller Laufzeit liefert polynomielle Gesamtlaufzeit.
- \bullet \mathcal{P} beinhaltet praktische und theoretisch interessante Probleme.
- Probleme ausserhalb von \mathcal{P} sind in der Praxis oft nur für kleine Instanzen oder approximativ lösbar.

Kodierung der Eingabe

- Erinnerung: Zeitkomplexität $T_M(n)$ ist eine Funktion in |w| = n.
- Benötigen geeignete Kodierung der Eingabe w.
- Kodierung einer Zahl $n \in \mathbb{N}$
 - ▶ Verwenden Binärkodierung bin(n) mit Eingabelänge $\Theta(log n)$.
- Kodierung eines Graphen G = (V, E)
 - ► Kodieren Knotenanzahl n unär, d.h. |V| = n.
 - ► m Kanten mit Adjazenzliste |E| = m oder Adjazenzmatrix $|E| = \Theta(n^2)$.

Bsp:

- PFAD:= $\{(G, s, t) \mid G \text{ ist Graph mit Pfad von } s \text{ nach } t.\} \in \mathcal{P}$.
 - Starte Breitensuche in s.
 - ▶ Falls *t* erreicht wird, akzeptiere. Sonst lehne ab.
 - ▶ Laufzeit $\mathcal{O}(|V| + |E|)$, d.h. linear in der Eingabelänge von G.
- TEILERFREMD:= $\{(x,y) \mid \gcd(x,y) = 1\} \in \mathcal{P}$.
 - ▶ Berechne mittels Euklidischem Algorithmus $d = \gcd(x, y)$.
 - ▶ Falls *d* = 1, akzeptiere. Sonst lehne ab.
 - $ightharpoonup \mathcal{O}(\log^2(\max\{x,y\}))$, quadratisch in $|x| = \Theta(\log x), |y| = \Theta(\log y)$.

Optimierungsvariante vs Entscheidungsvariante

RUCKSACK opt

- Gegeben: n Gegenstände mit Gewichten $W = \{w_1, \dots, w_n\} \subset \mathbb{N}$ und Profiten $P = \{p_1, \dots, p_n\} \subset \mathbb{N}$, Kapazität $b \in \mathbb{N}$.
- Gesucht: $I \subseteq [n] : \sum_{i \in I} w_i \le B$, so dass $\sum_{i \in I} p_i$ maximiert wird.

Sprache Rucksack:

 $\texttt{RUCKSACK} := \{(\textit{W},\textit{P},\textit{b},\textit{k}) \mid \exists \textit{I} \subseteq [\textit{n}] : \sum_{\textit{i} \in \textit{I}} \textit{w}_{\textit{i}} \leq \textit{B} \text{ und } \sum_{\textit{i} \in \textit{I}} \textit{p}_{\textit{i}} \geq \textit{k}\}.$

Naiver Algorithmus zum Entscheiden von RUCKSACK

- Für alle $I \subseteq [n]$:
 - Falls $\sum_{i \in I} w_i \le B$ und $\sum_{i \in I} p_i \ge k$, akzeptiere.
- 2 Lehne ab.
 - Prüfung von 2ⁿ vielen Untermengen in Schritt 1.
 - Eingabegrößen: $\log w_i$, $\log p_i$, n, $\log b$, $\log k$.
 - D.h. die Gesamtlaufzeit ist exponentiell im Eingabeparameter *n*.
 - Prüfung einzelner potentieller Lösungen in Schritt 1.1 ist effizient.

Polynomielle Verifizierer und NP

Definition Polynomieller Verifizierer

Sei $L \subseteq \Sigma^*$ eine Sprache. Eine DTM V heißt V heißt V für alle Eingaben $w \in \Sigma^*$ hält und folgendes gilt:

$$w \in L \Leftrightarrow \exists c \in \Sigma^* : V \text{ akzeptiert Eingabe } (w, c).$$

Das Wort c nennt man einen Zeugen oder Zertifikat für w.

V heißt polynomieller Verifizierer für L, falls V für alle $w \in \Sigma^*$ in Laufzeit polynomiell in |w| hält und folgendes gilt:

$$w \in L \Leftrightarrow \exists c \in \Sigma^*, |c| \leq |w|^k, k \in \mathbb{N} : V \text{ akzeptiert Eingabe } (w, c).$$

L ist *polynomiell verifizierbar* $\Leftrightarrow \exists$ polynomieller Verifizierer für *L*.

Definition Klasse \mathcal{NP}

 $\mathcal{NP} := \{L \mid L \text{ ist polynomial verifizierbar.} \}$

Polynomieller Verifizierer für RUCKSACK

Satz

RUCKSACK $\in \mathcal{NP}$.

Beweis:

Algorithmus Polynomieller Verifizierer für RUCKSACK

Eingabe: (W, P, b, k, c) mit Zeuge $c = I \subseteq [n]$

- Falls $\sum_{i \in I} w_i \le b$ und $\sum_{i \in I} p_i \ge k$, akzeptiere.
- 2 Lehne ab.

Laufzeit:

- Eingabegrößen: $\log w_i$, $\log p_i$, $\log b$, $\log k$, n
- Laufzeit: $\mathcal{O}(n \cdot \log(\max_i\{w_i, p_i, b, k\}))$ auf RAM.
- D.h. die Laufzeit ist polynomiell in den Eingabegrößen.

Optimaler Wert einer Lösung mittels Entscheidung

Rucksack_{wert}

- Gegeben: $W = \{w_1, \dots, w_n\}, P = \{p_1, \dots, p_n\}$ und B.
- Gesucht: $\max_{I\subseteq [n]}\{\sum_{i\in I}p_i\mid \sum_{i\in I}w_i\leq b\}$

Sei M eine DTM, die RUCKSACK in Laufzeit T(M) entscheide.

Algorithmus OPTIMUM

Eingabe: W, P, B

- ② WHILE $(\ell \neq r)$
 - Falls M bei Eingabe $(W, P, b, \lceil \frac{\ell+r}{2} \rceil)$ akzeptiert, $\ell \leftarrow \lceil \frac{\ell+r}{2} \rceil$.
 - ② Sonst $r \leftarrow \lceil \frac{\ell+r}{2} \rceil 1$.

Ausgabe: ℓ

- Korrektheit: Binäre Suche nach Optimum auf Intervall $[0, \sum_{i=1}^{n} p_i]$.
- Laufzeit: $\mathcal{O}(\log(\sum_{i=1}^n p_i)) \cdot T(M)$.
- Insbesondere: Laufzeit ist polynomiell, falls T(M) polynomiell ist.

Optimale Lösung mittels optimalem Wert

Ziel: Bestimme Lösung $I \subseteq [n]$ mit optimalem Wert.

Algorithmus Optimale Lösung

Eingabe: W, P, b

opt \leftarrow Optimum(W, P, b), $I \leftarrow \emptyset$

 \bigcirc For $i \leftarrow 1$ to n

• Falls (OPTIMUM($W \setminus \{w_i\}, P \setminus \{p_i\}, b$) = opt, setze $W \leftarrow W \setminus \{w_i\}, P \leftarrow \{p_i\}.$

② Sonst $I \leftarrow I \cup \{i\}$.

Ausgabe: I

Korrektheit:

- Invariante vor *i*-tem Durchlauf: $\exists J \subseteq \{i, ..., n\}$: $I \cup J$ ist optimal.
- i wird nur dann in I aufgenommen, falls I zu optimaler Teilmenge erweitert werden kann.
- Laufzeit: $\mathcal{O}(n \cdot T(\mathsf{OPTIMUM})) = \mathcal{O}(n \cdot \log(\sum_{i=1}^n p_i) \cdot T(M)).$
- D.h. Laufzeit ist polynomiell, falls T(M) polynomiell ist.

Sprache Zusammengesetzt

 ${\sf ZUSAMMENGESETZT} := \{ \textit{N} \in \mathbb{N} \mid \textit{N} = \textit{pq} \; \text{mit} \; \textit{p}, \textit{q} \geq \textit{2} \}$

Satz

ZUSAMMENGESETZT $\in \mathcal{NP}$.

Beweis:

Algorithmus Polynomieller Verifizierer für ZUSAMMENGESETZT

Eingabe: (N, c) mit $c = (p, q) \in \{2, ..., N - 1\}^2$

1 Berechne $p \cdot q$. Falls $p \cdot q = N$, akzeptiere. Sonst lehne ab.

Laufzeit:

- Eingabelänge: $|N| = \Theta(\log N)$
- Laufzeit: $\mathcal{O}(\log^2 N)$, d.h. polynomiell in der Eingabelänge.

$\mathcal P$ versus $\mathcal N\mathcal P$

Satz

 $\mathcal{P} \subseteq \mathcal{NP}$.

- $L \in \mathcal{P} \Rightarrow \exists DTM M$, die L in polynomieller Laufzeit entscheidet.
 - ⇒ \exists DTM M, die stets hält und genau die Eingaben $w \in L$ in Laufzeit polynomiell in |w| akzeptiert.
 - ⇒ \exists DTM V, die stets hält und genau die Eingaben (w, c) mit $w \in L$, $c = \epsilon$ in Laufzeit polynomiell in |w| akzeptiert. Dabei ignoriert V die Eingabe c und wendet M auf w an.
 - $\Rightarrow L \in \mathcal{NP}$.
- Großes offenes Problem: Gilt $\mathcal{P} = \mathcal{NP}$ oder $\mathcal{P} \subset \mathcal{NP}$?

Nichtdeterministische Turingmaschinen

Wir bezeichnen mit $\mathcal{P}(S)$ die Potenzmenge einer Menge S.

Definition Nichtderministische Turingmaschine

Eine *nicht-deterministische Turingmaschine (NTM)* ist ein Tupel $(Q, \Sigma, \Gamma, \delta)$, wobei

- Q, Σ, Γ sind wie bei DTM definiert.
- $\delta: Q \setminus \{q_a, q_r\} \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$
- Bsp: $\delta(q, a) = \{(q_1, a_1, L), (q_2, a_2, R)\}.$
- NTM besitzt Wahlmöglichkeiten für den Zustandsübergang.
- ullet Beschränken uns oBdA auf NTMs mit \leq 2 Wahlmöglichkeiten.

Berechnungsbaum

- Seien die Konfigurationen einer NTM Knoten in einem Berechnungsbaum.
 - Die Startkonfiguration bildet den Wurzelknoten.
 - Mögliche Nachfolgekonfigurationen bilden Kinderknoten.
- Pfade heißen Berechnungspfade der NTM.
- Betrachten nur NTMs mit Berechnungspfaden endlicher Länge.
- Ein Berechnungpfad heißt akzeptierend, falls er in q_a endet.

Definition Akzeptierte Sprache einer NTM

Sei N eine NTM.

- N akzeptiert Eingabe $w \Leftrightarrow \exists$ akzeptierenden Berechnungspfad im Berechnungsbaum von N bei Eingabe w.
- Die von N akzeptierte Sprache L(N) ist definiert als

$$L(N) = \{ w \in \Sigma^* \mid N \text{ akzeptiert die Eingabe } w. \}.$$

Die Laufzeit einer NTM

Definition Laufzeit einer NTM

Sei N eine DTM mit Eingabe w.

- $T_N(w) :=$ maximale Anzahl Rechenschritte von N auf w, d.h. $T_N(w)$ ist die Länge eines längsten Berechnungspfades.
- $T_N : \mathbb{N} \to \mathbb{N}, T_N(n) := \max\{T_N(w) \mid w \in \Sigma^{\leq n}\}$ heißt *Laufzeit* oder Zeitkomplexität von *N*.
- Wir definieren die Klasse NTIME für NTMs analog zur Klasse DTIME für DTMs.

Definition NTIME

Sei $t : \mathbb{N} \to \mathbb{N}$ eine monoton wachsende Funktion.

NTIME $(t(n)) := \{L \mid L \text{ wird von NTM in Laufzeit } \mathcal{O}(t(n)) \text{ entschieden.} \}$

NTM, die RUCKSACK entscheidet

Algorithmus NTM für RUCKSACK

Eingabe: W, P, b, k

- Erzeuge nichtdeterministisch einen Zeugen $I \subseteq [n]$.
- **2** Falls $\sum_{i \in I} w_i \le b$ und $\sum_{i \in I} p_i \ge k$, akzeptiere.
- Sonst lehne ab.
 - D.h. NTM erzeugt sich im Gegensatz zum Verifizierer ihren Zeugen / selbst.
 - Laufzeit: Schritt 1: $\mathcal{O}(n)$, Schritt 2: $\mathcal{O}(n \cdot \log(\max\{w_i, p_i, b, k\}))$.
 - D.h. die Laufzeit ist polynomiell in der Eingabelänge.

\mathcal{NP} mittels NTMs

Satz

 \mathcal{NP} ist die Klasse aller Sprachen, die von einer NTM in polynomieller Laufzeit entschieden wird, d.h.

$$\mathcal{NP} = \bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k).$$

Zeigen:

∃ polynomieller Verifizierer für *L*

 $\Leftrightarrow \exists NTM N$, die L in polynomieller Laufzeit entscheidet.

Verifizierer ⇒ NTM

"⇒": Sei V ein Verifizierer für L mit Laufzeit $\mathcal{O}(n^k)$ für ein festes k.

Algorithmus NTM N für L

Eingabe: w mit |w| = n.

- **1** Erzeuge nicht-deterministisch einen Zeugen c mit $|c| = \mathcal{O}(n^k)$.
- 2 Simuliere V mit Eingabe (w, c).
- 3 Falls V akzeptiert, akzeptiere. Sonst lehne ab.
 - Korrektheit:

```
w \in L \Leftrightarrow \exists c \text{ mit } |c| = \mathcal{O}(n^k) : V \text{ akzeptiert } (w, c) \text{ in Zeit } \mathcal{O}(n^{k'}).
\Leftrightarrow N \text{ akzeptiert die Eingabe } w \text{ in Laufzeit } \mathcal{O}(n^{\max\{k,k'\}}).
```

• Damit entscheidet N die Sprache L in polynomieller Laufzeit.

NTM ⇒ Verifizierer

" \Leftarrow ": Sei N eine NTM, die L in Laufzeit $\mathcal{O}(n^k)$ entscheidet.

Algorithmus Verifizierer

Eingabe: w, c

- Simuliere N auf Eingabe w auf dem Berechnungspfad c.
- Falls N akzeptiert, akzeptiere. Sonst lehne ab.

Korrektheit:

 $w \in L \Leftrightarrow \exists$ akzeptierender Berechnungspfad c von N für $w \Leftrightarrow V$ akzeptiert (w, c).

Laufzeit:

- Längster Berechnungspfad von N besitzt Länge $\mathcal{O}(n^k)$.
- D.h. die Gesamtlaufzeit von V ist ebenfalls $\mathcal{O}(n^k)$.

Boolesche Formeln

Definition Boolesche Formel

- Eine Boolesche Variable x_i kann Werte aus $\{0,1\}$ annehmen, wobei $0 \cong$ falsch und $1 \cong$ wahr.
- Jede Boolesche Variable x_i ist eine Boolesche Formel.
- Sind ϕ, ϕ' Boolesche Formeln, so auch $\neg \phi, \phi \land \phi', \phi \lor \phi', (\phi)$.
- Wir ordnen die Operatoren nach absteigender Priorität: (), \neg , \wedge , \vee .
- ϕ ist erfüllbar $\Leftrightarrow \exists$ Belegung der Variablen in ϕ , so dass $\phi = 1$.

Bsp:

- $\phi = \neg (x_1 \lor x_2) \land x_3$ ist erfüllbar mit $(x_1, x_2, x_3) = (0, 0, 1)$.
- $\phi' = x_1 \land \neg x_1$ ist eine nicht-erfüllbare Boolesche Formel.

Satisfiability SAT

Definition SAT

SAT := $\{\phi \mid \phi \text{ ist eine erfüllbare Boolesche Formel.}\}$

Kodierung von ϕ :

- Kodieren Variable x_i durch bin(i).
- Kodieren ϕ über dem Alphabet $\{0, 1, (,), \neg, \land, \lor\}$.

SAT ist polynomiell verifizierbar.

Satz

SAT $\in \mathcal{NP}$.

Beweis

Algorithmus Polynomieller Verifizierer

EINGABE: $(\phi(x_1,...,x_n), \mathbf{c})$, wobei $\mathbf{c} = (c_1,...,c_n) \in \{0,1\}^n$.

• Falls $\phi(c_1, \ldots, c_n) = 1$, akzeptiere. Sonst lehne ab.

Korrektheit:

• $\phi(x_1, \dots, x_n) \in \mathsf{SAT} \Leftrightarrow \exists \mathsf{Belegung} \ \mathbf{c} \in \{0, 1\}^n : \phi(\mathbf{c}) = 1$

Laufzeit:

- Belegung von ϕ mit **c**: $\mathcal{O}(|\phi|)$ auf RAM.
- Auswertung von ϕ auf **c**: $\mathcal{O}(|\phi|^2)$ auf RAM.

Konjunktive Normalform

Definition Konjunktive Normalform (KNF)

Seien x_1, \ldots, x_n Boolesche Variablen und ϕ eine Boolesche Formel.

- Literale sind Ausdrücke der Form x_i und $\neg x_i$.
- Klauseln sind disjunktive Verknüpfungen von Literalen.
- ϕ ist in KNF, falls ϕ eine Konjunktion von Klauseln ist.
- Eine KNF Formel ϕ ist in 3-KNF, falls jede Klausel genau 3 Literale enthält.

Bsp:

- $\neg x_1 \lor x_2$ und x_3 sind Klauseln.
- $(\neg x_1 \lor x_2) \land x_3$ ist in KNF.
- $(\neg x_1 \lor x_2 \lor x_2) \land (x_3 \lor x_3 \lor x_3)$ ist in 3-KNF.

Die Sprache 3-SAT

Definition 3SAT

3SAT:= $\{\phi \mid \phi \text{ ist eine erfüllbare 3-KNF Boolesche Formel.}\}$

Offenbar gilt 3SAT ⊂ SAT.

Satz

3SAT∈ \mathcal{NP} .

Beweis

Algorithmus NTM für 3SAT

Eingabe: $\phi(x_1,\ldots,x_n) \in 3$ -KNF

- **1** Rate nicht-deterministisch eine Belegung $(c_1, \ldots, c_n) \in \{0, 1\}^n$.
- Palls $\phi(c_1, \ldots, c_n) = 1$, akzeptiere. Sonst lehne ab.
 - Laufzeit Schritt 1: $\mathcal{O}(n) = \mathcal{O}(|\phi|)$, Schritt 2: $\mathcal{O}(|\phi|)$.
 - ullet D.h. die Laufzeit ist polynomiell in der Eingabelänge $|\phi|$.

Simulation von NTMs durch DTMs

Satz Simulation von NTM durch DTM

Sei N eine NTM, die die Sprache L in Laufzeit t(n) entscheidet. Dann gibt es eine DTM M, die L in Zeit $\mathcal{O}(2^{t(n)})$ entscheidet.

Sei B(w) = (V, E) der Berechnungsbaum von N bei Eingabe w.

Algorithmus DTM M für L

- Führe Tiefensuche auf B(w) aus.
- 2 Falls akzeptierender Berechnungspfad gefunden wird, akzeptiere.
- Sonst lehne ab.
 - Tiefensuche auf B(w) benötigt Laufzeit $\mathcal{O}(|V| + |E|) = \mathcal{O}(|V|)$.
 - Berechnungspfade in B(w) besitzen höchstens Länge t(n).
 - D.h. B(w) besitzt höchstens $2^{t(n)}$ Blätter.
 - Damit besitzt B(w) höchstens $|V| \le 2 \cdot 2^{t(n)} 1$ viele Knoten.
 - D.h. die Gesamtlaufzeit ist $\mathcal{O}(2^{t(n)})$.

Polynomielle Reduktion

Definition Polynomiell berechenbare Funktion

Sei Σ ein Alphabet und $f: \Sigma^* \to \Sigma^*$. Eine Funktion f heißt polynomiell berechenbar gdw. eine DTM M existiert, die für jede Eingabe w in Zeit polynomiell in |w| den Wert f(w) berechnet.

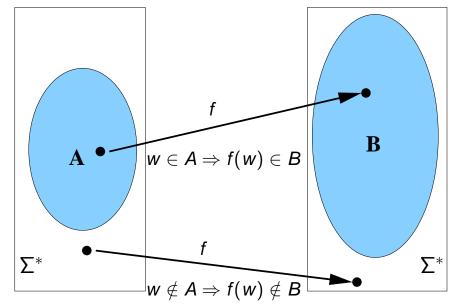
Definition Polynomielle Reduktion

Seien $A,B\subseteq \Sigma^*$ Sprachen. A heißt polynomiell reduzierbar auf B, falls eine polynomiell berechenbare Funktion $f:\Sigma^*\to \Sigma^*$ existiert mit

$$w \in A \Leftrightarrow f(w) \in B$$
 für alle $w \in \Sigma^*$.

Wir schreiben $A \leq_p B$ und bezeichnen f als polynomielle Reduktion.

Graphische Darstellung $w \in A \Leftrightarrow f(w) \in B$



A ist nicht schwerer als B.

Satz \mathcal{P} -Reduktionssatz

Sei $A \leq_{p} B$ und $B \in \mathcal{P}$. Dann gilt $A \in \mathcal{P}$.

- Wegen $B \in \mathcal{P}$ existiert DTM M_B , die B in polyn. Zeit entscheidet.
- Wegen $A \leq_p B$ existiert DTM M_f , die f in polyn. Zeit berechnet.

Algorithmus DTM M_A für A

Eingabe: w

- **1** Berechne f(w) mittels M_f auf Eingabe w.
- Falls M_B auf Eingabe f(w) akzeptiert, akzeptiere. Sonst lehne ab.

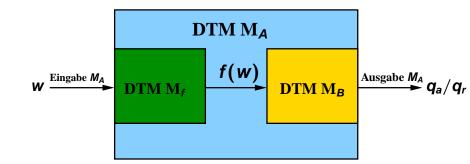
Korrektheit:

• M_A akzeptiert $w \Leftrightarrow M_B$ akzeptiert $f(w) \Leftrightarrow f(w) \in B \Leftrightarrow w \in A$.

Laufzeit:

• $T(M_A) = \mathcal{O}(T(M_f) + T(M_B))$, d.h. polynomiell in |w|.

Graphische Darstellung des Reduktionsbeweises



Transitivität polynomieller Reduktionen

Satz Transitivität von \leq_p

Seien $A, B, C \subseteq \Sigma^*$ Sprachen mit $A \leq_p B$ und $B \leq_p C$. Dann gilt $A \leq_p C$.

• Sei *f* die polynomielle Reduktion von *A* auf *B*, d.h.

$$w \in A \Leftrightarrow f(w) \in B$$
 für alle $w \in \Sigma^*$.

• Sei *g* die polynomielle Reduktion von *B* auf *C*, d.h.

$$v \in B \Leftrightarrow g(v) \in C$$
 für alle $v \in \Sigma^*$.

- Dann gilt insbesondere $w \in A \Leftrightarrow f(w) \in B \Leftrightarrow g(f(w)) \in C$.
- Damit ist die Komposition g ∘ f eine Reduktion von A auf C.
- g ∘ f kann in polynomieller Zeit berechnet werden durch Hintereinanderschaltung der polynomiellen DTMs für f und g.

Clique

Definition Clique

Sei G = (V, E) ein ungerichteter Graph. $C \subseteq V$, |C| = k heißt k-Clique in G, falls je zwei Knoten in C durch eine Kante verbunden sind.

CLIQUE:= $\{(G, k) \mid G \text{ enthält eine } k\text{-Clique.}\}$

Satz

 $3SAT \leq_{p} CLIQUE$

Zu zeigen: Es gibt eine Reduktion f mit

- f ist eine polynomiell berechenbare Funktion

Idee für die Reduktion: Konstruiere (G, k) derart, dass

- ϕ erfüllbar \Leftrightarrow \exists erfüllende Belegung B für ϕ .
 - \Leftrightarrow B setzt in jeder der n Klauseln mind. ein Literal wahr.
 - \Leftrightarrow Wahre Literale entsprechen einer *n*-Clique in *G*.

Die Reduktion f

Algorithmus M_f für f

Eingabe: $\phi = (a_{11} \lor a_{12} \lor a_{13}) \land ... \land (a_{n1} \lor a_{n2} \lor a_{n3})$

- Wahl der Knotenmenge V von G
 - ▶ Definiere 3*n* Knoten mit Labeln a_{i1}, a_{i2}, a_{i3} für i = 1, ..., n.
- ② Wahl der Kantenmenge E: Setze Kante $(u, v) \in E$ außer wenn
 - u, v entsprechen Literalen derselben Klausel, denn die Clique soll aus Literalen verschiedener Klauseln bestehen.
 - Label von u ist Literal x und Label von v ist $\neg x$, denn x soll nicht gleichzeitig auf wahr und falsch gesetzt werden (Konsistenz).
- Wahl von k.
 - Setze $k = n = \frac{|V|}{3}$, denn alle Klauseln sollen erfüllt werden.

Ausgabe: (G, k)

zu zeigen: f ist polynomiell berechenbar.

- Laufzeit Schritt 1: $\mathcal{O}(n)$, Schritt 2: $\mathcal{O}(n^2)$, Schritt 3: $\mathcal{O}(1)$.
- Gesamtlaufzeit $\mathcal{O}(n^2)$ ist polynomiell in der Eingabelänge.

Korrektheit der Reduktion

Zeigen zunächst: $\phi \in \mathsf{3SAT} \Rightarrow f(\phi) = (G, k) \in \mathsf{CLIQUE}$

- Sei $\phi \in 3$ SAT. Dann besitzt ϕ eine erfüllende Belegung B.
- Damit setzt *B* in jeder Klausel $(a_{i1} \lor a_{i2} \lor a_{i3})$, i = 1, ..., n mindestens ein Literal $a_{i\ell_i}, \ell_i \in [3]$ auf wahr.
- Die n Knoten mit Label $a_{i\ell_i}$ in G sind paarweise verbunden, da
 - ▶ die Literale a_{iℓ,i} aus verschiedenen Klauseln stammen.
 - ▶ *B* ist eine konsistente Belegung, d.h. dass die Literale $a_{i\ell_i}$ von *B* alle konsistent auf wahr gesetzt werden.
- Die *n* Knoten mit Label $a_{i\ell_i}$ bilden eine *n*-Clique in *G*.
- D.h. $f(\phi) = (G, n) \in \mathsf{CLIQUE}$

Korrektheit von f: Rückrichtung

Zeigen:
$$f(\phi) = (G, n) \in \mathsf{CLIQUE} \Rightarrow \phi \in \mathsf{3SAT}$$

- Sei $f(\phi) = (G, n) \in CLIQUE$. Dann besitzt G eine n-Clique v_1, \ldots, v_n .
- Nach Konstruktion der Kantenmenge von E gilt:
 - v_1, \ldots, v_n korrespondieren zu Variablen in verschiedenen Klauseln.
- Sei *B* diejenige Belegung, die die Label von v_1, \ldots, v_n wahr setzt.
 - \bigcirc B setzt in jeder Klausel ein Literal v_i auf wahr.
 - B ist eine konsistente Belegung.
- Damit ist *B* eine erfüllende Belegung für ϕ .
- D.h. $\phi \in 3SAT$.

\mathcal{NP} -Vollständigkeit

Definition \mathcal{NP} -vollständig

Sei L eine Sprache. Wir bezeichnen L als \mathcal{NP} -vollständig, falls

- $L \in \mathcal{NP}$
- **2** Für **jede** Sprache $A \in \mathcal{NP}$ gilt: $A \leq_p L$.

Separation oder Gleichheit von $\mathcal P$ und $\mathcal N\mathcal P$

Satz

Sei L eine \mathcal{NP} -vollständige Sprache und $L \in \mathcal{P}$. Dann gilt $\mathcal{P} = \mathcal{NP}$.

Beweis:

- Wir zeigen für ein beliebiges $A \in \mathcal{NP}$, dass $A \in \mathcal{P}$.
- Da $A \in \mathcal{NP}$ und $L \mathcal{NP}$ -vollständig ist, gilt $A \leq_{p} L$.
- Nach Voraussetzung gilt $L \in \mathcal{P}$.
- \mathcal{P} -Reduktionssatz: Aus $A \leq_{p} L$, $L \in \mathcal{P}$ folgt $A \in \mathcal{P}$.
- Da dies für ein beliebiges $A \in \mathcal{NP}$ gilt, folgt $\mathcal{NP} \subseteq \mathcal{P}$.
- Wegen $\mathcal{P} \subseteq \mathcal{NP}$ gilt schließlich $\mathcal{P} = \mathcal{NP}$.

\mathcal{NP} Vollständigkeits-Beweise

Satz \mathcal{NP} -Reduktionssatz

Seien B, L Sprachen. Sei $L \mathcal{NP}$ -vollständig, $B \in \mathcal{NP}$ und $L \leq_p B$. Dann ist auch $B \mathcal{NP}$ -vollständig.

Beweis: Müssen zeigen, dass $A \leq_{p} B$ für alle $A \in \mathcal{NP}$.

- Da $L \mathcal{NP}$ -vollständig ist, gilt $A \leq_p L$ für beliebiges $A \in \mathcal{NP}$.
- Ferner gilt nach Voraussetzung $L \leq_{p} B$.
- Aus der Transitivität von \leq_{p} folgt: $A \leq_{p} B$.
- Damit ist *B* ebenfalls \mathcal{NP} -vollständig.

Problem: Wir benötigen ein *erstes* \mathcal{NP} -vollständiges Problem.

Satz von Cook-Levin (1971)

Satz von Cook-Levin

SAT ist \mathcal{NP} -vollständig.

Beweis: Müssen zeigen

- **SAT** $\in \mathcal{NP}$ (bereits gezeigt)
- ② Für alle $L \in \mathcal{NP}$ existiert polynomiell berechenbare Reduktion f:

$$w \in L \Leftrightarrow f(w) \in \mathsf{SAT}$$
.

Beweisidee: Sei $L \in \mathcal{NP}$ beliebig.

• \exists NTM N mit polynomieller Laufzeit n^k mit

$$w \in L \Leftrightarrow N$$
 akzeptiert w .

- Konstruieren aus (N, w) eine Formel φ mit
 - 1 N akzeptiert $w \Leftrightarrow f(w) = \phi \in SAT$
 - 2 f ist in Zeit polynomiell in |w| = n berechenbar.
- Betrachten dazu $(n^k + 1) \times (n^k + 1)$ Berechnungstabelle von N.

Berechnungstabelle T von N auf w

q_0	\triangle	<i>W</i> ₁	 Wn		
\triangle	q_i	<i>W</i> ₁	 Wn		
		:		:	

- Tabelle T entspricht einem Pfad im Berechnungsbaum.
- Erste Zeile enthält die Startkonfiguration.
- \bullet (i + 1)-te Zeile ist mögliche Nachfolgekonfiguration der i-ten Zeile.
- In Laufzeit n^k können höchstens n^k Zellen besucht werden.
- ullet T akzeptierend \Leftrightarrow T enthält eine akzeptierende Konfiguration.
- Konstruieren ϕ derart, dass ϕ erfüllbar ist gdw. T akzeptierend ist.

Struktur der Formel für ϕ

- Sei T(i, j) der Eintrag in der i-ten Zeile und j-ten Spalte von T.
- $T(i,j) \in Q \cup \Gamma$ für alle i,j.
- Definieren ϕ über den Booleschen Variablen $x_{i,j,s}$ mit

$$x_{i,j,s} = 1 \Leftrightarrow T(i,j) = s$$
 für $s \in Q \cup \Gamma$.

Formel für ϕ : $\phi = \phi_{Start} \wedge \phi_{accept} \wedge \phi_{Eintrag} \wedge \phi_{move}$ mit

 ϕ_{Start} : T beginnt mit Startkonfiguration.

 ϕ_{accept} : T muss Eintrag q_a besitzen.

 $φ_{Eintrag}$: T enthält Einträge aus $Q \cup \Gamma$.

 ϕ_{move} : T besitzt gültige Nachfolgekonfigurationen.

Definition von ϕ_{Start} , ϕ_{accept} und $\phi_{Eintrag}$

 ϕ_{Start} : Kodieren die Startkonfiguration $q_0 > w_1 \dots w_n$

$$x_{1,1,q_0} \land x_{1,2,\triangleright} \land x_{1,3,w_1} \land \ldots \land x_{1,n+2,w_n} \land x_{1,n+3,\sqcup} \land \ldots \land x_{1,n^k+1,\sqcup}$$

 ϕ_{accept} : ϕ ist erfüllend gdw T eine erfüllende Konfiguration enthält

$$\phi_{accept} = \bigvee_{1 \le i, j \le n^k + 1} \mathbf{x}_{i, j, q_a}$$

φEintrag: T(i,j) ∈ Q ∪ Γ, d.h. es gibt ein s ∈ Q ∪ Γ mit $x_{i,j,s} = 1$.

• T(i,j) enthält mindestens einen Eintrag $s \in Q \cup \Gamma$:

$$\phi_{\geq 1} = \bigvee_{s \in Q \cup \Gamma} x_{i,j,s}.$$

• T(i,j) enthält höchstens einen Eintrag $s \in Q \cup \Gamma$:

$$\phi_{\leq 1} = \bigwedge_{s,t \in Q \cup \Gamma, s \neq t} \neg (\mathbf{x}_{i,j,s} \land \mathbf{x}_{i,j,t}).$$

• Liefert insgesamt $\phi_{Eintrag} = \bigwedge_{1 \le i, j \le n^k + 1} (\phi_{\ge 1} \land \phi_{\le 1})$.

Definition von ϕ_{move}

Ziel: Zeile i + 1 muss Nachfolgekonfiguration von Zeile i sein.

- Definieren Fenster F der Größe 2 x 3.
- (i,j)-Fenster besitzt Einträge (i,j-1),(i,j),(i,j+1) und (i+1,j-1),(i+1,j),(i+1,j+1).
- Tabelle *T* besitzt (i,j)-Fenster für $i = 1, ..., n^k, j = 2, ..., n^k$.
- Fenster F heißt legal gwd F's Einträge δ nicht widersprechen.

Beispiele für legale Fenster

Sei δ wie folgt definiert

•
$$\delta(q_1, a) = \{(q_1, b, R)\}.$$

•
$$\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}.$$

а	q_1	b
q_2	а	С

$$\begin{array}{c|cccc} a & q_1 & b \\ \hline a & a & q_2 \end{array}$$

legal

legal

$$\begin{array}{c|ccc} a & q_1 & b \\ \hline q_1 & a & a \end{array}$$

Ш	b	а	
Ш	b	а	

legal

nicht legal

а	q_1	b	
q_2	b	q_2	

nicht legal

legal

legal

Korrektheit der Konstruktion

Lemma Korrektheit Berechnungstabelle

Sei *T* eine Tabelle mit den folgenden Eigenschaften.

- ① Die erste Zeile ist die Startkonfiguration von N auf w.
- Jedes Fenster ist legal.

Dann ist T eine Berechnungstabelle von N auf Eingabe w.

Beweis:

- $T(i,j) \neq T(i+1,j)$ ist nur dann möglich, falls einer der Einträge T(i,j-1), T(i,j) oder T(i,j+1) einen Zustand enthält.
- \bullet Falls die obere Zeile einen Zustand ändert, muss sich die untere Zeile gemäß δ ändern.
- D.h. jede Zeile ist eine Nachfolgekonfiguration der Vorgängerzeile.
- Damit ist T eine Berechnungstabelle.

Konstruktion von ϕ_{move}

- Informal gilt: $\phi_{move} = \bigwedge_{1 < i < n^k, 2 < j < n^k}$ Fenster (i, j) ist legal.
- Die Anzahl legaler Fenster hängt nur von den möglichen Übergängen in N ab, nicht von der Eingabe w.
- D.h. es gibt eine Menge F von 6-Tupeln (f_1, \ldots, f_6) , so dass F alle legalen Fenster beschreibt.
- ullet Damit können wir das Prädikt [Fenster (i,j) ist legal] formalisieren

$$\bigvee_{(f_1,\dots,f_6)\in F} (x_{i,j-1,f_1} \wedge x_{i,j,f_2} \wedge x_{i,j+1,f_3} \wedge x_{i+1,j-1,f_4} \wedge x_{i+1,j,f_5} \wedge x_{i+1,j+1,f_6}).$$

Reduktion ist polynomiell

Lemma Länge von ϕ

Sei N eine NTM mit Laufzeit n^k bei Eingabe w, |w|=n. Dann besitzt die Formel $\phi=\phi_{Start}\wedge\phi_{accept}\wedge\phi_{Eintrag}\wedge\phi_{move}$ Länge $\mathcal{O}(n^{2k})$, d.h. ihre Länge ist polynomiell in n.

Zudem ist ϕ bei Eingabe (N, w) in Zeit $\mathcal{O}(n^{2k})$ berechenbar.

 ϕ_{Start} : • Anzahl Literale: $\mathcal{O}(n^k)$, Berechnung direkt aus w

 ϕ_{accept} : • Anzahl Literale: $\mathcal{O}(n^{2k})$

 $\phi_{Eintrag}$: • Anzahl Literale in $\phi_{\geq 1}, \phi_{\leq 1}$: $\mathcal{O}(1)$, unabhängig von w.

• Anzahl Literale in $\phi_{Eintrag}$: $\mathcal{O}(n^{2k})$.

 ϕ_{move} : • Anzahl legaler Fenster |F|: $\mathcal{O}(1)$, unabhängig von w.

• Anzahl Literale in ϕ_{move} : $\mathcal{O}(n^{2k})$.

Von SAT zu 3SAT

Satz

3SAT ist \mathcal{NP} -vollständig.

- Modifizieren zunächst vorigen Beweis derart, dass ϕ in KNF ist.
- ϕ_{start} und ϕ_{accept} sind bereits in KNF.
- $\phi_{Eintrag} = \bigwedge_{i,j} (\phi_{\geq 1} \wedge \phi_{\leq 1}) = \bigwedge_{i,j} \phi_{\geq 1} \wedge \bigwedge_{i,j} \phi_{\leq 1}$
 - $\phi_{>1}$ besteht aus einer Klausel.
 - ▶ Schreiben $\phi_{\leq 1}$ als Konjunktion von Klauseln:

$$\phi_{\leq 1} = \bigwedge_{s \neq t} \left(\neg \mathbf{x}_{i,j,s} \lor \neg \mathbf{x}_{i,j,t} \right).$$

• ϕ_{move} : Wandle disjunktive Normalform des Prädikats für legale Fenster

$$\bigvee_{(f_1,...,f_6)\in F} (x_{i,j-1,f_1} \wedge x_{i,j,f_2} \wedge ... \wedge x_{i+1,j+1,f_6}).$$

in KNF um. Umwandlung in $\mathcal{O}(1)$, da |F| unabhängig von |w|=n.

Umwandlung von KNF in 3-KNF

Sei $\phi = k_1 \wedge ... \wedge k_m$ eine KNF-Formel, wobei $k_j = a_1 \vee ... \vee a_n$ eine Klausel mit n > 3 Literalen ist.

- Führen neue Variablen z_1, \ldots, z_{n-3} ein.
- Ersetzen Klausel k_i durch die 3-KNF Formel

$$k'_j = (a_1 \vee a_2 \vee z_1) \wedge (\neg z_1 \vee a_3 \vee z_2) \wedge (\neg z_2 \vee a_4 \vee z_3) \wedge \ldots \wedge (\neg z_{n-3} \vee a_{n-1} \vee a_n)$$

- zu zeigen: k_j ist erfüllbar gdw. k'_j erfüllbar ist.
- B ist eine erfüllende Belegung für k_i gdw ein Literal a_i wahr ist.
- Dann ist aber k'_j erfüllbar mit $a_i = 1$ und $z_i = 1$ für j < i 1 und $z_i = 0$ für $j \ge i 1$.

- Dann muss ein Literal a; wahr sein, und damit ist k erfüllbar.
- Können ϕ in KNF bzw. in 3-KNF in $\mathcal{O}(|\phi|)$ Schritten umwandeln.

\mathcal{NP} -Vollständigkeit von CLIQUE

Satz

CLIQUE ist \mathcal{NP} -vollständig.

Beweis: zu zeigen

- lacktriangle CLIQUE $\in \mathcal{NP}$
 - Übung
- $\supseteq \exists \mathcal{NP}$ -vollständige Sprache L mit $L \leq_p \mathsf{CLIQUE}$
 - ▶ Bereits gezeigt: 3SAT ist \mathcal{NP} -vollständig.
 - ▶ Bereits gezeigt: $3SAT \leq_p CLIQUE$.

Knotenüberdeckung

Definition k-Knotenüberdeckung

Sei G = (V, E) ein ungerichteter Graph. Eine Knotenmenge $U \subseteq V$, |U| = k heißt k-Knotenüberdeckung, falls

$$e \cap U \neq \emptyset$$
 für alle $e \in E$.

Wir definieren die folgende Sprache.

KNOTENÜBERDECKUNG:= $\{(G, k) \mid G \text{ besitzt eine } k\text{-Knotenüberdeckung.}\}$

Satz

Knotenüberdeckung ist \mathcal{NP} -vollständig.

Beweis: zu zeigen

- **1** KNOTENÜBERDECKUNG $\in \mathcal{NP}$ (Übung)
- ② 3-SAT \leq_p KNOTENÜBERDECKUNG, d.h. es gibt berechenbares f:

$$\phi \in \mathsf{3SAT} \Leftrightarrow f(\phi) = (G, k) \in \mathsf{KNOTENÜBERDECKUNG}$$

Die Reduktion f

Idee der Reduktion f:

- Konstruieren für jedes Literal x_i Knotenpaar mit Labeln x_i und $\neg x_i$.
- Knotenlabel einer Überdeckung bilden erfüllende Belegung.

Algorithmus M_f

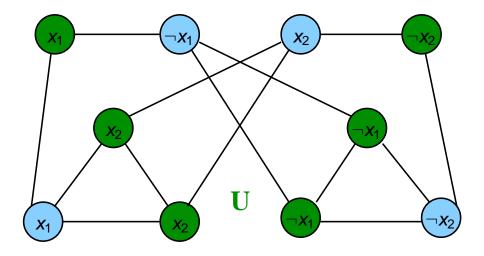
Eingabe: $\phi(x_1,\ldots,x_n)=K_1\wedge\ldots\wedge K_m$ mit $K_j=\ell_{j1}\vee\ell_{j2}\vee\ell_{j3}$.

- **1** Variablenknoten: Für $i = 1 \dots n$:
 - Konstruiere zwei verbundene Knoten mit Labeln x_i und $\neg x_i$.
- 2 Klauselknoten: Für $j = 1 \dots m$:
 - ► Konstruiere 3 paarweise verbundene Knoten mit Labeln $\ell_{j1}, \ell_{j2}, \ell_{j3}$.
- Verbinde Variablen- und Klauselknoten mit denselben Labeln.
- **3** Setze k = n + 2m.

Ausgabe: (G, k)

- Schritt 1: $\mathcal{O}(n)$, Schritt 2: $\mathcal{O}(m)$, Schritt 3: $\mathcal{O}(m)$, Schritt 4: $\mathcal{O}(1)$.
- $|\phi| = \mathcal{O}(n+m) = \mathcal{O}(m)$, d.h. die Laufzeit ist polynomiell in $|\phi|$.

Reduktion für $\phi = (x_1 \lor x_2 \lor x_2) \land (\neg x_1 \lor \neg x_1 \lor \neg x_2)$



$\phi \in \mathsf{3SAT} \Rightarrow f(\phi) \in \mathsf{K}\mathsf{NOTENÜBERDECKUNG}$

Sei $\phi(x_1,\ldots,x_n)\in \mathsf{3SAT}$

- Dann gibt es eine erfüllende Belegung der Variablen x_1, \dots, x_n .
- In die Menge *U* werden die folgenden Knoten aufgenommen.
 - ▶ *n* Variablenknoten: Falls $x_i = 1$, ist Knoten mit Label x_i in U. Sonst Knoten mit $\neg x_i$.
 - 2m Klauselknoten:
 Für jede Klausel ist mindestens ein Knoten mit einem Variablenknoten aus U verbunden. Die anderen beiden Knoten sind in U.
- *U* ist eine *n* + 2*m*-Knotenüberdeckung:
 - ▶ Die Kanten zwischen Variablenknoten x_i, ¬x_i sind überdeckt durch einen Variablenknoten.
 - Kanten zwischen Klauselknoten \(\ell_{j1}, \ell_{j2}, \ell_{j3} \) sind \(\text{überdeckt durch zwei Klauselknoten.} \)
 - Kanten zwischen Variablen- und Klauselknoten sind überdeckt: Entweder der Variablenknoten überdeckt die Kante oder einer der beiden Klauselknoten.
- D.h. $f(\phi) = (G, n+2m) \in \mathsf{KNOTEN\ddot{U}BERDECKUNG}$

Korrektheit: Rückrichtung

Sei $f(\phi) = (G, n+2m) \in \mathsf{KNOTENÜBERDECKUNG}$:

- Dann gibt es eine (n+2m)-Knotenüberdeckung U mit:
 - ▶ Mindestens ein Variablenknoten x_i oder $\neg x_i$ ist in U für alle i.
 - ▶ Mindestens 2 von 3 Klauselknoten $\ell_{j1}, \ell_{j2}, \ell_{j3}$ sind in U für alle j.
 - ▶ Da |U| = n + 2m: Jeweils *genau ein* Variablenknoten und *genau zwei* Klauselknoten.
- Sei B die Belegung, die die Variablenknoten aus U auf wahr setzt.
 - B ist eine konsistente Belegung.
 - ▶ Für alle Klauseln K_j mit Knoten $\ell_{j1}, \ell_{j2}, \ell_{j3}$ ist ein $\ell_{jk}, k \in [3]$ nicht in U.

 - ▶ D.h. der Variablenknoten ℓ_{jk} ist in U. Damit erfüllt ℓ_{jk} die Klausel K_j .
- D.h. *B* ist eine erfüllende Belegung für ϕ .
- Damit gilt $\phi \in 3SAT$.

Subset Sum

Definition Sprache SubsetSum

Sei $M=\{m_1,\ldots,m_n\}\subset \mathbb{N}$ und $t\in \mathbb{N}$. Wir definieren die Sprache SUBSETSUM:= $\{(M,t)\mid \exists\, S\subseteq M: \sum_{s\in S}s=t\}.$

Satz

SubsetSum ist \mathcal{NP} -vollständig.

- **1** SUBSETSUM $\in \mathcal{NP}$ (Übung)
- ② 3SAT ≤_p SUBSETSUM

Idee der Reduktion $f(\phi(x_1,\ldots,x_n))=(S,t)$: Konstruieren

- für jedes x_i Elemente $y_i, z_i \in S$ für $x_i = 1$ bzw. $x_i = 0$,
- für jede Klausel K_j Variablen $g_j, h_j \in S$ für nicht erfüllte Literale.
- Definieren Tabelle T mit Zeilen y_i, z_i, g_j, h_j und Zeile t. Die Spalten bestehen aus x_i und K_j für $i \in [n], j \in [m]$.
- Einträge in einer Zeile werden als Dezimaldarstellung interpretiert.

Konstruktion der Reduktion f

Algorithmus M_f

EINGABE:
$$\phi(x_1, \ldots, x_n) = K_1 \wedge \ldots \wedge K_m \text{ mit } K_j = \ell_{j1} \vee \ell_{j2} \vee \ell_{j3}$$

- Tabelle Tabelle T mit Spalten für x_1, \ldots, x_n und K_1, \ldots, K_m .
- 2 Erstelle 2*n* Variablenzeilen für x_i , i = 1, ..., n:
 - y_i : Einsen in Spalte x_i . Für alle Spalten K_j : Anzahl Literale x_i in K_j .
 - z_i : Einsen in Spalte x_i . Für alle Spalten K_j : Anzahl Literale $\neg x_i$ in K_j .
- **③** Erstelle 2*m* Klauselzeilen für K_j , j = 1, ..., m:
 - g_j, h_j : Einsen jeweils in Spalte K_j .
- Trstelle Zeile t: Einsen in Spalten x_i , Dreien in Spalten K_j .
- Fülle mit Nullen. Definiere $y_1, z_1, \ldots, y_n, z_n, g_1, h_1, \ldots, g_m, h_m, t$ mittels des Dezimalwerts der betreffenden Zeile.

AUSGABE: (M, t) mit $M = \{y_1, z_1, \dots, y_n, z_n, g_1, h_1, \dots, g_m, h_m\}.$

Laufzeit:

- Eingabelänge $|\phi| \ge \max\{m, n\} = \Omega(m+n)$
- $T(M_f) = \mathcal{O}((n+m)^2)$, d.h. polynomiell in der Eingabelänge.

Bsp für $\phi = (\mathbf{x}_1 \vee \mathbf{x}_2 \vee \mathbf{x}_2) \wedge (\neg \mathbf{x}_1 \vee \mathbf{x}_2 \vee \neg \mathbf{x}_2)$

Definieren Tabelle T

	<i>X</i> ₁	X ₂	<i>K</i> ₁	K_2
<i>y</i> ₁	1	0	1	0
<i>y</i> ₁ <i>z</i> ₁	1	0	0	1
y ₂	0	1	2	1
<i>y</i> ₂ <i>z</i> ₂	0	1	0	1
g_1	0	0	1	0
h_1	0	0	1	0
g_2	0	0	0	1
g ₂ h ₂	0	0	0	1
t	1	1	3	3

- Setze $y_1 = 1010, z_1 = 1001, \dots, t = 1133.$
- Belegung $x_1, x_2 = 1$ erfüllt alle Literale in K_1 und Literal x_2 in K_2 .
- Zahlen y_1, y_2 summieren sich mit g_2, h_2 für K_2 zu t.

Korrektheit: $\phi \in \mathsf{3SAT} \Rightarrow f(\phi) \in \mathsf{SUBSETSUM}$

Sei $\phi \in 3SAT$

- Dann besitzt ϕ eine erfüllende Belegung B.
- Nimm y_i in S auf, falls $x_i = 1$ in B. Sonst nimm z_i in S auf.
- Betrachten $t' = \sum_{s \in S} s$:
 - ▶ B ist konsistente Belegung: Obere n Dezimalstellen von t' sind 1.
 - ▶ *B* ist erfüllend: Untere *m* Dezimalstellen $t_1, ..., t_m$ sind aus $\{1, 2, 3\}$.
- Falls $t_j = 1$, nimm g_j und h_j in S auf. Falls $t_j = 2$, nimm g_j in S auf.
- Damit gilt $\sum_{s \in S} s = t$.
- D.h. $f(\phi) = (M, t) \in \mathsf{SUBSETSUM}$

Korrektheit $f(\phi) \in SubsetSum \Rightarrow \phi \in 3SAT$

Sei $f(\phi) \in \mathsf{SUBSETSUM}$

- Dann gibt es $S \subseteq M$ mit $\sum_{s \in S} s = t$, wobei $t = 1 \dots 13 \dots 3$.
- Die oberen n Dezimalstellen von t sind 1.
 - ▶ Damit enthält S für jedes i genau eines der Elemente y_i, z_i.
 - ▶ Sei *B* die Belegung mit $x_1 = 1$ für $y_i \in S$ und $x_1 = 0$ für $z_i \in S$.
- Die unteren m Dezimalstellen t_1, \ldots, t_m von t sind 3.
 - ▶ D.h. t_j kann nicht allein als Summe von g_j und h_j dargestellt werden.
 - Für jedes t_j kommt mindestens ein Beitrag aus einer der Zeilen y_i bzw. z_i.
 - ▶ D.h. das Literal x_i bzw. $\neg x_i$ erfüllt die Klausel K_j .
- Damit ist *B* eine erfüllende Belegung für ϕ .
- D.h. $\phi \in 3SAT$.

Das Rucksackproblem

Definition Sprache Rucksack

Gegeben sind n Gegenstände mit Gewichten $W = \{w_1, \dots, w_n\} \subset \mathbb{N}$ und Profiten $P = \{p_1, \dots, p_n\} \subset \mathbb{N}$. Seien ferner $b, k \in \mathbb{N}$.

RUCKSACK:= $\{(W, P, b, k) \mid \exists I \subseteq [n] : \sum_{i \in I} w_i \leq b \text{ und } \sum_{i \in I} p_i \geq k.\}$

Satz

RUCKSACK ist \mathcal{NP} -vollständig.

Beweis: zu zeigen

- **1** RUCKSACK $\in \mathcal{NP}$ (bereits gezeigt)
- 2 SUBSETSUM \leq_p RUCKSACK

Reduktion f(M, t) = (W, P, b, k)

Algorithmus M_f

EINGABE: M, t

 \bigcirc Setze b := t und k := t.

2 For i = 1 to n: Setze $w_i := m_i$ und $p_i := m_i$

AUSGABE: W, P, b, k

Laufzeit:

- Eingabelänge: $\log(t) + \sum_{i=1}^{n} \log(m_i)$
- Schritt 1: $\mathcal{O}(\log t)$, Schritt 2: $\mathcal{O}(\sum_{i=1}^n \log(m_i))$
- D.h. Gesamtlaufzeit ist polynomiell in der Eingabelänge.

$(M,t) \in \mathsf{SUBSETSUM} \Leftrightarrow f(M,t) \in \mathsf{RUCKSACK}$

Sei $(M, t) \in \mathsf{SUBSETSUM}$

- Dann gibt es eine Menge $I \subseteq [n]$ mit $\sum_{i \in I} m_i = t$.
- Damit gilt $\sum_{i \in I} m_i \le t$ und $\sum_{i \in I} m_i \ge t$.
- Es folgt $\sum_{i \in I} w_i \le b$ und $\sum_{i \in I} p_i \ge k$.
- Damit gilt $f(M, t) = (W, P, b, k) \in RUCKSACK$

Sei $(W, P, B, k) = f(M, t) \in \mathsf{RUCKSACK}$

- Dann gibt es eine Menge $I \subseteq [n]$ mit $\sum_{i \in I} w_i \le b$ und $\sum_{i \in I} p_i \ge k$.
- D.h. es gibt eine Menge $I \subseteq [n]$ mit $\sum_{i \in I} m_i \le t$ und $\sum_{i \in I} m_i \ge t$.
- Setze $S = \{m_i \in M \mid i \in I\}$. Dann gilt $S \subseteq M$ und $\sum_{s \in S} s = t$.
- Damit ist $(M, t) \in SUBSETSUM$

Exakte Überdeckung

Definition Exakte Überdeckung

Sei $U = \{u_1, \dots, u_n\}$ und $F = \{S_1, \dots, S_m\} \subseteq \mathcal{P}(U)$, d.h. $S_i \subseteq U$. Eine Menge $C \subseteq F$ heißt exakte Überdeckung von U falls

- ② $S_i \cap S_j = \emptyset$ für alle $S_i, S_j \in C$ mit $i \neq j$.

COVER:= $\{(U, F) \mid F \text{ enthält eine exakte Überdeckung von } U.\}$

Bsp:

- $U = \{1, 2, 3, 4, 5\}, F = \{\{2, 3\}, \{1, 3\}, \{4, 5\}, \{1\}\}$
- $C = \{\{2,3\}, \{4,5\}, \{1\}\}$ ist eine exakte Überdeckung von U.
- F ist keine exakte Überdeckung von U.

\mathcal{NP} -Vollständigkeit der exakten Überdeckung

Satz

Cover ist \mathcal{NP} -vollständig.

Zeigen

- COVER $\in \mathcal{NP}$ (Übung)
- 2 3SAT \leq_{p} COVER

Idee der Reduktion

- U enthält alle Variablen x_i , Klauseln K_j und Literale ℓ_{jk} .
- F enthält geeignete Mengen für Variablen, Klauseln und Literale.

Reduktion $f(\phi) = (U, F)$

Algorithmus M_f

EINGABE:
$$\phi(x_1,\ldots,x_n)=K_1\wedge\ldots K_m$$
 mit $K_j=\ell_{j1}\vee\ell_{j2}\vee\ell_{j3}$

- **1** Setze $U = \{x_1, \dots, x_n, K_1, \dots, K_m, \ell_{11}, \ell_{12}, \ell_{13}, \dots, \ell_{m1}, \ell_{m2}, \ell_{m3}\}.$
- Definition von F als Vereinigung der Mengen
 - Variablen: $V_{i0} = \{x_i\} \cup \{\ell_{jk} \mid \ell_{jk} = x_i\}$ und $V_{i1} = \{x_i\} \cup \{\ell_{jk} \mid \ell_{jk} = \neg x_i\}$ für alle i, j, k.
 - ► Klauseln: $K_{jk} = \{K_j, \ell_{jk}\}$ für alle $j \in [m], k \in [3]$.
 - Literale: $L_{jk} = \{\ell_{jk}\}$ für alle $j \in [m], k \in [3]$.

AUSGABE: U, F

Laufzeit:

- Eingabelänge von ϕ ist $|\phi| = \Omega(m+n)$
- Schritt 1: $\mathcal{O}(n+m+|\phi|)$
- Schritt 2: Variablen $\mathcal{O}(n+|\phi|)$, Klauseln $\mathcal{O}(m)$, Literale $\mathcal{O}(|\phi|)$.
- D.h. die Laufzeit ist linear in der Eingabelänge.

Bsp.: $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)$

- $\bullet \ \ U = \{x_1, x_2, x_3, K_1, K_2, \ell_{11}, \ell_{12}, \ell_{13}, \ell_{21}, \ell_{22}, \ell_{23}\}$
- $\bullet \ \ V_{i0}: \ V_{10} = \{x_1, \ell_{11}\}, \ V_{20} = \{x_2, \ell_{12}, \ell_{22}\}, \ V_{30} = \{x_3, \ell_{33}\}$
- $\bullet \ \ V_{i1}: V_{11} = \{x_1, \ell_{21}\}, V_{21} = \{x_2\}, V_{31} = \{x_3, \ell_{13}\}$
- $\bullet \ \ \textit{K}_{1\textit{k}} : \textit{K}_{11} = \{\textit{K}_{1},\ell_{11}\}, \textit{K}_{12} = \{\textit{K}_{1},\ell_{12}\}, \textit{K}_{13} = \{\textit{K}_{1},\ell_{13}\}$
- $\bullet \ \textit{K}_{2k}: \textit{K}_{21} = \{\textit{K}_{2},\ell_{21}\}, \textit{K}_{22} = \{\textit{K}_{2},\ell_{22}\}, \textit{K}_{23} = \{\textit{K}_{2},\ell_{23}\}$
- $\bullet \ L_{1k}: L_{11} = \{\ell_{11}\}, L_{12} = \{\ell_{12}\}, L_{13} = \{\ell_{13}\}$
- $\bullet \ L_{2k}: L_{21} = \{\ell_{21}\}, L_{22} = \{\ell_{22}\}, L_{23} = \{\ell_{23}\}$
- Erfüllende Belegung von ϕ : $x_1 = 0, x_2 = 1, x_3 = 1$.

Korrektheit: $\phi \in \mathsf{3SAT} \Rightarrow f(\phi) = (U, F) \in \mathsf{COVER}$

Sei $\phi(x_1,\ldots,x_n)\in \mathsf{3SAT}$

- Dann gibt es eine erfüllende Belegung B der Variablen x_1, \ldots, x_n .
- B setzt in jeder Klausel K_i mindestens ein Literal ℓ_{ik} auf wahr.
- Definiere Menge $C \subseteq F$ mittels B:
 - ▶ Variablen: Falls $x_i = 0$, nimm V_{i0} in C auf. Sonst V_{i1} .
 - ▶ Klauseln: Nimm Menge K_{jk} , die ℓ_{jk} enthält, in C auf.
 - Literale: Für alle nicht von C abgedeckten $\ell_{jk'}$, nimm $L_{jk'}$ in C auf.
- C ist eine exakte Überdeckung, denn
 - ▶ Variablen x_i : Werden durch V_{i0} oder V_{i1} abgedeckt.
 - ► Klauseln *K_j*: Werden durch *K_{jk}* abgedeckt. Die paarweisen Schnitte der Mengen *V_{i0}*, *V_{i1}*, *K_{jk}* sind *leer*.
 - Literale $\ell_{jk'}$: Werden durch weitere erfüllte Literale aus $L_{jk'}$ abgedeckt.
- Damit ist $(U, F) \in COVER$

Korrektheit: $f(\phi) = (U, F) \in COVER \Rightarrow \phi \in 3SAT$

Sei
$$f(\phi) = (U, F) \in \mathsf{COVER}$$

- Dann gibt es eine Menge $C \subseteq F$ mit
 - ▶ Die Vereinigung der Mengen in C deckt U ab.
 - ▶ Der paarweise Schnitt von Mengen in *C* ist leer.
- Damit gilt für C
 - Variablen x_i: Entweder ist V_{i0} oder V_{i1} in C.
 - Klauseln K_i: Genau eine Klauselmenge K_{ik} ist in C.
- Definieren Variablen in *B*: $x_i = 0$ falls $V_{0i} \in C$, sonst $x_i = 1$.
 - ▶ Die von den V_{i0} , V_{i1} abgedeckten Literale sind auf falsch gesetzt.
 - ▶ Jede Klauselmenge K_{jk} muss ein wahres Literal ℓ_{jk} enthalten.
- D.h. B ist eine erfüllende Belegung.
- Damit gilt $\phi \in 3SAT$.

Hamiltonscher Kreis

Definition Hamiltonscher Kreis

Sei *G* ein Graph. Ein Kreis in *G*, der jeden Knoten genau einmal enthält, heißt *Hamiltonscher Kreis*.

Für gerichtete Graphen definieren wir die Sprache

 $GH\text{-}KREIS\text{:= }\{\textit{G} \mid \textit{G} \text{ gerichtet}, \textit{G} \text{ besitzt einen Hamiltonschen Kreis.}\}$

Für ungerichtete Graphen definieren wir analog

UH-KREIS:= $\{G \mid G \text{ ungerichtet, } G \text{ besitzt Hamiltonschen Kreis.} \}$

Satz

GH-KREIS ist \mathcal{NP} -vollständig.

- Beweis kann mittels Cover \leq_{ρ} GH-Kreis geführt werden.
- Wir verzichten hier auf den nicht-trivialen Beweis.

NP-Vollständigkeit von Hamiltonkreis

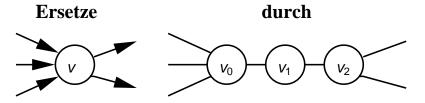
Satz

UH-KREIS ist \mathcal{NP} -vollständig.

Zeigen

- UH-KREIS $\in \mathcal{NP}$ (Übung)
- ② GH-KREIS \leq_p UH-KREIS

Idee der Reduktion f:



Reduktion f(G) = G'

Algorithmus M_f

EINGABE: G = (V, E) gerichteter Graph mit V = [n], E = [m]

- Konstruktion der Knotenmenge V':
 - Für jeden Knoten $v \in V$ konstruiere v_0, v_1, v_2
- Konstruktion der Kantenmenge E':

$$E' = \{\{u_2, v_0\}, \{v_0, v_1\}, \{v_1, v_2\} \mid (u, v) \in E\}.$$

AUSGABE: G' = (V', E') ungerichteter Graph

Laufzeit:

- Eingabelänge $|G| = \Omega(n+m)$
- Schritt 1: $\mathcal{O}(n)$, Schritt 2: $\mathcal{O}(n+m)$
- D.h. die Gesamtlaufzeit ist linear in der Eingabelänge.

Korrektheit: $G \in GH$ -KREIS $\Leftrightarrow f(G) = G' \in UH$ -KREIS

Sei G ∈ GH-KREIS

- Dann existiert eine Permutation $\pi: [n] \to [n]$, so dass G einen Hamiltonschen Kreis $H = (\pi(1), \pi(2), \dots, \pi(n), \pi(1))$ enthält.
- G' enthält den Hamiltonschen Kreis $H' = (\pi(1)_0, \pi(1)_1, \pi(1)_2, \dots, \pi(n)_0, \pi(n)_1, \pi(n)_2, \pi(1)_0).$
- Damit ist G' ∈ UH-KREIS

Sei G' ∈ UH-KREIS

- G' enthält einen Hamiltonschen Kreis H'.
 - ▶ H' muss für alle $v \in V'$ die Kanten $\{v_0, v_1\}$ und $\{v_1, v_2\}$ enthalten, sonst könnte v_1 nicht in H' sein.
 - ► H' ist oBdA von der Form $(\pi(1)_0, \pi(1)_1, \pi(1)_2, \dots, \pi(n)_0, \pi(n)_1, \pi(n)_2, \pi(1)_0).$
- *G* besitzt Hamiltonschen Kreis $H = (\pi(1), \pi(2), \dots, \pi(n), \pi(1))$.
- Damit ist G ∈ GH-KREIS

Übersicht unserer \mathcal{NP} -vollständigen Probleme

- Vorlesung:

 SAT
 - 3SAT
 - CLIQUE
 - Knotenüberdeckung
 - SUBSETSUM
 - RUCKSACK
 - Cover
 - GH-Kreis
 - UH-KREIS

Übung:

- TEILGRAPH
- INDEPENDENT SET
- 0,1-PROGRAMMIERUNG
- LÄNGSTER PFAD
- HALF-CLIQUE

Diffie-Hellman Schlüsselaustausch (1976)

Öffentliche Parameter:

- ullet Generator g einer multiplikativen Gruppe G mit primer Ordnung q.
- Die Beschreibungslänge von Elementen in G ist $\mathcal{O}(\log^2 q)$.
- Gruppenoperationen in G sollen Laufzeit $\mathcal{O}(\log^2 q)$ kosten.

Protokoll Diffie-Hellman Schlüsselaustausch

EINGABE: p, g

- ① Alice wählt $a \in_R \mathbb{Z}_q$ und schickt g^a an Bob.
- 2 Bob wählt $b \in_R \mathbb{Z}_q$ und schickt g^b an Alice.
- 3 Alice berechnet $(g^b)^a = g^{ab}$, Bob analog $(g^a)^b = g^{ab}$.

Gemeinsamer geheimer DH-Schlüssel: gab.

Sicherheit gegenüber passive Angreifer

- Angreifer Eve für DH-Schlüsselaustausch erhält g, g^a, g^b .
- Sicherheit: Eve kann g^{ab} nicht von g^z , $z \in_R \mathbb{Z}_q$ unterscheiden.

Definition Decisional Diffie-Hellman (DDH)

Sei g Generator einer multiplikativen Gruppe G mit Ordnung q. Wir definieren die Sprache

$$\mathsf{DDH} := \{ (q, g, g^a, g^b, g^z) \mid g^z = g^{ab} \}.$$

Das ElGamal Kryptosystem (1984)

Algorithmus ElGamal

- **Schlüsselerzeugung**: Sei g Generator einer multiplikativen Gruppe G mit primer Ordnung q. Wähle $x \in_R \mathbb{Z}_q$. Setze $h := g^x$. Öffenlicher Schlüssel: q, g, h, geheimer Schlüssel: x,
- Verschlüsselung: Für Nachrichten $m \in G$ wähle $y \in_R \mathbb{Z}_q$ und berechne

$$Enc(m) = c = (c_1, c_2) = (g^y, m \cdot (h)^y).$$

• Entschlüsselung: Für einen Chiffretext $c = (c_1, c_2)$ berechne

$$Dec(c) = \frac{c_2}{c_1^x} = \frac{m \cdot g^{xy}}{g^{xy}} = m.$$

Laufzeit:

- Verschlüsselung: $\mathcal{O}(\log y \cdot \log^2 q) = \mathcal{O}(\log^3 q)$
- Entschlüsselung: $\mathcal{O}(\log x \cdot \log^2 q) = \mathcal{O}(\log^3 q)$

Sicherheit von ElGamal

Intuitiv: Eve soll $c_2 = m \cdot g^{ab}$ nicht von $c_2' \in_R G$ unterscheiden können.

Protokoll Unterscheider

EINGABE: q, g, g^x

- Eve wählt $m \in G$ und schickt m an Alice.
- ② Alice wählt $b \in_R \{0,1\}$, $y \in_R \mathbb{Z}_q$:
 - Falls b = 0: Sende $Enc(m) = (g^y, m \cdot g^{xy})$ an Eve zurück.
 - Falls b=1: Sende $(g^y,c_2')\in_R \mathbb{Z}_p^* \times \mathbb{Z}_p^*$ an Eve zurück.

Eves AUSGABE: $b' \in \{0, 1\}$

- Eve gewinnt das Spiel gdw b' = b.
- D.h. Eve muss eine gültige Verschlüsselung c_2 von einem zufälligen Gruppenelement c_2' unterscheiden.

Definition Sprache ElGamal

ELGAMAL := $\{(q, g, g^x, g^y, m, c_2) \mid c_2 = m \cdot g^{xy}\}.$

Sicherheitsbeweis per Reduktion

Satz Sicherheit von ElGamal unter DDH

Das ElGamal Kryptosystem ist sicher gegen polynomielle Angreifer (mit Erfolgsws 1) unter der Annahme, dass DDH nicht effizient entscheidbar ist.

Logik des Beweises:

- Zeigen: DDH ≤_p ELGAMAL
- D.h. jeder polynomielle Algorithmus für ELGAMAL liefert einen polynomiellen Algorithmus für DDH. (P-Reduktionssatz)
- Ann.: Es existiert ein polyn. Angreifer A, der Verschlüsselungen von zufälligen Gruppenelementen unterscheidet.
- Dann gibt es einen Algorithmus, der in polyn. Zeit DH-Schlüssel g^{ab} von zufälligen Gruppenelementen unterscheidet.
- Widerspruch: Nach Annahme gibt es keinen effizienten Algorithmus zum Entscheiden von DH-Schlüsseln g^{ab}.
- Daher kann es auch keinen polynomiellen Angreifer A geben.

Reduktion f

Algorithmus M_f

EINGABE: q, g, g^a, g^b, g^z

- 2 Wähle $m \in_R G$.
- **3** Berechne $c_2 = m \cdot g^z$.

AUSGABE: q, g, g^x, g^y, m, c_2

Laufzeit:

- Eingabelänge: $\Omega(\log q)$
- Gesamtlaufzeit: $\mathcal{O}(\log^2(q))$

Korrektheit Reduktion: $w \in DDH \leq_{p} f(w) \in ELGAMAL$

Sei $(q, g, g^a, g^b, g^z) \in DDH$.

- Dann gilt $g^z = g^{ab} = g^{xy}$.
- Damit ist $c_2 = m \cdot g^z = m \cdot g^{xy}$ korrekte Verschlüsselung von m.
- D.h. $(q, g, g^x, g^y, m, \delta) \in \mathsf{ELGAMAL}$

Sei $f(q,g,g^a,g^b,g^z)=(q,g,g^x,g^y,m,c_2)\in \mathsf{ELGAMAL}.$

- Dann ist $c_2 = m \cdot g^z$ eine korrekte Verschlüsselung von m.
- D.h. $Dec(c) = \frac{m \cdot g^z}{g^{ab}} = m$ und damit $g^z = g^{xy} = g^{ab}$.
- Dann ist $(q, g, g^a, g^b, g^z) \in \mathsf{DDH}$.

Brechen von ElGamal ist nicht schwerer als DDH

Satz

 $\mathsf{ELGAMAL} \leq_{p} \mathsf{DDH}$

Beweis: Wir definieren die folgende Reduktion f.

Algorithmus M_f

EINGABE: q, g, g^x, g^y, m, c_2

2 Berechne $g^z = \frac{c_2}{m}$.

AUSGABE: q, g, g^a, g^b, g^z

Laufzeit:

- Eingabelänge: $\Omega(\log q)$
- Laufzeit: O(log² q)

Korrektheit von $f: w \in \mathsf{ELGAMAL} \Leftrightarrow f(w) \in \mathsf{DDH}$

Sei $(q, g, g^x, g^y, m, c_2) \in \mathsf{ELGAMAL}$.

- Dann ist $c_2 = m \cdot g^{xy}$ korrekte Verschlüsselung von m.
- Damit gilt $\frac{c_2}{m} = g^{xy} = g^{ab} = g^z$.
- D.h. $(q, g, g^a, g^a, g^z) \in DDH$.

Sei $f(q, g, g^x, g^y, m, c_2) = (q, g, g^a, g^b, g^z) \in DDH$.

- Dann gilt $g^z = g^{ab} = g^{xy}$.
- Damit folgt $c_2 = m \cdot g^z = m \cdot g^{xy}$ ist Verschlüsselung von m.
- D.h. $(q, g, g^x, g^y, m, c_2) \in \mathsf{ELGAMAL}$.

Quadratische Reste

Definition Quadratischer Rest

Sei $n \in \mathbb{N}$. Ein Element $a \in \mathbb{Z}_n$ heißt *quadratischer Rest* in \mathbb{Z}_n , falls es ein $b \in \mathbb{Z}_n$ gibt mit $b^2 = a \mod n$. Wir definieren

 $\mathsf{Q} R_n = \{ a \in \mathbb{Z}_n^* \mid a \text{ ist ein quadratischer Rest } \} \text{ und } \mathsf{Q} N R_n = \mathbb{Z}_n^* \setminus \mathsf{Q} R.$

Lemma Anzahl quadratischer Reste in primen Restklassen

Sei p > 2 prim. Dann gilt $|QR_p| = \frac{|\mathbb{Z}_p^*|}{2} = \frac{p-1}{2}$.

- Sei $a \in QR_p$. Dann gilt $a = b^2 = (-b)^2$.
- ullet D.h. jeder quadratische Rest a besitzt \geq 2 Quadratwurzeln.
- Da \mathbb{F}_p ein Körper ist, besitzt das Polynom $p(x) = x^2 a$ höchstens zwei Nullstellen in \mathbb{F}_p . D.h. a hat ≤ 2 Quadratwurzeln.
- Damit bildet $f: \mathbb{Z}_p^* \to QR, x \mapsto x^2 \mod p$ jeweils genau zwei Elemente $\pm b$ auf einen quadratischen Rest $a \in QR$ ab.
- D.h. genau die Hälfte der Elemente in \mathbb{Z}_p^* ist in QR.

Das Legendre Symbol

Definition Legendre Symbol

Sei p > 2 prim und $a \in \mathbb{N}$. Das *Legendre Symbol* ist definiert als

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{falls } p | a \\ 1 & \text{falls } (a \bmod p) \in QR_p \\ -1 & \text{falls } (a \bmod p) \in QNR_p. \end{cases}$$

Berechnung des Legendre Symbols

Satz

$$\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \bmod p.$$

- Für p|a sind beide Seiten Null. Gelte also p ∤a.
- Da $a^{p-1} = 1 \mod p$, folgt $a^{\frac{p-1}{2}} = \pm 1$.
- Sei g Generator von \mathbb{Z}_p^* und $a=g^j$ für ein $j\in\mathbb{Z}_{p-1}$.
- Es gilt für die linke Seite $a \in QR_p$ gdw. j gerade ist.
- Für die rechte Seite gilt

$$a^{\frac{p-1}{2}} = g^{\frac{j(p-1)}{2}} = 1 \text{ gdw } p - 1 \text{ teilt } \frac{j(p-1)}{2}.$$

Damit ist die rechte Seite ebenfalls 1 gdw j gerade ist.

Das Legendresymbol lässt sich in Zeit $\mathcal{O}(\log a \log^2 p)$ berechnen.

Eigenschaften des Legendre Symbols

Lemma Eigenschaften Quadratischer Reste

- ② (QR, ·) ist eine multiplikative Gruppe.

- Übungsaufgabe
- ohne Beweis (nicht-trivial)

Das Quadratische Reziprozitätsgesetz

Satz Quadratisches Reziprozitätsgesetz (Gauß)

Seien p, q > 2 prim. Dann gilt

$$\left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}} \left(\frac{p}{q}\right) = \begin{cases} -\left(\frac{p}{q}\right) & \text{für } p = q = 3 \text{ mod } 4\\ \left(\frac{p}{q}\right) & \text{sonst.} \end{cases}$$

ohne Beweis (nicht-trivial)

- Liefert alternativen Algorithmus zur Berechnung des Legendre Symbols.
- Bsp: $\left(\frac{6}{11}\right) = \left(\frac{3}{11}\right) \cdot \left(\frac{2}{11}\right) = -\left(\frac{11}{3}\right) \cdot (-1)$ = $-\left(\frac{2}{3}\right) \cdot (-1) = -(-1) \cdot (-1) = (-1)$.
- D.h. 6 ist quadratischer Nichtrest in Z₁₁*.
- Benötigen Primfaktorzerlegung, um das QR-Gesetz anzuwenden.

Das Jacobi Symbol

Definition Jacobi Symbol

Sei $n = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k} \in \mathbb{N}$ ungerade und $a \in \mathbb{N}$. Dann ist das *Jacobi Symbol* definiert als

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{e_i} \cdot \ldots \cdot \left(\frac{a}{p_k}\right)^{e_k}.$$

- Warnung: $(\frac{a}{n}) = 1$ impliziert nicht, dass $a \in QR_n$ ist.
- Bsp: $\left(\frac{2}{15}\right) = \left(\frac{2}{3}\right) \cdot \left(\frac{2}{5}\right) = (-1)(-1) = 1$.
- D.h. 2 ∈ QNR₃ und 2 ∈ QNR₅. Damit besitzt x² = 2 weder Lösungen modulo 3 noch modulo 5.
- Nach CRT besitzt $x^2 = 2 \mod 15$ ebenfalls keine Lösung.

Verallgemeinerungen für das Jacobi Symbol

Satz

Für alle ungeraden m, n gilt

Wir beweisen hier nur das Analog des Reziprozitätsgesetzes.

- Falls ggT(m, n) > 1, sind beide Seiten 0. Sei also ggT(m, n) = 1.
- Schreiben Primfaktorzerlegung $m=p_1\dots p_r$ und $n=q_1\dots q_s$. $(p_i$'s und q_j 's können dabei jeweils mehrmals auftreten)
- Wandeln $\left(\frac{m}{n}\right) = \prod_{i,j} \left(\frac{p_i}{q_j}\right)$ zu $\left(\frac{n}{m}\right) = \prod_{i,j} \left(\frac{q_i}{p_i}\right)$ durch rs-malige Anwendung des Reziprozitätsgesetzes.
- Anzahl (-1) entspricht Anzahl Paare (i,j) mit $p_i = q_j = 3 \mod 4$.
- D.h. $\left(\frac{m}{n}\right) = -\left(\frac{n}{m}\right)$ gdw. ungerade viele p_i, g_j kongruent 3 mod 4.
- Es gibt ungerade viele $p_i, g_j = 3 \mod 4$ gdw. $m = n = 3 \mod 4$ ist.

Rekursive Berechnung des Jacobi Symbols

Idee: Für ungerades *n* gilt

$$\left(\frac{m}{n}\right) = \left(\frac{2}{n}\right)^k \cdot \left(\frac{m'}{n}\right) = \left(\frac{2}{n}\right)^k \cdot \left(-1\right)^{\frac{(m'-1)(n-1)}{4}} \left(\frac{n \bmod m'}{m'}\right).$$

Algorithmus Jacobi-Symbol

EINGABE: m, n

- Falls ggT(m, n) > 1, Ausgabe 0.
- 2 Falls m = 1, Ausgabe 1.
- 3 Sei $m = 2^k m'$ mit m' ungerade.
- 4 Ausgabe $(-1)^{\frac{k(n^2-1)}{8}} \cdot (-1)^{\frac{(m'-1)(n-1)}{4}} \cdot \text{Jacobi-Symbol}(n \mod m', m')$

AUSGABE: $(\frac{m}{n})$

Bsp:
$$\left(\frac{14}{15}\right) = \left(\frac{2}{15}\right) \cdot \left(\frac{7}{15}\right) = (-1) \cdot \left(\frac{15 \mod 7}{7}\right) = (-1).$$

- Laufzeit: Analog zum Euklidischen Algorithmus:
 O(log max{m, n}) rekursive Aufrufe.
- Jeder Aufruf kostet $\mathcal{O}(\log^2 \max\{m, n\})$.

Das Quadratische Reste Problem

Definition Pseudoquadrate

Sei N = pq mit p, q prim. Eine Zahl a heißt Pseudoquadrat bezüglich N, falls

$$\left(\frac{a}{N}\right) = 1 \text{ und } a \notin QR_N.$$

Wir definieren die Sprache

QUADRAT:=
$$\{a \in \mathbb{Z}_N^* \mid \left(\frac{a}{N}\right) = 1 \text{ und } a \in QR_N\}.$$

- Für alle Pseudoquadrate a gilt: $\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = (-1)$.
- D.h. die Sprache QUADRAT kann effizient entschieden werden, falls p, q bekannt sind. Im Allgemeinen ist nur N bekannt.

Quadratische Reduositätsannahme (QR-Annahme)

Es gibt keinen polynomiellen Algorithmus, der QUADRAT entscheidet.

Quadratwurzeln in \mathbb{Z}_N^*

Lemma

Sei N=pq mit p,q prim und $p=q=3 \mod 4$ (sogenannte Blum-Zahl). Dann besitzt jedes $a=x^2\in QR_N$ genau eine Quadratwurzel in QR_N , die sogenannte Hauptwurzel.

Beweis:

- Die Lösungen des Gleichungssystems $\left| \begin{array}{l} y=\pm x \bmod p \\ y=\pm x \bmod q \end{array} \right|$ liefern mittels Chinesischem Restsatz 4 Lösungen in \mathbb{Z}_N^* .
- Eine Lösung ist in QR_N gdw sie in $QR_p \times QR_q$ ist.
- Betrachten Lösung modulo p (analog mod q):

$$\left(\frac{x}{p}\right) = \left(\frac{(-1)(-x)}{p}\right) = \left(\frac{-1}{p}\right) \cdot \left(\frac{-x}{p}\right).$$

- Für $p = 3 \mod 4$ gilt $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)$.
- D.h. $\left(\frac{x}{p}\right) = -\left(\frac{-x}{p}\right)$ und entweder x oder -x ist in QR_p .
- Damit ist genau eine der 4 Lösungen in QR_N.

Der Blum-Blum-Shub (BBS) Pseudozufallsgenerator

Korollar

Die Abb. $f: QR_N \to QR_N, x \mapsto x^2 \mod N$ ist eine Bijektion auf QR_N .

- (k, ℓ) -Pseudozufallsgeneratoren generieren aus k Zufallsbits eine Sequenz von $\ell > k$ Zufallsbits.
- Der (k, ℓ) -BBS Generator verwendet obige Bijektion.

Algorithmus BBS Pseudozufallsgenerator (1986)

EINGABE: N = pq Blumzahl der Bitlänge |N| = k, 1^{ℓ} mit $\ell \in \mathbb{N}$ und $\ell > k$, $r \in \mathbb{Z}_N^*$

- Property For i = 1 to ℓ
 - **③** Setze $s_i \leftarrow s_{i-1}^2 \mod N$. Gib $z_i = s_i \mod 2$ aus.

AUSGABE: $(z_1, ..., z_{\ell}) \in \{0, 1\}^{\ell}$.

Laufzeit: $\mathcal{O}(\ell \log^2 N)$, d.h. polynomiell in der Eingabelänge.

Die Sicherheit des BBS Generators

Sicherheit: Man kann die Verteilung der (z_1, \ldots, z_ℓ) nicht von der Gleichverteilung auf $\{0, 1\}^\ell$ unterscheiden.

Man kann folgendes zeigen:

- Sei A ein polynomieller Unterscheider für (z_1, \ldots, z_ℓ) .
- Dann gibt es einen polyn. Algorithmus B, der s₀ mod 2 berechnet.

Satz Sicherheit des BBS Generators

Die Ausgabe des BBS Generators ist von der Gleichverteilung in polynomieller Zeit ununterscheidbar unter der QR-Annahme.

- Annahme: ∃ polyn. Unterscheider A für den BBS Generator.
- Sei B ein Algorithmus, der s₀ mod 2 berechnet.
- Zeigen, dass dann ein polyn. Algorithmus für QUADRAT existiert. (Widerspruch zur Quadratischen Residuositätsannahme)

Entscheiden der Sprache QUADRAT

Algorithmus für QUADRAT

EINGABE:
$$N, a \in \mathbb{Z}_N^*$$
 mit $\left(\frac{a}{N}\right) = 1, 1^{\ell}$

- **○** Setze $s_0 \leftarrow a \mod N$.
- 2 Berechne (z_1, \ldots, z_ℓ) mittels BBS Generator.
- ③ Berechne $z_0 \leftarrow B(z_1, ..., z_\ell)$.
- ¶ Falls $z_0 = (a \mod 2)$, Ausgabe " $x \in QR_N$ ".

 Sonst Ausgabe " $x \notin QR_N$ ".

Laufzeit: $\mathcal{O}(\ell \cdot \log^2 N + T(B))$

Korrektheit:

- Wegen $\left(\frac{a}{N}\right) = 1$ ist entweder a oder (-a) = N a in QR_N .
- D.h. a oder (-a) ist eine Hauptwurzel von $s_1 = a^2 \mod N$.
- Genau eine der beiden Zahlen a, (-a) ist gerade.
- z_0 ist das unterste Bit der Hauptwurzel von $s_1 = a^2 \mod N$.
- D.h. a ist eine Hauptwurzel gdw z_0 und $a \mod 2$ übereinstimmen.

Probabilistische Verschlüsselung

Algorithmus Goldwasser-Micali Kryptosystem (1984)

- Schlüsselgenerierung: Wähle Blumzahl N=pq. Wähle $z\in_R \mathbb{Z}_N^*$, so dass z ein Pseudoquadrat ist. Setze den öffentlichen Schlüssel pk=(N,z) und den privaten Schlüssel sk=(p,q).
- **2** Verschlüsselung: Für $m \in \{0,1\}$ wähle $x \in_R \mathbb{Z}_N^*$ und berechne $c \leftarrow z^m x^2 \mod N$.
- 3 Entschlüsselung: Für einen Chiffretext c berechne

$$m = \begin{cases} 0 & \text{falls } c \in QR_N, \text{ d.h. falls } \left(\frac{c}{p}\right) = 1. \\ 1 & \text{falls } c \notin QR_N, \text{ d.h. falls } \left(\frac{c}{p}\right) = (-1). \end{cases}$$

Sicherheit des Goldwasser-Micali Kryptosystems

Korrektheit

- Falls m = 0 ist $c = x^2$ ein zufälliger quadratischer Rest in \mathbb{Z}_N^* .
- Falls m = 1 ist $c = z \cdot x^2$ ein zufälliges Pseudoquadrat.
- Es gilt $\left(\frac{c}{N}\right) = \left(\frac{z^m x^2}{N}\right) = \left(\frac{z}{N}\right)^m \cdot \left(\frac{x^2}{N}\right) = 1$.
- D.h. entweder $\left(\frac{c}{p}\right) = \left(\frac{c}{q}\right) = 1$ oder $\left(\frac{c}{p}\right) = \left(\frac{c}{q}\right) = (-1)$.
- Im ersten Fall ist $c \in QR_N$, im zweiten Fall gilt $c \notin QR_N$.

Laufzeit:

- Verschlüsselung: $\mathcal{O}(\log^2 N)$
- Entschlüsselung: $\mathcal{O}(\log^2 N)$

Satz Sicherheit des Goldwasser-Micali Kryptosystems

Das GM Kryptosystem ist sicher unter der QR-Annahme.

Beweisidee:

 Unterscheiden von Verschlüsselungen von 0 und 1 ist äquivalent zum Entscheiden der Sprache QUADRAT.

Bit Commitments

Szenario informal:

- Commitment-Phase:
 - ▶ Alice platziert ein Bit $b \in \{0,1\}$ in einem Safe, der in Bob's Zimmer steht. Bob besitzt keinen Safeschlüssel.
 - Bob kann den Safe nicht einsehen, lernt also nichts über b.
 (Conceiling Eigenschaft)
- Revealing-Phase:
 - Alice öffnet den Safe und zeigt Bob das Bit b.
 - Alice kann ihr Bit dabei nicht ändern.
 (Binding Eigenschaft)

Mathematische Modellierung

- Commitment mittels $f: \{0,1\} \times X \rightarrow Y$ für endliche Mengen X, Y.
- Commitment (sog. Blob): Wähle $x \in X$ und sende f(b, x) an Bob.
- Öffnen des Commitments: Sende *b* und *x* an Bob.

Bit Commitment via Goldwasser-Micali Kryptosystem

Öffentliche Parameter:

- ullet Blumzahl N, Pseudoquadrat $z\in\mathbb{Z}_N^*$
- $X = Y = \mathbb{Z}_N^*$

Algorithmus Goldwasser-Micali Bit Commitment

- Commitment-Phase
 - ▶ Wähle $x \in_R \mathbb{Z}_N^*$.
 - Sende Blob $f(b, x) = z^b x^2 \mod N$ an Bob.
- Revealing-Phase
 - Sende b, x an Bob.
 - Bob überprüft die Korrektheit von $f(b, x) = z^b x^2 \mod N$.

Conceiling Eigenschaft:

• Unter der QR-Annahme lernt Bob nichts über das Bit $b \in \{0, 1\}$.

Binding Eigenschaft

Satz

Goldwasser-Micali Commitments besitzen die Binding Eigenschaft.

Beweis:

- Annahme: Alice kann Blob f(b, x) für b = 0 und b = 1 öffnen.
- D.h. Alice kann $x_1, x_2 \in \mathbb{Z}_N^*$ berechnen mit

$$f(b, x) = z^0 x_1^2 = z^1 x_2^2 \mod N.$$

• Daraus folgt $z = \left(\frac{x_1}{x_2}\right)^2 \mod N$, d.h. $\frac{x_1}{x_2}$ ist Quadratwurzel von z. (Widerspruch: z ist ein Pseudoquadrat in \mathbb{Z}_N^* .)

Münzwurf über das Telefon

- Bit Commitments haben zahlreiche Anwendungen in kryptographischen Protokollen.
- Exemplarisch hier ein Protokoll für einen fairen Münzwurf.

Algorithmus Münzwurf via Internet

- Alice sendet Bob Commitment für Bit $b \in \{0, 1\}$.
- 2 Bob rät ein Bit $b' \in \{0, 1\}$.
- 3 Alice öffnet ihr Bit. Bob gewinnt gdw b' = b.
 - Conceiling-Eigenschaft verhindert, dass Bob etwas über b lernt.
 - Binding-Eigenschaft verhindert, dass Alice b in 1 b' ändert.

Berechnen von Quadratwurzeln modulo p

Satz Quadratwurzeln mod p

Sei p prim, $p=3 \bmod 4$ und $a \in QR_p$. Dann sind die beiden Quadratwurzeln von a von der Form

$$x = \pm a^{\frac{p+1}{4}} \mod p$$
, wobei $a^{\frac{p+1}{4}} \in QR_p$.

Es gilt

$$x^2 = a^{\frac{p+1}{2}} = a^{\frac{p-1}{2}} \cdot a = \left(\frac{a}{p}\right) \cdot a = a \bmod p.$$

• Ferner gilt $a^{\frac{p+1}{4}} \mod p \in QR_p$ wegen

$$\left(\frac{a^{\frac{p+1}{4}}}{p}\right) = \left(\frac{a}{p}\right)^{\frac{p+1}{4}} = 1.$$

D.h. Quadratwurzeln können in Zeit $\mathcal{O}(\log^3 p)$ berechnet werden.

Das Blum-Goldwasser Kryptosystem

Algorithmus Blum-Goldwasser Kryptosystem (1985)

- Schlüsselgenerierung: Wähle Blumzahl N = pq. Setze pk = N und sk = (p, q).
- **2** Verschlüsselung: Für $m = (m_1, \dots, m_\ell) \in \{0, 1\}^\ell$:
 - ▶ Wähle $r \in_R \mathbb{Z}_N^*$.
 - ▶ $(z_1, ..., z_\ell) \leftarrow \mathsf{BBS}$ Generator auf $s_0 = r^2 \bmod N$.
 - For i = 1 to ℓ : Berechne $c_i = m_i + z_i \mod 2$.
 - ▶ Berechne $s_{\ell+1} = s_0^{2^{\ell+1}} \mod N$.
 - AUSGABE: Chiffretext $c = (c_1, \dots, c_\ell, s_{\ell+1}) \in \{0, 1\}^\ell \times \mathbb{Z}_N^*$.
- **3** Entschlüsselung von c mittels sk = (p, q):
 - Berechne $\mathbf{s}_0 \in \mathbb{Z}_N^*$ als Lösung von $\left|\begin{array}{ccc} \mathbf{s}_0 &=& \mathbf{s}_{\ell+1}^{\left(\frac{p+1}{4}\right)^{\ell+1}} \mod p \\ \mathbf{s}_0 &=& \mathbf{s}_{\ell+1}^{\left(\frac{p+1}{4}\right)^{\ell+1}} \mod q \end{array}\right|$
 - ▶ $(z_1, ..., z_\ell) \leftarrow \mathsf{BBS}$ Generator auf $s_0 = r^2 \bmod N$.
 - For i = 1 to ℓ : Berechne $m_i = c_i + z_i \mod 2$.

Laufzeit und Korrektheit

Korrektheit:

- (z_1, \ldots, z_ℓ) wird als One-Time Pad für m verwendet.
- Entschlüsselung berechnet $\ell+1$ -malig die Hauptwurzel von $s_{\ell+1}$.
- Dies rekonstruiert die Saat s₀ des BBS Generators.

Laufzeit:

- Verschlüsselung: $\mathcal{O}(\ell \cdot \log^2 N)$
- Entschlüsselung: $\mathcal{O}(\log^3 N + \ell \cdot \log^2 N)$.

Satz Sicherheit des BG-Kryptosystems

Das Blum Goldwasser Kryptosystem ist sicher unter der Annahme, dass Blumzahlen N = pq schwer zu faktorisieren sind.

(ohne Beweis)

Elliptische Kurven

Definition Elliptische Kurve

Sei $p \neq 2,3$ prim, $f(x) = x^3 + ax + b \in \mathbb{Z}_p[x]$, $4a^3 + 27b^2 \neq 0 \mod p$. Wir definieren für f(x) eine elliptische Kurve E als

$$\{(x,y)\in\mathbb{Z}_p\mid y^2=x^3+ax+b\}\cup\{\mathbf{0}\},$$

wobei O der Punkt im Unendlichen heißt.

Anmerkungen:

- Die Bedingung $4a^3+27b^2$ ist äquivalent zu der Forderung, dass f(x) in \mathbb{Z}_p^* keine mehrfachen Nullstellen besitzt. (Übung)
- Für jeden Punkt P = (x, y) auf E liegt auch (x, -y) auf E.
- Wir definieren -P = (x, -y).
- Für $P = \mathbf{0}$ definieren wir $-P = \mathbf{0}$ und P + Q = Q für alle Q auf E.

Addition von Punkten

Algorithmus Addition von Punkten auf *E*

EINGABE: $P = (x_1, y_1), Q = (x_2, y_2)$ auf E mit $P, Q \neq \mathbf{0}$

• Falls $x_1 = x_2$ und $y_1 = -y_2$, Ausgabe •.

2 Setze
$$\alpha := \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{für } x_1 \neq x_2 \\ \frac{3x_1^2 + a}{2y_1} & \text{für } x_1 = x_2 \end{cases}$$
. Setze $\beta = y_1 - \alpha x_1$.

3 Berechne $x_3 = \alpha^2 - x_1 - x_2$ und $y_3 = -(\alpha x_3 + \beta)$.

AUSGABE: $P + Q = (x_3, y_3)$

Anmerkungen:

- Sei $P \neq Q$. Wir betrachten die Gerade G durch P, Q.
- Falls Q = -P, so liegt G parallel zur y-Achse. Wir definieren $P + (-P) = \mathbf{0}$.
- Sonst ist G definiert durch $y = \alpha x + \beta$ mit Steigung $\alpha = \frac{y_2 y_1}{x_2 x_1}$.
- Für P = Q besitzt die Tangente im Punkt P Steigung $\alpha = \frac{3x_1^2 + a}{2y_1}$.

Addition von Punkten

Lemma Addition von Punkten auf E

Seien P, Q auf E mit $P \neq -Q$. Dann schneidet die Gerade durch P, Q die Kurve E in einem dritten Punkt R mit R := -(P + Q).

Beweis:

- Wir zeigen nur $P \neq Q$. Der Beweis für P = Q folgt analog.
- Wie zuvor setzen wir $P = (x_1, y_1), Q = (x_2, y_2)$ und $R = (x_3, y_3)$.
- Sei G die Gerade $y = \alpha x + \beta$ durch P, Q. Dann gilt für i = 1, 2 $(\alpha x_i + \beta)^2 = x_i^3 + ax_i + b$.
- x_1, x_2 sind damit Nullstellen des Polynoms $g(x) = x^3 \alpha^2 x^2 + \dots$
- Dann muss g(x) 3 Nullstellen besitzen

$$g(x) = (x - x_1)(x - x_2)(x - x_3) = x^3 - (x_1 + x_2 + x_3)x^2 + \dots$$

- Durch Koeffizientenvergleich folgt $x_1 + x_2 + x_3 = \alpha^2$.
- Wir erhalten $y_3 = \alpha x_3 + \beta$ und damit $-R = (x_3, -y_3)$.

Eigenschaften der Addition auf E

Korollar Effizienz der Addition

Sei E eine elliptische Kurve mit Punkten P, Q. Dann kann P+Q in Laufzeit $\mathcal{O}(\log^2 p)$ berechnet werden.

• Wir benötigen nur Addition, Multiplikation und Division in \mathbb{Z}_{p} .

Satz von Mordell

Jede elliptische Kurve *E* bildet mit der definierten Addition eine abelsche Gruppe.

Beweis:

- Abgeschlossenheit: P + Q liefert wieder einen Punkt auf E.
- Neutrales Element ist der Punkt O.
- Inverses von $P \neq \mathbf{0}$ ist -P und $-\mathbf{0} = \mathbf{0}$.
- Abelsch: Berechnung von G unabhängig von Reihenfolge P, Q.
- Assoziativität kann durch Nachrechnen gezeigt werden.

Gruppenordnung einer elliptischen Kurve

Satz von Hasse

Sei E eine elliptische Kurve über \mathbb{F}_p . Dann gilt

$$|E| = p + 1 + t \text{ mit } |t| \le 2\sqrt{p}.$$

Anmerkungen: (ohne Beweis)

- Sei $x \in \mathbb{Z}_p$ und $f(x) = x^3 + ax + b$.
- Falls f(x) ein quadratischer Rest modulo p ist, dann existieren genau zwei Lösungen $\pm y$ der Gleichung $y^2 = f(x) \mod p$, d.h.

$$(x, y)$$
 und $(x, -y)$ liegen auf E .

- Falls f(x) ein Nichtrest ist, besitzt E keinen Punkt der Form (x, \cdot) .
- Genau die Hälfte aller Elemente in \mathbb{Z}_p^* ist ein quadratischer Rest.
- Falls $x \mapsto f(x)$ sich zufällig verhält auf \mathbb{Z}_p , erwarten wir $\frac{p}{2} \cdot 2 = p$ Punkte. Hinzu kommt der Punkt **O**, d.h. $|E| \approx p + 1$.
- Satz von Hasse: $x \mapsto f(x)$ ist fast zufällig mit Fehler $|t| \le 2\sqrt{p}$.

Unser Modell

- Shannon 1948: Informationstheorie und Mathematik der Kommunikation
- Hamming 1950: Erste Arbeit über fehlerkorrigierende Codes

Modell:

 $\textbf{Sender} \rightarrow \textbf{Kodierer} \rightarrow \textbf{Kanal} \rightarrow \textbf{Dekodierer} \rightarrow \textbf{Empfänger}$

- Kanal ist bandbreitenbeschränkt (Kompression)
- Kanal ist fehleranfällig (Fehlerkorrektur)
 - ▶ Bits können ausfallen: $0 \to \epsilon$, $1 \to \epsilon$ (Ausfallkanal)
 - Bits können kippen: 0 → 1, 1 → 0 (Symmetrischer Kanal)

Motivierendes Bsp: Datenkompression

Szenario:

- Kanal ist fehlerfrei.
- Übertragen gescannte Nachricht:
 Wahrscheinlichkeiten: 99% weißer, 1% schwarzer Punkt.
- Weiße Punkte erhalten Wert 0, schwarze Wert 1.

Kodierer:

- Splitten Nachricht in Blocks der Größe 10.
- Wenn Block x=0000000000, kodiere mit 0, sonst mit 1x.
- 1 dient als Trennzeichen beim Dekodieren.

Dekodierer:

- Lese den Code von links nach rechts.
- Falls 0, dekodiere 0000000000.
- Falls 1, übernehme die folgenden 10 Symbole.

Erwartete Codelänge

Sei $q := Ws[Block ist 0000000000] = (0.99)^{10} \ge 0.9$. Sei Y Zufallsvariable für die Codewortlänge eines 10-Bit Blocks:

$$E[Y] = \sum_{y \in \{0,1x\}} |y| \cdot Ws(Y = |y|) = 1 \cdot q + 11 \cdot (1 - q) = 11 - 10q.$$

- D.h. die erwartete Bitlänge der Kodierung eines 10-Bit Blocks ist $11-10q \le 2$.
- Datenkompression der Nachricht auf 20%.
- Können wir noch stärker komprimieren?
- Entropie wird uns Schranke für Komprimierbarkeit liefern.

Ausblick: fehlerkorrigierende Codes

Szenario: Binärer symmetrischer Kanal

- Bits 0,1 kippen mit Ws $p, p < \frac{1}{2}$ zu 1,0. (Warum $< \frac{1}{2}$?)
- Korrekte Übertragung $0 \mapsto 0$, $1 \mapsto 1$ mit Ws 1 p.
- In unserem Beispiel p = 0.1.

Kodierer:

- Verdreifache jedes Symbol, d.h. 0 → 000, 1 → 111
- Repetitionscode der Länge 3.

Dekodierer:

- Lese den Code in 3er-Blöcken.
- Falls mindestens zwei Symbole 0 sind, dekodiere zu 0.
- Sonst dekodiere zu 1.

Ws Dekodierfehler

Symbol wird falsch dekodiert, falls mind. zwei der drei Bits kippen.

Ws(Bit wird falsch dekodiert)

- = Ws(genau 2 Bits kippen) + Ws(genau 3 Bits kippen)
- $= 3*p^2*(1-p)+p^3=3*10^{-2}*(1-10^{-1})+10^{-3}$
- Ohne Kodierung Fehlerws von 0.1.
- Mit Repetitionscode Fehlerws von \approx 0.03.
- Nachteil: Kodierung ist dreimal so lang wie Nachricht.
- Ziel:
 Finda guton Tradooff zwiechon Foblorwe und Cod

Finde guten Tradeoff zwischen Fehlerws und Codewortlänge.

Ausblick: fehlertolerante Codes

Szenario: Binärer Ausfallkanal

- Bits 0,1 gehen mit Ws $p, p < \frac{1}{2}$ verloren, d.h. $0 \mapsto \epsilon$ bzw. $1 \mapsto \epsilon$.
- Korrekte Übertragung $0 \mapsto 0$, $1 \mapsto 1$ mit Ws 1 p.
- In unserem Beispiel p = 0.1.

Kodierer: Repetitionscode der Länge 3.

Dekodierer:

- Lese den Code in 3er-Blöcken.
- Falls 3er-Block Zeichen $x \in \{0, 1\}$ enthält, Ausgabe x.

Fehler beim Dekodieren: Alle drei Symbole gehen verloren.

- Ws(Bit kann nicht dekodiert werden) = $p^3 = 0.001$.
- Fehlerws kleiner beim Ausfallkanal als beim sym. Kanal.

Definition Code

Bezeichnungen:

- Alphabet $A = \{a_1, \dots, a_n\}$, Menge von Symbolen a_i
- Nachricht sind Elemente $m \in A^*$.

Definition Code

Sei A ein Alphabet. Eine (binäre) Codierung C des Alphabets A ist eine injektive Abbildung

$$C: A \rightarrow \{0,1\}^*$$

 $a_i \mapsto C(a_i).$

Die Codierung einer Nachricht $m=a_{i_1}\dots a_{i_\ell}\in A^*$ definieren wir als

$$C(m) = C(a_{i_1}) \dots C(a_{i_\ell})$$
 (Erweiterung von C auf A^*).

Die Abbildung C heißt Code.

Bezeichnungen Code

- Die Elemente $c_i := C(a_i)$ bezeichnen wir als *Codeworte*.
- Wir bezeichnen sowohl die Abbildung von Nachrichten auf Codeworte als auch die Menge der Codeworte mit dem Buchstaben C.
- Falls $C \subseteq \{0,1\}^n$ spricht man von einem *Blockcode* der Länge n. In einem Blockcode haben alle Codeworte die gleiche Länge.

Entschlüsselbarkeit von Codes

Szenario: Datenkompression in fehlerfreiem Kanal

Definition eindeutig entschlüsselbar

Ein Code heißt eindeutig entschlüsselbar, falls jedes Element aus $\{0,1\}^*$ Bild höchstens einer Nachricht ist. D.h. die Erweiterung der Abbildung C auf A^* muss injektiv sein.

Definition Präfixcode

Ein Code $C = \{c_1, \dots, c_n\}$ heißt Präfixcode, falls es keine zwei Codeworte $c_i \neq c_j$ gibt mit

 c_i ist Präfix (Wortanfang) von c_j .

Beispiel

	a ₁	a ₂	a ₃
C ₁	0	0	1
C_2	0	1	00
C_3	0	01	011
C_4	0	10	11

- C_1 ist kein Code, da $C_1:A \to \{0,1\}^*$ nicht injektiv.
- C_2 ist nicht eindeutig entschlüsselbar, da $C_2:A^* \to \{0,1\}^*$ nicht injektiv.
- *C*₃ ist eindeutig entschlüsselbar, aber kein Präfixcode.
- C₄ ist ein Präfixcode.

Präfixcodes sind eindeutig entschlüsselbar.

Satz Präfixcode eindeutig entschlüsselbar

Sei $C = \{c_1, \dots, c_n\}$ ein Präfixcode. Dann kann jede kodierte Nachricht C(m) in Zeit $\mathcal{O}(|C(m)|)$ eindeutig zu m decodiert werden.

Beweis:

- Zeichne binären Baum
 - Kanten erhalten Label 0 für linkes Kind, 1 für rechtes Kind.
 - ▶ Codewort $c_i = c_{i_1} \dots c_{i_k}$ ist Label des Endknoten eines Pfads von der Wurzel mit den Kantenlabeln c_{i_1}, \dots, c_{i_n}
- Präfixeigenschaft: Kein einfacher Pfad von der Wurzel enthält zwei Knoten, die mit Codeworten gelabelt sind.
- Codewort c_i ist Blatt in Tiefe $|c_i|$

Algorithmus Dekodierung Präfix

Algorithmus Dekodierung Präfix

- Lese C(m) von links nach rechts.
- 2 Starte bei der Wurzel. Falls 0, gehe nach links. Falls 1, gehe nach rechts.
- Solution Falls Blatt mit Codewort $c_i = C(a_i)$ erreicht, gib a_i aus und iteriere.

Laufzeit: $\mathcal{O}(|C(m)|)$

Woher kommen die Nachrichtensymbole?

Modell

- Quelle Q liefert Strom von Symbolen aus A.
- Quellwahrscheinlichkeit: Ws[Quelle liefert a_i] = p_i
- Ws p_i ist unabhängig von der Zeit und vom bisher produzierten Strom (erinnerungslose Quelle)
- X_i: Zufallsvariable für das Quellsymbol an der i-ten Position im Strom, d.h.

$$\operatorname{Ws}[X_i = a_j] = p_j$$
 für $j = 1, ..., n$ und alle i .

Ziel: Kodiere a_j mit großer Ws p_j mittels kleiner Codewortlänge.

Kompakte Codes

Definition Erwartete Codewortlänge

Sei Q eine Quelle mit Alphabet $A = \{a_1, \dots, a_n\}$ und Quellwahrscheinlichkeiten p_1, \dots, p_n . Die Größe

$$E(C) := \sum_{i=1}^n p_i |C(a_i)|$$

bezeichne die erwartete Codewortlänge.

Definition Kompakter Code

Ein Code C heißt kompakt bezüglich einer Quelle Q, falls er *minimale* erwartete Codewortlänge besitzt.

Wann sind Codes eindeutig entschlüsselbar?

Definition Suffix

Sei C ein Code. Ein String $s \in \{0,1\}^*$ heißt Suffix in C falls

- $\mathbf{O} \exists c_i, c_i \in C : c_i = c_i s \text{ oder}$
- ② $\exists c \in C$ und einen Suffix s' in C: s' = cs oder
- **③** $\exists c \in C$ und einen Suffix s' in C: c = s's.
 - Bedingung 1: Codewort c_i lässt sich zu Codewort c_i erweitern.
 - Bedingung 2: Codewort c lässt sich zu Suffix s' erweitern.
 - Bedingung 3: Suffix s' lässt sich zu Codewort c erweitern.

Effiziente Berechnung von Suffixen

Algorithmus Berechnung Suffix

EINGABE: $C = \{c_1, ..., c_n\}$

- Setze $S := \emptyset$, $T := \emptyset$.
- Für alle $c_i, c_j \in C \times C$: Falls es ein $s \in \{0, 1\}^*$ gibt mit $c_i = c_j s$, füge s in S und T ein.
- Solange $T \neq \emptyset$
 - Entferne ein beliebiges s' aus T.
 - **2** Für alle $c \in C$: Falls es ein $s \in \{0,1\}^* \setminus S$ gibt mit s' = cs oder c = s's, füge s zu S und T hinzu.

AUSGABE: Menge S der Suffixe von C

Laufzeit Suffixberechnung

Laufzeit:

- Schritt 2: $\mathcal{O}(n^2)$ Codewortpaare
- Suffixlänge ist durch $\max_i\{|c_i|\}$ beschränkt.
- Es kann höchstens $n \cdot \max_i \{|c_i|\}$ Suffixe geben. (Warum?)
- Schritt 3: $\mathcal{O}(n^2 \cdot \max_i \{|c_i|\})$
- Polynomiell in der Eingabelänge: n, max_i{|c_i|}

Beispiele Suffixberechnung

- Code $C_2 = \{0, 1, 00\}$
 - Suffix $s_1 = 0$, denn $c_3 = c_1 0$.
- Code $C_3 = \{0, 01, 011\}$
 - ▶ Suffix $s_1 = 1$, denn $c_2 = c_1 1$.
 - Suffix $s_2 = 11$, denn $c_3 = c_1 11$.
- Code $C_4 = \{0, 10, 110\}$
 - Keine Suffixe, da Präfixcode.
- Code $C_5 = \{1, 110, 101\}$
 - Suffix $s_1 = 10$, denn $c_2 = c_1 10$.
 - ▶ Suffix $s_2 = 01$, denn $c_3 = c_101$.
 - Suffix $s_3 = 0$, denn $s_3 = c_1 0$.
 - Suffix $s_4 = 1$, denn $c_3 = s_1 1$.

Kriterium für eindeutig entschlüsselbar

Satz Eindeutig entschlüsselbar

C ist ein eindeutig entschlüsselbarer Code \Leftrightarrow Kein Suffix ist Codewort in C.

- z.z.: C nicht eindeutig entschlüsselbar ⇒ Suffix ist Codewort
 - Sei C nicht eindeutig entschlüsselbar.
 - Dann existiert ein String $s \in \{0, 1\}^*$, der sich auf zwei Arten als Codewortfolge darstellen lässt.
 - Seien $c_1 \dots c_n$ und $d_1 \dots d_m$ diese Codewortfolgen.
 - Wir konstruieren sukzessive Suffixe für diese Folgen.
 - Die konstruierten Suffixe beginnen jeweils mit Codewortpr\u00e4fixen.
 - Der letzte Suffix ist identisch mit dem letzten Codewort.

Suffix ist Codewort

• Fall 1: Codewort c_i lässt sich zu d_i erweitern

• Fall 2: Codewort c_i lässt sich zu Suffix s_j erweitern

Fall 3: Suffix s_k lässt sich zu Codewort d_i erweitern

Rückrichtung

- z.z.: Suffix s ist ein Codewort \Rightarrow C ist nicht eindeutig entschlüsselbar
 - Suffix s ist aus Anwendungen der drei Regeln entstanden.
 - Berechne die Kette zurück, aus der s entstanden ist.
 - ▶ Setze String $c^* \leftarrow s$. Iteriere:
 - ▶ 1. Fall $c_i = c_j s$: $c^* \leftarrow c_j c^*$, terminiere.
 - ▶ 2. Fall s' = cs: $c^* \leftarrow cc^*$, $s \leftarrow s'$.
 - ▶ 3. Fall c = s's: $c^* \leftarrow s'c^*$, $s \leftarrow s'$.
 - Kette muss mit 1. Fall $c_i = c_j s'$ terminieren.
 - Zwei verschiedene Entschlüsselungen: Eine beginnt mit c_i , die andere mit c_j .
 - Beide sind gültig, da der letzte Suffix ein Codewort ist.

Beispiel: Für $C = \{1, 110, 101\}$ erhalten wir für den Suffix 1 den String $c^* = 1101$ mit gültigen Dekodierungen 1|101 und 110|1.

Sätze von Kraft und McMillan

Satz von Kraft

Ein Präfixcode C für das Alphabet $A = \{a_1, \dots, a_n\}$ mit Kodierungslängen $|C(a_j)| = \ell_j$ existiert gdw

$$\sum_{j=1}^n 2^{-\ell_j} \leq 1.$$

Satz von McMillan

Ein eindeutig entschlüsselbarer Code C für das Alphabet $A = \{a_1, \dots, a_n\}$ mit Kodierungslängen $|C(a_j)| = \ell_j$ existiert gdw

$$\sum_{j=1}^n 2^{-\ell_j} \leq 1.$$

Präfixcodes genügen

Korollar

Ein Präfixcode *C* existiert gdw es einen eindeutig entschlüsselbaren Code *C* mit denselben Kodierungslängen gibt.

Beweis:

- Wir zeigen den Ringschluss für: $\sum_{i=1}^{n} 2^{-\ell_i} \le 1 \Rightarrow \text{Präfix} \Rightarrow \text{Eindeutig entschlüsselbar}$
 - , (Präfix ⇒ Eindeutig entschlüsselbar: letzte Vorlesung)
- Gegeben sind Kodierungslängen ℓ_j .
- Gesucht ist ein Präfixcode mit $\ell_j = |C(a_j)|$.
- Definiere $\ell := \max\{\ell_1, \dots, \ell_n\}$, $n_i := \text{Anzahl } \ell_j \text{ mit } \ell_j = i$.

$$\sum_{j=1}^n 2^{-\ell_j} = \sum_{i=1}^\ell n_i 2^{-i} \le 1.$$

Beweis: $\sum_{i=1}^{\ell} n_i 2^{-i} \le 1 \Rightarrow \text{Pr\"afix}$

Induktion über ℓ :

- **IA** $\ell = 1$: Aus $\sum_{i=1}^{\ell} n_i 2^{-i}$ folgt $n_1 \leq 2$.
- Können Präfixcode $C \subseteq \{0,1\}$ für max. 2 Codeworte konstruieren.
- IS $\ell 1 \to \ell$: Es gilt $n_{\ell} \le 2^{\ell} n_1 2^{\ell-1} n_2 2^{\ell-2} \dots n_{\ell-1} 2$.
- **IV:** Präfixcode C' mit n_i Worten der Länge $i, i = 1, ..., \ell 1$.
- Anzahl der Worte der Länge ℓ: 2^ℓ
- ullet Wir zählen die durch C' ausgeschlossenen Worte der Länge $\ell.$
- Sei $c_i \in C'$ mit Länge ℓ_i . Dann enthalten alle $c_i s \in \{0,1\}^{\ell}$ mit beliebigem $s \in \{0,1\}^{\ell-\ell_i}$ den Präfix c_i .
- Durch Präfixe der Länge 1 ausgeschlossene Worte: $n_1 \cdot 2^{\ell-1}$.
- Durch Präfixe der Länge 2 ausgeschlossene Worte: $n_2 \cdot 2^{\ell-2}$.

:

- Durch Präfixe der Länge $\ell-1$ ausgeschlossene Worte: $n_{\ell-1}\cdot 2$.
- D.h. wir kodieren die n_{ℓ} Worte mit den verbleibenden $2^{\ell} (n_1 2^{\ell-1} + \cdots + n_{\ell-1} 2) \ge n_{\ell}$ Worten der Länge ℓ .
- Der resultierende Code ist ein Präfixcode.

Eindeutig entschlüsselbar $\Rightarrow \sum_{i=1}^{n} 2^{-\ell_i} \le 1$

- Sei C eindeutig entschlüsselbar mit $C(a_j) = \ell_j, \ \ell = \max_j \{\ell_j\}.$
- Wählen $r \in \mathbb{N}$ beliebig. Betrachten

$$\left(\textstyle\sum_{j=1}^n 2^{-\ell_j}\right)^r = \textstyle\sum_{i=1}^{r\ell} n_i 2^{-i} \text{ für } n_i \in \mathbb{N}.$$

- Interpretation der n_i : Anzahl Strings aus $\{0,1\}^i$, die sich als Folge von r Codeworten schreiben lässt.
- *C* eindeutig entschlüsselbar: Jeder String aus $\{0,1\}^i$ lässt sich als höchstens eine Folge von Codeworten schreiben, d.h. $n_i \leq 2^i$.
- Damit gilt $\sum_{i=1}^{r\ell} n_i 2^{-i} \le r\ell$ \Rightarrow $\sum_{j=1}^n 2^{-\ell_j} \le (r\ell)^{\frac{1}{r}}$
- Für $r \to \infty$ folgt $\sum_{j=1}^{n} 2^{-\ell_j} \le 1$.

Huffman Kodierung

Szenario: Quelle Q mit Symbole $\{a_1, \ldots, a_n\}$

• a_i sortiert nach absteigenden Quellws. $p_1 \ge p_2 \ge \cdots \ge p_n$.

Algorithmus Huffman-Kodierung

Eingabe: Symbole a_i mit absteigend sortierten p_i , i = 1, ..., n.

- **1** IF (n=2), Ausgabe $C(a_1) = 0$, $C(a_2) = 1$.
- ELSE
 - **1** Bestimme $k \in \mathbb{Z}_{n-1}$ mit $p_k \ge p_{n-1} + p_n \ge p_{k+1}$.
 - $(p_1, \dots, p_k, p_{k+1}, p_{k+2}, \dots, p_{n-1}) \leftarrow (p_1, \dots, p_k, p_{n-1} + p_n, p_{k+1}, \dots, p_{n-2})$
 - $(C(a_1), \dots, C(a_{k-1}), C(a_{k+1}), \dots, C(a_{n-2}), C(a_k)0, C(a_k)1) \leftarrow \\ \text{Huffmann-Kodierung}(a_1, \dots, a_{n-1}, p_1, \dots, p_{n-1})$

Ausgabe: kompakter Präfixcode für Q

Laufzeit: $O(n^2)$ ($O(n \log n)$ mit Hilfe von Heap-Datenstruktur)

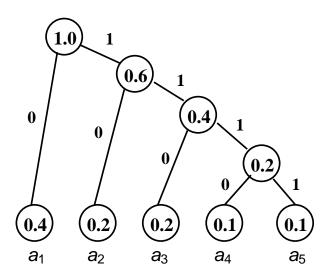
Beispiel Huffman-Kodierung

Beispiel:
$$p_1 = 0.4$$
, $p_2 = p_3 = 0.2$, $p_4 = p_5 = 0.1$

a _i	pi	$C(a_i)$	pi	$C(a_i)$	pi	$C(a_i)$	p_i	$C(a_i)$
	0.4		0.4				0.6	
a_2	0.2	01	0.2	01	0.4	00	0.4	1
a_3	0.2	11	0.2	10	0.2	01		
a_4	0.1	100	0.2	11				
a ₅	0.1	101						

- Fett gedruckt: Stelle k Man beachte: k ist nicht eindeutig, d.h. C ist nicht eindeutig.
- E(C) = (0.4 + 0.2 + 0.2) * 2 + 2 * 0.1 * 3 = 2.2
- Huffman-Tabelle: Spalten 1 und 3. Mittels Huffman-Tabelle kann jeder String $m \in A^*$ in Zeit $\mathcal{O}(|C(m)|)$ kodiert werden.

Wahl eines anderen k



$$E(C') = 0.4 * 1 + 0.2 * (2 + 3) + 0.1 * 2 * 4 = 2.2$$

Eigenschaften kompakter Codes

Sei $\ell_i := |C(a_i)|$.

Lemma Eigenschaften kompakter Codes

Sei C ein kompakter Code, oBdA ist C ein Präfixcode.

- Falls $p_i > p_j$, dann ist $\ell_i \le \ell_j$
- Es gibt mindestens zwei Codeworte in C mit maximaler Länge.
- Unter den Worten mit maximaler Länge existieren zwei Worte, die sich nur in der letzten Stelle unterscheiden.

Beweis der Eigenschaften

Beweis:

1 Sei $\ell_i > \ell_j$. Dann gilt

$$\begin{aligned} & \rho_i \ell_i + \rho_j \ell_j = \rho_i (\ell_i - \ell_j + \ell_j) + \rho_j (\ell_j - \ell_i + \ell_i) \\ = & \rho_i \ell_j + \rho_j \ell_i + (\ell_i - \ell_j) (\rho_i - \rho_j) > \rho_i \ell_j + \rho_j \ell_i \end{aligned}$$

D.h. vertauschen der Kodierungen von a_i und a_j verkürzt den Code.

- ② Sei $c = c_1 \dots c_n \in C$ das einzige Codewort mit maximaler Länge. Streichen von c_n führt zu einem Präfixcode mit kürzerer erwarteter Codewortlänge.
- Annahme: Alle Paare von Codeworten maximaler Länge unterscheiden sich nicht nur in der letzten Komponente.
 - Entferne die letzte Komponente eines beliebigen Codewortes maximaler Länge.
 - Wir erhalten einen Präfixcode mit kürzerer Länge.

Optimalität der Huffman-Kodierung Satz

Die Huffman-Kodierung liefert einen kompakten Code.

Beweis per Induktion über n.

- IA: n = 2: Für {a₁, a₂} ist die Codierung {0, 1} kompakt.
- **IS:** $n-1 \rightarrow n$: Sei C' ein kompakter Code für $\{a_1, \ldots, a_n\}$.
 - ▶ Lemma,2+3: C' enthält zwei Codeworte maximaler Länge, die sich nur in der letzten Stelle unterscheiden.
 - ▶ Seien dies die Codeworte c0, c1 für ein $c \in \{0, 1\}^*$.
 - ▶ Lemma,1: Die beiden Symbole a_{n-1} , a_n mit kleinster Quellws besitzen maximale Codewortlänge.
 - ▶ Vertausche die Kodierungen dieser Symbole mit c0, c1.
 - ▶ a_{n-1} oder a_n tauchen mit Ws $p_{n-1} + p_n$ auf.
 - ▶ Ersetze a_{n-1} und a_n durch a'.
 - ▶ **IV:** Huffman-Kodierung liefert kompakten Präfixcode *C* für a_1, \ldots, a_{n-2}, a' mit Quellws $p_1, \ldots, p_{n-2}, p_{n-1} + p_n$
 - ▶ D.h. $C(a_1), \ldots, C(a_{n-2}), C(a')0 = c0, C(a')1 = c1$ ist Präfixcode mit erwarteter Codewortlänge E(C').
 - ► Damit liefert die Huffman-Kodierung einen kompakten Präfixcode.

Informationsgehalt einer Nachricht

Betrachten folgendes Spiel

- Gegeben: Quelle Q mit unbekannten Symbolen $\{a_1, a_2\}$ und $p_1 = 0.9, p_2 = 0.1$.
- Zwei Spieler erhalten rundenweise je ein Symbol.
- Gewinner ist, wer zuerst beide Symbole erhält.

Szenario:

- Spieler 1 erhält in der ersten Runde a₁ und Spieler 2 erhält a₂.
- Frage: Wer gewinnt mit höherer Ws? Offenbar Spieler 2.

Intuitiv: Je kleiner die Quellws, desto höher der Informationsgehalt.

Eigenschaft von Information

Forderungen für eine Informationsfunktion

- **1** $I(p) \ge 0$: Der Informationsgehalt soll positiv sein.
- 2 I(p) ist stetig in p: Kleine Änderungen in der Ws p sollen nur kleine Änderungen von I(p) bewirken.
- - ▶ X = Ereignis, dass a_i und a_j nacheinander übertragen werden.
 - ▶ Informationsgehalt von X: $\dot{I}(p_i) + I(p_j)$, $Ws(X) = p_i p_j$

Satz zur Struktur von I(p)

Jede Funktion I(p) für 0 , die obige drei Bedingungen erfüllt, ist von der Form

$$I(p) = C \log_2 \frac{1}{p}$$

für eine positive Konstante C.

Beweis: Form von I(p)

- Forderung 3 liefert $I(p^2) = I(p) + I(p) = 2I(p)$.
- Induktiv folgt: $I(p^n) = nI(p)$ für alle $n \in \mathbb{N}$ und alle 0 .
- Substitution $p \to p^{\frac{1}{n}}$ liefert: $I(p) = nI(p^{\frac{1}{n}})$ bzw. $I(p^{\frac{1}{n}}) = \frac{1}{n}I(p)$
- Damit gilt für alle $q \in \mathbb{Q}$: $I(p^q) = qI(p)$.
- Für jedes $r \in \mathbb{R}$ gibt es eine Sequenz q_i mit $\lim_{n \to \infty} q_n = r$. Aus der Stetigkeit von I(p) folgt

$$I(p^r) = I(\lim_{n \to \infty} p^{q_n}) = \lim_{n \to \infty} I(p^{q_n}) = \lim_{n \to \infty} q_n I(p) = rI(p)$$

• Fixiere 0 < q < 1. Für jedes 0 gilt

$$I(p) = I(q^{\log_q p}) = I(q) \log_q p = -I(q) \log_q (\frac{1}{p}) = -I(q) \frac{\log_2 \frac{1}{p}}{\log_2 q}$$

$$= C \log_2 \frac{1}{p} \quad \text{mit } C = -I(q) \cdot \frac{1}{\log_2(q)} > 0.$$

Definition Information I(p)

Definition I(p)

Die Information I(p) eines Symbols mit Quellws p > 0 ist definiert als

$$I(p)=\log\frac{1}{p}.$$

Die Einheit der Information bezeichnet man als Bit.

Beispiele für Information

- $Q = \{0, 1\}$ mit $p_1 = p_2 = \frac{1}{2}$. Dann ist $I(\frac{1}{2}) = 1$, d.h. für jedes gesendete Symbol erhält der Empfänger 1 Bit an Information.
- $Q = \{0, 1\}$ mit $p_1 = 1, p_2 = 0$. Dann ist I(1) = 0, d.h. der Empfänger enthält 0 Bit an Information pro gesendetem Zeichen.
- Beamer-Bild SXGA: Auflösung 1280 * 1024, 256 Farben
 - ▶ 2^{1280*1024*8} mögliche Bilder. Annahme: Jedes gleich wahrscheinlich.
 - ► Information in Bit: $I(2^{-1280*1024*8}) = 1280*1024*8 = 10.485.760$
- Meine Erklärung dieser Folie:
 - \leq 1000 Worte, \leq 10.000 Worte Vokabular
 - ► Information meiner Erklärung: *I*(10.000⁻¹⁰⁰⁰) < 13.288
 - Beispiel für "Ein Bild sagt mehr als 1000 Worte!"

Entropie einer Quelle

Definition Entropie einer Quelle

Sei Q eine Quelle mit Quellws $P = \{p_1, \dots, p_n\}$. Die *Entropie von Q* ist definiert als

$$H(Q) = \sum_{i=1}^{n} p_i I(p_i) = \sum_{i=1}^{n} p_i \log \frac{1}{p_i} = -\sum_{i=1}^{n} p_i \log p_i.$$

- D.h. Entropie ist die erwartete Information pro Quellsymbol.
- Für $p_i = 0$ definieren wir $p_i \log \frac{1}{p_i} = 0$.
- $P = \{\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\} : H(Q) = \sum_{i=1}^{n} \frac{1}{n} \log n = \log n$
- $P = \{\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}, 0\} : H(Q) = \sum_{i=1}^{n} \frac{1}{n} \log n = \log n$
- $P = \{1, 0, 0, \dots, 0\} : H(Q) = 1 * \log 1 = 0$

Wollen zeigen: $0 \le H(Q) \le \log n$.

Wechsel zu anderer Ws-Verteilung

Lemma Wechsel Ws-Verteilung

Sei $P=\{p_1,\ldots,p_n\}$ eine Ws-Verteilung und $Q=\{q_1,\ldots,q_n\}$ mit $\sum_{i=1}^n q_i \leq 1$. Dann gilt

$$\sum_{i=1}^n p_i I(p_i) \leq \sum_{i=1}^n p_i I(q_i).$$

Gleichheit gilt genau dann, wenn $p_i = q_i$ für alle i = 1, ..., n.

Beweis:

Nützliche Ungleichung für das Rechnen mit logs:

$$x - 1 \ge \ln x = \log x \cdot \ln 2$$
 für alle $x > 0$

Gleichheit gilt gdw x = 1.

Beweis des Lemmas

$$\sum_{i=1}^{n} p_i I(p_i) - \sum_{i=1}^{n} p_i I(q_i) = \sum_{i=1}^{n} p_i \left(\log \frac{1}{p_i} - \log \frac{1}{q_i} \right)$$

$$= \sum_{i=1}^{n} p_i \log \frac{q_i}{p_i}$$

$$\leq \frac{1}{\ln 2} \sum_{i=1}^{n} p_i \left(\frac{q_i}{p_i} - 1 \right)$$

$$= \frac{1}{\ln 2} \left(\sum_{i=1}^{n} q_i - \sum_{i=1}^{n} p_i \right)$$

$$= \frac{1}{\ln 2} \left(\sum_{i=1}^{n} q_i - 1 \right) \leq 0.$$

Gleichheit gilt gdw $\frac{q_i}{p_i} = 1$ für alle i = 1, ..., n.

Untere und obere Schranken für H(P)

Satz Schranken für H(P)

Sei Q eine Quelle mit Ws-Verteilung $P = \{p_1, \dots, p_n\}$. Dann gilt

$$0 \leq H(Q) \leq \log n$$
.

Weiterhin gilt $H(Q) = \log n$ gdw alle $p_i = \frac{1}{n}$ für i = 1, ..., n und H(Q) = 0 gdw $p_i = 1$ für ein $i \in [n]$.

Beweis:

- Sei $P' = \{\frac{1}{n}, \dots, \frac{1}{n}\}$ die Gleichverteilung.
- Nach Lemma zum Wechsel von Ws-Verteilungen gilt

$$H(Q) = \sum_{i=1}^{n} p_i \log \frac{1}{p_i} \le \sum_{i=1}^{n} p_i \log \frac{1}{p_i'} = \log n \sum_{i=1}^{n} p_i = \log n.$$

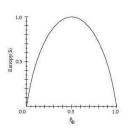
• Gleichheit gilt gdw $p_i = p'_i = \frac{1}{n}$ für alle *i*.

Untere Schranke für H(P)

Verwenden Ungleichung log $x \ge 0$ für $x \ge 1$. Gleichheit gilt gdw x = 1.

$$H(Q) = \sum_{i=1}^{n} p_i \log \frac{1}{p_i} \ge 0,$$

mit Gleichheit gdw $\frac{1}{p_i} = 1$ für ein $i \in [n]$.



Bsp: binäre Entropiefunktion

• Binäre Quelle $Q = \{a_1, a_2\}$ mit $P = \{p, 1 - p\}$

$$H(Q) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}.$$



Kodieren einer binären Quelle

Szenario: Binäre Quelle Q mit $P = \{\frac{1}{4}, \frac{3}{4}\}$ mit

$$H(Q) = \frac{1}{4} \cdot \log 4 + \frac{3}{4} \cdot \log \frac{4}{3} \approx 0.811.$$

• Huffman-Kodierung von Q:

$$C(a_1) = 0, C(a_2) = 1 \text{ mit } E(C) = 1.$$

- Problem: Wie können wir a2 mit kurzem Codewort kodieren?
- Idee: Kodieren Zweierblöcke von Quellsymbolen.

Quellerweiterungen von Q

• Betrachten $Q^2 = \{a_1a_1, a_1a_2, a_2a_1, a_2a_2\}$ mit Quellws

$$p_1=\frac{1}{16}, p_2=p_3=\frac{3}{16}, p_4=\frac{9}{16}.$$

Huffmann-Kodierung von Q² liefert

$$\begin{split} &C(a_1a_1)=101, C(a_2a_1)=100, C(a_1a_2)=11, C(a_2a_2)=0 \\ \text{mit } E(C)=3\cdot(\frac{1}{16}+\frac{3}{16})+2\cdot\frac{3}{16}+1\cdot\frac{9}{16}=\frac{27}{16}. \end{split}$$

 Jedes Codewort kodiert zwei Quellsymbole, d.h. die durchschnittliche Codewortlänge pro Quellsymbol ist

$$E(C)/2 = \frac{27}{32} = 0.844.$$

• Übung: Für Q3 erhält man 0.823.

k-te Quellerweiterung Qk

Definition *k*-te Quellerweiterung

Sei Q eine Quelle mit Alphabet $A = \{a_1, \ldots, a_n\}$ und Ws-Verteilung $P = \{p_1, \ldots, p_n\}$. Die k-te Quellerweiterung Q^k von Q ist definiert über dem Alphabet A^k , wobei $a = a_{i_1} \ldots a_{i_k} \in A^k$ die Quellws $p_{i_1} \cdot p_{i_2} \cdot \cdots \cdot p_{i_k}$ besitzt.

Satz Entropie von Q^k

Sei Q eine Quelle mit k-ter Quellerweiterung Qk. Dann gilt

$$H(Q^k) = k \cdot H(Q).$$

Beweis für $H(Q^k)$

$$H(Q^{k}) = \sum_{(i_{1},...,i_{k})\in[n]^{k}} p_{i_{1}} \dots p_{i_{k}} \log \frac{1}{p_{i_{1}} \dots p_{i_{k}}}$$

$$= \sum_{(i_{1},...,i_{k})\in[n]^{k}} p_{i_{1}} \dots p_{i_{k}} \log \frac{1}{p_{i_{1}}} + \dots + \sum_{(i_{1},...,i_{k})\in[n]^{k}} p_{i_{1}} \dots p_{i_{k}} \log \frac{1}{p_{i_{k}}}$$

Betrachten ersten Summanden

$$\sum_{(i_1, \dots, i_k) \in [n]^k} p_{i_1} \dots p_{i_k} \log \frac{1}{p_{i_1}} = \sum_{i_1 \in [n]} p_{i_1} \log \frac{1}{p_{i_1}} \cdot \sum_{i_2 \in [n]} p_{i_2} \cdot \dots \cdot \sum_{i_k \in [n]} p_{i_k} \\
= \sum_{i_1 \in [n]} p_{i_1} \log \frac{1}{p_{i_1}} \cdot 1 \cdot \dots \cdot 1 = H(Q).$$

• Analog liefern die anderen k-1 Summanden jeweils H(Q).

Kodierungstheorem von Shannon

Kodierungstheorem von Shannon (1948)

Sei Q eine Quelle für $\{a_1,\ldots,a_n\}$ mit Ws-Verteilung $P=\{p_1,\ldots,p_n\}$. Sei C ein kompakter Code für Q. Dann gilt für die erwartete Codewortlänge

$$H(Q) \le E(C) < H(Q) + 1.$$

Beweis: $H(Q) \leq E(C)$

- Bezeichnen Codewortlängen $\ell_i := |C(a_i)|$ und $q_i := 2^{-\ell_i}$.
- Nach Satz von McMillan gilt: $\sum_{i=1}^{n} q_i = \sum_{i=1}^{n} 2^{-\ell_i} \le 1$.
- Lemma Wechsel Ws-Verteilung liefert

$$H(Q) = \sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}} \leq \sum_{i=1}^{n} p_{i} \log \frac{1}{q_{i}}$$
$$= \sum_{i=1}^{n} p_{i} \log 2^{\ell_{i}} = \sum_{i=1}^{n} p_{i} \ell_{i} = E(C).$$

$$E(C) \leq H(Q) + 1$$

- Wir konstruieren aus p_1, \ldots, p_n einen Code C'.
- Die Codewortlängen ℓ_i von C' werden wie folgt gewählt

$$\log \frac{1}{p_i} \le \ell_i < \log \frac{1}{p_i} + 1.$$

Ein Code C' mit dieser Eigenschaft heißt Shannon-Fano Code.

Damit gilt

$$\sum_{i=1}^{n} 2^{-\ell_i} \leq \sum_{i=1}^{n} 2^{-\log \frac{1}{p_i}} = \sum_{i=1}^{n} p_i = 1.$$

- Nach dem Satz von McMillan existiert ein eindeutig entschlüsselbarer Code C' mit diesen Codewortlängen ℓ_i .
- Für jeden kompakten Code C gilt andererseits

$$E(C) \le E(C') = \sum_{i=1}^{n} p_{i} \ell_{i} < \sum_{i=1}^{n} p_{i} \left(\log \frac{1}{p_{i}} + 1 \right)$$

$$= \sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}} + \sum_{i=1}^{n} p_{i} = H(Q) + 1$$

Anwendung auf Quellerweiterungen

Korollar zu Shannons Kodierungstheorem

Sei Q eine Quelle mit k-ter Quellerweiterung Q^k . Sei C ein kompakter Code für Q^k . Dann gilt

$$H(Q) \leq \frac{E(C)}{k} < H(Q) + \frac{1}{k}.$$

Beweis:

Anwendung von Shannon's Kodierungstheorem auf Q^k liefert

$$H(Q^k) \le E(C) < H(Q^k) + 1.$$

• Anwenden von $H(Q^k) = kH(Q)$ und teilen durch k liefert die Behauptung.

Szenario für fehlerkorrigierende Codes

Definition (*n*, *M*)-Code

Sei $C \subseteq \{0,1\}^n$ ein binärer Blockcode der Länge n mit |C| = M Codeworten. Dann bezeichnen wir C als (n, M)-Code.

Erinnerung: Binärer symmetrischer Kanal

- Bits 0,1 kippen mit Ws $p, p < \frac{1}{2}$ zu 1,0.
- Korrekte Übertragung $0 \mapsto 0$, $1 \mapsto 1$ mit Ws 1 p.
- Kanal ist erinnerungslos, d.h. die Ws sind unabhängig von vorigen Ereignissen.
- Vorwärts-Kanalws: Ws[**x** empfangen |**c** gesendet].
- Rückwärts-Kanalws: Ws[c gesendet | x empfangen].

Dekodieren

Definition Dekodier-Kriterium

Sei $C \subseteq \{0,1\}^n$ ein (n,M)-Code. Ein Dekodier-Kriterium f ist eine Funktion $f: \{0,1\}^n \to C \cup \{\bot\}$.

- Sei $\mathbf{x} \in \{0,1\}^n$. Ein Dekodier-Kriterium dekodiert \mathbf{x} zu $f(\mathbf{x}) \in C$ oder gibt Dekodierfehler $f(\mathbf{x}) = \bot$ aus.
- Ziel: Konstruktion eines Dekodier-Kriteriums f, dass die Ws des korrekten Dekodierens maximiert.

Ws[korrekte Dekodierung | \mathbf{x} empfangen] = Ws[$f(\mathbf{x})$ gesendet | \mathbf{x} empfange

Summieren über alle möglichen empfangenen x liefert

$$\sum_{\mathbf{x} \in \{0,1\}^n} \operatorname{Ws}[f(\mathbf{x}) \text{ gesendet } | \mathbf{x} \text{ empfangen}] \cdot \operatorname{Ws}[\mathbf{x} \text{ empfangen}]$$

Wir maximieren die Rückwärts-Kanalws

$$Ws[f(\mathbf{x}) \text{ gesendet } | \mathbf{x} \text{ empfangen}].$$

• D.h. wir dekodieren zu demjenigen Codewort $\mathbf{c} = f(\mathbf{x})$, das mit höchster Ws gesendet wurde.

Maximum Likelihood Dekodierung

Definition Maximum Likelihood Dekodierung

Ein Dekodierkriterium *f* heißt *Maximum-Likelihood Kriterium*, falls es die Vorwärts-Ws für alle Codeworte maximiert, d.h.

 $\operatorname{Ws}[\mathbf{x} \text{ empfangen } | f(\mathbf{x}) \text{ gesendet}] = \max_{c \in C} \operatorname{Ws}[\mathbf{x} \text{ empfangen } | \mathbf{c} \text{ gesendet }].$

Eine Anwendung von f heißt Maximum-Likelihood Dekodierung.

Warum Maximum Likelihood?

Satz Maximum Likelihood optimal für gleichverteilte Codeworte

Sei C ein (n, M)-Code und $Ws[\mathbf{c} \text{ gesendet}] = \frac{1}{M}$ für alle $\mathbf{c} \in C$. Dann maximiert die Maximum-Likelihood Dekodierung die Ws des korrekten Dekodierens.

Beweis:

Ws[c gesendet |x empfangen]

$$= \frac{\text{Ws}[\mathbf{x} \text{ empfangen } | \mathbf{c} \text{ gesendet}] \text{Ws}[\mathbf{c} \text{ gesendet}]}{\sum_{i=1}^{M} \text{Ws}[\mathbf{x} \text{ empfangen } | \mathbf{c}_{i} \text{ gesendet}] \text{Ws}[\mathbf{c}_{i} \text{ gesendet}]}$$

$$= \frac{\text{Ws}[\mathbf{x} \text{ empfangen } | \mathbf{c} \text{ gesendet}]}{\sum_{i=1}^{M} \text{Ws}[\mathbf{x} \text{ empfangen } | \mathbf{c}_{i} \text{ gesendet}]}$$

- Nenner ist konstant f
 ür jeden Kanal.
- Maximum-Likelihood maximiert den Zähler und damit den Term.

Dekodieren zum Nachbarn minimaler Distanz

Definition Hamming-Distanz

Seien $\mathbf{x}, \mathbf{y} \in \{0,1\}^n$. Die Hamming-Distanz $d(\mathbf{x}, \mathbf{y})$ ist definiert als die Anzahl der Stellen, an denen sich \mathbf{x} und \mathbf{y} unterscheiden.

Satz

In jedem binären symmetrischen Kanal ist das Dekodier-Kriterium, das ein **x** zum Codewort minimaler Hamming-Distanz dekodiert ein Maximum-Likelihood Kriterium.

Beweis:

Ws von genau k Fehlern an festen Stellen beim Senden von c

Ws[**x** empfangen|**c** gesendet] =
$$p^k(1-p)^{n-k}$$
.

- Wegen $p < \frac{1}{2}$ gilt p < 1 p. Ein Dekodierkriterium f, das ein Codewort **c** mit minimaler Distanz $d(\mathbf{x}, \mathbf{c})$ wählt, minimiert k.
- Damit maximiert f die Vorwärts-Kanalws und ist somit ein Maximum-Likelihood Kriterium.

Die Hamming-Distanz definiert eine Metrik.

Satz Metrik Hamming-Distanz

Die Hamming-Distanz ist eine Metrik auf $\{0,1\}^n$, d.h. für alle $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \{0,1\}^n$ gilt:

- Positivität: $d(\mathbf{x}, \mathbf{y}) \ge 0$, Gleichheit gdw $\mathbf{x} = \mathbf{y}$.
- 2 Symmetrie: $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$.
- **3** Dreiecksungleichung: $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$.

Beweis für 3:

Ann.: d(x,z) > d(x,y) + d(y,z)

- Verändern erst x zu y, dann y zu z.
- Müssen dazu $d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}) < d(\mathbf{x}, \mathbf{z})$ Stellen ändern. Widerspruch: \mathbf{x} und \mathbf{z} unterscheiden sich an $d(\mathbf{x}, \mathbf{z})$ Stellen.

Fehlererkennung

Definition *u*-fehlererkennend

Sei C ein Code und $u \in \mathbb{N}$. C ist u-fehlerkennend, falls für alle Codeworte $\mathbf{c}, \mathbf{c}' \in C$ gilt: $d(\mathbf{c}, \mathbf{c}') \geq u + 1$. Ein Code ist genau u-fehlererkennend, falls er u-fehlererkennend ist, aber nicht (u+1)-fehlererkennend.

Bsp:

- Repetitionscode $R(3) = \{000, 111\}$ ist genau 2-fehlererkennend.
- $R(n) = \{0^n, 1^n\}$ ist genau (n-1)-fehlererkennend.
- $C = \{000000, 000111, 1111111\}$ ist genau 2-fehlererkennend.

Fehlerkorrektur

Definition *v*-fehlerkorrigierend

Sei C ein Code und $v \in \mathbb{N}$. C ist v-fehlerkorrigierend, falls für alle $\mathbf{c} \in C$ gilt: Bis zu v können mittels Dekodierung zum eindeutigen Codewort minimaler Hammingdistanz korrigiert werden.

Ein Code ist genau v-fehlerkorrigierend, falls er v-fehlerkorrigierend aber nicht (v+1)-fehlerkorrigierend ist.

Anmerkung: Existieren zwei verschiedene Codeworte mit minimaler Hammingdistanz, so wird eine Dekodierfehlermeldung \bot ausgegeben.

Bsp:

- $R(3) = \{000, 111\}$ ist genau 1-fehlerkorrigierend.
- R(4) ist genau 1-fehlerkorrigierend.
- R(n) ist genau $\lfloor \frac{n-1}{2} \rfloor$ -fehlerkorrigierend.
- $C = \{0^9, 0^41^5, 1^9\}$ ist genau 1-fehlerkorrigierend.

Minimaldistanz eines Codes

Definition Minimaldistanz

Sei C ein Code mit $|C| \ge 2$. Die *Minimaldistanz* d(C) eines Codes ist definiert als

$$d(C) = \min_{\mathbf{c} \neq \mathbf{c}' \in C} \{ d(\mathbf{c}, \mathbf{c}') \}$$

D.h. d(C) ist die minimale Distanz zweier verschiedener Codeworte.

Bsp:

- R(n) besitzt Minimaldistanz d(R(n)) = n.
- $C = \{0001, 0010, 0101\}$ besitzt d(C) = 1.
- $C = \{0^9, 0^41^5, 1^9\}$ besitzt d(C) = 4.

Korollar Fehlererkennung

Ein Code C ist u-fehlererkennend gdw $d(C) \ge u + 1$.

Fehlerkorrektur vs Minimaldistanz

Satz Fehlerkorrektur vs Minimaldistanz

Ein Code *C* ist *v*-fehlerkorrigierend gdw $d(C) \ge 2v + 1$.

Beweis:

- Ann.: C ist nicht v-fehlerkorrigierend.
- D.h. bei Übertragung von **c** entsteht **x** mit $d(\mathbf{c}, \mathbf{x}) \leq v$ und $\exists \mathbf{c}' \neq \mathbf{c} : d(\mathbf{x}, \mathbf{c}') \leq v$
- Dreiecksungleichung: $d(\mathbf{c}, \mathbf{c}') \le d(\mathbf{c}, \mathbf{x}) + d(\mathbf{x}, \mathbf{c}') \le 2v$ (Widerspruch: $d(C) \ge 2v + 1$)

Beweis der Hinrichtung "⇒"

Ann.: Es gibt $\mathbf{c} \neq \mathbf{c}' \in C$ mit $d(\mathbf{c}, \mathbf{c}') = d(C) \leq 2v$.

- 1.Fall: d(c, c') ≤ v. c kann durch Ändern von höchstens v Stellen in x = c' überführt werden. x wird fälschlich zu c' dekodiert (Widerspruch: C ist v-fehlerkorrigierend)
- 2. Fall: $v + 1 \le d(\mathbf{c}, \mathbf{c}') \le 2v$.
- OBdA unterscheiden sich in \mathbf{c} , \mathbf{c}' in den ersten d(C) Positionen. (Anderfalls sortiere die Koordinaten um.)
- Betrachten x, das durch v Fehler in den ersten Koordinaten von c entsteht, so dass
 - x stimmt mit c' auf den ersten v Koordinaten überein.
 - **x** stimmt mit **c** auf den folgenden d(C) Koordinaten überein.
 - ▶ x stimmt mit c, c' auf den restlichen Koordinaten überein.
- Es gilt $d(\mathbf{c}, \mathbf{x}) = v \ge d(C) v = d(\mathbf{c}', \mathbf{x})$.
- D.h. entweder wird x fälschlich zu c' dekodiert, oder es entsteht ein Dekodierfehler. (Widerspruch: C ist v-fehlerkorrigierend)

(n, M, d)-Code

Definition (n, M, d)-Code

Sei $C \subseteq \{0,1\}^n$ mit |C| = M und Distanz d(C) = d. Dann bezeichnet man C als (n, M, d)-Code. Man nennt (n, M, d) die *Parameter des Codes*.

Bsp:

- *R*(*n*) ist ein (*n*, 2, *n*)-Code.
- $C = \{0000, 0011\}$ ist ein (4, 2, 2)-Code.
- $C = \{00, 01, 10, 11\}$ ist ein (2, 4, 1)-Code.

Korollar

Sei C ein (n, M, d)-Code.

- C ist genau v-fehlerkorrigierend gdw d = 2v + 1 oder d = 2v + 2.
- ② C ist genau $\left\lfloor \frac{d-1}{2} \right\rfloor$ -fehlerkorrigierend. (Fehlerkorrektur-Schranke)

Maximale Codes

Definition Maximale Code

Ein (n, M, d)-Code C ist maximal, falls kein (n, M + 1, d)-Code C' existiert mit $C \subset C'$.

Bsp:

- $C_0 = \{0000, 1111\}$ ist maximal.
- $C_1 = \{0000, 0011, 1111\}$ ist nicht maximal.
- $C_2 = \{0000, 0011, 1111, 1100\}$ ist nicht maximal.
- $C_3 = \{0000, 0011, 1111, 1100, 1001, 0110, 1010, 0101\}$ ist maximal.

Erweiterung nicht-maximaler Codes

Satz Erweiterung von Codes

Sei $C \subseteq \{0,1\}^n$ ein (n,M,d)-Code. C ist maximal gdw für alle $\mathbf{x} \in \{0,1\}^n$ gilt: Es gibt ein $\mathbf{c} \in C$ mit $d(\mathbf{x},\mathbf{c}) < d$.

```
"⇒"
```

- Ann.: Sei $\mathbf{x} \in \{0,1\}^n$, so dass für alle $\mathbf{c} \in C$: $d(\mathbf{x},\mathbf{c}) \geq d$
- Dann ist C ∪ {x} ein (n, M + 1, d)-Code. (Widerspruch: C ist maximal.)

- Ann.: Sei C nicht maximal.
- D.h. $\exists \mathbf{x} \cup \{0,1\}^n : C \cup \{\mathbf{x}\} \text{ ist ein } (n, M+1, d)\text{-Code}$
- Dann gilt $d(\mathbf{x}, \mathbf{c}) \ge d$ für alle $\mathbf{c} \in C$.

Ws für Dekodierfehler bei maximalen Codes

Satz Dekodierfehler bei maximalen Codes

Sei C ein maximaler (n, M, d)-Code für einen binären symmetrischen Kanal. Für die Fehlerws beim Dekodieren zum Codewort mit minimalem Hammingabstand gilt

$$\sum_{k=d}^{n} \binom{n}{k} p^k (1-p)^{n-k} \le \operatorname{Ws}(\operatorname{Dekodierfehler}) \le 1 - \sum_{k=0}^{\lfloor \frac{d-1}{2} \rfloor} \binom{n}{k} p^k (1-p)^{n-k}$$

Beweis:

• Korrekte Dekodierung bei $\leq \lfloor \frac{d-1}{2} \rfloor$ Fehlern, d.h. mit Ws mind.

$$\sum_{k=0}^{\lfloor \frac{d-1}{2} \rfloor} \binom{n}{k} p^k (1-p)^{n-k}.$$

Ws für Dekodierfehler bei maximalen Codes

Beweis: Fortsetzung

- Sei **x** das bei Übertragung von $\mathbf{c} \in C$ empfangene Wort mit $d(\mathbf{x}, \mathbf{c}) \geq d$.
- Da C maximal ist, existiert ein $\mathbf{c}' \in C$ mit $d(\mathbf{x}, \mathbf{c}') < d \le d(\mathbf{x}, \mathbf{c})$.
- D.h. x wird zu c' dekodiert anstatt zu c.
- Damit erhalten wir bei $\geq d$ Fehlern stets inkorrekte Dekodierung.
- Dies geschieht mit Ws

$$\sum_{k=n}^{n} \binom{n}{k} p^{k} (1-p)^{n-k}.$$

Hammingkugel

Definition Hammingkugel

Sei $\mathbf{x} \in \{0,1\}^n$ und $r \ge 0$. Wir definieren die n-dimensionale Hammingkugel mit Mittelpunkt \mathbf{x} und Radius r als

$$B^{n}(\mathbf{x},r) = {\mathbf{y} \in {\{0,1\}}^{n} | d(\mathbf{x},\mathbf{y}) \le r}.$$

Bsp:

 $B^3(001,1) = \{001,101,011,000\}.$

Satz Volumen von $B^n(\mathbf{x}, r)$

Das Volumen der Hammingkugel $B^n(\mathbf{x}, r)$ ist $V^n(r) = \sum_{i=0}^r \binom{n}{i}$.

Beweis:

• Es gibt $\binom{n}{i}$ String mit Distanz i von x.

Packradius eines Codes

Definition Packradius eines Codes

Sei C ein (n, M, d)-Code. Der Packradius $pr(C) \in \mathbb{N}$ von C ist die größte Zahl, so dass die Hammingkugeln $B^n(\mathbf{c}, pr(C))$ für alle $\mathbf{c} \in C$ disjunkt sind.

Korollar

Sei C ein (n, M, d)-Code.

- ① Der Packradius von C ist $pr(C) = \lfloor \frac{d-1}{2} \rfloor$.
- ② C ist genau v-fehlerkorrigierend gdw pr(C) = v.

Perfekte Codes

Definition Perfekter Code

Sei $C \subseteq \{0,1\}^n$ ein (n,M,d)-Code. C heißt *perfekt*, falls

$$M \cdot V^n \left(\left\lfloor \frac{d-1}{2} \right\rfloor \right) = 2^n.$$

D.h. die maximalen disjunkten Hammingkugeln um die Codeworte partitionieren $\{0,1\}^n$.

- Nicht für alle (n, M, d), die obige Bedingung erfüllen, gibt es auch einen Code.
- $\{0,1\}^n$ ist ein perfekter $(n,2^n,1)$ -Code
 - Packradius ist 0, Hammingkugeln bestehen nur aus Codewort selbst.
 - Perfekter Code, aber nutzlos für Fehlerkorrektur.
- R(n) ist für ungerade n ein perfekter (n, 2, n)-Code.
 - $2 \cdot \sum_{i=0}^{\frac{n-1}{2}} \binom{n}{i} = 2 \cdot \frac{2^n}{2} = 2^n$
 - ► Code ist nutzlos, da er nur zwei Codeworte enthält.

Beispiele für Codes

Hamming Code: $\mathcal{H}(h)$ ist ein $(2^h - 1, 2^{n-h}, 3)$ -Code.

 $\mathcal{H}(h)$ ist perfekt, denn

$$2^{n-h}(1+2^h-1)=2^n.$$

Golay Codes: \mathcal{G}_{23} ist ein $(23, 2^{12}, 7)$ -Code.

 \mathcal{G}_{24} ist ein (24, 2¹², 8)-Code.

Einsatz: Voyager für Bilder von Jupiter und Saturn.

Der Golay Code (23, 2¹², 7) ist perfekt, denn

$$2^{12} \cdot \sum_{i=0}^{3} {23 \choose i} = 2^{12} \cdot 2^{11} = 2^{23}.$$

Reed-Muller Code: RM(r, m) ist ein $(2^m, 2^{1+\binom{m}{1}}, 2^{m-r})$ -Code.

 $RM(1, m) = (2^m, 2^{m+1}, 2^{m-1}).$

Einsatz: Mariner 9 für Bilder vom Mars.

Die einzigen perfekten, binären v-fehlerkorrigierenden Codes mit $v \geq 2$ sind Repetitionscodes und der obige Golay Code \mathcal{G}_{23} .

Die Rate eines Codes

Definition Rate eines Codes

Sei C ein (n, M, d)-Code.

- ① Die Übertragungsrate ist definiert als $\mathcal{R}(C) = \frac{\log_2(M)}{n}$.
- ② Die *Fehlerrate* ist definiert als $\delta(C) = \frac{\lfloor \frac{d-1}{2} \rfloor}{n}$.

Bsp:

- $C = \{0^n\}$ hat Übertragungrate 0, aber perfekte Fehlerkorrektur.
- $C = \{0,1\}^n$ hat Übertragungrate 1, aber keine Fehlerkorrektur.
- $\mathcal{R}(R(n)) = \frac{1}{n} \text{ und } \delta(R(n)) = \frac{\lfloor \frac{n-1}{2} \rfloor}{n}$.
 - Übertragungsrate konvergiert gegen 0, Fehlerrate gegen ½.
- $\mathcal{R}(\mathcal{H}(h)) = \frac{n-h}{n} = 1 \frac{h}{n} \text{ und } \delta(\mathcal{H}(h)) = \frac{1}{n}$.
 - Übertragungsrate konvergiert gegen 1, Fehlerrate gegen 0.

Die Größe A(n, d) und optimale Codes

Definition Optimaler Code

Wir definieren

$$A(n, d) = \max\{M \mid \exists \text{ bin\"arer } (n, M, d) - \text{Code}\}$$

Ein (n, M, d)-Code heißt optimal, falls M = A(n, d).

- Bestimmung von A(n, d) ist offenes Problem.
- Zeigen hier obere und untere Schranken für A(n, d).
- Für kleine Werte von n, d bestimmen wir A(n, d) wie folgt:
 - ▶ Zeigen A(n, d) < M.</p>
 - ► Konstruieren (n, M, d)-Code.
- $A(n,d) \leq 2^n$ für $d \in [n]$: höchstens 2^n Codeworte der Länge n.
- $A(n,1) = 2^n$: $C = \{0,1\}^n$.
- A(n, n) = 2: R(n).
- $A(n, d) \le A(n, d')$ für $d, d' \in [n]$ mit $d' \le d$ (Übung)

Singleton-Schranke

Satz Singleton-Schranke

$$A(n, d) \leq 2^{n-d+1}$$

Beweis:

- Sei C ein optimaler (n, M, d)-Code, d.h. M = A(n, d).
- Wir entfernen die letzten d − 1 Stellen aller M Codeworte.
- Die resultierenden M Worte sind alle verschieden, da sich alle Codeworte in mindestens d Stellen unterscheiden.
- Es gibt M viele unterschiedliche Worte der Länge n (d 1), d.h.

$$M \leq 2^{n-d+1}$$
.

Vereinfachte Plotkin-Schranke

Satz Vereinfachte Plotkin-Schranke

Sei n < 2d, dann gilt

$$A(n,d) \leq \frac{2d}{2d-n}.$$

- Sei C ein optimaler (n, M, d) Code und $S = \sum_{i < j} d(\mathbf{c_i}, \mathbf{c_j})$.
- Je zwei Codeworte besitzen Distanz mindestens d, d.h. $S \ge d\binom{M}{2}$.
- Betrachten erste Stelle in allen Codeworten:
 - ▶ Sei k die Anzahl der Nullen und (M k) die Anzahl der Einsen.
 - ▶ Erste Stelle liefert Beitrag von k(M k) zu S.
 - ▶ k(M-k) ist maximal für $k=\frac{M}{2}$, d.h. $k(M-k) \leq \frac{M^2}{4}$.
 - ▶ Analog für jede der *n* Stellen, d.h. $S \leq \frac{nM^2}{4}$.
- Kombination beider Schranken und Auflösen nach M liefert

$$M \leq \frac{2d}{2d-n}$$
.

Vergleich der oberen Schranken

n	7	8	9	10	11	12	13
A(n, 7)	2	2	2	2	4	4	8
A(n,7) Singleton	2	4	8	16	32	64	128
Plotkin	2	2	2	3	4	7	14

Kodierungstheorem von Shannon für fehlerbehaftete Kanäle

Gegeben sei ein binärer symmetrischer Kanal Q mit Fehlerws p. Für alle $R < 1 + p \log_2 p + (1-p) \log_2 (1-p) = 1 - H(Q)$ und alle $\epsilon > 0$ gibt es für hinreichend große n einen (n, M)-Code C mit Übertragungsrate $\mathcal{R}(C) \geq R$ und $\operatorname{Ws}(\operatorname{Dekodierfehler}) \leq \epsilon$.

- Beweis komplex, nicht-konstruktiv.
- Resultat gilt nur asymptotisch für genügend große Blocklänge.

Erinnerung: Der Vektorraum \mathbb{F}_2^n

Definition Vektorraum \mathbb{F}_2^n

$$\begin{split} \mathbb{F}_2^n &= (\{0,1\}^n,+,\cdot) \text{ mit Addition modulo 2, } + : \mathbb{F}_2^n \times \mathbb{F}_2^n \to \mathbb{F}_2^n \text{ und} \\ \text{skalarer Multiplikation} \cdot : \mathbb{F}_2 \times \mathbb{F}_2^n \to \mathbb{F}_2^n \text{ definiert einen Vektorraum, d.h.} \end{split}$$

- Assoziativität: $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$
- 2 Kommutativität: $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
- ③ ∃ neutrales Element $0^n : 0^n + x = x + 0^n = x$
- Selbstinverse: $\forall \mathbf{x} : \mathbf{x} = -\mathbf{x}$, d.h. $\mathbf{x} + \mathbf{x} = \mathbf{0}^{\mathbf{n}}$.
- **Skalare Multiplikation:** $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$.

Definition Unterraum des \mathbb{F}_2^n

 $S \subseteq \mathbb{F}_2^n$ ist ein Unterraum des \mathbb{F}_2^n gdw

$$\mathbf{0}^{\mathbf{n}} \in S \text{ und } \forall \mathbf{x}, \mathbf{y} \in S : \mathbf{x} - \mathbf{y} \in S.$$

Bsp: Code $C = \{000, 100, 010, 110\}$ ist Unterraum des \mathbb{F}_2^n .

Erzeugendensystem und Basis

Definition Erzeugendensystem und Basis eines Unterraums

Sei $S \subseteq \mathbb{F}_2^n$ ein Unterraum. Eine Menge $G = \{g_1, \dots, g_k\} \subseteq S$ heißt *Erzeugendensystem* von S, falls jedes $\mathbf{x} \in S$ als Linearkombination

$$\mathbf{x} = \alpha_1 \mathbf{g_1} + \dots \alpha_k \mathbf{g_k} \quad \text{mit } \alpha_i \in \mathbb{F}_2$$

geschrieben werden kann. Notation: $S = \langle \mathbf{g_1}, \dots, \mathbf{g_k} \rangle$. Eine *Basis B* ist ein minimales Erzeugendensystem, d.h. keine echte Teilmenge von *B* erzeugt *S*.

Bsp:

- $C = \{000, 100, 010, 110\}$ wird von $G = \{000, 100, 010\}$ erzeugt.
- B = {100,010} ist eine Basis von C.
- $B' = \{100, 110\}$ ist ebenfalls eine Basis.

Basisergänzung

Erinnerung Eigenschaften einer Basis

Sei $S \subseteq \mathbb{F}_2^n$ ein Unterraum.

- Jede linear unabhängige Teilmenge von S kann zu einer Basis ergänzt werden.
- Jede Basis von S besitzt dieselbe Kardinalität, genannt die Dimension dim(S).
- Jedes Erzeugendensystem G von S enthält eine Untermenge, die eine Basis von S ist.

Lineare Codes

Definition Linearer Code

Sei $C \subseteq \mathbb{F}_2^n$ ein Code. Wir bezeichnen C als *linearen Code*, falls C ein Unterraum ist. Sei k die Dimension des Unterraums und d die Distanz von C, dann bezeichnen wir C als [n, k, d]-Code.

Bsp:

- $C = \{000, 100, 010, 110\}$ ist ein [3, 2, 1]-Code.
- $C = \langle 1011, 1110, 0101 \rangle$ ist ein [4, 2, 2]-Code.
- Jeder [n, k, d]-Code ist ein $(n, 2^k, d)$ -Code.
- D.h. wir können $M = 2^k$ Codeworte mittels einer Basis der Dimension k kompakt darstellen.
- Beispiele für lineare Codes:
 Hamming Codes, Golay Codes und Reed-Muller Codes.

Generatormatrix eines linearen Codes

Definition Generatormatrix

Sei C ein linearer [n, k, d]-Code mit Basis $B = \{\mathbf{b_1}, \dots, \mathbf{b_k}\}$. Die $(k \times n)$ -Matrix

$$G = \left(egin{array}{c} \mathbf{b_1} \ dots \ \mathbf{b_k} \end{array}
ight) \in \mathbb{F}_2^{k imes n}$$

heißt Generatormatrix des Codes C.

Definition Hamminggewicht

Sei $\mathbf{c} \in \{0,1\}^n$. Das *Hamminggewicht* von \mathbf{c} ist definiert als

$$w(\mathbf{c}) = d(\mathbf{c}, \mathbf{0}).$$

D.h. $w(\mathbf{c})$ ist die Anzahl der Einsen in \mathbf{c} .

Distanz von linearen Codes

Satz Distanz eines linearen Codes

Sei C ein linearer Code. Dann gilt

$$d(C) = \min_{\mathbf{c} \in C, \mathbf{c} \neq 0} \{w(\mathbf{c})\}.$$

"≤":

• Sei $\mathbf{c_m} = \min_{\mathbf{c} \in C, \mathbf{c} \neq 0} \{ w(\mathbf{c}) \}$. Dann gilt

$$d(C) \leq d(\mathbf{c_m}, \mathbf{0^n}) = w(\mathbf{c_m})$$

"≥":

- Seien $\mathbf{c_i}$, $\mathbf{c_j}$ Codeworte mit $d(C) = d(\mathbf{c_i}, \mathbf{c_j})$.
- Aus der Linearität von C folgt $c_i + c_j \in C$. Daher gilt

$$d(C) = d(\mathbf{c_i}, \mathbf{c_j}) = d(\mathbf{c_i} + \mathbf{c_j}, \mathbf{0}) = w(\mathbf{c_i} + \mathbf{c_j}) \ge \min_{\mathbf{c} \in C.\mathbf{c} \ne 0} \{w(\mathbf{c})\}.$$

Bsp:
$$G = \langle 110, 111 \rangle$$
 besitzt $d(G) = w(001) = 1$.

Dekodierung mittels Standardarray

Algorithmus Standardarray

Eingabe: $C = \{c_1, \dots, c_M\}$ linearer $[n, \log_2 M, d]$ -Code mit $c_1 = 0^n$.

- **③** $S \leftarrow C$. Schreibe C in erste Zeile einer Tabelle.
- ② While $S \neq \mathbb{F}_2^n$
 - **①** Wähle Fehlervektor $\mathbf{f} \in \mathbb{F}_2^n \setminus S$ mit minimalem Gewicht.
 - $oldsymbol{2}$ Schreibe $oldsymbol{c_1}+f,\ldots,oldsymbol{c_m}+f$ in neue Tabellenzeile.

Beispiel: $C = \{0000, 1011, 0110, 1101\}$ besitzt Standardarray:

0000	1011	0110	1101
1000	0011	1110	0101
0100	1111	0010	1001
0001	1010	0111	1100

Standardarray-Dekodierung:

Dekodieren $\mathbf{x} \in \{0,1\}^n$ zum Codewort in derselben Spalte.

Korrektheit des Algorithmus

Satz Dekodierung zum nächsten Nachbarn via Standardarray

Sei C ein linearer [n,k]-Code. Jeder String \mathbf{x} wird durch Standardarray-Dekodierung zu einem nächsten Nachbarn dekodiert.

ullet Sei $oldsymbol{c}_i$ die Standardarray-Dekodierung von $oldsymbol{x}$ mit $oldsymbol{x} = oldsymbol{c}_i + oldsymbol{f}_j$. Es gilt

$$\min_{\mathbf{c} \in C} \{ d(\mathbf{x}, \mathbf{c}) \} = \min_{\mathbf{c} \in C} \{ w(\mathbf{x} - \mathbf{c}) \} = \min_{\mathbf{c} \in C} \{ w(\mathbf{f}_j + \mathbf{c}_i - \mathbf{c}) \}$$

$$= \min_{\mathbf{c} \in C} \{ w(\mathbf{f}_j + \mathbf{c}) \} //\mathbf{c}_j - \mathbf{c} \text{ durchläuft alle Codeworte}$$

$$= w(\mathbf{f}_j) = w(\mathbf{x} - \mathbf{c}_i) = d(\mathbf{x}, \mathbf{c}_i).$$

Satz Dekodierfehler perfekter linearer Codes

Sei C ein perfekter [n, k, d]-Code. Für einen binären symmetrischen Kanal mit Fehlerws p gilt für Standardarray-Dekodierung

Ws(korrekte Dekodierung) =
$$\sum_{i=0}^{\lfloor \frac{d-1}{2} \rfloor} {n \choose i} p^i (1-p)^{n-i}$$
. (Beweis: Übung)

Inneres Produkt und Orthogonalität

Fakt Eigenschaften des inneren Produkts

Seien $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{F}_2^n$ und $\alpha \in \mathbb{F}_2$. Dann gilt für das innere Produkt

$$\cdot: \mathbb{F}_2^n \times \mathbb{F}_2^n \to \mathbb{F}_2 \text{ mit } (x_1, \dots, x_n) \cdot (y_1, \dots, y_n) \mapsto x_1 y_1 + \dots + x_n y_n$$

- **1** Kommutativität: $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$
- 2 Distributivität: $(x + y) \cdot z = x \cdot z + y \cdot z$
- **3** Skalare Assoziativität: $(\alpha \mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot (\alpha \mathbf{y}) = \alpha (\mathbf{x} \cdot \mathbf{y})$

Definition Orthogonalität, orthogonales Komplement

Seien $\mathbf{x}, \mathbf{y} \in \mathbb{F}_2^n$. Wir bezeichnen \mathbf{x}, \mathbf{y} als orthogonal, falls $\mathbf{x} \cdot \mathbf{y} = 0$. Das orthogonale Komplement $\{\mathbf{y}\}^{\perp}$ von \mathbf{y} ist definiert als die Menge

$$\{\mathbf{y}\}^{\perp} = \{\mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x} \cdot \mathbf{y} = 0\}.$$

Lineare Codes mittels orthogonalem Komplement

Satz Linearer Code {y}[⊥]

Sei $\mathbf{y} \in \mathbb{F}_2^n$. Dann ist $\{\mathbf{y}\}^{\perp}$ ein linearer Code.

Beweis:

- Zeigen, dass $\{\mathbf{y}\}^{\perp}$ ein Unterraum des \mathbb{F}_2^n ist.
- Abgeschlossenheit: Seien x, x' im orthog. Komplement von y.
- Dann ist auch $x x' \in \{y\}^{\perp}$, denn

$$(\mathbf{x} - \mathbf{x}') \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y} - \mathbf{x}' \cdot \mathbf{y} = 0.$$

• $0 \in \{y\}^{\perp}$, denn $0 \cdot y = 0$.

Bsp:

- $\{1\}^{\perp} = \{\mathbf{x} \in \mathbb{F}_2^n \mid x_1 + \ldots + x_n = 0\} = \{\mathbf{x} \in \mathbb{F}_2^n \mid w(\mathbf{x}) \text{ gerade}\}$
- Wir nennen $x_1 + ... + x_n = 0$ die Parity Check Gleichung des Codes $\{1\}^{\perp}$.

Orthogonales Komplement erweitert auf Mengen

Definition Orthogonales Komplement einer Menge

Sei $C = \{c_1, \dots, c_M\} \subseteq \mathbb{F}_2^n$. Das *orthogonale Komplement* von C ist definiert als

$$C^{\perp} = \{ \mathbf{x} \in \mathbb{F}_2^n \mid c_i \cdot \mathbf{x} = 0 \text{ für } i = 1, \dots, M \}.$$

• Sei $\mathbf{c_i} = c_{i1} c_{i2} \dots c_{in}$. Für $\mathbf{x} \in C^\perp$ gelten Parity Check Gleichungen

$$c_{11}x_1 + c_{12}x_2 + \ldots + c_{1n}x_n = 0$$

$$\vdots$$

$$c_{M1}x_1 + c_{M2}x_2 + \ldots + c_{Mn}x_n = 0$$

• Sei $P = (c_{ij})_{1 \leq i \leq M, 1 \leq j \leq n} \in \mathbb{F}_2^{M \times n}$, dann gilt $P\mathbf{x}^t = \mathbf{0}^t$ bzw.

$$\mathbf{x}P^t=\mathbf{0}.$$

• Wir bezeichen P als Parity Check Matrix von C^{\perp} .

Dualer Code

Satz Dualer Code

Sei $C = \{\mathbf{c_1}, \dots, \mathbf{c_M}\} \subseteq \mathbb{F}_2^n$ ein Code. Das orthogonale Komplement C^{\perp} von C ist ein linearer Code, genannt der duale Code von C.

Beweis:

• Abgeschlossenheit: Seien $\mathbf{x}, \mathbf{x}' \in C^{\perp}$ und $P = (c_{ij})_{1 \leq i \leq M, 1 \leq j \leq n}$. Dann gilt

$$(\mathbf{x} - \mathbf{x}')P^t = \mathbf{x}P^t - \mathbf{x}'P^t = \mathbf{0}.$$

• $0^n \in C^{\perp}$, denn $0^n P^t = 0^M$.

Bsp

 \bullet Sei $C^{\perp}=\{100,111\}^{\perp}.$ Dann gelten die Parity Check Gleichungen

$$x_1 = 0$$

 $x_1 + x_2 + x_3 = 0.$

• Aus der 2. Gleichung folgt $x_2 = x_3$ in \mathbb{F}_2 , d.h. $C^{\perp} = \{000, 011\}$.

Parity Check Matrix

Definition Parity Check Matrix P

Sei C ein linearer [n, k]-Code. Jede Matrix P mit der Eigenschaft

$$C = \{\mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}P^t = \mathbf{0}\}$$

heißt Parity Check Matrix des Codes C.

- D.h. C wird sowohl durch eine Generatormatrix als auch durch eine Parity Check Matrix eindeutig definiert.
- Im Gegensatz zu Generatormatrizen setzen wir nicht voraus, dass die Zeilen von P linear unabhängig sind.
- **Bsp.**: Code $C = \{011, 101\}^{\perp}$ besitzt die Parity Check Matrizen

$$P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 und $P' = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Eigenschaften dualer Codes

Satz Eigenschaften dualer Codes

Seien C, D Codes mit $C \subseteq D$. Dann gilt $D^{\perp} \subseteq C^{\perp}$.

Beweis:

- Sei $\mathbf{x} \in D^{\perp}$. Dann gilt $\mathbf{x} \cdot \mathbf{d} = 0$ für alle $\mathbf{d} \in D$.
- Somit ist $\mathbf{x} \cdot \mathbf{c} = 0$ für alle $c \in C \subseteq D$, d.h. $\mathbf{x} \in C^{\perp}$.

Satz Eigenschaften dualer Codes von linearen Codes

Sei C ein linearer [n, k, d]-Code mit Generatormatrix G. Dann gilt

- $lackbox{0} \quad C^{\perp} = \{\mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}G^t = \mathbf{0}\}, \text{ d.h. } G \text{ ist Parity Check Matrix für } C^{\perp}.$
- $2 \dim(C^{\perp}) = n \dim(C).$

Beweis der Eigenschaften 1+2

- $\textbf{0} \ \ \text{G besitze Zeilenvektoren } \textbf{g_1}, \dots, \textbf{g_k}. \ \text{Zeigen } \textbf{C}^{\perp} = \{\textbf{g_1} \ \dots, \textbf{g_k}\}^{\perp}.$
 - Mit vorigem Satz folgt: $\{g_1, \ldots, g_k\} \subseteq C \Rightarrow C^{\perp} \subseteq \{g_1, \ldots, g_k\}^{\perp}$.
 - ▶ $\{g_1, \ldots, g_k\}^{\perp} \subseteq C^{\perp}$: Sei $\mathbf{x} \in \{g_1, \ldots, g_k\}^{\perp}$. Dann ist \mathbf{x} orthogonal zu jeder Linearkombination der $\mathbf{g_i}$, d.h. \mathbf{x} ist orthog. zu jedem $\mathbf{c} \in C$.
- Mit 1. gelten die folgenden Parity Check Gleichungen für C^{\perp} $q_{11}x_1 + q_{12}x_2 + \dots + q_{1n}x_n = 0$

$$g_{k1}x_1 + g_{k2}x_2 + \dots + g_{kn}x_n = 0$$

$$\vdots$$

$$g_{k1}x_1 + g_{k2}x_2 + \dots + g_{kn}x_n = 0$$

Umwandeln in linke Standardform liefert (eventuell nach Spaltenumbenennung)

Variablen x_{k+1}, \ldots, x_n frei wählbar. Daher gilt dim $(C^{\perp}) = n - k$.

3 Zeigen $C \subseteq C^{\perp \perp}$ und $\dim(C) = \dim(C^{\perp \perp})$. Damit gilt $C = C^{\perp \perp}$.

Beweis $C = C^{\perp \perp}$

- Zeigen zunächst $C \subseteq C^{\perp \perp}$. Sei $\mathbf{c} \in C$.
- Es gilt $C^{\perp} = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x} \cdot \mathbf{c_i} = \mathbf{0} \text{ für alle } \mathbf{c_i} \in C \}.$
- Ferner $C^{\perp\perp}=\{\mathbf{y}\in\mathbb{F}_2^n\mid\mathbf{y}\cdot\mathbf{x}=\mathbf{0} \ \mathrm{für} \ \mathrm{alle} \ \mathbf{x}\in C^\perp\},$ d.h. $\mathbf{c}\in C^{\perp\perp}.$
- Wegen 2. gilt: $\dim(C^{\perp \perp}) = n \dim(C^{\perp}) = n (n \dim(C)) = \dim(C)$.

Korollar Existenz einer Parity Check Matrix

Sei C ein linearer Code. Jede Generatormatrix G von C^{\perp} ist eine Parity Check Matrix für C. D.h. insbesondere, dass jeder lineare Code C eine Parity Check Matrix besitzt.

Beweis:

- C^{\perp} ist linear, besitzt also eine Generatormatrix G.
- G ist Parity Check Matrix für den Dualcode von C^{\perp} , d.h. für $C^{\perp \perp} = C$.

Konstruktion eines dualen Codes

Bsp: $C = \langle 1011, 0110 \rangle$.

Die Parity Check Gleichungen von C[⊥] sind

$$x_1 + x_3 + x_4 = 0$$

 $x_2 + x_3 = 0$

- Wählen beliebige Werte für x_3, x_4 und lösen nach x_1, x_2 auf.
- $\bullet \ \, \pmb{C}^{\perp} = \{0000, 1001, 1110, 0111\} = \langle 1001, 1110 \rangle$
- $\bullet \ \operatorname{dim}(C^{\perp}) = 4 \operatorname{dim}(C) = 2$

Bsp: $C = \langle 1100, 0011 \rangle$

- Die Codeworte 1100 und 0011 sind orthogonal zueinander.
- Beide Codeworte 1100, 0011 sind orthogonal zu sich selbst.
- D.h. $C \subseteq C^{\perp}$ und $\dim(C) = 2 = \dim(C^{\perp})$.
- Damit ist $C^{\perp} = C$. C ist ein selbst-dualer Code.

Präsentation eines Codes durch G oder P

Vorteil der Präsentation durch Generatormatrix:

Einfache Generierung aller Codeworte von C

Vorteil der Präsentation durch Parity Check Matrix:

Entscheidung, ob ein x im Code C liegt.

Satz Minimaldistanz via P

Sei C ein linearer [n, k, d]-Code mit Parity Check Matrix P. Für die Minimaldistanz von C gilt

 $d = \min\{r \in \mathbb{N} \mid \text{Es gibt } r \text{ linear abhängige Spalten in } P\}.$

Beweis zur Minimaldistanz via Spalten von P

Beweis:

- Sei *r* die minimale Anzahl von linear abhängigen Spalten.
- Es gibt ein $\mathbf{c} \in \mathbb{F}_2^n$ mit $w(\mathbf{c}) = r$ und $P \cdot \mathbf{c}^t = \mathbf{0}^t \Leftrightarrow \mathbf{c}P^t = \mathbf{0}$.
- Damit gilt $\mathbf{c} \in C$ und $d \le r$.
- Annahme: d < r.
- Sei $\mathbf{c}' \in C$ ein Codewort mit Gewicht d. Dann gilt $P \cdot (\mathbf{c}')^t = \mathbf{0}^t$.
- D.h. es gibt d < r linear abhängige Spalten in P.
 (Widerspruch zur Minimalität von r)

Syndrome

Definition Syndrom

Sei $C \subseteq \mathbb{F}_2^n$ ein Code mit Parity Check Matrix P und $\mathbf{x} \in \mathbb{F}_2^n$. Das Syndrom von \mathbf{x} ist definiert als $S(\mathbf{x}) = \mathbf{x}P^t$.

Satz Standardarrays und Syndrome

Sei C ein linearer Code mit Standardarray A und Parity Check Matrix P. Die Elemente $\mathbf{x}, \mathbf{y} \in \mathbb{F}_2^n$ sind in derselben Zeile von A gdw $S(\mathbf{x}) = S(\mathbf{y})$.

Beweis:

- Sei $\mathbf{x} = \mathbf{f_i} + \mathbf{c_j}$ und $\mathbf{y} = \mathbf{f_k} + \mathbf{c_\ell}$.
- Es gilt $S(\mathbf{x}) = S(\mathbf{f_i} + \mathbf{c_j}) = S(\mathbf{f_i}) + S(\mathbf{c_j}) = S(\mathbf{f_i}).$
- Analog folgt $S(y) = S(f_k)$. D.h.

$$S(\mathbf{y}) = S(\mathbf{x}) \Leftrightarrow S(\mathbf{f_i}) = S(\mathbf{f_k})$$

$$\Leftrightarrow S(\mathbf{f_i} - \mathbf{f_k}) = \mathbf{0} \Leftrightarrow \mathbf{f_i} - \mathbf{f_k} \in C \Leftrightarrow i = k.$$

Syndromdekodierung mittels Syndromtabelle

- \bullet Dekodierung mittels Standardarray: $\boldsymbol{x} = \boldsymbol{f_i} + \boldsymbol{c_j}$ mit Fehlervektor $\boldsymbol{f_i}.$
- Paarweise verschiedene Fehlervektoren bilden die erste Spalte eines Standardarrays.
- Berechne die folgende Syndromtabelle für C

Fehlervektor	Syndrom
0	0
f_2	$S(f_2)$
f_3	$S(f_3)$
:	÷
f_ℓ	$\mathcal{S}(\mathbf{f}_\ell)$

Algorithmus Syndromdekodierung

EINGABE: $\mathbf{x} \in \mathbb{F}_2^n$

- \odot Berechne $S(\mathbf{x})$ und vergleiche mit der Syndromspalte.
- 2 Falls $S(\mathbf{x}) = S(\mathbf{f_i})$, Ausgabe $\mathbf{c} = \mathbf{x} \mathbf{f_i}$.

Äquivalente lineare Codes

Definition Äquivalenz von linearen Codes

Sei C ein linearer Code mit Generatormatrix G. Ein Code C' mit Generatormatrix G' heißt zu C äquivalenter Code, falls G' eine Transformation aus G mittels folgender Operationen ist.

- Vertauschen von zwei Zeilenvektoren
- Vertauschen von zwei Spaltenvektoren
- Addition eines Zeilenvektors zu einem anderen Zeilenvektor

Fakt Systematische Codes

Sei C ein linearer [n,k]-Code mit Generatormatrix G. Dann gibt es einen zu C äquivalenten Code C' mit Generatormatrix in linker Standardform $G' = [I_k | M_{k,n-k}]$. C' nennt man systematischen Code.

- Für systematische C': $(x_1, \ldots, x_k)G' = (x_1, \ldots, x_k, y_1, \ldots, y_{n-k})$.
- y_1, \ldots, y_{n-k} nennt man die Redundanz der Nachricht.

Umwandlung Generatormatrix in Parity Check Matrix

Satz Konversion von Generatormatrix in Parity Check Matrix

Sei C ein linearer [n, k]-Code mit Generatormatrix $G = [I_k|A]$. Dann ist

$$P = [A^t | I_{n-k}]$$

eine Parity Check Matrix für C.

Beweis: Sei C' der Code mit Parity Check Matrix P:

- **1** Zeigen: $C \subseteq C'$.
 - Für alle Zeilen $\mathbf{g_i}$ von G gilt $P\mathbf{g_i}^t = \mathbf{0}^t$, denn j-ter Eintrag von $P\mathbf{g_i}^t$:

$$(a_{1j} \ldots a_{kj} 0 \ldots 1 \ldots 0) \cdot (0 \ldots 1 \ldots 0 a_{i1} \ldots a_{in-k}) = a_{ij} + a_{ij} = 0$$

- ▶ Aus $P\mathbf{g_i}^t = \mathbf{0}^t$ folgt $C \subseteq C'$.
- 2 Zeigen: dim(C) = dim(C')
 - ▶ P besitzt n k linear unabhängige Zeilen.
 - ▶ D.h. Dualcode $(C')^{\perp}$ hat Generatormatrix P und Dimension n k.

$$\dim(C')=n-\dim((C')^{\perp})=n-(n-k)=k=\dim(C).$$

Hamming-Matrix H(h) und Hammingcode $\mathcal{H}(h)$

- Parametrisiert über die Zeilenanzahl h.
- Spaltenvektoren sind Binärdarstellung von 1,2,...,2^h − 1.
- Bsp:

$$H(3) = \left(\begin{array}{ccccccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right)$$

- Hammingcode $\mathcal{H}(h)$ besitzt die Parity Check Matrix H(h).
- Hammingcodes unabhängig entdeckt von Golay (1949) und Hamming (1950).

Satz Hammingcode

Der Hammingcode $\mathcal{H}(h)$ mit Parity Check Matrix H(h) ist ein linearer [n, k, d]-Code mit den Parametern

$$n = 2^h - 1$$
, $k = n - h$ und $d = 3$.

k und d bei Hammingcodes

Beweis:

- H(h) enthält die h Einheits-Spaltenvektoren e_1, \ldots, e_h .
- ullet Daraus folgt, die Zeilenvektoren von H(h) sind linear unabhängig.
- D.h. H(h) ist eine Generatormatrix des dualen Codes $\mathcal{H}(h)^{\perp}$.
- Damit ist $\dim(\mathcal{H}(h)^{\perp}) = h$ und $k = \dim(\mathcal{H}(h)) = n h$.

- Je zwei Spalten in H(h) sind paarweise verschieden.
- Die minimale Anzahl von linear abhängigen Spalten ist mindestens 3, d.h. d(H(h)) ≥ 3.
- Die ersten drei Spalten sind stets linear abhängig, d.h. $d(\mathcal{H}(h)) = 3$.

Dekodierung mit Hammingcodes

Satz Korrigieren eines Fehlers

Sei $\mathbf{c} \in \mathcal{H}(h)$ und $\mathbf{x} = \mathbf{c} + \mathbf{e_i}$ für einen Einheitsvektor $\mathbf{e_i} \in \mathbb{F}_2^{2^n-1}$. Dann entspricht das Syndrom $S(\mathbf{x})$ der Binärdarstellung von i.

Beweis:

- Es gilt $S(\mathbf{x}) = S(\mathbf{e_i}) = \mathbf{e_i} H(h)^t = (H(h)\mathbf{e_i}^t)^t$.
- D.h. S(x) entspricht der i-ten Spalte von H(h), die wiederum die Binärkodierung von i ist.

Bsp:

• Verwenden $\mathcal{H}(3)$ und erhalten $\mathbf{x} = 1000001$.

$$S(\mathbf{x}) = (1000001)H(3)^t = (110).$$

 Da 110 die Binärkodierung von 6 ist, kodieren wir zum nächsten Nachbarn 1000011.

Simplex Code: Dualcode des Hammingcodes

Satz Simplex Code

Der Dualcode des Hammingcodes $\mathcal{H}(h)$ wird als Simplex Code $\mathcal{S}(h)$ bezeichnet. $\mathcal{S}(h)$ ist ein $[2^h-1,h,2^{h-1}]$ -Code, bei dem für *alle* verschiedenen $\mathbf{c},\mathbf{c}'\in\mathcal{S}(h)$ gilt, dass $d(\mathbf{c},\mathbf{c}')=2^{h-1}$.

Beweis:

- Hamming-Matrix H(h) ist Generatormatrix von $S(h) = \mathcal{H}(h)^{\perp}$.
- Da dim $(S(h)) = n \text{dim}(\mathcal{H}(h))$, ist S(h) ein $[2^h 1, h]$ -Code.
- Rekursive Definition: Es gilt

$$H(h+1) = \begin{pmatrix} 0 & \dots & 0 & 1 & 1 & \dots & 1 \\ \hline & & & & 0 & & \\ & H(h) & & \vdots & & H(h) & \\ & & & 0 & & \end{pmatrix}.$$

• Sei c das Komplement von c ist. Dann gilt

$$\mathcal{S}(h+1) = \{\mathbf{c0c}|\mathbf{c} \in \mathcal{S}(h)\} \cup \{\mathbf{c1\bar{c}}|\mathbf{c} \in \mathcal{S}(h)\}.$$

Distanz 2^{h-1} zwischen zwei Worten im Simplex Code

Beweis von $d(\mathbf{c}, \mathbf{c}') = 2^{h-1}$ per Induktion über h.

IV h = 1:

•
$$H(1) = (1)$$
, d.h. $S = \{0, 1\}$ und damit $d(0, 1) = 1 = 2^0$.

IS $h \to h + 1$:

- Fall 1: $d(\mathbf{c}0\mathbf{c}, \mathbf{c}'0\mathbf{c}') = 2 \cdot d(\mathbf{c}, \mathbf{c}') = 2 \cdot 2^{h-1} = 2^h$.
- Fall 2: $d(\mathbf{c}1\bar{\mathbf{c}},\mathbf{c}'1\bar{\mathbf{c}'}) = d(\mathbf{c},\mathbf{c}') + d(\bar{\mathbf{c}},\bar{\mathbf{c}'}) = 2 \cdot d(\mathbf{c},\mathbf{c}') = 2^h$.
- Fall 3:

$$d(\mathbf{c}0\mathbf{c}, \mathbf{c}'1\bar{\mathbf{c}'}) = d(\mathbf{c}, \mathbf{c}') + 1 + d(\mathbf{c}, \bar{\mathbf{c}'})$$

= $d(\mathbf{c}, \mathbf{c}') + 1 + (2^h - 1 - d(\mathbf{c}, \mathbf{c}')) = 2^h$.

Reed-Muller Codes

- Reed-Muller Code $\mathcal{R}(r, m)$ ist definiert für $m \in \mathbb{N}$, $0 \le r \le m$.
- Betrachten nur Reed-Muller Codes 1. Ordnung $\mathcal{R}(1, m) = \mathcal{R}(m)$.

Definition Rekursive Darstellung von Reed-Muller Codes

- ② Für $m \ge 1$: $\mathcal{R}(m+1) = \{\mathbf{cc} \mid \mathbf{c} \in \mathcal{R}(m)\} \cup \{\mathbf{c}\bar{\mathbf{c}} \mid \mathbf{c} \in \mathcal{R}(m)\}.$
 - $R_1 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ ist eine Generatormatrix für $\mathcal{R}(1)$.
 - $\mathcal{R}(2) = \{0000, 0011, 0101, 0110, 1010, 1001, 1111, 1100\}$ mit Generatormatrix

$$R_2 = \left(\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{array}\right)$$

Parameter der Reed-Muller Codes

Satz Reed-Muller Parameter

 $\mathcal{R}(m)$ ist ein linearer $(2^m, 2^{m+1}, 2^{m-1})$ -Code. Für alle $\mathbf{c} \in \mathcal{R}(m) \setminus \{\mathbf{0}, \mathbf{1}\}$ gilt $w(\mathbf{c}) = 2^{m-1}$.

IA: m = 1

• $\mathcal{R}(1)$ ist ein linearer $(2^1, 2^2, 2^0)$ -Code. 01, 10 besitzen Gewicht 2^0 .

IS: $m \to m + 1$

- $n = 2 \cdot 2^m = 2^{m+1}$.
- {cc | c $\in \mathcal{R}(m)$ } und {cc | c $\in \mathcal{R}(m)$ } sind disjunkt, d.h.

$$k=2\cdot 2^{m+1}=2^{m+2}.$$

- Sei $c \in \mathcal{R}(m) \setminus \{0, 1\}$.
 - Für **cc** gilt $w(\mathbf{cc}) = 2w(\mathbf{c}) = 2 \cdot 2^{m-1} = 2^m$.
 - Für $c\bar{c}$ gilt $w(c\bar{c}) = w(c) + w(\bar{c}) = 2^{m-1} + (2^m 2^{m-1}) = 2^m$.
- Für c = 0 gilt $c\bar{c} = 01$ mit $w(01) = 2^m$.
- Für c = 1 gilt $c\bar{c} = 10$ mit $w(10) = 2^m$.

Reed-Muller Generatormatrizen

Satz Generatormatrix für $\mathcal{R}(m)$

Sei R_m eine Generatormatrix für $\mathcal{R}(m)$. Dann ist

$$R_{m+1} = \left(\begin{array}{c|cccc} 0 & \dots & 0 & 1 & \dots & 1 \\ \hline R_m & & & R_m \end{array}\right)$$

eine Generatormatrix für $\mathcal{R}(m+1)$.

Beweis:

- **Ann.**: ∃ nicht-triviale Linearkombination, die **0** liefert.
- Linearkombination kann nicht nur die erste Zeile enthalten.
- D.h. es gibt eine nicht-triviale Linearkombination der Zeilen $2 \dots m+2$, die den Nullvektor auf der ersten Hälfte liefert. (Widerspruch: R_m ist Generatormatrix für $\mathcal{R}(m)$.)
- Sei C der Code mit Generatormatrix R_{m+1} .
- Für $\mathbf{c} \in \mathcal{R}(m)$ gilt: $\mathbf{cc} \in C$ und $\mathbf{c\bar{c}} \in C$. D.h. $\mathcal{R}(m+1) \subseteq C$.
- $\dim(C) = m + 1 = \dim(\mathcal{R}(m+1))$ und damit $C = \mathcal{R}(m+1)$.

Charakterisierung der Generatormatrizen

Bsp:

$$R_3 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Streiche Einserzeile aus R_m . Dann

- besitzen die Spaltenvektoren Länge m und
- bestehen aus Binärkodierungen von $0, 1, \dots, 2^m 1$.
- D.h. Streichung der Einserzeile von R_m liefert die Hamming-Matrix H(m) mit einer zusätzlichen Nullspalte.

Vergleich von Hamming, Simplex und Reed-Muller Codes

	$\mathcal{H}(m)$	$\mathcal{S}(m)$	$\mathcal{R}(m)$
Codewortlänge	2 ^m – 1	$2^{m}-1$	2 ^m
Anzahl Codeworte	2^{2^m-1-m}	2 ^m	2 ^{m+1}
Distanz	3	2^{m-1}	2 ^{<i>m</i>-1}

Dekodierung von Reed-Muller Codes

- $\mathcal{R}(m)$ kann $\left\lfloor \frac{2^{m-1}-1}{2} \right\rfloor = 2^{m-2}-1$ Fehler korrigieren.
- Syndrom-Tabelle besitzt $\frac{2^n}{M} = \frac{2^{2^m}}{2^{m+1}} = 2^{2^m-m-1}$ Zeilen.

Bsp: $\mathcal{R}(3)$ ist 1-fehlerkorrigierend.

$$R_3 = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Sei $\mathbf{c} = \alpha_1 \mathbf{r_1} + \alpha_2 \mathbf{r_2} + \alpha_3 \mathbf{r_3} + \alpha_4 \mathbf{r_4}$. Es gilt

•
$$c_1 + c_5 = \alpha_1(r_{11} + r_{15}) + \alpha_2(r_{21} + r_{25}) + \alpha_3(r_{31} + r_{35}) + \alpha_4(r_{41} + r_{45}) = \alpha_1$$

•
$$c_2 + c_6 = \alpha_1(r_{12} + r_{16}) + \alpha_2(r_{22} + r_{26}) + \alpha_3(r_{32} + r_{36}) + \alpha_4(r_{42} + r_{46}) = \alpha_1$$

• Ebenso $\alpha_1 = c_3 + c_7 = c_4 + c_8$.

Mehrheitsdekodierung

- Suche für jede Zeile i Spaltenpaar (u, v), so dass sich die Spalten u, v nur in der i-ten Zeile unterscheiden. Liefert Gleichung für α_i.
- Für Zeile 1: (1,5), (2,6), (3,7), (4,8), d.h. im Abstand 4.
- Für Zeile 2: (1,3), (2,4), (5,7), (6,8), d.h. im Abstand 2.
- Für Zeile 3: (1,2), (3,4), (5,6), (7,8), d.h. im Abstand 1.
- Für Zeile 4: nicht möglich.
- Erhalten für $\alpha_1, \alpha_2, \alpha_3$ jeweils 4 Gleichungen in verschiedenen c_i .
- ullet Falls ${f x}={f c}+{f e_i}$, ist genau 1 von 4 Gleichungen inkorrekt.

Algorithmus Mehrheitsdekodierung Reed-Muller Code $\mathcal{R}(m)$

- **1** Bestimme $\alpha_1, \ldots, \alpha_m$ per Mehrheitsentscheid.
- 2 Berechne $\mathbf{e} = \mathbf{x} \sum_{i=1}^{m} \alpha_i \mathbf{r_i}$.
- **3** Falls $w(\mathbf{e}) \le 2^{m-2} 1$, dekodiere $\mathbf{c} = \mathbf{x} + \mathbf{e}$. (d.h. $\alpha_{m+1} = 0$)
- Falls $w(\bar{\mathbf{e}}) \le 2^{m-2} 1$, dekodiere $\mathbf{c} = \mathbf{x} + \bar{\mathbf{e}}$. (d.h. $\alpha_{m+1} = 1$)

Beispiel Mehrheitsdekodierung

Bsp:

- Verwenden $\mathcal{R}(3)$ und erhalten $\mathbf{x} = 11011100$.
 - $\alpha_1 = x_1 + x_5 = 0$
 - $\alpha_1 = x_2 + x_6 = 0$
 - $\alpha_1 = x_3 + x_7 = 0$
 - $\alpha_1 = x_4 + x_8 = 1$
- Mehrheitsentscheid liefert $\alpha_1 = 0$.
 - $\alpha_2 = x_1 + x_3 = 1$
 - $\alpha_2 = x_2 + x_4 = 0$
 - $\alpha_2 = x_5 + x_7 = 1$
 - $\alpha_2 = x_6 + x_8 = 1$
- Mehrheitsentscheid liefert $\alpha_2 = 1$ und analog $\alpha_3 = 0$.
- \bullet e = x 0 · r₁ 1 · r₂ 0 · r₃ = 110111100 00110011 = 111011111.
- $w(\bar{\mathbf{e}}) \le 1$, d.h. $\mathbf{c} = \mathbf{x} + \bar{\mathbf{e}} = 11001100$.

McEliece Verfahren (1978)

- Dekodieren eines zufälligen linearen Codes ist NP-hart.
- Verwende linearen Code C mit effizientem Dekodierverfahren (z.B. sogenannten Goppa-Code).
- Generatormatrix von C bildet den geheimen Schlüssel.
- C wird in äquivalenten linearen Code C' transformiert.

Algorithmus Schlüsselgenerierung McEliece

- Wähle linearen [n, k, d]-Code C mit Generatormatrix G.
- Wähle zufällige binäre $(k \times k)$ -Matrix S mit det(S) = 1.
- **③** Wähle zufällige binäre $(n \times n)$ -Permutationsmatrix P.
- \bullet $G' \leftarrow SGP$

öffentlicher Schlüssel: G', geheimer Schlüssel S, G, P.

McEliece Verschlüsselung

Algorithmus McEliece Verschlüsselung

EINGABE: Plaintext $\mathbf{m} \in \mathbb{F}_2^k$

- **1** Wähle zufälligen Fehlervektor $\mathbf{e} \in \mathbb{F}_2^n$ mit $w(\mathbf{e}) = \lfloor \frac{d-1}{2} \rfloor$.

AUSGABE: Ciphertext $\mathbf{c} \in \mathbb{F}_2^n$

Vorgeschlagene Parameter:

- [1024, 512, 101]-Goppacode *C*.
- Plaintextlänge: 512 Bit, Chiffretextlänge: 1024 Bit.
- Größe des öffentlichen Schlüssels: 512 × 1024 Bit.

McEliece Entschlüsselung

Algorithmus McEliece Entschlüsselung

EINGABE: Ciphertext $\mathbf{c} \in \mathbb{F}_2^n$

- $\mathbf{0} \mathbf{x} \leftarrow \mathbf{c} P^{-1}$.
- Dekodiere **x** mittels Dekodieralgorithmus für *C* zu **m**′.

AUSGABE: Plaintext $\mathbf{m} \in \mathbb{F}_2^k$

Korrektheit:

$$\mathbf{x} = \mathbf{c}P^{-1} = (\mathbf{m}G' + \mathbf{e}) \cdot P^{-1} = (\mathbf{m}SGP + \mathbf{e}) \cdot P^{-1} = (\mathbf{m}S)G + \mathbf{e} \cdot P^{-1}.$$

- $\mathbf{e} \cdot P^{-1}$ besitzt Gewicht $w(\mathbf{e}P^{-1}) = w(\mathbf{e}) = \lfloor \frac{d-1}{2} \rfloor$.
- Dekodierung liefert $\mathbf{m}' = \mathbf{m}S$, d.h. $\mathbf{m} = \mathbf{m}'S^{-1}$.

