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Lattice-based Integer Factorization –
An Introduction to Coppersmith’s Method

Alexander May

"I love this Coppersmith stu↵, taking polynomials and shifting them around, it is so
real! Way better than this cryptography meta-reduction non-sense."
— Arjen Lenstra, personal communication at Asiacrypt 2007

Abstract

Coppersmith’s method is used to find unknowns in polynomial equations. In
this chapter, our polynomial equations stem from cryptanalysis problems re-
lated to the RSA cryptosystem and integer factorization with the cryptographic
secrets modeled as unknowns, but Coppersmith’s method can be applied in a
much more general context (see e.g. [8, 12], just to mention a few).

The beauty of Coppersmith’s method comes from exploring exponentially-
sized search spaces, while preserving polynomial time using the famous Lenstra-
Lenstra-Lovasz (LLL) lattice reduction algorithm [29]. In Coppersmith-type
literature, researchers are mainly focussing on maximizing the limits of the
search space using an asymptotic lattice dimension analysis. This makes it
quite cumbersome to follow a Coppersmith-type analysis for non-experts.

In this chapter, we follow a di↵erent approach to make the method more
accessible to newcomers. We review some of the most famous applications of
Coppersmith’s approach, like RSA attacks with known parts of the message,
Håstad’s broadcast attack, factoring with known bits, certification of RSA keys,
factorization via the RSA secret key, and RSA small secret key attacks. In-
stead of focussing on the method’s full asymptotic extent, we provide small
lattice bases that illustrate the applications, which can be easily and e�ciently
implemented. We hope that this approach results in a larger target audience,
including security engineers, lecturers and students, and allows them to exper-
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iment with and study the beauty of Coppersmith’s LLL-based method and its
applications.

1.1 Introduction to Coppersmith’s Method

In 1996, Coppersmith [13, 14] proposed two lattice-based methods for finding
small roots of polynomial equations, one method for polynomial equations
over the integers and one for modular polynomial equations. In the following,
we mainly focus on the latter modular technique, but in Section 1.5 we also
discuss the relation to the integer technique.

Coppersmith’s method is inspired by lattice-techniques from Håstad [19]
and Girault,To�n,Valleé [17], but contrarily to these methods, Coppersmith’s
method has the benefit that it provides provable guarantees to find all roots
smaller than a certain bound X in polynomial time in the bitlength of e.g. the
modulus of the polynomial equation. The polynomial run time is especially
fascinating for two reasons.

First, the root bound X is in general of exponential size in the bitlength of
the modulus. That is, we are able to find all roots in an interval of exponential
size. Put di↵erently, we are able to scan a search space as large as a polynomial
fraction of the modulus in polynomial time.

Second, the use of LLL reduction [29] is su�cient, whereas former meth-
ods [19] often relied on finding shortest lattice vectors, which is in general
a hard problem [1]. Hence, the e�ciency of Coppersmith’s methods is com-
pletely inherited from the e�cieny of the famous Lenstra-Lenstra-Lovasz al-
gorithm [29, 39]. In fact, using stronger lattice reduction instead of LLL would
not increase the bound X up to which roots can be found.

Applications. The first applications of Coppersmith’s method given in the
original works [13, 14, 15] already impressively demonstrated the technique’s
power. Coppersmith showed in [13] that one can invert the RSA function
x 7! x3 mod N in polynomial time given only a 2

3 fraction of the bits of x (see
Section 1.3.1). This has crucial implications for proving RSA security [38, 9],
since under the assumption that inverting the RSA function is hard the Cop-
persmith result implies that even recovering a 2/3-fraction must be hard.

In [14], Coppersmith showed that for an RSA modulus N = pq, having
primes p, q of the same bit-size, recovering half of the bits of p leads to poly-
nomial factorization (see Section 1.3.3 , and Lenstra [27] for an application).
This result was used in many practical settings. In 2012, Lenstra et al [28]
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showed that improper practical use of randomness for generating p, q is a se-
vere real-world issue, by factoring many public RSA moduli by just doing gcd
computations. This gdc-attack was later extended to nearby gcds using Cop-
persmith’s attack [4, 35]. On the constructive side, the factoring with known
bits method can be used to certify correctness of RSA public keys (N, e), in
the sense that one can e�ciently prove that e does not divide �(N), see Sec-
tion 1.3.3 and [25].

Certainly, the most prominent cryptanalysis application of Coppersmith’s
method is the improvement of Wiener’s famous attack on RSA secret expo-
nents d < N

1
4 [46] to d < N0.292 by Boneh and Durfee [10] (see Section 1.4.2).

Similar attacks have been designed for RSA secret exponents with small Chi-
nese Remainder Theorem (CRT) representation (dp, dq) = (d mod p�1, d mod
q � 1) (see Section 1.4.3 and [30, 5, 24, 44]). In 2017, Takayasu, Lu and Peng
showed that one can e�ciently factor N if dp, dq  N0.122, thereby significantly
improving over the previously best bound dp, dq  N0.073 from [24].

We conclude our chapter in Section 1.5 by discussing some open questions
related to the optimization of Coppersmith’s method, and by giving an out-
look for the promising Coppersmith-type research direction for polynomial
systems. This direction was recently used in the amazing cryptanaltic result
of Xu, Sarkar, Lu, Wang and Pan [47] in 2019 that fully breaks the so-called
modular inversion hidden number problem [11].

1.2 Useful Coppersmith-type Theorems

Assume that we receive as input a polynomial f (x) of degree � over the ring ZN

for some integer N of unknown factorization, and we want to find all roots of
f (x) in a certain interval. The description length of f ,N is ⇥(� log N). W.l.o.g.
we may assume that f is monic, otherwise we multiply by the inverse coe�ent
of the leading monomial x� modulo N. If this inverse does not exist, then we
can factor N and proceed recursively.

1.2.1 Idea of Coppersmith’s method

Coppersmith’s method constructs from f (x) a polynomial g(x) of usually larger
degree such that every small modular root x0 of f , i.e.

f (x0) = 0 mod N with |x0| < X,

is also a root of g over Z. Thus, we reduce modular univariate modular root
finding to integer univariate root finding, for which we have standard methods.
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Let us fix some integer m 2 Z. We construct g as an integer linear combina-
tion of multiples of

hi, j = x jNi f m�i(x).

Notice that every root x0 of f satisfies hi, j(x0) = 0 mod Nm. Hence if g is an
integer linear combination of the hi, j’s then we have g(x0) = 0 mod Nm as well.

Let us identify the polynomials hi, j(x) with their coe�cient vectors. The in-
teger linear combinations of these vectors form an integer lattice L. A key ob-
servation is that small vectors in L correspond to linear combinations g(x) with
small coe�cients. Moreover if g(x) has small coe�cients, and is evaluated at
small points x0 with |x0|  X only, then the result must also be (somewhat)
small. More precisely, assume that g(x0) is in absolute value smaller than Nm

for all |x0|  X. Then we have for all x0 that

g(x0) = 0 mod Nm and |g(x0)| < Nm.

These two equations together imply that g(x0) = 0, since the only multiple of
Nm smaller in absolute value then Nm is 0 · Nm = 0. This implies that g(x) has
the desired roots over the integers!

Notice that our so far used criterion |g(x0)| < Nm for all |x0|  X is not ef-
ficiently checkable, since we do not know any root x0, only their upper bound
X. However if g(x) has su�ciently small coe�cients, this criterion should au-
tomatically be fulfilled. The following lemma makes this intuition precise. The
lemma is usually contributed to Howgrave-Graham [22], but already appeared
in the work of Håstad [19]. It provides an easily testable upper bound on the
norm of g’s coe�cient vector that is su�cient to guarantee |g(x0)| < Nm.

To this end let us introduce some useful notion. Let g(x) =
Pn

i=0 cixi be a
univariate polynomial with coe�cient vector (c0, c1, . . . , cn). Then the polyno-
mial g(xX) has coe�cient vector v = (c0, c1X, . . . , cnXn), and we denote by
kg(xX)k the Euclidean norm of v.

Lemma 1.1 (Håstad/Howgrave-Graham) Let g(x) be a univariate polynomial
with n monomials. Let m, X be positive integers. Suppose that

1. g(x0) = 0 mod Nm where |x0|  X,

2. kg(xX)k < Nm
p

n .

Then g(x0) = 0 holds over the integers.
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Proof Property 2 implies

|g(x0)| =

�������

X

i

cixi
0

�������


X

i

|cixi
0|



X

i

|ci|Xi

p

n kg(xX)k < Nm.

By property 1 we know that g(x0) is a multiple of Nm, and therefore g(x0) =
0. ⇤

While in Coppersmith’s method we construct polynomials g(x) that auto-
matically satisfy property 1 of Lemma 1.1, the norm property 2 of Lemma 1.1
guarantees that g(x) has the same small roots as f (x) over the integers (but it
may have additional roots). Of course, our goal is to maximize X, i.e. the range
of small roots that we can e�ciently recover.

1.2.2 The crucial role of Lenstra-Lenstra-Lovasz reduction

Let L be the lattice defined by the coe�cient vectors of hi, j(x). The following
celebrated theorem relates the length of a shortest vector in an LLL reduced
basis of L to the lattice determinant det(L), which is an invariant of L.

Theorem 1.2 (Lenstra, Lenstra, Lovász) Let L 2 Zn be a lattice spanned by
B = {b1, . . . ,bn}. The LLL-algorithm outputs a lattice vector v 2 L satisfying

kvk  2
n�1

4 det(L)
1
n

in time O(n6 log3 Bmax), where Bmax = maxi, j{|(bi) j|} is the largest basis entry.

Neumaier and Stehlé [36] showed that the same output quality as in Theo-
rem 1.2 can be achieved in run time

O(n4+✏ log1+✏ Bmax) for any constant ✏ > 0. (1.1)

Notice that by Minkowski’s first theorem [18], every lattice L contains a
non-zero vector v

0

p

n det(L)
1
n . Hence, the smallest vector found by LLL-

reduction may be longer by an exponential factor (in the dimension n) than
the shortest lattice vector. This is however perfectly fine for Coppersmith’s
method. Recall that a vector v in a Coppermith-type lattice corresponds to
some polynomial g(x), for which we have to satify the second property of
Lemma 1.1: kg(xX)k < Nm

p
n . Thus, the LLL output vector v is short enough if

kvk  2
n�1

4 det(L)
1
n <

Nm
p

n
.
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We will see that in Coppersmith’s method we have det(L) = N⇥(m) with m ⇡
log N. Thus, for su�ciently large N, the terms 2

n�1
4 and

p
n can be neglected,

which leads to the simplified so-called enabling condition

det(L)  Nmn, (1.2)

that plays a crucial role in all constructions using Coppersmith’s method. The
enabling condition is used to optimize X. Namely, we have to define a collec-
tion of polynomials hi, j such that their coe�cient vectors span a lattice L with
det(L) as small as possible.

1.2.3 Coppersmith-type Theorems

We are now ready to formulate Coppersmith’s theorem for univariate polyno-
mials.

Theorem 1.3 Let N be an integer of unknown factorization. Let f (x) be a uni-
variate monic polynomial of constant degree �. Then we can find all solutions
x0 of the equation

f (x) = 0 mod N with |x0|  N
1
�

in time O(log6+✏ N) for any ✏ > 0.

Proof Let us just briefly sketch the proof, a full proof can be found in [31].
Choose m ⇡ log N

� and define the collection of polynomials

hi, j(x) = x jNi f (x)m�i for 0  i < m, 0  j < �.

It is not hard to see that the coe�cient vectors of hi, j(xX) form an n = m� ⇡
log N-dimensional lattice basis B with det(L) = det(B) ⇡ N

�m2
2 X

n2
2 . Hence the

enabling condition from Equation (1.2) translates to

N
�m2

2 X
n2
2  Nmn.

Using n = m� this is equivalent to X�2m2
 N�m2

, from which we easily derive
the desired root bound X  N

1
� .

It remains to show the run time. We work in an n ⇡ log N dimensional lattice
with largest entries of bit-size log Bmax = O(m log N) = O(log2 N). Using the
runtime of the Neumeier-Stehlé LLL-variant of Equation (1.1) lattice reduction
runs in time O(log6+✏ N). ⇤
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Extending Coppersmith’s bound. As already pointed out in Coppersmith’s
original work, any small root bound X can be be extended to cX for some real
number c at the expense of an additional run time factor of c. It is an important
open question whether this can be improved, or whether such a linear run time
factor is unavoidable.

Theorem 1.4 Let N be an integer of unknown factorization and c � 1. Let
f (x) be a univariate monic polynomial of constant degree �. Then we can find
all solutions x0 of the equation

f (x) = 0 mod N with |x0|  cN
1
�

in time O(c log6+✏ N) for any ✏ > 0.

Proof Split the interval [�cN
1
� , cN

1
� ] in c sub-intervals of size each 2N

1
� , cen-

tered at some xi. For each sub-interval with center xi, we apply Theorem 1.3 to
find all roots within this sub-interval. ⇤

Theorem 1.4 has immediate consequences for cryptographic attacks (see
Section 1.3), as it easily allows to extend Coppersmith-type root bounds.

Coppersmith method for divisor. Somewhat surpringly, one can also extend
Coppersmith’s method to find roots of f (x) modulo b where b � N� is an un-
known divisor of N. In principle, we keep the same strategy as before and sim-
ply work modulo b instead of N. E.g. hi, j = x jNi f (x)m�i now has small roots
modulo bm. Moreover, the simplified enabling condition from Equation (1.2)
becomes

det(L)  N�mn. (1.3)

Working out the details yields the following theorem that was already stated
in Coppersmith [13, 15] and Howgrave-Graham [22] for polynomial degree
� = 1, and first appeared in its full form in [31].

Theorem 1.5 Let N be an integer of unknown factorization, which has a divi-
sor b � N�, 0 < �  1. Let c � 1,and let f (x) be a univariate monic polynomial
of constant degree �. Then we can find all solutions x0 of the equation

f (x) = 0 mod b with |x0|  cN
�2
�

in time O(c log6+✏ N) for any ✏ > 0.

Notice that Theorem 1.4 is a special case of Theorem 1.5 with � = 1. For
� < 1, the small root bound decreases polynomially with exponent �2.
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1.3 Applications in the Univariate Case

1.3.1 Inverting the RSA Function with Partial Knowledge.

Small Messages. Assume we work with RSA with small public encryption
exponent e. As a simple example take e = 3, and let c = m3 mod N be an
RSA ciphertext with m < N

1
3 . Then m3 < N and therefore c = m3 holds over

the integers. Thus, we may compute m = c
1
3 over Z by standard e�cient root

finding methods such as Newton iteration.
Let us now formulate the same problem in terms of Coppersmith’s method.

Define the polynomial f (x) = x3
� c mod N. Then an application of Theo-

rem 1.3 yields that we find all roots m < N
1
3 in polynomial time. In fact, there

is nothing to do, since Coppersmith’s method constructs a polynomial equation
with the same roots over the integers, but f (x) already has the desired root over
the integers.

The crucial advantage of Coppersmith’s method is that it also covers the
inhomogeneous case, in which the preimage m of the RSA function is not
small, but we know it up to an additive term of size at most N

1
3 (or N

1
e in

general). This inhomogeneous case is addressed in the following.

Stereotyped Messages. Let us start with an illustrative example solvable in
small lattice dimension. Let c = m3 mod N, where we know an approximation
m1 of the message up to an additive error of size at most m � m1 < N

5
21 , i.e.

m0 = m � m1 for some unknown m0 < N
5
21 .

One may think of m1 as a 16
21 -fraction of the most significant bits. Our goal is

to recover the 5
21 -bit fraction m0 e�ciently with Coppersmith’s method.�

⇢

⇠

⇡

Example: Stereotyped Messages

Given: c = m3 mod N and some m1 satisfying m � m1 < N
5
21 .

Polynomial: f (x) = (x + m1)3
� c mod N with root x0 = m � m1 < N

5
21 .

Parameters: degree � = 3

Lattice basis. Define m = 2, i.e. all polynomials have root x0 modulo N2.
Define the collection of seven polynomials

N2, N2x, N2x2, N f (x), xN f (x), x2N f (x), f 2(x).

Let X = N
5
21 and h1(x), . . . , h7(x) denote the above collection. The coe�cient

vectors of hi(xX), 1  i  7, define the following lattice basis
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B =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

N2

N2X
N2X2

N(m3
1 � c) 3Nm2

1X 3Nm1X2 NX3

N(m3
1 � c)X 3Nm2

1X2 3Nm1X3 NX4

N(m3
1 � c)X2 3Nm2

1X3 3Nm1X4 NX5

(m3
1 � c)2 6(m3

1 � c)m2
1X (6(m3

1 � c)m1 + 9m4
1)X2 (20m3

1 � 2c)X3 15m2
1X4 6m1X5 X6

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

Lattice basis B spans an n = 7 dimensional lattice L with det(L) = | det(B)| =
N9X21. Using the enabling condition from Equation (1.2), we obtain

N9X21
 N2·7 which implies X  N

5
21 .

Using the fast Neumaier-Stehlé variant of LLL reduction from Equation (1.1),
we recover the lower 5

21 ⇡ 0.238-fraction of m in almost linear timeO(log1+✏ N).
An application of Theorem 1.4 yields a superior bound for the bits that one

can recover at the cost of an increased running time.

Theorem 1.6 Let c0 = me mod N with constant e. Assume we know some
m1 satisying m � m1 < cN

1
e for some c � 1. Then m can be found in time

O(c log6+✏ N).

Proof Theorem 1.4 yields that in time O(c log6+✏ N) we can recover all roots
x0 = m � m1 of size

|x0|  cN
1
� = cN

1
e .

⇤

Theorem 1.6 implies that e.g. for RSA exponent e = 3 given a 2
3 -fraction of

the preimage m we find the remaining 1
3 -fraction in polynomial time. Maybe

somewhat surprisingly, this has important applications for proving RSA secu-
rity [38, 9]. Namely, if we assume that it is hard to invert the RSA function
m 7! me mod N, then by Theorem 1.6 it must already be hard to recover an
e�1

e -fraction of m.

1.3.2 Systems of Univariate Polynomial Equations

Polynomially Related Messages. The following is known as Håstad’s RSA
Broadcast Attack [19]. Assume that we obtain three textbook RSA ciphertexts
c1, c2, c3 under three di↵erent RSA public keys (N1, 3), (N2, 3), (N3, 3) for the
same message m (without randomized padding function [3]). In other words
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we obtain the following system of congruences

c1 = m3 mod N1

c2 = m3 mod N2

c3 = m3 mod N3.

Let N = mini{Ni}, and let us assume m < N, which implies m3 < N3. Let us
further assume w.l.o.g. that the public moduli Ni are pairwise coprime. By the
Chinese Remainder Theorem (CRT) we can easily compute some

c = CRT(c1, c2, c3) = m3 mod N1N2N3.

Since m3 < N3 < N1N2N3, we know that c = m3 holds over the integers. Thus,
we can simply compute m = c

1
3 .

Now assume that we obtain the following system of congruences

c1 = m2 mod N1

c2 = m3 mod N2

c3 = m3 mod N3.

(1.4)

Strictly speaking c1 = m2 mod N1 is not a textbook RSA ciphertext (since
squaring is not a bijection), but we may ignore that, since m is uniquely defined
by the above system. Because the right-hand side of the equations in Equa-
tion (1.4) take di↵erent values, we may no longer simply compute CRT(c1, c2, c3)
as in Håstad’s Broadcast attack.

Instead, we define the following degree-6 polynomials

f1(x) = (x2
� c1)3, f2(x) = (x3

� c2)2, f3(x) = (x3
� c3)2

that all share the same root x0 = m modulo N3
1 , N2

2 , respectively N2
3 . Via the

Chinese Remainder Theorem we now compute a degree-6 polynomial f =
CRT( f1, f2, f3) that has the root x0 = m modulo N3

1 N2
2 N2

3 .

�

⇢

⇠

⇡
Example: Polynomially Related Messages

Given: Equations from (1.4). Let M = N3
1 N2

2 N2
3 and N = mini{Ni}.

Polynomial: f (x) of degree 6 with root x0 = m modulo M, where m < N.
Parameters: degree � = 6

Lattice basis: Let m = 6, i.e. all polynomials have root x0 modulo M6. We
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define the following collection of 37 polynomials

M6, M6x, M6x2, M6x3, M6x4, M6x5,

M5 f (x), M4x f (x), M5x2 f (x), M5x3 f (x), M5x4 f (x), M5x5 f (x),
M4 f 2(x), M4x f 2(x), M4x2 f 2(x), M4x3 f 2(x), M4x4 f 2(x), M4x5 f 2(x),
M3 f 3(x), M3x f 3(x), M3x2 f 3(x), M3x3 f 3(x), M3x4 f 3(x), M3x5 f 3(x),
M2 f 4(x), M2x f 4(x), M2x2 f 4(x), M2x3 f 4(x), M2x4 f 4(x), M2x5 f 4(x),
M f 5(x), Mx f 5(x), Mx2 f 5(x), Mx3 f 5(x), Mx4 f 5(x), Mx5 f 5(x),

f 6(x).

Let h1(x), . . . , h37(x) be the above collection, and let X = N. Then the coef-
ficient vectors of h1(xX), . . . , h37(xX) define a lattice basis B of some lattice L
with dim(L) = 37 and

det(L) = | det(B)| = M6
P6

i=1 iX
P36

i=1 i = M126X666.

Thus, the enabling condition from Equation (1.2) yields

det(L)  M6·37 which is equivalent to X  M
16
111 .

Since M = N3
1 N2

2 N2
3 > N8, we have M

16
111 > N

128
111 > N. Thus, we find in

time O(log3 N) via LLL-reduction (or time O(log N1+✏) via Equation (1.1)) the
unique m < N = mini{Ni}.

Using Theorem 1.3 we can show a slightly stronger and more general result.

Theorem 1.7 ([32]) Let N1, . . . ,Nk be pairwise co-prime RSA-moduli and let
m < mini{Ni}. Let gi(x), i = 1, . . . , k, be polynomials of degree �i. Assume we
are given

ci = (gi(m))ei mod Ni satisfying
kX

i=1

1
�iei
� 1.

Then m can be computed in time O(log6+✏ N) for all ✏ > 0.

Proof W.l.o.g. we assume that all gi(m) are monic. Otherwise, we multiply
by the inverse of their leading coe�cient. If this inverse computation fails, we
obtain the factorization of some Ni which in turns enables us to compute m.

We define � = lcmi{�iei} as the least common multiple. Furthermore, we
define the degree-� polynomials

fi(x) = (gi(x)ei � ci)
�
�iei with root fi(m) = 0 mod N

�
�iei

i .

Let M =
Qk

i=1 N
�
�iei

i be the product of all moduli. Via Chinese Remaindering
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we compute the polynomial

f (x) = CRT( f1, . . . , fk) =
kX

i=1

bi fi(x) mod M, where bi mod Nj =

8>><
>>:

1 if i = j
0 else

.

An application of Theorem 1.3 shows that we can find in time O(log6+✏ N) all
roots x0 smaller than

|x0|  M
1
� .

Using our condition 1 
Pk

i=1
1
�iei

, we know that our desired root m satisfies

m < min
i
{Ni} 

✓
min

i
{Ni}

◆Pk
i=1

1
�iei


kY

i=1

N
1
�iei

i = M
1
� .

Thus, we recover the desired root via Coppersmith’s method. ⇤

An important special case of Theorem 1.8 is when all gi(x) = x and therefore
�i = 1.

Theorem 1.8 ([32]) Let N1, . . . ,Nk be pairwise co-prime RSA-moduli and let
m < mini{Ni}. Assume we are given

ci = mei mod Ni satisfying
kX

i=1

1
ei
� 1.

Then m can be computed in time O(log6+✏ N) for all ✏ > 0.

Let us apply Theorem 1.8 to the equation system of Equation (1.4). Since
e1 = 2, e2 = e3 = 3 we have 1

2 +
1
3 +

1
3 =

7
6 � 1. Thus, we can find m in

time O(log6+✏ N). Recall that the analysis at the beginning of the section even
allowed run time O(log1+✏ N). The reason is that

P
i

1
ei

is significantly larger
than 1, which in turn allows for a smaller lattice basis, and therefore also for
superior run time.

1.3.3 Factoring with Known Bits and RSA Key Certification

Let N = pq be an RSA modulus, w.l.o.g. p > q and therefore p > N
1
2 . Assume

that we know a good approximation p1 of p up to an additive term of size at
most N

1
5 , i.e. we know some p1 such that

p0 = p � p1 for some unknown p0 < N
1
5 .

One may think of p1 as a 4
5 -fraction of the most significant bits of p. Our task

is to recover the 1
5 least significant bits p0.
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⇢

⇠

⇡

Example: Factoring with Known Bits

Given: N = pq, p > N
1
2 and some p1 satisfying p � p1 < N

1
5 .

Polynomial: f (x) = x + p1 mod p with root x0 = p � p1 < N
1
5 .

Parameters: degree � = 1, divisor size � = 1
2

Lattice basis: Let m = 2, i.e. all polynomials have root x0 modulo p2. We
define the collection of five polynomials

N2, N f (x), f 2(x), x f 2(x), x2 f 2(x).

Let X = N
1
5 and h1(x), . . . , h5(x) denote the above collection. Then the coe�-

cient vectors of hi(xX), i = 1, . . . , 5, form the lattice basis

B =

0
BBBBBBBBBBBBBBBBBBBB@

N2

N p1 NX
p2

1 2p1X X2

p2
1X 2p1X2 X3

p2
1X2 2p1X3 X4

1
CCCCCCCCCCCCCCCCCCCCA

. (1.5)

Notice that n = dim(L) = 5 and det(L) = N3X10. Thus the enabling condition
from Equation (1.3) yields

N3X10
 N�mn = N5 which implies X  N

1
5 .

LLL reduction runs on lattice basis B in time O(log3 N) (and in O(log1+✏ N)
using Equation (1.1)).

Using Theorem 1.5, we may increase the bound N
1
5 at the cost of an in-

creased run time.

Theorem 1.9 Let N be composite with divisor p > N�. Assume we are given
p1 satisfying p � p1 < cN�2 for some c � 1. Then p can be found in time
O(c log6+✏ N) for any ✏ > 0.

Proof Theorem 1.5 implies that in time O(c log6+✏ N) we find all x0 = p� p1

of size

|x0|  cN
�2
� = cN�

2
.

⇤

Let N = pq be an RSA modulus with N
1
2 < p < 2N

1
2 , i.e. � = 1

2 . Theo-
rem 1.9 implies that we can factor N in polynomial time given half of the bits
of p, i.e. p � p1 < N

1
4 < p

1
2 .

Moreover, if we set p1 = 0 and c = 2N
1
4 then Theorem 1.9 gives us a de-

terministic factorization algorithm for RSA moduli with running time Õ(N
1
4 ),

where the Õ-notion suppresses polylogarithmic factors.
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Certifying RSA. For the correctness of many RSA-based protocols, we have
to guarantee that the RSA parameters (N, e) are properly chosen. This means
in particular that the RSA function m 7! me mod N is a bijection, which is true
i↵

gcd(e, �(N)) = 1.

However, the co-primality of e and the Euler totient function �(N) is in general
not publically checkable, since the knowledge of �(N) implies the factorization
of N (at least for RSA moduli).

However, let us for the moment assume that N is an RSA modulus, and
that e �

p
2N

3
10 is prime. Primality of e can easily be checked in polynomial

time [33]. Since N = pq we have �(N) = (p � 1)(q � 1). By primality of e we
conclude that gcd(e, �(N)) 2 {1, e}. Therefore, (N, e) does not define a bijective
RSA function i↵ gcd(e, �(N)) = e, in which case we have e|p � 1 or e|q � 1.
Wlog, let us assume e|p � 1, i.e. there exists some unknown k 2 N with

p = ek + 1. (1.6)

W.l.o.g. we may also assume gcd(e,N) = 1. On input e,N the Extended Eu-
clidean Algorithms outputs Bézout coe�cients r, s 2 Z satisfying er +Ns = 1.
Multiplying Equation (1.6) by r yields

pr = ekr + r = (1 � Ns)k + r.

Using N = pq, we obtain

p(r + qsk) = k + r.

Thus, the polynomial f (x) = x + r satisfies f (x0) = 0 mod p with root x0 =

k = p�1
e . Notice that r = e�1 mod N plays the role of p1 from the previous

Factoring with Known Bits approach. Namely, r is an approximation of some
(unknown) multiple of p. Since N is an RSA modulus, we know that 1

2 p < q.
Multiplication by p gives p <

p
2N. Thus, we obtain

x0 = k =
p � 1

e
<

p
2N

p
2N

3
10
= N

1
5 . (1.7)

�

⇢

⇠

⇡

Example: Certification of RSA Parameters

Given: N = pq and some prime e �
p

2 N
3
10 with e|p � 1.

Polynomial: f (x) = x + (e�1 mod N) mod p with root x0 =
p�1

e < N
1
5 .

Parameters: degree � = 1, divisor size � = 1
2

Lattice basis: Setting p1 = e�1 mod N, we can directly use lattice basis B
from Equation (1.5). Thus, we may in time O(log3 N) via LLL (or log1+✏ N
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via Equation (1.1)) compute the factorization of N if e|p � 1. If Coppersmith’s
method fails to factor N, then by the provable guarantees of Coppersmith’s
method we certified that gcd(e, �(N) = 1, and therefore that the RSA function
is indeed a bijection.

Using Theorem 1.5, our certification procedure holds for even smaller public
exponents e � N

1
4 .

Theorem 1.10 Given an RSA modulus N = pq and some prime e � N
1
4 . Then

we can decide in time O(log6+✏ N) for any ✏ > 0 whether gcd(e, �(N)) = 1.

Proof We have x0 = k = p�1
e 

p
2N

N
1
4
< 2N

1
4 . Thus, an application of Theo-

rem 1.9 yields the desired result. ⇤

Notice that Theorem 1.10 assumes that we start with some RSA modulus
N = pq that is a product of two primes p, q of equal bit-size. In fact, the proof
of Theorem 1.10 builds on this property. Somewhat surprisingly, we can certify
RSA parameters (N, e) for any N of unknown factorization, even for products
of more than two primes.

Theorem 1.11 ([25]) Given a composite N and some prime e � N
1
4 . Then

we can decide in time O(log6+✏ N) for any ✏ > 0 whether gcd(e, �(N)) = 1.

Proof sketch It is not hard to see that in the case gcd(e, �(N)) > 1, we have
e|p� 1 for some prime divisor of p of N. But as opposed to the RSA case from
Theorem 1.10 we now only have a trivial upper bound p < N on p. This im-
plies that an application of Coppersmith’s method finds p in time O(log6+✏ N),
provided that x0 = k = p�1

e 
N

N
1
4
= N

3
4 .

Assume that p � N
p

3/4. Then an application of Theorem 1.5 with � =
p

3/4, � = 1 yields that we find x0 if

|x0|  N
�2
� = N

3
4 ,

as desired. In summary, we find p i↵ p 2 [N
p

3/4,N]. Otherwise we know that
p < N

p
3/4
⇡ N0.866. Therefore, we obtain a new upper bound on p, and may

apply Coppersmith’s method iteratively, finding a yet decreased lower bound
on p, etc.

The proof in [25] shows that after O(log N) iterative applications of Copper-
smith’s method we succeed to cover the whole interval [e,N] of all possible
candidates for p. If all of these iterations fail to factor N, we certified that
gcd(e, �(N)) = 1. ⇤

Computing the RSA Secret Key implies Factoring. Let (N, e) be an RSA
public key. From the factorization of N one can derive the Euler function �(N),
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and compute the RSA secret key as e�1 mod �(N). Thus, factoring implies
computation of the RSA secret key.

A natural question is whether the converse is also true? If we are able to com-
pute d = e�1 mod �(N), does this lead to an e�cient factorization algorithm?
This question was already addresses in the original RSA paper [37], where the
authors mentioned a probabilistic factorization algorithm due to Miller [33].
It remained open whether there also exists a deterministic factorization algo-
rithm.

Let us first assume that e  1
3 N

1
2 . We will see that in this case we have

a completely elementary factorization algorithm. Assume that we are able to
compute the secret key d with 2 < d < �(N). Then there exists some unknown
k 2 N such that

ed = 1 + k�(N).

Let k̃ = ed�1
N < k. Then

k � k̃ =
ed � 1
�(N)

�
ed � 1

N
=

(ed � 1)(N � �(N))
�(N)N

> 0.

Since p, q are of equal bit-size, we have

N � �(N) = p + q � 1 < 3N
1
2 and

1
2

N < �(N) < N.

Since e  1
3 N

1
2 , we obtain

0 < k � k̃ <
1
3 N

1
2 �(N) · 3N

1
2

�(N)N
= 1.

This implies that k = dk̃e. Knowledge of k gives us �(N) = ed�1
k . Solving

the two equations �(N) = (p � 1)(q � 1) and N = pq eventually yields the
factorization p, q.

What happens if ed > N
3
2 ? Let us model this case as a Coppersmith-type

problem. Notice that M = ed � 1 is a multiple of the (unknown) �(N), and the
polynomial

f (x) = N � x mod �(N) has a small root x0 = p + q � 1 < 3N
1
2 .

Notice here the analogy to Factoring with Known Bits: M plays the role of
N, �(N) plays the role of p, but this time we know by construction a good
approximation N of �(N).
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⇢

⇠

⇡

Example: Factoring via RSA Secret Key

Given: N = pq and e, d satisfying ed = 1 mod �(N), ed < (9N)
5
3 .

Polynomial: f (x) = N � x mod �(N) with root x0 = p + q � 1 < 3N
1
2 .

Parameters: degree � = 1, divisor size � = loged�1 �(N) � 3
5

Lattice basis: Set m = 2, then all polynomials have root x0 modulo �(N)2. Set
M = ed � 1 = (9N)↵ for some ↵ < 5

3 . Let � = 1
↵ and X = 3N

1
2 . We define the

collection of four polynomials

h1(x) = M2, h2(x) = M f (x), h3(x) = f 2(x), h4(x) = x f 2(x).

The integer linear combinations of the coe�cient vectors of h1(xX), . . . , h4(xX)
form a lattice L with basis

B =

0
BBBBBBBBBBBBBB@

M2

MN �MX
N2

�2NX X2

N2X �2NX2 X3

1
CCCCCCCCCCCCCCA
.

We have n = dim(L) = 4 and det(L) = | det(B)| = M3X6. Thus the enabling
condition from Equation (1.3) becomes M3X6

 M�mn = M
8
↵ . Using M =

ed � 1 = (9N)↵, this implies

X  M
4

3↵�
1
2 = (9N)

4
3�
↵
2 .

Since ↵ < 5
3 , the exponent satisfies 4

3 �
↵
2 >

1
2 . Therefore, we find the root

x0 = p + q � 1 < 3N
1
2 in time O(log1+✏ N) via LLL reduction. From x0 we

easily derive the factorization of N.
An application of Theorem 1.5 yields the following Theorem.

Theorem 1.12 Let N = pq be an RSA modulus with key pair 2 < e, d < �(N)
satisfying ed = 1 mod �(N). On input N, e, d one can compute the factorization
of N in time O(log6+✏ N) for any ✏ > 0.

Proof Define M = ed�1 = �(N)↵ for some ↵ < 2. Let f (x) = N�x mod �(N)
with root x0 = p + q � 1 < 3N

1
2 . Let � = 1, � = 1

↵ , c = 6. Via Theorem 1.5 we
find x0 in time O(log6+✏ N) if

|x0|  6M�
2
= 6�(N)

1
↵ .

Since ↵ < 2 and �(N) > N
2 we obtain

6�(N)
1
↵ > 6�(N)

1
2 > 3N

1
2 .

Thus, Coppersmith’s method succeeds to recover x0 = p + q � 1, from which
we derive N’s factorization. ⇤
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1.4 Multivariate Applications – Small Secret Exponent RSA

Throughout this section we assume that e is approximately of size N, denoted
e ⇡ N. If we choose some small secret key d, then e = d�1 mod �(N) should
be randomly distributed, i.e e � �(N)/2 � N/4 with probability 1

2 . In fact, all
attacks that we study in this section become even more e↵ective (in the sense
of larger achievable root bounds), if e is significantly smaller than N. For the
ease of notation, we ignore the case of smaller e.

1.4.1 Wiener’s Attack.

In 1990, Wiener [46] discovered that for RSA public keys (N, e) with corre-
sponding secret d < 1

3 N
1
4 the factorization of N can be found via continued

fractions in time O(log3 N). We formulate Wiener’s result in terms of Copper-
smith’s method. We have ed = 1+ k(N + 1� p� q), and therefore the bivariate
polynomial

f (x, y) = x(N � y) + 1 mod e has root (x0, y0) = (k, p + q � 1).

We already know that for RSA moduli with primes p, q of same bit-size we
have y0 = p + q � 1 < 3N

1
2 . Moreover, since e < �(N) we have

x0 = k =
ed � 1
�(N)

< d.

Notice at this point that e ⌧ N would imply a smaller upper bound on x0.

By setting

u = 1 � xy (1.8)

we linearize f (x, y) as

f (u, x) = u+ xN mod e with root (u0, x0) = (1� x0y0, x0) = (1�k(p+q�1), k).

Notice that |u0| < k(p + q � 1) < 3dN
1
2 .�

⇢

⇠

⇡

Example: RSA with Small Secret Exponent d
Given: N = pq, e satisfying ed = 1 mod �(N) with d < 1

3 N
1
4

Polynomial: f (u, x) = u + xN mod �(N) with root
(u0, x0) = (1 � k(p + q � 1), k).

Lattice basis: Set m = 1. Then all polynomials have root (x0, y0) modulo e.
Define X = 1

3 N
1
4 and U = 3N

3
4 . We also define the collection of polynomials

h1(u, x) = ex, h2(u, x) = f (u, x).
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The integer linear combinations of the coe�cient vectors of h1(uU, xX) and
h2(uU, xX) form a lattice L with basis

B =
 

eX
NX U

!
.

We have n = dim(L) = 2 and det(L) = eUX. The enabling condition from
Equation (1.2) becomes

eUX  e2, which implies X 
e

3N 3
4
.

Assuming e ⇡ N, we obtain X  1
3 N

1
4 . Thus, we recover d in time O(log1+✏ N).

Notice that Coppersmith’s method guarantees only that we find a polynomial
g(u, x) = g0u + g1x from an LLL-reduced shortest lattice vector such that
g(u0, x0) = 0. In our bivariate case, it remains to recover the root (u0, x0). We
conclude from g(u0, x0) = 0 that

g0u0 = �g1x0.

Since gcd(u0, x0) = 1, it follows that |g0| = x0 and �|g1| = u0.

1.4.2 Boneh-Durfee Attack with Unraveled Linearization.

Let us start with the polynomial f (u, x) = u + xN as in the description of
Wiener’s attack. Our goal is to improve on Wiener’s N

1
4 -bound.�

⇢

⇠

⇡
Example: RSA with Small Secret Exponent d

Given: N = pq, e satisfying ed = 1 mod �(N) with d < N0.256

Polynomial: f (u, x) = u + xN mod �(N) with root
(u0, x0) = (1 � k(p + q � 1), k).

Lattice basis (1st try): Instead of choosing m = 1 as in Wiener’s attack, we take
m = 2 and define the following collection of polynomials with root modulo e2

h1 = e2x, h2 = e f (u, x), h3 = e2x2, h4 = ex f (u, x), h5 = f 2(u, x).

This leads to lattice L with basis

B =

0
BBBBBBBBBBBBBBBBBBBB@

e2X
eNX eU

e2X2

eNX2 eUX
N2X2 2NUX U2

1
CCCCCCCCCCCCCCCCCCCCA

.
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We obtain enabling condition

det(L) = e6U4X4
 e10.

This is equivalent to the enabling condition UX  e from Wiener’s attack. It
seems that Wiener’s bound is stable under increasing m. However, we may also
include in our collection the polynomial h6 = y f 2(u, x). This polynomial has
monomials

x2y, uxy, u2y.

Using Equation (1.8) substitute each occurence of xy by 1 � u. Such a substi-
tution is called unraveled linearization [20, 21], and leaves us with monomials

x, ux, u, u2, u2y,

of which only the last monomial u2y does not appear in h1, . . . , h5.
Unfortunately, the new collection is not yet good enough for improving the

1
4 -bound. However, we succeed with unraveled linearization when using larger
m.

Lattice basis (2nd try): Let us construct a similar lattice basis with the choice
m = 4. Let d < N� with � = 0.256, set X = N� and U = Y = N

1
2+�.

We take the powers of f i(u, x) for i = 3, 4 and in addition the polynomial
y f 4(u, x). That is, we take the 10 polynomials

e4x3, e3x2 f , e2x f 2, e f 3, e4x4,

e3x3 f , e2x2 f 2, ex f 3, f 4, y f 4.

This leads to lattice L with basis B =
0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

e4 X3

e3 NX3 e3UX2

e2N2X3 2e2NUX2 e2U2X
eN3 X3 3eN2UX2 3eNU2X eU3

e4X4

e3NX4 e3UX3

e2 N2X4 2e2NUX3 e2U2X2

eN3X4 3eN2UX3 3eNU2X2 eU3X
N4X4 4N3UX3 10N2U2X2 4NU3 X U4

N4X3 4N3UX2 10N2U2X 4NU3
�N4UX3

�4N3U2 X2
�10N2U3 X �4NU3 U4Y

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

We obtain dim(L) = 10 and det(L) = e20U20X16Y . For e ⇡ N, our enabling
condition becomes

e20U20X16Y  e40 which implies N�  N
19
74 ⇡ N0.256.

Thus, we find via lattice reduction a polynomial with root (u0, x0, y0) over Z in
time O(log1+✏ N). Using u = 1 � xy from Equation (1.8) gives us a polynomial
in x, y only. In fact, one can show that under the same enabling condition LLL
reduction provides two polynomials with the desired root over the integers. We



Lattice-based Integer Factorization 21

then compute y0 = p+ q� 1 from both polynomials via resultant computation.
From y0 we easily obtain the factorization of N.

In general, one can improve the bound for d to N1�
p

1
2 ⇡ N0.292.

Theorem 1.13 (Boneh-Durfee ’99 [10]) Let (N, e) be an RSA modulus with
ed = 1 mod �(N), e ⇡ N and d < N0.292. Then N can be factored in time
O(log6+✏ N) for any ✏ > 0.

Proof For a proof we directly refer to Boneh, Durfee [10]. A slightly sim-
pler proof using the unraveled linearization strategy from above can be found
in [21]. ⇤

If e is significantly smaller than N, then one obtains larger bounds on d in
Theorem 1.13. On the other hand, if e > N1.875 then the attack of Theorem 1.13
no longer works for any secret d.

Whether the N0.292 bound can be improved, or whether it is optimal is one
of the major open problems in Coppersmith-type cryptanalysis. Boneh and
Durfee [10] argued that their polynomial has a unique solution for all d <
N

1
2 . Clearly, it is a necessary requirement for the e�ciency of Coppersmith’s

method that there are not exponentially many solutions, since we have to out-
put all of them. However, even a unique solution does not imply that we can
e�ciently find it.

In fact, there have been serious e↵orts to improve the Boneh-Durfee at-
tack [2, 21, 26, 42] indicating that the attack is either optimal, or that sig-
nificantly new techniques have to be developed for an improvement.

Ernst et al. [16] and Takayasu, Kunihiro [40, 41, 43] showed that the Boneh-
Durfee attack admits a smooth extension to Partial Key Exposure attacks,
where one gets a constant fraction of d’s most significant bits. If d  N0.292

then we need no bits at all, while with growing d we need a larger known frac-
tion for recovering d (and the factorization) in polynomial time. Eventually,
for full size d we need all bits of d, coinciding with the result of Theorem 1.12.

1.4.3 Small CRT exponents

Since Wiener’s small d attack in 1990, it was an open problem whether there
exist polynomial time attacks for RSA secret keys d with a small Chinese Re-
mainder representation, i.e. dp = d mod p � 1 and dq = d mod q � 1 are both
small. This is a question with practical significance, since for performance rea-
sons almost all real-world RSA implementations compute the RSA decryption
function using CRT-exponents (dp, dq).

The first polynomial time attack on CRT-exponents [30] was described in
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2003, but only worked for RSA with (significanty) imbalanced prime factors
p, q. This was improved in 2005 by Bleichenbacher and May [5], but their
attack still required (less) imbalanced prime factors or small e. Here, we re-
view the idea of the Bleichenbacher-May attack, since it is the basis for later
improvements.

We start with the set of equations

edp = 1 + k(p � 1)

edq = 1 + `(q � 1). (1.9)

and rewrite these as

edp + k � 1 = kp

edq + ` � 1 = `q.

Multiplication of both equations leads to the identity

e2dpdq + e(dp(` � 1) + dq(k � 1)) + k`(1 � N) � (k + ` � 1) = 0 (1.10)

with four unknowns dp, dq, k, `. Let dp, dq < N�. Then k (and analogously `)
can be upper-bounded as

k =
edp � 1
p � 1

 N
1
2+�.

Let us take Equation (1.10) modulo e2 and work with the linear polynomial
equation

f (x, y, z) = ex+y(1�N)�z with root (x0, y0, z0) = (dp(`�1)+dq(k�1), k`, k+`�1).
(1.11)

Choose X = N
1
2+2�,Y = N1+2�,Z = N

1
2+�. We take the collection of three

polynomials

e2x, e2y, f (x, y, z)

that lead to a lattice L with basis
0
BBBBBBBBB@

e2X
e2Y

eX (1 � N)Y �Z

1
CCCCCCCCCA
.

Our enabling condition gives us

e4XYZ  e6, resulting in �  0.

Thus, the Bleichenbacher-May attack does not succeed for full-size e (but for
e that are significantly smaller than N).

However, the identity of Equation (1.10) was used in 2007 by Jochemsz and
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May [24] to show an attack on CRT exponents dp, dq  N0.073. Unfortunately,
to the best of our knowledge dimension 30 is the smallest lattice dimension for
which the Jochemsz-May attack provides a positive bound, and the attack uses
Coppersmith’s method over the integers (rather than the modular approach that
we used in this work). Therefore, we omit a concrete lattice basis here.

Theorem 1.14 (Jochemsz-May 2005[24]) Let (N, e) be an RSA modulus with
ed = 1 mod �(N) satisfying dp = d mod p � 1, dq = d mod q � 1  N0.073.
Then the factorization of N can be found in time O(log6+✏ N) for any ✏ > 0.

The Jochemsz-May attack was optimized in [21] using smaller lattice bases
that still asymptotically achieve the same bound N0.073. This optimization in-
dicated that there is no possible improvement using solely Equation (1.10).

However in 2017, Takayasu, Lu and Peng used all three polynomial equa-
tions from Equation (1.9) and Equation (1.10) to further improve the bound to
N0.091 [44], and later even to an impressive N0.122 [45].

Theorem 1.15 (Takayasu, Lu and Peng [45]) Let (N, e) be an RSA modulus
with ed = 1 mod �(N) satisfying dp = d mod p�1, dq = d mod q�1  N0.122.
Then the factorization of N can be found in time O(log6+✏ N) for any ✏ > 0.

1.5 Open Problems and Further Directions

1.5.1 Optimal Use of Coppersmith’s Method.

We have seen that Coppersmith’s method leads to powerful results, where all
roots within an exponentially-sized search space can be found in polynomial
time. In the last sections we derived polynomial equations f , defined certain
polynomial collections using algebraic shifts of f , and sometimes further op-
timized using back-substitution via unraveled linearization.

All this is currently handcrafted, and it is unclear how to find optimal strate-
gies for any of the above steps.

Initial polynomial selection. The most important step is to define the initial
polynomial(s) to work with. The results of Section 1.4.3 illustrate the impor-
tance of the polynomial selection. If one takes into account the polynomial
from Equation (1.11) only, then there seems to be no hope to improve upon the
N0.073 bound from Theorem 1.14. However, if we also take the polynomials
from Equation (1.9) then we get the significantly improved N0.122 bound from
Theorem 1.15.
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In general, we are not aware of any strategy for properly selecting the ini-
tial polynomial(s). Di↵erent polynomial choices for the same problem lead to
di↵erent Newton polytopes of the polynomial, which in turn lead to di↵erent
optimization in Coppersmith’s method, as shown in [6].

In fact, some improved bounds in literature stem (solely) from a more clever
polynomial selection.

Shift selection, theoretically. After polynomial selection of f , one has to find
an optimal collection of polynomials. This is usually a major part of the anal-
ysis of Coppersmith’s method. The only strategy we are aware of is due to
Jochemsz and May [23], and is based on f ’s Newton polytope. A polynomial’s
Newton polytope is the convex hull of the exponent vectors of f ’s monomials.
E.g. if f (x, y) = ax2+bxy+cy2+d then the convex hull of its exponent vectors
(2, 0), (1, 1), (0, 2), (0, 0) forms a triangle in Z2.

In a nutshell, the tradeo↵ that has to be optimized in Coppersmith’s method
is that one has to introduce as many shifts as possible, while keeping the newly
introduced monomials as small as possible. This is realized in the Jochemsz-
May method by shifting with the points in the interior of the Newton polytope.

However, to obtain optimal bounds one also has to shift in the direction of
smaller unknown. E.g. let X,Y be upper bounds for the root x0, y0 of a polyno-
mial f (x, y). If X ⌧ Y then it is beneficial to additional shift in x-direction.

This optimization is by now a quite handcrafted process. Can we derive an
optimal algorithm that on input of a polynomial including (parameterized) up-
per bounds on the desired root outputs an optimal collection of shifts together
with the resulting maximized root bound parameter(s)?

The ingenuity of LLL reduction: Shift selection, practically. From a practi-
cal perspective, the optimal selection of polynomials can be delegated to lattice
reduction [34]. To this end, we use as many shifts as possible, and look which
vectors are chosen by LLL reduction as a linear combination of the shortest
vectors. These vectors usually form a proper sub-lattice that might admit a
better root bound.

There are many examples in the literature, where authors reported that ex-
perimentally they were able to find larger roots than were predicted by theory.
Usually, such a behaviour is explained by a sub-lattice structure. As an exam-
ple, in the Boneh-Durfee attack on small secret d one may find experimentally
via LLL reduction within the original lattice basis that led to the N0.284 bound
the sub-lattice that admits the N0.292 bound.

While it is nice that LLL automatically optimizes the shift selection, it also
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leads to some open questions. In order to find better root bounds (asymptoti-
cally), we have to find an optimal shift selection (asymptotically). How do we
derive an optimal asymptotic shift selection for arbitrary parameter m in the
Coppersmith method, from some optimized shift selection for fixed m? Even
if we are capable of finding an optimal asymptotic shift selection, how do we
analyze the resulting root bound? The standard approach only handles asymp-
totic determinant calculation for triangular lattice bases, but in general we do
not have triangularity (see [10]).

Use of Unraveled Linearization. Sometimes we know additional relations
involving the desired root. E.g. in the analysis of Boneh-Durfee attack (Sec-
tion 1.4.2) we used a polynomial f (u, x), where u = 1 � xy was related to x.
Using this relation improved the root bound, we called this technique Unrav-
eled Linearization.

At the moment, we are not aware of any general strategy that exploits the
power of Unraveled Linearization in a systematic way.

Coppersmith’s Method: Modular or Integer? Usually, we derive a polyno-
mial equation (system) that we somehow artifically transform into a modular
polynomial. As an example, take the system of equations from Equation (1.9)
that led to the integer equation from Equation (1.10). For our analysis, we
looked for a polynomial root of Equation (1.10) modulo e2, but we could as
well have worked modulo e, or modulo N.

Equation (1.10) is an especially interesting example, since all unknowns are
linked. If we work modulo e2, then the unknown dpdq vanishes, but dp, dq still
appear in the unknown coe�cient (kdp + `dq) of e. So untuitively, by work-
ing modulo e2 we lose information from Equation (1.10). As a consequence,
Jochemsz and May chose to work with Coppersmith’s method over the inte-
gers directly on the polynomial equation from Equation (1.10), without any
modular reduction.

Nevertheless, the currently best bound on CRT-exponents from Takayasu,
Lu and Peng (see Theorem 1.15) works with Coppersmith’s method modulo
e2. Can we also express the Takayasu-Lu-Peng attack [45] in terms of Cop-
persmith’s method over the integers? Does it lead to the same attack bound,
or does it even improve? More general, can we express all modular attacks as
integer attacks? A result of Blömer and May [6] gives some indication that
there are modular attacks that might not be convertable to integer attacks with
the same bound, even for the univariate modular case.
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1.5.2 Further Directions in Coppersmith-type Cryptanalysis

Optimality of RSA Small Secret Exponent Attacks. Without any doubt,
small secret RSA exponent attacks are the best studied cryptanalysis appli-
cation of Coppersmith’s method, and are considered the most exciting results
in this area. Yet, we do not have strong guarantees for the optimality of the
bounds.

While the N0.292 Boneh-Durfee bound consistently resisted serious e↵orts
for improvements within the last two decades [2, 21, 26, 42], a first posi-
tive CRT-bound of N0.073 (Theorem 1.14) was derived in 2007, and further
improved in 2017 to N0.122 (Theorem 1.15). Since the interaction of Equa-
tion (1.9) and Equation (1.10) is much more involved than for the simple RSA
key equation ed = 1 mod �(N), the optimality of the N0.122-bound is much
harder to study. Takayasu, Lu, Peng [45] experimentally reported that they
found sublattices that admit practically better bounds than theoretically pre-
dicted. However, whether this also leads to better asymptotic bounds remains
an open problem.

If we do not develop methods to directly prove the optimality of an at-
tack, including the optimality of polynomial selection and shift selection, then
one might be at least able to link attacks. E.g. can we derive the Boneh-
Durfee bound as a special case of the Takayasu-Lu-Peng attack for the setting
dp = dq = d? This would give us some more confidence in the optimality of
Takayasu-Lu-Peng.

Systems of Polynomial Equations. Even for a single polynomial we do not
yet fully understand how to optimize Coppersmith’s method. The situation
becomes much more challenging when we move to systems of polynomials.
However, information-theoretically speaking polynomial systems also provide
more power to an attacker.

We take as an example (yet again) the RSA secret exponent attack. Although
we do not know how to improve the N0.292 bound, it was already argued in the
original work of Boneh and Durfee [10] that we cannot beat the N0.5 bound,
since beyond this bound we expect exponentially many roots. Thus, with single
polynomials we usually can only find roots within a polynomial fraction of the
modulus.

Another example are the RSA Stereotyped Messages from Section 1.3.1,
where we recover in polynomial time an unknown 1

e -fraction of the messages.
The situation changes if we move to polynomial equation systems. From the
results for univariate polynomial systems in Ritzenhofen, May [32], we derived
in Theorem 1.8 a result that basically states that every RSA equation with
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public exponent ei yields a 1
ei

-fraction of the message, and these fractions add
up! Thus, if we have su�ciently many equations, we can fully recover the
whole message in polynomial time, not just a fraction of the message.

A natural example, where an arbitrary number of polynomial equations ap-
pear are Pseudo Random Number generators. In 2009, Hermann and May [20]
looked at power generators of the form si = s3

i�1 mod N and showed that these
generators can successfully be attacked if one outputs a (1 � 1

e )-fraction of
all log N bits in each iteration. This implies that the Blum-Blum-Shub genera-
tor [7] with e = 2 should only output significantly less than half of its bits per
iteration.

In 2001, Boneh, Halevi and Howgrave-Graham [11] constructed the so-
called Inverse Congruential Pseudo Random Number generator with security
based on the Modular Inversion Hidden Number Problem (MIHNP). In the
MIHNP one obtains samples of the form

(ti,MSB�(↵ + ti)�1 mod p)

for some random ti 2 Zp, where MSB� reveals the � most significant bits. The
goal in MIHNP is to recover the hidden number ↵ 2 Zp.

In 2019, Xu, Sarkar, Lu, Wang and Pan [47] showed the really impressive
result that for any constant fraction 1

d of output bits per iteration, given nd

MIHNP samples one can solve MIHNP in polynomial time.

Theorem 1.16 (Xu, Sarkar, Lu, Wang, Pan [47]) The Modular Inversion Hid-
den Number Problem can be solved for any constant fraction �

log p in polyno-
mial time.

Notice that this result has a completely new quality from a cryptanalytic per-
spective. While other cryptanalysis results using Coppersmith’s method work
in polynomial time only if especially small parameters are chosen, or if some
side-channel information reveals parts of the secret, the result of Xu et al. com-
pletely breaks MIHNP for any parameter setting. Before [47], it was conjec-
tured in [11] that MIHNP is hard whenever one outputs less than a �

log p =
1
3 -

fraction of the bits, a quite typical result using Coppersmith’s method.
We strongly believe that a careful understanding of Coppersmith’s method

applied to systems of polynomial equations might lead to similar ground-
breaking cryptanalysis results in future.
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