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Abstract. We propose two heuristic polynomial memory collision finding
algorithms for the low Hamming weight discrete logarithm problem in
any abelian group G. The first one is a direct adaptation of the Becker-
Coron-Joux (BCJ) algorithm for subset sum to the discrete logarithm
setting. The second one significantly improves on this adaptation for all
possible weights using a more involved application of the representation
technique together with some new Markov chain analysis. In contrast to
other low weight discrete logarithm algorithms, our second algorithm’s
time complexity interpolates to Pollard’s |G| 12 bound for general discrete
logarithm instances.
We also introduce a new heuristic subset sum algorithm with polynomial
memory that improves on BCJ’s 20.72n time bound for random subset sum
instances a1, . . . , an, t ∈ Z2n . Technically, we introduce a novel nested
collision finding for subset sum – inspired by the NestedRho algorithm
from Crypto ’16 – that recursively produces collisions. We first show how
to instantiate our algorithm with run time 20.649n. Using further tricks,
we are then able to improve its complexity down to 20.645n.
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1 Introduction

The subset sum problem is one of the most fundamental problems in cryptogra-
phy. It was early used in the 80’s for the construction of cryptosystems [8, 21],
suffered from lattice-based attacks [18,23], and found a revival in the last two
decades [11,19] since even LWE(SIS) [25] and LPN [2] instances can be formulated
as (vectorial) versions of subset sum.

In this paper, we study subset sum instances a1, . . . , an, t ∈ Z2n . These are
known as density-1 instances in the cryptographic literature, and they enjoy some
useful hardness properties [16]. The invention of the polynomial memory 20.72n-
algorithm by Becker, Coron and Joux (BCJ) [4] initiated a renewed interest in the
subset sum problem itself [1,3] and its vectorial versions [5,15]. Polynomial memory
algorithms are of crucial importance to cryptanalysis, since they allow for very
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efficient implementations, and therefore are often used for record computations [7,
10]. Moreover, if we aim at implementing cryptanalytic quantum algorithms [6] in
the near future, we have to focus on the development of low memory algorithms.

Our contributions

Discrete logarithms. It is not hard to see that also the famous discrete logarithm
problem (DLP) reduces to the subset sum problem. Let gα = β be a discrete
logarithm instance in some abelian group G generated by g with order 2n−1 ≤
|G| < 2n. Then we can easily compute the values ai := g2i−1 . Any subset
I ⊂ {1, . . . , n} of all ai that combines in G to β immediately reveals the bits of
the discrete logarithm α. Moreover, if we know a priori that α has low Hamming
weight ωn, ω ≤ 1

2 , then we have to find some I of small size |I| = ωn, a fact from
which subset sum algorithms usually benefit.

While the security of discrete log-based schemes is usually not directly based
on the hardness of low weight DLP, their side channel resistance is linked to low
weight DLP. Assume that we obtain via some side channel a faulty version α̃ of
a discrete logarithm α. Further assume that α̃ is obtained from α by flipping ωn
one bits to zero, but not flipping any zero bits to one (a quite usual setting for
e.g. cold boot attacks [14]). Then β

gα̃ = gα−α̃ =: gα′ forms a low weight DLP
with wt(α′) = ωn. In this setting, any low weight DLP algorithm serves as an
error correction algorithm for reconstructing α from α̃.

For both DLP settings – the general discrete logarithm problem as well as
its low weight variant – there exist algorithms matching the square root time
lower bound for generic algorithms [26, 27]. But only for the general DLP we
have Pollard’s Rho algorithm with polynomial memory that matches the time
lower bound |G| 12 . Whether there exists a low memory algorithm for the low
weight DLP was left as an open question by Galbraith and Gaudry [12, 13].
We do a significant step towards answering this question in the affirmative by
giving a heuristic algorithm that achieves the time lower bound |G|H(ω)

2 , where
H is the binary entropy function. While there is a variant of the Baby-Step
Giant Step algorithm, which also achieves time |G|H(ω)

2 , our algorithm consumes
way less memory. To quantify, our algorithm consumes always less than |G|0.23

memory, while Baby-Step Giant-Step for ω = 1
2 consumes as much as |G| 12

memory. Additionally, we are able to instantiate our algorithm with polynomial
memory only, where it outperforms all other known low-weight DLP algorithms
in that memory regime for the whole range of weights 0 ≤ ω ≤ 1

2 .
In more detail, we show the following discrete log results.

– The BCJ subset sum algorithm works in a more general setting that we
call group subset sum, from which we directly obtain a BCJ adaptation
to the low weight discrete logarithm setting via the above reduction. This
adaptation already improves on the best known folklore low weight discrete
log algorithm (see e.g. Chapter 14.8.1 in [12]), which is an application of van
Oorschot-Wiener’s collision finding [28].
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– We introduce an improved low weight discrete logarithm algorithm, inspired
by the BCJ adaptation, that makes use of the special form ai = g2i−1 of our
subset sum instance. Our idea is to represent weight-ωn discrete logarithms
α as the sum of two integers of smaller weight φ(ω) by exploiting the fact
of carry propagation. Technically, we introduce a Markov chain analysis for
finding the optimal weight φ(ω).

– By not insisting on polynomial memory, we tune our algorithm via Parallel
Collision search [29] to reach the time complexity |G|H(ω)

2 of the low weight
DLP variant of Baby-Step Giant-Step, while consuming only |G|H(ω)−H(φ(ω))

memory.

Our results for polynomial space algorithms are illustrated in Figure 1.

0 0.1 0.2 0.3 0.4 0.5

0

0.25

0.5

0.75

weight ω

tim
e
ex
po

ne
nt
ϑ
ω
w
ith

T
=
|G
|ϑ
ω

Pollard’s Alg.
Folklore Alg.
BCJ Adaption (Section 3)
New Alg. (Section 3.1)

Fig. 1: Comparison of runtime exponents ϑω for low weight DLP algorithms

Subset Sums. Previous polynomial memory subset sum algorithms based on
collision finding, such as the folklore algorithm or the BCJ algorithm, are non-
optimal in the following sense. In a first step, these algorithms output collisions
that correspond to potential solutions e′ = (e′1, . . . , e′n) ∈ {0, 1}n such that the
subset sum identity

∑
i e
′
iai = t holds only for a constant fraction of all n bits. In

a second step, the algorithms brute-force potential solutions e′ until by chance
the identity holds on all bits.

We replace this collision-and-brute-force approach by a two-layer nested colli-
sion finding that is inspired by the NestedRho algorithm from Dinur, Dunkelman,
Keller and Shamir [9], which was introduced in the context of finding the mode of
a distribution. More precisely, we find in layer-1 potential solutions e′ that satisfy
the subset sum identity on n/2 bits, where in layer-2 our algorithm produces only
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candidates that also satisfy the subset sum identity on the remaining n/2 bits.
Therefore, our algorithm always returns some e′ satisfying

∑
i e
′
iai = t mod 2n.

Moreover, each iteration costs us time roughly 2n/2.
As a collision finding technique this is optimal, since for a search space

of size 2n we need to perform Ω(2n/2) operations to obtain collisions at all
(with good probability). Unfortunately, our collision-finding algorithm does not
solve the subset sum problem in time 2n/2, since it produces potential solutions
e′i ∈ {0, 1, 2, 3, 4}n.

However, we show that after 20.149n iterations of our algorithm we expect
to find some e′i ∈ {0, 1}n that solves subset sum. This leads to a subset sum
algorithm with complexity 20.649n. Using additional tricks, we further improve to
20.645n.

One might hope that our improvements for subset sum then in turn lead to
improvements for the low Hamming weight discrete logarithm problem. However,
for instantiating our two-layer subset sum collision finding we make use of the
canonical group homomorphism (Z2n ,+) → (Z2n/2 ,+), a subgroup structure
that usually does not exist for discrete logarithm groups (G, ·) (see [20] for results
in composite groups).

Our paper is organized as follows. In Section 3 we introduce the general group
subset sum problem, which we solve via the BCJ algorithm, and derive our first
low weight discrete logarithm algorithm. Our second low weight DLP algorithm
is described, analyzed, and experimentally validated in Section 3.1. Our 20.649n

subset sum algorithm is given in Section 4 & 4.1, and experimentally verified in
Section 4.3, the improvement to 20.645n can be found in Section 4.2.

2 Preliminaries

It is well-known that a collision in an n-to-n bit function f can be computed
using roughly 2n2 function evaluations and only a polynomial amount of memory.
Common collision search algorithms [17, 22, 24] achieve this by computing a
chain of invocations of f from a random starting point x, that is the iteration
f(x), f2(x) := f(f(x)), f3(x), . . ., until a repetition occurs, which in turn is
found via some cycle finding algorithm (see also Figure 2). Let f `(x) be the
first repeated value in the chain and f `+µ its second appearance. We denote by
Rho(f, x) the output of some collision search procedure on f started at point x,
that is the pair of colliding inputs. In other words

Rho(f, x) := (f `−1(x), f `+µ−1(x)).

The name Rho stems from the usual illustration from Figure 2 of a colliding
chain’s shape for iterated collision search.

In [28] van Oorschot and Wiener extended this idea of collision search to
collisions between two functions f1 and f2. The van Oorschot-Wiener construction
defines a new function f̃ that alternates between applications of f1 and f2
depending on the input. The output of a collision search in f̃ yields then a
collision between f1 and f2 with probability 1

2 , whereas with probability 1
2 it
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Fig. 2: Application of Rho to function f with starting point x.

produces a collision between the same functions f1 and f1, or f2 and f2. If
we obtain a collision between the same functions, we may (in a deterministic
fashion) manipulate the start point x, until we obtain a collision between f1 and
f2. On expectation, this only doubles the run time (in case that collisions are
independent for different start points, which we address below). Therefore, in the
following we assume without loss of generality that we always obtain collisions
for f1, f2 and define

Rho(f1, f2, x) := (x1, x2) with f1(x1) = f2(x2).

Obviously, by restricting the collision search to the function f̃ not all collisions
between f1 and f2 can be found anymore. However, on expectation this concerns
only a constant fraction of all collision and hence we safely ignore this in our
analysis.

All the algorithms considered in this work perform exponentially many invo-
cations of the Rho algorithm on different starting points using the same function
f . This causes some technical dependency problems. For instance in Figure 2
Rho(f, ·) produces the same output collision for any start point x, x1, . . . , x`−1.
This problem was already identified in the work of [4,9], who both introduced
similar notions to break dependencies, called flavours in [9]. We adapt this notion
to our purpose.

Definition 2.1 (Flavour of a function). Let f be a function with f : T → T ,
where T ⊆ {0, 1}n. Let Pk : T → T be a family of bijective functions addressed
by k. Then the kth flavour of f is defined as

f [k](x) := Pk(f(x)).

Notice that for all k, a collision (x1,x2) in f [k] satisfies

f [k](x1) = f [k](x2) ⇔ Pk(f(x1)) = Pk(f(x2)) ⇔ f(x1) = f(x2).

Thus, (x1,x2) is also a collision in f itself. However, different flavours f [k] invoke
different function graphs. We use flavours of f to heuristically obtain independence
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of the Rho(f, ·) invocations. Namely, we assume that different Rho(f, ·) invocations
independently produce uniformly distributed collisions in f . A similar heuristic
was also used in [9], and the authors verified their heuristic experimentally.

We analyze our algorithms in Θ̃-notation, where Θ̃(2n) suppresses polynomial
factors in n. By H(x) we refer to the binary entropy function defined as H(x) :=
−x log(x)− (1− x) log(1− x), where all logarithms are base 2. Using Stirling’s
formula, we estimate binomial coefficients as

(
n

m

)
= Θ̃

(
2nH(mn )

)
.

For a, b ∈ N with 1 ≤ a < b we let [a, b] := {a, a+1, . . . , b} and conveniently write
[b] := [1, b]. For a vector y ∈ {0, 1}n we denote by wt(y) := |{i ∈ [n] | yi = 1}|
the Hamming weight of y while for an integer a ∈ N, wt(a) denotes the Hamming
weight of the binary representation of a.

We denote by ZN the ring of integers modulo N . We call (x1, . . . ,xk) ∈ (Zn)k
a representation of x = x1 + . . .+ xk over Zn.

3 A Generalized View on the BCJ subset sum algorithm

In this section we define a generalized group subset sum problem and show that
the BCJ algorithm also succeeds on this generalization. This abstraction contains
the usual subset sum problem in Z2n as well as our new application, the low
weight discrete logarithm problem (DLP), as special cases. As a first result we
obtain a BCJ-type algorithm solving the low weight DLP using only a polynomial
amount of memory — in any group, generically.

Definition 3.1 (Group Subset Sum). Let (G, ·) be an abelian group with
order |G| satisfying 2n−1 ≤ |G| < 2n. In the group subset sum problem we are
given a1, . . . , an, t ∈ G together with ω, 0 < ω ≤ 1

2 such that there exists some
solution e = (e1, . . . , en) ∈ {0, 1}n satisfying

n∏

i=1
aeii = t in G with wt(e) = ωn.

Our goal is to recover e (or some other weight-ωn solution e′).

Notice that by Definition 3.1 our group subset sum problem has some desired
solution e. In cryptographic applications, such a solution exists by construction
and is usually unique. Moreover, the weight ω is generally known. If ω is unknown,
one may iterate over all O(n) choices. As the change to target t′ = t−1 ·∏n

i=1 ai
with complimentary solution (1, . . . , 1)−e yields an instance with solution weight
(1− ω)n, there is no loss in generality assuming ω ≤ 1

2 . Additionally, one usually
knows the generators of G such that one can define the ai via generators.

Let us now look at two interesting special cases of group subset sum.
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Subset Sum. Let (a1, . . . , an, t) be a subset sum instance. By considering G =
(Z2n ,+) the product

∏n
i=1 a

ei
i = t in G rewrites directly to the usual subset sum

identity
n∑

i=1
eiai = t mod 2n.

Low weight DLP. Let (G, ·) be a cyclic group generated by g. Let gα = β be
a discrete logarithm instance in G. Let us define ai = g2i−1 for 1 ≤ i ≤ n and
t = β. Let e be a solution of the group subset sum problem, that is

t =
n∏

i=1
aeii =

n∏

i=1
gei2

i−1
= g
∑n

i=1
ei2i−1

. (1)

Thus, e = (e1, . . . , en) immediately implies a solution α =
∑n
i=1 ei2i−1 to the

DLP. Moreover, low weight group subset sum solutions e imply low weight
discrete logarithms α.

Folklore algorithm. Let us first translate the folklore algorithm for low weight
DLP – as for example described in [12] – into the notion of the group subset sum
problem. We take T := {x ∈ {0, 1}n2 | wt(x) = ωn

2 } with |T | = Θ̃(|G| 12H(ω)). Let
us define a hash function π : G→ T . Further, we define functions f , ft as

f, ft : T → T , where

f(x) = π




n
2∏

i=1
axii


 and ft(x) = π


t ·

n
2∏

i=1
a−xin

2 +i


 .

Now we search for collisions (x1,x2) between f and ft until x = x1||x2 solves
the group subset sum problem. Note, that there is a unique decomposition of
the desired solution e = x1||x2 and hence a single collision (x1,x2) giving rise
to e. This in turn requires us to find all collisions between f and ft. However,
we expect f, ft to have |T | collisions, where finding each collision costs Θ̃(|T | 12 )
function evaluations. In total, we achieve expected runtime

T = Θ̃(|T | 32 ) = Θ̃(|G| 34H(ω)) . (2)

The runtime exponent 3
4H(ω) is depicted in Figure 3.

A pseudocode description of the folklore algorithm in the group subset sum
setting is given by Algorithm 1, where we instantiate f1, f2 via their function
definitions f, ft.
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Algorithm 1 Group Subset Sum Solver
Input: functions f1, f2 : D → D, group subset sum instance (a1, . . . , an, t) ∈ Gn+1

Output: solution e ∈ {0, 1}n satisfying
∏n

i=1 a
ei
i = t

1: repeat
2: choose random flavour k
3: choose random starting point s ∈ D
4: (x,y)← Rho(f [k]

1 , f
[k]
2 , s)

5: e′ ← x + y
6: until e′ ∈ {0, 1}n and

∏n

i=1 a
e′i
i = t

7: return e′

Remark 3.1. We find collisions via the Rho procedure defined in Section 2 (see
Algorithm 1). To (heuristically) guarantee independence of the collisions, we
choose a random flavour k (see Definition 2.1) each time we invoke Rho. This
means instead of searching for collisions between f and ft themselves, we search
for collisions between their flavoured versions f [k] and f [k]

t . Analogously, we have
to proceed for the subsequently described algorithms, our BCJ adaptation and
our new algorithm in Section 3.1. However, for ease of notation we skip the
flavours in our descriptions.

BCJ algorithm. The idea of the memoryless BCJ algorithm is to split the
solution vector e with wt(e) = ωn in two vectors e1, e2 ∈ {0, 1}n each of
weight ωn

2 , which add up to e. Let (a, t) be a group subset sum instance and
T := {x ∈ {0, 1}n | wt(x) = ωn

2 }, where |T | = Θ̃(2H(ω2 )n) = Θ̃(|G|H(ω2 )).
Let us define a hash function π : G→ T and the two functions

f, ft : T → T , where

f(x) = π

(
n∏

i=1
axii

)
and ft(x) = π

(
t ·

n∏

i=1
a−xii

)
.

Note that any representation (e1, e2) of our desired solution e, i.e. e = e1 +e2,
satisfies

n∏

i=1
a

(e1)i
i = t ·

n∏

i=1
a
−(e2)i
i , (3)

and therefore also f(e1) = ft(e2). The algorithm now simply searches for collisions
(e′1, e′2) between f and ft, until e′1+e′2 yields a solution to the subset sum instance.
Algorithm 1 provides a pseudocode description of our BCJ adaptation by using
the function definitions of f and ft to instantiate f1 and f2.

Runtime analysis. Notice that while our hash function π : G→ T allows us to
iterate the functions f, ft, it also introduces many useless collisions (x,y) with

π

(
n∏

i=1
axii

)
= π

(
t ·

n∏

i=1
a−yii

)
but

n∏

i=1
axii 6= t ·

n∏

i=1
a−yii .
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However, we already know that any representation (e1, e2) of the desired solution
e satisfies Equation (3) and thus defines a useful collision. Hence, we can simply
compute the probability p that a randomly drawn collision is useful. We expect
f, ft to have |T | collisions, while the number of representations of e as weight-ω2 n
vectors e1, e2 ∈ {0, 1}n is

(
ωn
ω
2 n

)
= Θ̃(2ωn) = Θ̃(|G|ω). This implies

p = Θ̃

( |G|ω
|T |

)
.

Hence, after an expected number of p−1 iterations we find our desired solution e.
Since finding a single collision takes on expectation Θ̃(|T | 12 ) function evaluations
and |T | = Θ̃(|G|H(ω2 )), we obtain a total runtime of

T = Θ̃(|T | 12 · p−1) = Θ̃(|T | 32 · |G|−w) = Θ̃(|G| 32H(ω/2)−ω) . (4)

In Figure 3 we show our new runtime exponent 3
2H(ω/2) − ω (called BCJ

Adaption), which always improves on the folklore algorithm over the whole range
of ω.
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Fig. 3: Comparison of runtime exponents ϑω for low weight DLP algorithms

For group subset sum problems of weight n2 , we achieve runtime |G| 32H( 1
4 )− 1

2 =
|G|0.72. This implies a polynomial-space subset algorithm with runtime 20.72n, the
remarkable result of Becker, Coron and Joux. For the discrete logarithm setting,
the result |G|0.72 is less remarkable, since Pollard’s algorithm already achieves
runtime |G| 12 . However, for weights ω ≤ 0.197 our BCJ adaption improves on
Pollard’s runtime.
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In the subsequent Section 3.1 we further improve on the BCJ adaptation
by using the special form ai = g2i−1 in the low weight DLP. Notice that so far
representations (e1, e2) ∈ {0, 1}n of e in the analysis of the BCJ algorithm fulfill
e1 + e2 ∈ {0, 1}n. In other words, in e1, e2 we never have 1-coordinates that add
up. However, we also know by Equation (1) that the vectors e1, e2 can be treated
as bit-representations of numbers. Hence, if in the ith position, i < n, we have a
1-entry in both vectors, then we obtain

a2
i = (g2i−1

)2 = g2i = ai+1.

That is, we can make good use of carry bits to further increase the number of
representations of our solution by looking at the total number of sums e = e1 +e2
not only over {0, 1}n but over the integers (modulo |G|).

3.1 Improved Low Weight DLP Algorithm

Let G be a cyclic group generated by g with order 2n−1 ≤ |G| < 2n. Let gα = β
with wt(α) = ωn ≤ n

2 be a low weight DLP in G. Our idea is to represent
α = α1 + α2 mod |G| with α1, α2 ∈ Z|G| both of a certain weight. For ease of
notation, we will only concentrate on representations (α1, α2) with α1 +α2 < |G|
such that we can ignore reductions modulo |G|. With this simplification, we only
lose a constant (namely 1

2 ) fraction of all representations, which does not affect
asymptotics.

Thus, we first have to determine for which weight of φn = wt(x1) = wt(x2),
x1, x2 ∈ Z|G| we expect that wt(x1 +x2) = ωn. This seems to be a rather natural
and fundamental problem to study, but to our surprise we could not find any
treatment in the literature. In the following we provide a (heuristic) Markov chain
analysis for computing φ as a function of ω, which we experimentally validate.

Computation of φ via Markov chain. Let us model the bitwise summation
x1 + x2 as a Markov chain. Since in every bit position we also have to take into
account a carry bit, every state of our Markov chain contains three bits (b1, b2, b3).
Here we denote by b1 the carry bit and by b2, b3 the corresponding bit from x1
respectively x2.

To make ourselves a bit more familiar with the notion, let us look at the
following example from Figure 4. Let us start in state (0, 0, 0). As 0 + 0 + 0 = 0,
this state produces carry bit 0 and depending on the subsequent bits of x1, x2
we may enter one of the four states (0, 0, 0), (0, 1, 0), (0, 0, 1) or (0, 1, 1).

As x1, x2 are uniformly drawn from the set of vectors with weight φn, a
single bit position in these vectors takes value 1 with probability φ. In our
analysis, we ignore the effect that the random variables for the bit positions
are not independent (since they have to sum to φn). This heuristic should only
insignificantly affect our asymptotic treatment.

Hence, in our example we stay in state (0, 0, 0) with probability (1 − φ)2,
move to either (0, 0, 1) or (0, 1, 0) with probability φ(1− φ), and move to (0, 1, 1)
with probability φ2.
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Fig. 4: Possible state transitions from states (0, 0, 0), (0, 1, 1) and (1, 1, 1), where edge
labels are transition probabilities and the first bit indicates the carry. Further state
transitions are omitted for the sake of clarity.

The complete Markov process is defined by the following transition matrix
M = (mi,j)1≤i,j≤8, where mi,j is the transition probability from state i to j,
where the labels i, j are defined in Figure 4.

M :=




(1− φ)2 φ(1− φ) φ(1− φ) φ2 0 0 0 0
(1− φ)2 φ(1− φ) φ(1− φ) φ2 0 0 0 0
(1− φ)2 φ(1− φ) φ(1− φ) φ2 0 0 0 0

0 0 0 0 (1− φ)2 φ(1− φ) φ(1− φ) φ2

(1− φ)2 φ(1− φ) (φ)(1− φ) φ2 0 0 0 0
0 0 0 0 (1− φ)2 φ(1− φ) φ(1− φ) φ2

0 0 0 0 (1− φ)2 φ(1− φ) φ(1− φ) φ2

0 0 0 0 (1− φ)2 φ(1− φ) φ(1− φ) φ2




Note that the states 2, 3, 5 and 8 produce a 1 in the corresponding bit of the
sum x1 + x2, while the other states produce a 0. Since wt(x1 + x2) = ωn, we
should (asymptotically) produce a 1 with probability ω. Thus, we should be in
either of the states 2, 3, 5 or 8 with probability ω.

Markov chain theory tells us that M reaches a stationary distribution π =
(π1, . . . , π8) satisfying πM = π. For each 1 ≤ i ≤ 8, the Markov process (asymp-
totically) reaches state i with probability πi. Thus, from the linear equations

πM = π, π1 + . . .+ π8 = 1 and π2 + π3 + π5 + π8 = ω

we obtain an expression for φ as a function of ω. Computing the stationary
distribution yields

π = (−φ4 + 2φ3 − 2φ+ 1, φ4 − φ3 − φ2 + φ, φ4 − φ3 − φ2 + φ, −φ4 + φ2,

φ4 − 2φ3 + φ2, −φ4 + φ3, −φ4 + φ3, φ4) .
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Hence, it follows that ω = 4φ4 − 4φ3 − φ2 + 2φ. Solving for φ yields our desired
function that we illustrate in Figure 5a. In Figure 5b we experimentally verify
the accuracy of our asymptotic analysis for concrete sums of 500-bit integers
x1, x2.
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n = 500 (sample size per φ is 1000)

Fig. 5: Asymptotic estimate and experimentally obtained values for the weight ωn of
the sum of two n-bit numbers with weight φn

Our Low Weight Discrete Logarithm Algorithm. Recall that gα = β with
wt(α) = ω ≤ 1

2 , where g generates a group G of order 2n−1 ≤ |G| < 2n. We
represent α = α1 + α2 with wt(α1) = wt(α2) = φ, where we compute φ as a
function of ω as described in the previous paragraph.

Let us define T := {x ∈ Z2n | wt(x) = φ(ω)n}, where |T | = Θ̃(2H(φ(ω))n) =
Θ̃(|G|H(φ(ω))). Further, we define a hash function π : G → T and the two
functions

f, fβ : T → T , where
f(x) = π (gx) and ft(x) = π

(
βg−x

)
.

Any representation (α1, α2) of our discrete logarithm α, i.e. α = α1 + α2,
satisfies

gα1 = βg−α2 , (5)

and therefore also f(α1) = fβ(α2). Our algorithm searches for collisions (x1, x2)
between f and fβ , until x1 +x2 yields a solution to the discrete logarithm problem.
Algorithm 2 gives a pseudocode description of our new algorithm.

12



Algorithm 2 Discrete Logarithm Solver
Input: functions f, fβ : T → T , generator g of G, β ∈ G
Output: α = dloggβ satisfying gα = β
1: repeat
2: choose random flavour k
3: choose random starting point s ∈ T
4: (x, y)← Rho(f [k], f

[k]
β , s)

5: α′ ← x+ y
6: until gα′ = β
7: return α′

Heuristic Analysis of our Algorithm. The hash function π : G → T pro-
duces a lot of useless collisions f(x1) = fβ(x2) for which gx1 6= βg−x2 . However,
for any representation (α1, α2) of α Equation (5) holds. In order to determine
the probability p of a collision (x1, x2) being useful – which means gx1 = βg−x2 –
we compute the number of representations.

We search for our weight-ωn discrete logarithm α by computing sums of weight-
φ(ω)n numbers (x1, x2) ∈ T 2. Let us heuristically assume that the weights of the
resulting sums x1 + x2 concentrate around weight ωn. Namely, we assume that
a polynomial fraction of all sums attains weight ωn. Such concentration results
hold for similar distributions like the binomial distribution, and we validate our
concentration heuristic experimentally. From Figure 6 we conclude that quite
sharply a 1√

n
-fraction of our experiments hits their expectation, exactly the same

concentration result that we obtain from the binomial distribution.
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Fig. 6: Experimentally averaged value c in Pr
[
X = E[X]

]
= 1

nc
, when adding two n-bit

numbers of weight b0.3nc, where X is a random variable for the weight of their sum
(sample size per n is 5000).

We further assume that the polynomial fraction of sums x1+x2 with weight ωn
takes uniformly distributed values among all numbers of weight ωn. Therefore, any

13



random sum x1 +x2 of weight ωn equals α with probability
(
n
ωn

)−1 = Θ̃(G−H(ω)).
This implies that heuristically we obtain Θ̃(|T |2|G|−H(ω)) many representations.
As we expect a total of |T | collisions, the probability p of a useful collision is

p = Θ̃

( |T |2|G|−H(ω)

|T |

)
= Θ̃(|T | · |G|−H(ω)) .

Finding each collision heuristically takes time |T | 12 . Since |T | = Θ̃(|G|H(φ(ω))),
we expect to find the low weight discrete logarithm α in time

T = Θ̃(|T | 12 · p−1) = Θ̃(|T |− 1
2 |G|H(ω)) = Θ̃(|G|H(ω)− 1

2H(φ(ω))) . (6)

The run time exponent of Equation (6) is depicted in Figure 3 (as New Alg.).
While our low weight DLP algorithm significantly improves over the folklore
algorithm and the BCJ adaptation, it does not yet achieve the square root of
the search space S. Namely, if S denotes the set of all weight-ωn numbers, i.e.
|S| =

(
n
ωn

)
= Θ̃(|G|H(ω)), then we might hope for a polynomial space algorithm

with time complexity |S| 12 , as a possible generalization of Pollard’s algorithm to
the low weight discrete logarithm regime.

In Figure 7 we illustrate all runtime exponents to the base |S|. That is for
Pollard’s algorithm, the folklore algorithm (Equation (2)), the BCJ algorithm
(Equation (4)), and our new algorithm (Equation (6)) we depict their exponents

1
2H(ω) ,

3
4 ,

3
2H(ω/2)− ω

H(ω) ,
H(ω)− 1

2H(φ(ω))
H(ω) .
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Fig. 7: Runtime exponent of the search space for low hamming weight DLP
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The folklore algorithm has a constant exponent 3
4 in the search space. Pollard’s

algorithm is superior for large weights ω ≥ 0.174, but also gets arbitrarily bad in
the search space for small ω. Our BCJ adaptation achieves the first improvement
over 3

4 for arbitrary weights ω. However, BCJ only reaches a minimal exponent
of δ = 0.697 (achieved at ω = 0.248). Eventually, our new algorithm improves on
the BCJ algorithm for all weights, where we obtain an interpolation between 3

4
for arbitrary small weights and the desired optimum 1

2 for ω = 1
2 . Additionally,

our new algorithm is superior to Pollard’s algorithm for all weights ω ≤ 0.225.

Experimental verification of our algorithm. For experimental convenience,
we implemented our algorithm in the multiplicative group G = Z∗p. We chose
bit-length n = 40, and p as the largest prime smaller than 240. We generated
40 random small weight DLP instances for each weight ωn ∈ {2, 3, . . . , 20}. We
measured Tf , the amount of calls to our function f , and averaged Tf over all 40
instances.1

Figure 8 shows the results of our computations. Here the dots are the values
obtained in our experiments, while the dashed line is our asymptotic prediction
40(H(ω)− 1

2H(φ(ω))), shifted by 2.92 to take some (in the analysis neglected)
polynomial run time factor into account.
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Fig. 8: Experimentally averaged number of function calls (in logarithmic scale) needed
to solve a 40-bit discrete logarithm problem of weight ωn. Sample size per ωn is 40.

Time-Memory Tradeoff for Reaching the Square Root Bound. Let
|S| =

(
n
ωn

)
= Θ̃(|G|H(ω)) be the low weight DLP search space as defined before.

As we have seen, it remains open to reach square root complexity |S| 12 with
a polynomial space algorithm, but our new algorithm makes a significant step
towards this goal.

1 implementation available at
https://github.com/LwDLPandSubsetSum/lwDLP-and-NestedSubsetSum
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Let us at this point forget about our polynomial space restriction (for the
first and only time in this paper). Then Coppersmith’s Baby-Step Giant-Step
variant for low weight DLP(see [12], Chapter 13) achieves both time and space
complexity TBSGS = MBSGS = Θ̃(|S| 12 ).

Fortunately, our BCJ adaption as well as our new algorithm also allow for
a time-memory tradeoff using van Oorschot-Wiener’s Parallel Collision Search
(PCS) [29]. Let C be the time complexity to find a collision with polynomial
memory, then PCS finds 2m collisions in time Θ̃(2m2 C) using Θ̃(2m) memory.

In the following, we minimize the run time of BCJ and our new algorithm by
applying PCS.
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Fig. 9: Time-Memory tradeoffs when applying PCS to our algorithms.

BCJ Tradeoff. From the analysis in Section 3, our BCJ adaptation requires to find
an expected number of Θ̃(|G|H(ω/2)−ω) collisions, each at the cost of Θ̃(|G|H(ω/2)

2 ).
Thus, using memory MBCJ = Θ̃(|G|H(ω/2)−ω) BCJ’s time complexity decreases
to

TBCJ = Θ̃(|G|H(ω/2)−ω
2 · |G|H(ω/2)

2 ) = Θ̃(|G|H(ω2 )−ω2 ) .

The time exponent is illustrated in Figure 9 as dash-dotted line, the memory
exponent as dotted line, both as a function of ω.
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New Algorithm Tradeoff. Following the analysis in Section 3.1 our new algorithm
requires to find Θ̃(|G|H(ω)−H(φ(ω))) collisions, each at the cost of Θ̃(|G|H(φ(ω))

2 ).
Hence, using memory Mnew = Θ̃(|G|H(ω)−H(φ(ω))) via PCS yields a runtime of

Tnew = Θ̃(|G|H(ω)−H(φ(ω))
2 · |G|H(φ(ω))

2 ) = Θ̃(|G|H(ω)
2 ) = Θ̃(|S| 12 ) .

Therefore – as opposed to the BCJ adaptation – our new low weight DLP
algorithm achieves the optimal time bound Θ̃(|S| 12 ) for collision search algorithms.
In comparison to Coppersmith’s Baby-Step Giant-Step algorithm it does not
require full memory Θ̃(|S| 12 ), but only memory Θ̃(|G|H(ω)−H(φ(ω))). We illustrate
the exponent H(ω)−H(φ(ω)) as a dashed line in Figure 9.

4 Subset Sum in 20.65n with Polynomial Space

Motivation. Let (a, t) = (a1, . . . , an, t) ∈ (Z2n)n+1 be a weight- 1
2 instance of

the subset sum problem, i.e., there exists some solution e = (e1, . . . , en) with
wt(e) = n

2 satisfying 〈a, e〉 = t mod 2n. Our algorithm extends to all weights ω,
but for simplicity we analyze in the following only the worst-case ω = 1

2 .
The folklore algorithm from Section 3 (also stated explicitly for subset sum in

[4]) has runtime 2 3
4n. This is achieved by choosing T := {x ∈ {0, 1}n2 | wt(x) = n

4 }
with |T | = Θ̃(2n2 ), defining an injective function h : Z2n/2 → T and searching for
collisions between

f(x) = h(〈(a1, . . . , an/2),x〉 mod 2n2 ) and
ft(x) = h(t− 〈(an/2+1, . . . , an),x〉 mod 2n2 ).

With the notation from Section 3 our hash function π first applies the canonical
group homomorphism (Z2n ,+)→ (Z2n/2 ,+), followed by an application of h.

Any collision (x1,x2) satisfies

h(〈(a1, . . . , an/2),x1〉 mod 2n2 ) = h(t− 〈(an/2+1, . . . , an),x2〉 mod 2n2 ) .

Since h is injective, we conclude that 〈a,x1||x2〉 = t mod 2n2 . Thus x = x1||x2 is
a potential solution that matches t already on n

2 bits, see also Figure 10. Any
potential solution can be found in time 2n4 via collision search. However, it costs
us on expectation 2n2 iterations to find a useful solution that also matches t on
the remaining n

2 bits. Put differently, we use a square-root cycle finding algorithm
to find potential solutions, whereas we use a naive brute-force routine to identify
a useful solution. The conflicting problem is that π hashes down to n

2 bits to
allow for an iterative function application, but thereby inherently introduces 2n2
useless collisions.

Our high-level idea. Our goal is to use a nested collision search to first find
potential solutions that match on n

2 bits, and then among these collisions use
another collision search for identifying some useful solution. This introduces a
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Fig. 10: Basic Structure of the folklore and our new algorithm for solving subset sum.

two-layer approach, see also Figure 10, for which we need to split our solution e
into four summands e = x1 + . . .+ x4. Obviously, 〈a, e〉 = t mod 2n implies

〈a,x1 + x2〉 = t− 〈a,x3 + x4〉 mod 2n2 .

On layer 1, our algorithm fixes some R ∈ Z2n/2 and finds collisions (x1,x2)
satisfying 〈a,x1 +x2〉 = R mod 2n2 as well as collisions (x3,x4) satisfying 〈a,x3 +
x4〉 = t−R mod 2n2 .

On layer 2, we search among the collisions (x1,x2) and (x3,x4) via some
nested collision search for some collision that satisfies the identity 〈a,x1+. . .+x4〉
also on the remaining n

2 bits.

Fig. 11: Structure of the nested Rho algorithm, where different flavours of the function
are represented by different colours
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Our technique for subset sum induces a giant Rho structure (layer 2 collision
search) over smaller Rho structures (layer 1 collision search), as illustrated in
Figure 11. Here different colours represent a collision search on different function
flavours, as defined in Section 2. The dotted arrows depict the transition from a
collision to a new starting point.

4.1 Nested Collision Subset Sum in 20.649n

To explain our algorithm from Figure 10 in more detail, we have to first specify
the domains T1, . . . , T4 of the layer-1 functions f1, f2,R, f3, f4,t−R. We illustrate
the domains in Figure 12.
Let us denote by

B(n, β) := {x ∈ {0, 1}n | wt(x) = βn}

the set of n dimensional vectors with relative (to n) weight β. For some γ ∈ [0, 1]
we define

T1 = 0 1
4 (1−γ)n × 0 1

4 (1−γ)n × 0 1
4 (1−γ)n × B

(
1
4(1− γ)n, 1

2

)
× B

(
γn,

1
8

)

T2 = 0 1
4 (1−γ)n × 0 1

4 (1−γ)n × B
(

1
4(1− γ)n, 1

2

)
× 0 1

4 (1−γ)n × B
(
γn,

1
8

)

T3 = 0 1
4 (1−γ)n × B

(
1
4(1− γ)n, 1

2

)
× 0 1

4 (1−γ)n × 0 1
4 (1−γ)n × B

(
γn,

1
8

)

T4 = B
(

1
4(1− γ)n, 1

2

)
× 0 1

4 (1−γ)n × 0 1
4 (1−γ)n × 0 1

4 (1−γ)n × B
(
γn,

1
8

)
.

(7)

Notice that |B(n, β)| =
(
n
βn

)
= Θ̃(2H(β)n). Therefore, all Ti satisfy

|Ti| = Θ̃(2( 1−γ
4 +H( 1

8 )γ)n).

Since we want to have function domain n
2 for both layers, we set γ as the solution

of 1−γ
4 +H( 1

8 )γ = 1
2 , that is

γ ≈ 0.8516. (8)

Recall that we represent our subset sum solution e as e = e1 + . . . + e4
with (e1, . . . , e4) ∈ T1 × . . . × T4. By our definition of the Ti we may write
e ∈

(
{0, 1} (1−γ)n

4

)4
× {0, 1}γn, where each of its 5 parts has relative weight 1

2 .
Such a weight distribution of e can be enforced by an initial permutation on the
ai.

Let us fix some R ∈ Z2n/2 , and let hi : Z2n/2 → Ti, i = 1, . . . , 4, be injective
functions. Layer-1 collisions are defined as elements (x1,x2) ∈ T1 × T2 and
(x3,x4) ∈ T3 × T4 satisfying

〈a,x1 + x2〉 = R mod 2n2 and 〈a,x3 + x4〉 = t−R mod 2n2 . (9)
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Fig. 12: Weight distribution of vectors from first level domains. Shaded areas contain
weight, white areas are all zero.

Therefore, we define the following four first layer functions fi,· : Ti → Z2n/2 with

f1(x) = 〈a,x〉 mod 2n2 , f2,R(x) = R− 〈a,x〉 mod 2n2 and
f3(x) = 〈a,x〉 mod 2n2 , f4,t−R(x) = t−R− 〈a,x〉 mod 2n2 .

As a consequence, layer-1 collisions f1(x1) = f2,R(x2) and f3(x3) = f4,t−R(x4)
satisfy Equation (9). Also notice that by Equation (9) any pair of layer-1 collisions
(x1,x2) ∈ T1 × T2, (x3,x4) ∈ T3 × T4 satisfies

〈a,x1 + x2 + x3 + x4〉 = t mod 2n2 .

Layer-2 collisions are now defined as pairs of layer-1 collisions (x1,x2) ∈ T1×T2
and (x3,x4) ∈ T3 × T4 satisfying

〈a,x1 + x2 + x3 + x4〉 = t mod 2n .

Since we already know that by construction layer-1 collisions satisfy the identity
〈a,x1 + x2 + x3 + x4〉 = t on the lower n/2 bits, it suffices to check for layer-2
collisions the identity on the upper n/2 bits, which we denote by

〈a,x1 + x2 + x3 + x4〉[n/2+1,n] = t[n/2+1,n] . (10)

Recall from Section 2 that (x1,x2) = Rho(f1, f2,R, x) denotes the application
of a collision finding algorithm on f1, f2 with starting point x. The starting
point x ∈ Z2n/2 fully determines the collision (x1,x2) ∈ T1 × T2 found by Rho.
Before we apply functions f1 respectively f2,R iteratively on x, we map x (and
all function outputs) via h1 respectively h2 to their domains T1 respectively T2.
An analogous mapping is done for the collision search between f3 and f4,t−R.

Let us define the layer-2 functions g1, g2 : Z2n/2 → Z2n/2 as

g1(x) := 〈a,x1 + x2〉[n/2+1,n] , where (x1,x2) = Rho(f1, f2,R, x) and
g2(x) := (t− 〈a,x3 + x4〉)[n/2+1,n], where (x3,x4) = Rho(f3, f4,t−R, x) .
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Assume that we found a layer-2 collision (s1, s2). We compute from (s1, s2)
the values (x1,x2) = Rho(f1, f2,R, s1) and (x3,x4) = Rho(f3, f4,t−R, s2). Since
(s1, s2) is a layer-2 collision we have g1(s1) = g2(s2) and therefore

〈a,x1 + x2〉[n/2+1,n] = (t− 〈a,x3 + x4〉)[n/2+1,n] .

This identity implies Equation (10). Thus, e = x1 + . . .+ x4 is a solution to the
subset sum problem if e ∈ {0, 1}n.

The computation of our layer-2 functions is illustrated in Figure 13. Our
whole algorithm Nested Collision Subset Sum is summarized in Algorithm 3.

s1

n 1

〈a, x1 + x2〉
n
2

RY

Y

(x1, x2)

s2

n

1

t
n
2

t1

t2

t2 − Y ′

(x3, x4)

〈a, x3 + x4〉

t1 −RY ′
n 1

n
2

g1(s1) : g2(s2) :

Fig. 13: Computation of layer-2 functions g1(s1) and g2(s2), where (x1,x2) =
Rho(f1, f2,R, s1) and (x3,x4) = Rho(f3, f4,t−R, s2).

Algorithm 3 Nested Collision Subset Sum
Input: subset sum instance (a, t) = (a1, . . . , an, t) ∈ Zn+1

2n
Output: solution e ∈ {0, 1}n satisfying 〈a, e〉 = t mod 2n
1: repeat
2: Randomly permute the ai.
3: Choose R, z ∈ Z2n/2 randomly.
4: (s1, s2)← Rho(g1, g2, z)
5: Compute (x1,x2) = Rho(f1, f2,R, s1).
6: Compute (x3,x4) = Rho(f3, f4,t−R, s2).
7: Set e = x1 + x2 + x3 + x4.
8: until e ∈ {0, 1}n
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Remark 4.1. We have to guarantee independence of the collisions returned by
Rho on input g1, g2 for different starting points. This can be done (heuristically)
by using flavoured inner functions (see Section 2). More formally, we have to
change the definitions to

g1(x) := 〈a,x1 + x2〉[n/2+1,n] , where (x1,x2) = Rho(f [x]
1 , f

[x]
2,R, x) and

g2(x) := (t− 〈a,x3 + x4〉)[n/2+1,n], where (x3,x4) = Rho(f [x]
3 , f

[x]
4,t−R, x) .

In the following, we omit flavours for ease of notation.

Run Time Analysis of Nested Collision Subset Sum. The cost of any
iteration of the repeat-loop in Nested Collision Subset Sum is dominated
by the function call to Rho(g1, g2, z), which itself recursively calls Rho(f1, f2,R, ·)
and Rho(f3, f4,t−R, ·). Each invocation of collision finding in the layer-1 functions
costs time |Ti|

1
2 = Θ̃(2n4 ). Since gi : Z2

n
2 → Z2

n
2 , a collision search in the layer-2

functions requires on expectation Θ̃(2n4 ) function evaluations of the gi. Hence in
total each iteration in Nested Collision Subset Sum requires time Θ̃(2n2 ).

Notice that each iteration computes some potential solution e′ satisfying
〈a, e′〉 = t, no matter whether the permutation of the ai induced the correct
weight distribution on e. However, such an e′ is usually not in {0, 1}n, and
therefore does not solve our subset sum instance.

Let us look at some fixed iteration of Nested Collision Subset Sum. Let
E1 be the event that our initial permutation yields the correct weight distribution
in this iteration. Then

p1 := Pr [E1] =
((1−γ)n/4

(1−γ)n/8
)4( γn

γn/2
)

(
n
n/2
) = 1

poly(n) = Θ̃(1) . (11)

Let (e1, . . . , e4) be a representation of our subset sum solution e satisfying
〈a, e1 + e2〉 = R mod 2n2 (for the choice of R in line 3 of Algorithm 3). Then we
call (e1, e2) a useful collision of f1, f2,R. By construction, (e3, e4) is automatically
a useful collision of f3, f4,t−R satisfying 〈a, e3 + e4〉 = t − R mod 2n/2. Now,
for all useful collisions (e1, e2) of f1, f2,R and (e3, e4) of f3, f4,t−R there exists
some collision (s′1, s′2) of g1, g2 satisying (e1, e2) = Rho(f1, f2,R, s

′
1) and (e3, e4) =

Rho(f3, f4,t−R, s′2). Thus, useful collisions of f1, f2,R and f3, f4,t−R are in 1:1-
correspondence with the collisions of g1, g2 that yield a representation of the
solution. Hence, we can compute the probability of success in one iteration given
E1 as the fraction of useful collisions with respect to R among all collisions of
g1, g2, where the latter is Θ̃(2n2 ).

Let E2 be the event that there exist useful collisions for our choice of R. Let
E3 be the event that our collision finding yields a representation (x1, . . . ,x4)
of the solution e. Then we succeed in this iteration with probability p :=
Pr [E1 ∩ E2 ∩ E3] = Pr [E1] · Pr [E2 | E1] · Pr [E3 | E2 ∩ E1]. It remains to com-
pute p2 := Pr [E2 | E1] and p3 := Pr [E3 | E2 ∩ E1]. Let us start with probability
p2.
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Let us calculate the number of different R values for which we obtain useful
collisions. We first observe that different representations (e1, . . . , e4) might share
the same value e1 + e2 and hence the same inner product 〈a, e1 + e2〉. Thus, we
have to count the number of distinct representations (e′1, e′2) = (e1 + e2, e3 + e4)
of e. By the definition of our function domains in Equation (7) and in Figure 12
this number is (γn

2
γn
4

)
= Θ̃

(
2
γn
2

)
.

Hence, the probability of choosing an R ∈ Z2n/2 for which useful collisions
exist is

p2 := Θ̃

(
2 γn2
2n2

)
= Θ̃

(
2

(γ−1)n
2

)
.

Note that for a good choice of R there directly exist several useful collisions,
since any fixed (e′1, e′2) = (e1 +e2, e3 +e4) is represented via multiple (e1, . . . , e4).
More precisely every e′1 (resp. e′2) is represented by

(γn
4
γn
8

)
= Θ̃

(
2
γn
4

)

different (e1, e2) (resp. (e3, e4)). Note that any of these (e1, e2) and (e3, e4)
form useful collisions of f1, f2,R and f3, f4,t−R. Furthermore, any of the 2 γn2
combinations of (e1, e2) and (e3, e4) is a representation of e. Therefore, we obtain
a total of 2 γn2 distinct collisions in g1, g2 that represent e. Thus in case that we
made a good choice of R, a random collision is a representation of the solution
with probability

p3 := Θ̃

(
2 γn2
2n2

)
= Θ̃

(
2

(γ−1)n
2

)
.

Eventually, we expect p−1 = (p1p2p3)−1 = 2(1−γ)n = 20.149n iterations with
cost each Θ̃(2n2 ), resulting in total expected runtime

T = Θ̃(2( 3
2−γ)n) = 20.649n .

Alternative Run Time Analysis of Nested Collision Subset Sum. We
already saw that each iteration of Nested Collision Subset Sum takes
time Θ̃(2n/2) and we have to iterate until we find some e ∈ {0, 1}n. We call
(x1,x2,x3,x4) ∈ T1 × . . .× T4 consistent iff e = x1 + x2 + x3 + x4 ∈ {0, 1}n.

Now observe that a random tuple (x1,x2,x3,x4) ∈ T1 × . . .×T4 is consistent
with probability

p =
(
γn
γn/8

)(7γn/8
γn/8

)(6γn/8
γn/8

)(5γn/8
γn/8

)
(
γn
γn/8

)4

= Θ̃

(
2
(

7
8H( 1

7 )+ 3
4H( 1

6 )+ 5
8H( 1

5 )−3H( 1
8 )
)
γn

)
≥ 2−0.149n .
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Let us assume that the representations of e distribute uniformly in T1 × . . .× T4
and that Nested Collision Subset Sum finds random collisions. Then we
need on expection p−1 iterations until we find e ∈ {0, 1}n, resulting in a total
runtime of

T = p−1 · Θ̃(2n/2) = 20.649n.

This view on the runtime of Nested Collision Subset Sum motivates the
improved algorithm in the subsequent section that increases the probability
of obtaining a consistent vector e at the cost of an initial exponential time
permutation step.

4.2 Improved Nested Collision Subset Sum in 20.645n

Recall from Equation (7) and Figure 12 that in x1 + . . . + x4 the left-most
coordinates are always in {0, 1}(1−γ)n. In other words, inconsistencies are always
due to the last γn coordinates. Therefore, our goal is to shift less weight in the
last γn coordinates. Namely, we modify the weight distribution of e such that the
last γn coordinates have relative weight β

2 for some 2− 1
γ ≤ β ≤ 1. We depict our

new weight distribution in Figure 14. Since we cannot shift arbitrary weight into
the left-most coordinates, the lower bound on β guarantees (1−γ)n

4 ≥ (1−γβ)n
8 .

γβn
8

γβn
8

γβn
8

γβn
8

(1−γβ)n
8

(1−γβ)n
8

(1−γβ)n
8

(1−γβ)n
8

γn(1− γ)n

(1−γ)n
4

0

0

0

0

0

0

x4 ∈ T ′4 :

x3 ∈ T ′3 :

x2 ∈ T ′2 :

x1 ∈ T ′1 :

solution e : (1−γβ)n
8

γβn
2

(1−γβ)n
8

(1−γβ)n
8

(1−γβ)n
8

Fig. 14: Weight distribution of vectors from new layer-1 domains. Shaded areas contain
weight, white areas are all zero.
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More formally, we change the layer-1 domains to

T ′1 = 0 1
4 (1−γ)n × 0 1

4 (1−γ)n × 0 1
4 (1−γ)n × B

(
1
4(1− γ)n, 1− γβ

2(1− γ)

)
× B

(
γn,

β

8

)

T ′2 = 0 1
4 (1−γ)n × 0 1

4 (1−γ)n × B
(

1
4(1− γ)n, 1− γβ

2(1− γ)

)
× 0 1

4 (1−γ)n × B
(
γn,

β

8

)

T ′3 = 0 1
4 (1−γ)n × B

(
1
4(1− γ)n, 1− γβ

2(1− γ)

)
× 0 1

4 (1−γ)n × 0 1
4 (1−γ)n × B

(
γn,

β

8

)

T ′4 = B
(

1
4(1− γ)n, 1− γβ

2(1− γ)

)
× 0 1

4 (1−γ)n × 0 1
4 (1−γ)n × 0 1

4 (1−γ)n × B
(
γn,

β

8

)
.

This changes the domain sizes to

|T ′i | =
(

(1− γ)n/4
(1− γβ)n/8

)(
γn
γβn

8

)
.

In the analysis from Section 4.1, we set γ such that the search space of 2n
splits into 2n2 for both layer-1 and layer-2 collisions. However, observe that our
new weight-shifted subset sum problem has no longer search space of size 2n, but
only of size

S =
(

(1− γ)n/4
(1− γβ)n/8

)4(
γn
γβn

2

)
= Θ̃

(
2
(

(1−γ)H
(

1−γβ
2(1−γ)

)
+γH( β2 )

)
n

)
.

Let δ := (1− γ)H
(

1−γβ
2(1−γ)

)
+ γH

(
β
2

)
be the exponent of S. Thus, computing

〈a, e〉 = t mod 2δn is already sufficient for uniquely determining e. Analogous
to Section 4.1 we set |T ′i | = 2 δ2n. Hence, each iteration of Nested Collision
Subset Sum costs time Θ̃(2 δ2n).

The probability to obtain the correct weight distribution for e is

p1 := S(
n
n
2

) = Θ̃(2(δ−1)n) .

Let us look at a fixed iteration of Nested Collision Subset Sum with some
choice of R. Assume that in this iteration e has the correct weight distribution.
Any representation (e1, . . . , e4) of e is useful in this iteration if 〈a, e1 + e2〉 =
R mod 2 δ2n. Since we shift less weight into the γn right-most coordinates, the
amount of distinct representations (e′1, e′2) = (e1 + e2, e3 + e4) decreases to

(γβn
2
γβn

4

)
= Θ̃

(
2
γβn

2

)
.

Hence the probability of choosing an R ∈ Z2δn/2 for which useful representations
exist becomes

p2 := Θ̃

(
2 γβn2

2 δn2

)
= Θ̃

(
2

(γβ−δ)n
2

)
.
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For a good choice of R there exists at least one representation (e′1, e′2) =
(e1 + e2, e3 + e4) of the solution with 〈a, e′1〉 = R mod 2 δn2 , and the number of
ways we can represent (e′1, e′2) = (e1 + e2, e3 + e4) is

(γβn
4
γβn

8

)2

= Θ̃
(

2
γβn

2

)
.

Since g has a total of Θ̃(2 δn2 ) collisions, a random collision is a representation
of the solution with probability

p3 := Θ̃

(
2 γβn2

2 δn2

)
= Θ̃

(
2

(γβ−δ)n
2

)
.

With probability p = p1p2p3 we have the correct weight distribution, choose
a good R, and find a useful representation. Thus, we need on expectation p−1

iterations with running time Θ̃(2 δ2n) each. This results in a total run time of

T = Θ̃
(

2(1−δ+δ−γβ+ δ
2 )n
)

= Θ̃
(

2(1−γβ+ δ
2 )n
)
.

Optimization yields β = 0.964, from which we obtain γ = 0.8832 and δ = 0.9928.
This gives us p1 = 2−0.0072n, p2 = p3 = 2−0.0707n and a total expected run time
of

T = 20.645n.

4.3 Experiments for our 20.649n Subset Sum Algorithm

We implemented our Nested Collision Subset Sum algorithm (Algorithm 3).2

n 16 24 32 40 48
log Tf 16.80 21.91 26.97 32.01 37.25

Table 1: Amount of function calls Tf in logarithmic scale to solve a random subset sum
instance in dimension n using our Nested Collision Subset Sum algorithm. Sample
size per n is 30.

The computed regression line in Figure 15 is log Tf (n) = 0.637n+ 6.678. The
parameter 6.678 shows that the implementation of our algorithm incorporates
some quite large polynomial run time overhead. However, more importantly the
experimental slope 0.637 demonstrates that our asymptotic run time exponent
of 0.649 is already achieved in small dimension.

2 implementation available at
https://github.com/LwDLPandSubsetSum/lwDLP-and-NestedSubsetSum
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Fig. 15: Experimentally averaged number of function calls (in logarithmic scale) needed
to solve a subset sum instance in dimension n of weight n/2. Sample size per n is 30.
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