
The Power of Few Qubits and Collisions –
Subset Sum below Grover’s Bound

Alexander Helm? and Alexander May??

Ruhr-University Bochum, Germany
alexander.helm@rub.de, alex.may@rub.de

Abstract. Let a1, . . . an, t be a solvable subset sum instance, i.e. there
exists a subset of the ai that sums to t. Such a subset can be found with
Grover search in time 2n2 , the square root of the search space, using only
O(n) qubits. The only quantum algorithms that beat Grover’s square root
bound – such as the Left-Right-Split algorithm of Brassard, Hoyer, Tapp
– either use an exponential amount of qubits or an exponential amount
of expensive classical memory with quantum random access (QRAM).
We propose the first subset sum quantum algorithms that breaks the
square root Grover bound with linear many qubits and without QRAM.
Building on the representation technique and the quantum collision
finding algorithm from Chailloux, Naya-Plasencia and Schrottenloher
(CNS), we obtain a quantum algorithm with time 20.48n.
Using the Schroeppel-Shamir list construction technique, we further
improve downto run time 20.43n. The price that we have to pay for
beating the square root bound is that as opposed to Grover search
our algorithms require classical memory, but no QRAM, i.e. we get a
time/memory/qubit tradeoff. Thus, our algorithms have to be compared
to purely classical time/memory subset sum trade-offs such as those of
Howgrave-Graham and Joux. Our quantum algorithms improve on these
purely classical algorithms for all memory complexities M < 20.2n. As
an example, for memory 20.1n we obtain run time 20.47n as opposed to
20.63n for the best classical algorithm.

Keywords: Quantum Algorithms · Amplitude Amplification · Repre-
sentation Technique · Subset Sum · Collision Finding

1 Introduction

Although there is remarkable progress in the development of quantum computing
devices, in the medium-term we will implement our quantum algorithms with
a very limited number of qubits. Thus, it is of great importance both from a
theoretical and practical perspective to develop algorithms that run with small
quantum memory consumption, say polynomial or even linear.

A prominent candidate for sharpening our algorithmic tools is the random
subset sum problem, which lies at the heart of many post-quantum hardness
? Founded by NRW Research Training Group SecHuman.
?? Funded by DFG under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

assumptions such as SIS [Reg09]. Random subset sum instances consist of ran-
domly chosen a1, . . . , an ∈ Z2n , and a t that is the sum of a subset of ai’s modulo
2n.

Classically, random subset sum instances can be solved with polynomial
memory using collision finding and the representation technique [HGJ10] in
time 20.65n [BCJ11,EM19], and without memory restrictions in time and space
20.29n [BCJ11]. There exist various time/memory tradeoffs in between [HGJ10,
BCJ11,DDKS12,DEM19].

Quantumly, random subset sum can be solved with O(n) qubits in time
2n/2 using Grover search [Gro96]. The Left-Right-Split algorithm of Brassard,
Hoyer and Tapp [BHT98,BJLM13] solves subset sum in time 2n/3 using O(n)
many qubits, but also using 2n/3 classical memory with quantum random access
(QRAM). However, QRAM is believed to be expensive to realize in practice [GR04].
The currently best time bound of 20.23n for subset sum is achieved by using a
quantum random walk technique on the Becker-Coron-Joux algorithm [HM18].
However, this quantum walk algorithm also requires 20.23n many qubits, and
therefore is practically completely unattainable.

In this paper, we want to focus on subset sum algorithms with a linear amount
of qubits and without using QRAM. Our central research question is whether we
can beat the Grover square root bound 2n/2 in our setting. Notice that our setting
is motivated by the research direction initiated by Chailloux, Naya-Plasencia and
Schrottenloher [CNPS17]. The authors of [CNPS17] developed a hash collision
algorithm (called CNS) for hash functions {0, 1}∗ → {0, 1}n with run time 22/5n

using 21/5n classical memory (without QRAM) and O(n) qubits.

Our contribution. Since the best classical polynomial memory algorithms for
subset sum also use collision finding, we take CNS quantum collision finding as
our starting point. Combining CNS with the representation technique, we achieve
a first quantum subset sum algorithm with run time 20.48n and classical memory
20.24n. While this already breaks Grover’s bound using only O(n) many qubits,
our first algorithm is still a bit unsatisfactory. Namely, there exist purely classical
subset sum algorithms that with the same memory 20.24n achieve run time only
20.39n, without using any qubits. Thus, our first algorithm does not improve on
the known classical subset sum landscape.

Based on our first CNS adaption, we develop a second subset sum quantum
algorithm using Schroeppel-Shamir list construction [SS81]. With O(n) qubits,
our new construction achieves a time/memory tradeoff with

time T = 20.5n

M0.25 for any classical memory M ≤ 20.28n .

The resulting tradeoff line is depicted in Figure 1 as 2nd algorithm. Notice that
for maximal memory 20.28n we go downto 20.43n. As desired, our algorithm
achieves Grover complexity 2n/2 when we use no memory. Moreover for any
additional memory, we go below the Grover bound, see the red area in Figure 1.
In comparison to purely classical time-memory tradeoffs, we improve for any

2

memoryM ≤ 2n/5, see the shaded area in Figure 1. Thus, our relatively moderate
O(n) qubit memory provides speedups in a relatively large parameter space.

0 0.1n 0.2n 0.3n

0.4n

0.5n

0.6n

0.7n

1st algorithm

2nd algorithm

Classical trade-offs

2nd algorithm opt

log(M)

lo
g
(T

)

Fig. 1. Comparison of our results and the previous best classical trade-offs for subset
sum.

We further optimize our second algorithm, resulting in the slightly improved
convex curve denoted in Figure 1 by 2nd algorithm opt.

Our paper is organized as follows. In Section 2 we recall the CNS quantum
collision finding algorithm [CNPS17]. We develop our first subset sum algorithm
based on collision finding in Section 3. The second subset sum algorithm, that
achieves a linear time-memory tradeoff, is described in Section 4. In Section 4.1
we further optimize our second quantum subset sum algorithm.

2 Quantum Collision Finding

Let us briefly define some preliminaries and recall the CNS collision finding
algorithm [CNPS17].

We consider random subset sum instances defined as follows.

Definition 1 (Random Subset Sum). Let a be chosen uniformly at random
from (Z2n)n. For a random e ∈ {0, 1}n with Hamming weight wt(e) = n

2 we
define t = 〈a, e〉 =

∑n
i=1 aiei mod 2n. Then (a, t) ∈ (Z2n)n+1 is called a random

subset sum instance and any e′ ∈ {0, 1}n with 〈a, e′〉 = t is called a solution.

By Definition 1, every random subset sum instance has at least one solution
and with high probability at most poly(n) many solutions. For ease of nota-
tion we assume, that we have a unique solution e, which is the worst-case for
our algorithms. Any (x1, . . . ,xk) ∈ {−1, 0, 1}n with e =

∑k
i=1 xi is called a

representation of e.

3

By H(·) we denote the binary entropy function H(α) := −α logα − (1 −
α) log(1 − α) for α ∈ [0, 1], where 0 · log 0 := 0. We use Stirling’s formula to
approximate binomial coefficients by the entropy function, as(

n

m

)
= Θ̃

(
2H(mn)n

)
,

where the soft-Oh notion suppresses polynomial factors. We also round upwards
for ease of notation, e.g. we have n2n/3 = Õ(2n/3) ≤ 20.34n for sufficiently large
n.

Let A be an algorithm that implements f : Fn2 → Fm2 within runtime tf . Then
the quantum unitary Of on n+m and additional ancilla qubits defined as

Of (|x〉 |y〉) := |x〉 |y⊕ f(x)〉

can be implemented in runtime Tf = O(tf).

Set-Membership Oracle [CNPS17]: Let |φ〉 =
∑
i |xi〉 be a quantum super-

position, where each xi ∈ Fn2 has non-zero amplitude. Let L ⊆ Fn2 define a list.
Notice that by definition, L does not contain an element twice.

We want to know which of the vectors xi of |φ〉 are in L. To this end, define
the characteristic function

fL : Fn2 → F2, x 7→
{

1 if x ∈ L
0 else

.

Then the quantum set-membership oracle for L with operator

OfL(|φ〉 |0〉) :=
∑
i

|xi〉 |fL(xi)〉 (1)

can be computed in time TfL = O(n · |L|) with 2n+ 1 qubits.

Amplitude Amplification [BHMT02]: Let A be a quantum algorithm that
works with no measurements and produces a uniformly distributed superposition
|φ〉 =

∑
x∈X |x〉 for some set X ⊆ Fn2 in runtime TA. Let f : Fn2 → F2 be a

function with quantum unitary Of on n+ 1 and additional ancilla qubits that
has runtime Tf .

Let us define the set Xf := {x ∈ X | f(x) = 1}. Thus a random x ∈ X
evaluates to f(x) = 1 with probability p = |Xf |

|X | . Then there exists a quantum
algorithm, called amplitude amplification, that outputs an element x ∈ X with
f(x) = 1 by sending O(

√
p−1) many queries to A,A−1, Of and O−1

f and finally
measures.
We call A the setup and f the oracle function of amplitude amplification and set
TSetup = TA. The total runtime of amplitude amplification is given by

T = Õ
(

(TSetup + Tf) ·
√
p−1
)
. (2)

4

Amplitude amplification is a generalization of Grover search [Gro96]. Notice that
in the Grover setting we have X = Fn2 and A consists of a Hadamard operation
on each qubit, which can be done efficiently in time TSetup = O(1).

Remark 1. For the setup A we may use Grover search without final measurement.
If we use as Grover oracle the characteristic function g(x) = 1 ⇔ x ∈ X ⊆ Fn2
of X , we achieve the desired uniform superposition |φ〉 =

∑
x∈X |x〉. A random

x ∈ Fn2 evaluates to g(x) = 1 with probability p = |X |
|Fn2 |

. This implies TSetup =

Õ
(
Tg ·

√
p−1
)
.

CNS Quantum Collision Finding [CNPS17]. Let us slightly adapt CNS
quantum collision finding to our needs. Instead of finding a collision for a random
function h : Fn2 → Fn2 we use two random functions hi : Si → Fn2 for i = 1, 2 with
arbitrary domains S1, S2 satisfying |S1| ≤ 2n. We denote the set of collisions
between h1 and h2 by

C = {(xc,xq) ∈ S1 × S2 | h1(xc) = h2(xq)} with |C| = R .

Let (xc,xq) ∈ C. We call xc the classical half and xq the quantum half of a
collision, since we store xc classically and compute xq in quantum superposition.

Correctness. The CNS algorithm (see Algorithm 0) finds a collision (xc,xq) ∈ C
with only O(n) qubits in a two step process, see also Figure 2. First one constructs
a classically stored list L that contains candidates for the classical half xc
of a collision. The second step is an amplitude amplification that quantumly
enumerates in superposition potential quantum halves xq of a collision. We find
matching halves by using the quantum set-membership oracle for L.

(xq , h2(xq))

L r r

.

...

..

(xc , h1(xc))
.

...

..

Fig. 2. Main idea of CNS quantum collision finding (Algorithm 0).

5

Algorithm 0: Quantum Collision Finding
Input : hi : Si → Fn2 for i = 1, 2
Output : (xc,xq) ∈ S1 × S2 with h1(xc) = h2(xq)
Parameters : Optimize r, `.
1. Let Shir := {x ∈ Si | hi(x) = 0 mod 2r} for i = 1, 2.

Construct, element-wise via Grover search, a sorted (by second entry) list

L = {(xc, h1(xc)) ∈ Sh1
r × Fn2 } with |L| = 2`.

2. Perform amplitude amplification with the following Setup and Oracle.

(i) Setup: Construct

|φr〉 := 1√
|Sh2
r |

∑
xq∈Sh2

r

|xq, h2(xq)〉 |0〉 .

(ii) Oracle: Set-Membership-Oracle Ofh
L

Ofh
L

(|φr〉) = 1√
|Sh2
r |

∑
xq∈Sh2

r

|xq, h2(xq)〉 |fhL(xq)〉 .

Amplitude amplification eventually outputs some |(xq, h2(xq))〉 |1〉.

3. For the quantum half xq search for the classic half xc ∈ L with
h1(xc) = h2(xq).

In more detail, we construct a sorted (by second entry) list

L = {(xc, h1(xc)) | h1(xc) = 0 mod 2r} ⊆ S1 × Fn2 ,

where each element of L is constructed via Grover search. Since we fix r bits in
L, on expectation |S1|

2r elements of S1 fulfill restriction h1(xc) = 0 mod 2r, and
h1(xc) can take at most 2n−r different values. Since elements in L are different
and |S1| ≤ 2n, we obtain the restriction

logL = ` ≤ min{log |S1| − r, n− r} = log |S1| − r .

Furthermore we want to guarantee that on expectation L contains at least one
element xc that can be completed to a collision (xc,xq). In other words, we need
an xc ∈ L such that there exists an xq with (xc,xq) ∈ C, |C| = R. A random
xc ∈ S1 can be completed to a collision with probability R

|S1| . Thus, L should
contain at least |S1|

R many elements, leading to the condition

log |S1| − logR ≤ ` ≤ log |S1| − r . (3)

From (3) we obtain

0 ≤ r ≤ logR . (4)

6

For amplitude amplification we define the oracle function

fhL(xq) :=
{

1 if ∃(xc, h1(xc)) ∈ L with h1(xc) = h2(xq)
0 else

.

Then the set-membership oracle for L, defined for a single xq, becomes

Ofh
L

(|xq, h2(xq)〉 |0〉) := |xq, h2(xq)〉 |fhL(xq)〉 .

Runtime. Let |L| = 2`. By the randomness of h1, every xc ∈ S1 satisfies the
restriction h1(xc) = 0 mod 2r with probability p = 2−r. Thus the runtime of the
first step is

T1 = Θ̃
(
|L| ·

√
p−1

)
= Θ̃

(
2` · 2 r2

)
. (5)

In the second step of Algorithm 0 we create a superposition over the set Sh2
r :=

{xq ∈ S2 | h2(xq) = 0 mod 2r}, as described in Remark 1. By the randomness
of h2, every xq ∈ S satisfies the restriction h2(xq) = 0 mod 2r with probability
p = 2−r. Hence the setup runtime of amplitude amplification is

TSetup = Õ
(√

p−1
)

= Õ
(
2 r2
)
.

As described before, the quantum set-membership oracle for L requires time

Tfh
L

= Õ(|L|) = Õ(2`) .

Recall that a random element xc ∈ S1 can be completed to a collision (xc,xq)
with probability R

|S1| . Notice that this probability is unchanged if we choose a
random xc ∈ Sh1

r as in Algorithm 0. Therefore, we expect in total |L| · R
|S1| many

collisions between L and the set Sh2
r constructed in superposition. Thus, every

xq ∈ Sh2
r evaluates to fhL(xq) = 1 with probability

p = |L|R
|Sh2
r ||S1|

= |L|R2r

|S1||S2|
.

Using (2), we obtain for the second step (amplitude amplification) runtime

T2 = Õ
((
TSetup + Tfh

L

)
·
√
p−1
)

= Õ
((

2 r2 + 2`
)
·

√
|S1||S2|
|L|R2r

)

= Õ
((

2− `2 + 2
`−r

2

) |S1|
1
2 |S2|

1
2

|R| 12

)
. (6)

Since L is sorted, the third step of Algorithm 0 runs in time O(`). In total, we
obtain runtime

T = Õ (max{T1, T2}) . (7)

7

3 Subset Sum via Quantum Collision Finding

Let e be a unique solution for a random subset sum instance from Definition 1. Let
(xc,xq) ∈ {−1, 0, 1}n be a representation of e, i.e. e = xc + xq. Then 〈a, e〉 = t
which implies

〈a,xc〉 = t− 〈a,xq〉 . (8)

Let Si ⊆ {−1, 0, 1}n for i = 1, 2. We define two functions Σi : Si → Z2n , i = 1, 2,
with

Σ1 : x 7→ 〈a,x〉 and Σ2 : x 7→ t− 〈a,x〉 . (9)

Then every representation (xc,xq) of e is a collision of Σ1, Σ2, i.e. Σ1(xc) =
Σ2(xq). However, the converse is not true.

Let (xc,xq) ∈ {−1, 0, 1}2n be a collision of Σ1, Σ2. Then by construction
(xc,xq) fulfills Equation (8) and therefore satisfies the subset sum identity 〈a,xc+
xq〉 = t. However, in general we have xc + xq ∈ {−2, . . . , 2}n. Therefore, (xc,xq)
is a representation of the unique solution e iff xc + xq ∈ {0, 1}n.

Definition 2. Let (xc,xq) ∈ {0, 1,−1}2n be a collision of Σ1, Σ2. We call
(xc,xq) consistent iff xc + xq ∈ {0, 1}n.

Hence solving subset sum is equivalent to finding a consistent collision (xc,xq).
Moreover, the representations of e are exactly the consistent collisions of Σ1, Σ2.
Remark 2 follows.

Remark 2. The number R of representations of the solution e is equal to the
number of consistent collisions of Σ1, Σ2.

Remark 3. Notice that our hash function Σ1 is linear, i.e.

Σ1(x + y) = 〈a,x + y〉 = 〈a,x〉+ 〈a,y〉 = Σ1(x) +Σ1(y) .

We use this linearity for our improved algorithm in Section 4.

It remains to define good representations (xc,xq) of e. Let us start for didactical
reasons with a natural, unique representation of e that fails to beat Grover’s
square root bound.

Unique Representation. Let us define

S1 = {0, 1}n/2 × 0n/2 and S2 = 0n/2 × {0, 1}n/2 .

Then every e has a unique representation in S1 × S2. This implies that Σ1, Σ2
have a single collision, i.e. R = 1. Condition (3) implies

` ≥ log |S1| − logR = n

2 .

From equation (5) we have T1 = Ω(2n2), which implies that we cannot beat
Grover’s bound.

8

More Representations. Let 0 ≤ α ≤ 1/4. For i = 1, 2 we define

Si = {x ∈ {−1, 0, 1}n | x contains
(

1
4 + α

)
n many 1’s and αn many (−1)’s}

(10)
with size

|S1| = |S2| =
(

n

(1
4 + α)n, αn

)
.

By the choice of S1, S2 every 1-entry of the solution e can be represented as 1 + 0
and 0 + 1 and every 0-entry can be represented as 0 + 0, 1 + (−1) and (−1) + 1.
Thus the number of representations is

R =
(n

2
n
4

)(n
2

αn, αn

)
.

Quantum Collision Finding for Subset Sum. Let us adapt the CNS quan-
tum collision finding (Algorithm 0) to our subset sum setting, resulting in
Algorithm 1.

Algorithm 1: Quantum Subset Sum Collision Finding

Input : (a, t) ∈ (Z2n)n+1

Output : e ∈ {0, 1}n
Parameters : Optimize r, `, α as r = 0.4784n, ` = 0.2392n, α = 0.0175.
1. Let SΣir := {x ∈ Si | Σi(x) = 0 mod 2r} for i = 1, 2.

Construct, element-wise via Grover search, a sorted (by second entry) list

L = {(xc, Σ1(xc)) ∈ SΣ1
r × Z2n} with |L| = 2`.

2. Perform amplitude amplification with the following Setup and Oracle.
(i) Setup: Construct

|φr〉 := 1√
|SΣ2
r |

∑
xq∈SΣ2

r

|xq, Σ2(xq)〉 |0〉 .

(ii) Oracle: Set-Membership-Oracle OfΣ
L

OfΣ
L

(|φr〉) = 1√
|SΣ2
r |

∑
xq∈SΣ2

r

|xq, Σ2(xq)〉 |fΣL (xq)〉 .

Amplitude amplification eventually outputs some |(xq, Σ2(xq))〉 |1〉.

3. For the quantum half xq search for the classic half xc ∈ L with
Σ1(xc) = Σ2(xq) and xc + xq ∈ {0, 1}n.

9

We instantiate the hash functions by Σ1, Σ2 from equation (9), where S1, S2
are defined via (10).

In addition, we have to slightly modify the quantum set-membership oracle,
because we have to check for consistency of collisions (Definition 2). Let us define
the oracle function

fΣL (xq) :=
{

1 if ∃(xc, Σ1(xc)) ∈ L with Σ1(xc) = Σ2(xq) ∧ xc + xq ∈ {0, 1}n

0 else
.

Then our quantum set-membership oracle for L, defined for a single xq, becomes

OfΣ
L

(|xq, Σ2(xq)〉 |0〉) := |xq, Σ2(xq)〉 |fΣL (xq)〉 . (11)

The set-membership oracle can be realized in time TfΣ
L

= Õ(|L|).

Theorem 1. Algorithm 1 solves random subset sum instances (a, t) ∈ (Z2n)n+1

in expected time T = 20.4785n using O(n) qubits and memory M = 20.2392n.

Proof. Our parameter choice α = 0.0175 ≤ 1
4 determines the values of |S1|, |S2|

and R as

|S1| = |S2| =
(

n

(1
4 + α)n, αn

)
= Õ(20.9569n) ,

R =
(n

2
n
4

)(n
2

αn, αn

)
= Õ(20.7177n) .

Moreover, we easily check that our optimized parameter choice α = 0.0175,
r = 0.4784n and ` = 0.2392n fulfills restrictions (3) and (4):

log |S1| − logR = 0.2392n ≤ ` ≤ 0.4785n = log |S1| − r ,

0 ≤ r ≤ 0.7177n = logR .

Using equations (5) and (6), we obtain runtimes

T1 = O
(
2` · 2 r2

)
= Õ(20.4784n) ,

T2 = Õ
(
|S1|

1
2 |S2|

1
2

|R| 12
2− `2 + |S1|

1
2 |S2|

1
2

|R| 12
2
`−r

2

)
= Õ(20.47845n + 20.47845n) .

Thus, by equation (7) Algorithm 1 has total runtime

T = Õ (max{T1, T2}) = Õ(20.47845n) ≤ 20.4785n .

The memory complexity is determined by the size of L as

M = Õ(|L|) = Õ(2`) = Õ(20.2392n) ≤ 20.2392n .

The application of Grover search and amplitude amplification both require only
O(n) many qubits. ut

While Theorem 1 beats Grover’s bound using only O(n) qubits and no QRAM,
it does not improve over purely classical time/memory tradeoffs, see Figure 1.

10

4 Using a Classical Algorithm for List Construction

While Algorithm 1 is a direct adaptation of CNS quantum collision finding, it
ignores special properties of the subset sum setting. E.g. in step 1 of Algorithm 1
we are building a classical list L, where r bits of the hash function evaluation
Σ1(x) are fixed to zero. Each list element is constructed one by one using Grover
search, resulting in total runtime |L| · 2r/2 for step 1.

However, quantum algorithms like Grover Search are not optimal in finding
many solutions to a problem, and Grover search does not take advantage of
the linearity of hash function Σ1 (see Remark 3). We improve the step 1 list
construction by using the classical Schroeppel-Shamir algorithm [SS81]. We also
tried other more advanced classical list constructions for L such as BCJ [BCJ11],
but could not further improve over Schroeppel-Shamir.

To make optimal use of the representation technique, we also have to redefine
our search spaces.

Tunable Representations. Let 0 ≤ c ≤ 1. We define the following sets

T (c) :=
{

x ∈ {−1, 0, 1}cn
∣∣∣∣ x contains (1/4 + α) cn many 1’s

and αcn many (−1)’s

}
,

B(c) :=
{

x ∈ {0, 1}cn
∣∣∣∣ x contains 1

2cn many 1’s
}
.

Let 0 ≤ c1 ≤ 1. We set our search spaces as

S1 = T (c1)× 0(1−c1)n ,

S2 = T (c1)×B(1− c1) .

Therefore, we obtain in S1, S2 an overlapping part of length c1n, and an additional
length (1 − c1)n search space for the quantum part, see also Figure 3. In the
additional search space xq has relative weight 1/2. In the overlapping part both
xc,xq have relatively (to the length c1n) (1/4 + α) many 1-entries and α many
(−1)-entries.

1/4+α ,α

0

1/2

1/4+α ,α

1c1n

xc

xq

Fig. 3. Visualization of search spaces S1, S2.

Thus S1 and S2 have sizes

|S1| =|T (c1)| =
(

c1n

(1
4 + α)c1n, αc1n

)
,

11

|S2| =|T (c1)| · |B(1− c1)| =
(

c1n

(1
4 + α)c1n, αc1n

)(
(1− c1)n

1
2 (1− c1)n

)
,

and the number of representations is

R =
(1

2c1n
1
4c1n

)(1
2c1n

αc1n, αc1n

)
.

Constructing L via Schroeppel-Shamir. Our hash functions Σ1, Σ2 from
(9) remain unchanged. We have to compute

L = {(xc, Σ1(xc)) ∈ S1 × Z2n | Σ1(xc) = 0 mod 2r} .

We expect that L has size |S1|
2r . By Definition 1 of our random subset sum

instances, it is not hard to show that by a Chernoff bound with overwhelming
probability |L| deviates from its expectation by at most a logarithmic factor.
Hence, in the following we set |L| = Θ̃(|S1|

2r).
L can be computed with the Schroeppel-Shamir algorithm in time

T1 = Õ
(

max
{
|S1|

1
2 , |L|

})
= Õ

(
max

{
|S1|

1
2 ,
|S1|
2r

})
(12)

using classical memory M = Õ(max
{
|S1|

1
4 , |S1|

2r

}
).

Our modifications result in Algorithm 2.

Theorem 2. Algorithm 2 solves random subset sum instances (a, t) ∈ (Z2n)n+1

by using only O(n) qubits in expected runtime

T = Õ
(

20.5n

M0.2532

)
for any classical memory M ≤ 20.2852n.

Proof. Our parameter choice α = 0.0042 ≤ 1
4 determines the values of |S1|, |S2|

and R as a function of 0 ≤ c1 ≤ 1 as

|S1| =
(

c1n

(1
4 + α)c1n, αc1n

)
= Õ(20.8556c1n) ,

|S2| =
(

(1− c1)n
1
2 (1− c1)n

)(
c1n

(1
4 + α)c1n, αc1n

)
= Õ(2(1−0.1444c1)n) ,

R =
(1

2c1n
1
4c1n

)(1
2c1n

αc1n, αc1n

)
= Õ(20.5704c1n) .

From equation (12) and r = logR, Schroeppel-Shamir runs in time

T1 = Õ
(

max
{
|S1|

1
2 ,
|S1|
2r

})
≤ max

{
20.4278c1n, 20.2852c1n

}
= 20.4278c1n ,

12

Algorithm 2: Quantum Subset Sum Collision Finding II

Input : (a, t) ∈ (Z2n)n+1

Output : e ∈ {0, 1}n
Parameters : Optimize r, α as r = logR, α = 0.0042 and 0 ≤ c1 ≤ 1.
1. Let SΣir := {x ∈ Si | Σi(x) = 0 mod 2r} for i = 1, 2.

Construct, via Schroeppel-Shamir algorithm, a sorted (by second entry) list

L = {(xc, Σ1(xc)) ∈ SΣ1
r × Z2n} with |L| = 2`.

2. Perform amplitude amplification with the following Setup and Oracle.
(i) Setup: Construct

|φr〉 := 1√
|SΣ2
r |

∑
xq∈SΣ2

r

|xq, Σ2(xq)〉 |0〉 .

(ii) Oracle: Set-Membership-Oracle OfΣ
L

OfΣ
L

(|φr〉) = 1√
|SΣ2
r |

∑
xq∈SΣ2

r

|xq, Σ2(xq)〉 |fΣL (xq)〉 .

Amplitude amplification eventually outputs some |(xq, Σ2(xq))〉 |1〉.

3. For the quantum half xq search for the classic half xc ∈ L with
Σ1(xc) = Σ2(xq) and xc + xq ∈ {0, 1}n.

using classical memory

M = Õ
(

max
{
|S1|

1
4 ,
|S1|
2r

})
≤ max

{
20.2139c1n, 20.2852c1n

}
= 20.2852c1n. (13)

Algorithm 2’s amplitude amplification operates on O(n) qubits without classical
memory.

Using equation (6) and ` = log |S1| − r, amplitude amplification runs in
expected time

T2 = Õ
((

2− `2 + 2
`−r

2

) |S1|
1
2 |S2|

1
2

|R| 12

)
= Õ

(
|S2|

1
2 + |S1||S2|

1
2

R
3
2

)
= Õ

(
2(0.5−0.0722c1)n + 2(0.5−0.0722c1)n

)
= Õ

(
2(0.5−0.0722c1)n

)
.

Thus by (7) the total expected runtime is

T = Õ (max {T1, T2}) = Õ
(

max
{

20.4278c1n, 2(0.5−0.0722c1)n
})

= Õ
(

2(0.5−0.0722c1)n
)
.

13

Using 2−c1n ≤M− 1
0.2852 from Equation (13), we achieve the desired trade-off

T = Õ
(

20.5n

M0.2532

)
for M ≤ 20.2852n .

ut

Theorem 2 provides a time-memory-tradeoff between runtime and classical
memory while using only O(n) qubits. Note that any classical memory consump-
tion helps us to beat Grover’s square root bound. We compare to purely classical
time/memory tradeoffs in Figure 4. Notice that our quantum algorithm beats
any classical algorithm in the memory regime M ≤ 2n/5.

0 0.1n 0.2n 0.3n

0.4n

0.5n

0.6n

0.7n

log(M)

lo
g
(T

)

Section 4.1
Theorem 2
[DEM19]
[HGJ10]
[DDKS12]
[EM19]

Fig. 4. Comparison of our small qubit algorithm with purely classical time/memory
tradeoffs.

4.1 Optimization of Algorithm 2

We further improve on the analysis of Algorithm 2 by elaborating on the repre-
sentations, the algorithm itself remains unchanged.

More Tunable Representations. Let 0 ≤ z ≤ 1/2 and c, d ∈ [0, 1] with
c+ d ≥ 1. We define the following sets

T (c, d, z) :=
{

x ∈ {−1, 0, 1}(c+d−1)n
∣∣∣∣x contains (z + α) (c+ d− 1)n many 1’s

and α(c+ d− 1)n many (−1)’s

}
,

B(c) =
{

x ∈ {0, 1}cn
∣∣∣∣x contains 1

2cn many 1’s
}
.

14

We set our search spaces as

S1 = B(1− c2)× T (c1, c2, z)× 0(1−c1)n ,

S2 = 0(1−c2)n × T (c1, c2,
1
2 − z)×B(1− c1) .

In Algorithm 2 the parameter 0 ≤ z ≤ 1/2 controls the relative weight in the

0

1/20

1/2

1/2

z+α ,α

− +α α

1

c2n

xq

c1n

xc

Fig. 5. Visualization of search spaces S1, S2.

overlapping part, see Figure 5. The sizes of the search spaces are

|S1| = |B(1− c2)| · |T (c1, c2, z)|

=
(

(1− c2)n
1
2 (1− c2)n

)(
(c1 + c2 − 1)n

(z + α)(c1 + c2 − 1)n, α(c1 + c2 − 1)n

)
,

|S2| = |B(1− c1)| · |T (c1, c2,
1
2 − z)|

=
(

(1− c1)n
1
2 (1− c1)n

)(
(c1 + c2 − 1)n

(1
2 − z + α)(c1 + c2 − 1)n, α(c1 + c2 − 1)n

)
,

with the number of representations

R =
(1

2 (c1 + c2 − 1)n
z(c1 + c2 − 1)n

)(1
2 (c1 + c2 − 1)n

α(c1 + c2 − 1)n, α(c1 + c2 − 1)n

)
.

Optimization of c1, c2, α and z yields a slight improvement over Theorem 2, as
illustrated in Table 1 and Figure 4.

log2(M)/n 0.00 0.05 0.10 0.15 0.20 0.25 0.285
Optimization log2(T)/n 0.500 0.483 0.469 0.456 0.446 0.436 0.428
Theorem 2 0.500 0.487 0.475 0.462 0.449 0.437 0.428

Table 1. Results of optimization.

15

References

BCJ11. Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic
algorithms for hard knapsacks. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 364–385.
Springer, 2011.

BHMT02. Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum
amplitude amplification and estimation. Contemporary Mathematics, 305:53–
74, 2002.

BHT98. Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of
hash and claw-free functions. In Latin American Symposium on Theoretical
Informatics, pages 163–169. Springer, 1998.

BJLM13. Daniel J Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer.
Quantum algorithms for the subset-sum problem. In International Workshop
on Post-Quantum Cryptography, pages 16–33. Springer, 2013.

CNPS17. André Chailloux, María Naya-Plasencia, and André Schrottenloher. An
efficient quantum collision search algorithm and implications on symmetric
cryptography. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 211–240. Springer, 2017.

DDKS12. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient
dissection of composite problems, with applications to cryptanalysis, knap-
sacks, and combinatorial search problems. In Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings, pages 719–740, 2012.

DEM19. Claire Delaplace, Andre Esser, and Alexander May. Improved low-memory
subset sum and LPN algorithms via multiple collisions. IACR Cryptology
ePrint Archive, 2019:804, 2019.

EM19. Andre Esser and Alexander May. Low weight discrete logarithms and subset
sum in 20.65n with polynomial memory. Cryptology ePrint Archive, Report
2019/931, 2019. https://eprint.iacr.org/2019/931.

GR04. Lov Grover and Terry Rudolph. How significant are the known collision
and element distinctness quantum algorithms. Quantum Info. Comput.,
4(3):201–206, May 2004.

Gro96. Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219. ACM, 1996.

HGJ10. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for
hard knapsacks. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 235–256. Springer, 2010.

HM18. Alexander Helm and Alexander May. Subset sum quantumly in 1.17ˆn.
In 13th Conference on the Theory of Quantum Computation, Communica-
tion and Cryptography (TQC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):34, 2009.

SS81. Richard Schroeppel and Adi Shamir. A t=o(2ˆn/2), s=o(2ˆn/4) algorithm
for certain np-complete problems. SIAM journal on Computing, 10(3):456–
464, 1981.

16

https://eprint.iacr.org/2019/931

	The Power of Few Qubits and Collisions – Subset Sum below Grover's Bound

