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Abstract10

We study the quantum complexity of solving the subset sum problem, where the elements11

a1, . . . , an are randomly chosen from Z2`(n) and t =
∑

i ai ∈ Z2`(n) is a sum of n/2 elements.12

In 2013, Bernstein, Jeffery, Lange and Meurer constructed a quantum subset sum algorithm with13

heuristic time complexity 20.241n, by enhancing the classical subset sum algorithm of Howgrave-14

Graham and Joux with a quantum random walk technique. We improve on this by defining a15

quantum random walk for the classical subset sum algorithm of Becker, Coron and Joux. The16

new algorithm only needs heuristic running time and memory 20.226n, for almost all random17

subset sum instances.18
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1 Introduction23

The subset sum (aka knapsack) problem is one of the most famous NP-hard problems. Due24

to its simpleness, it inspired many cryptographers to build cryptographic systems based25

on its hardness. In the 80s, many attempts for building secure subset sum based schemes26

failed [21], often because these schemes were built on subset sum instances (a1, . . . , an, t)27

that turned out to be solvable efficiently.28

Let a1, . . . , an be randomly chosen from Z2`(n) , I ⊂ {1, . . . , n} and t ≡
∑
i∈I ai mod 2`(n).29

The quotient n/`(n) is usually called the density of a subset sum instance. In the low30

density case where `(n)� n, I is with high probability (over the randomness of the instance)31

a unique solution of the subset sum problem. Since unique solutions are often desirable32

for cryptographic constructions, most initial construction used low-density subset sums.33

However, Brickell [8] and Lagarias, Odlyzko [17] showed that low-density subset sums with34

`(n) > 1.55n can be transformed into a lattice shortest vector problem that can be solved in35

practice in small dimension. This bound was later improved by Coster et al. [9] and Joux,36

Stern [15] to `(n) > 1.06n. Notice that this transformation does not rule out the hardness37

of subset sum in the low-density regime, since computing shortest vectors is in general also38

known to be NP-hard [2].39
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In the high-density regime with ` = O(logn) dynamic programming solves subset sum40

efficiently, see [11]. However, for the case `(n) ≈ n only exponential time algorithms are41

known. Impagliazzo and Naor showed constructions of cryptographic primitives in AC0 that42

can be proven as hard as solving random subset sums around density 1. Many efficient43

cryptographic constructions followed, see e.g. [18, 10] for some recent constructions – including44

a CCA-secure subset sum based encryption scheme – and further references.45

Classical complexity of subset sum.46

Let us assume that ` = poly(n) such that arithmetic in Z2`(n) can be performed in time47

poly(n). Throughout this paper, for ease of notation we omit polynomial factors in exponential48

running times or space consumptions.49

For solving subset sum with a = (a1, . . . , an), one can naively enumerate all e ∈ {0, 1}n50

and check whether 〈e,a〉 ≡ t mod 2`(n) in time 2n.51

Let a(1) = (a1, . . . , an/2) and a(2) = (an/2+1, . . . , an). In the Meet-in-the-Middle approach52

of Horowitz and Sahni [13], one enumerates all e(1), e(2) ∈ {0, 1}n/2 and checks for an identity53

〈e(1),a(1)〉 ≡ t − 〈e(2),a(2)〉 mod 2`(n). This improves the time complexity to 2n/2, albeit54

using also space 2n/2.55

Schroeppel and Shamir [22] later improved this to time 2n/2 with only space 2n/4. It56

remains an open problem, whether time complexity 2n/2 can be improved in the worst57

case [4]. However, when studying the complexity of random subset sum instances in the58

average case, the algorithm of Howgrave-Graham and Joux [14] runs in time 20.337n. This59

is achieved by representing e = e(1) + e(2) with e(1), e(2) ∈ {0, 1}n ambiguously, also called60

the representation technique. In 2011, Becker, Coron and Joux [5] showed that the choice61

e(1), e(2) ∈ {−1, 0, 1}n leads to even more representations, which in turn decreases the62

running time on average case instances to 20.291n, the best classical running time currently63

known.64

Quantum complexity of subset sum.65

In 2013, Bernstein, Jeffery, Lange and Meurer [6] constructed quantum subset sum algorithms,66

inspired by the classical algorithms above. Namely, Bernstein et al. showed that quantum67

algorithms for the naive and Meet-in-the-Middle approach achieve run time 2n/2 and 2n/3,68

respectively. Moreover, a first quantum version of Schroeppel-Shamir with Grover search [12]69

runs in time 23n/8 using only space 2n/8. A second quantum version of Schroeppel-Shamir70

using quantum walks [1, 3] achieves time 20.3n. Eventually, Bernstein, Jeffery, Lange and71

Meurer used the quantum walk framework of Magniez et al. [19] to achieve a quantum version72

of the Howgrave-Graham, Joux algorithm with time and space complexity 20.241n.73

Our result.74

Interestingly, Bernstein et al. did not provide a quantum version of the best classical75

algorithm – the BCJ-algorithm by Becker, Coron and Joux [5] – that already classically76

has some quite tedious analysis. We fill this gap and complete the complexity landscape77

quantumly, by defining an appropriate quantum walk for the BCJ-algorithm within the78

framework of Magniez et al. [19]. Our run time analysis relies on some unproven conjecture79

that we make explicit in Section 4. Under this conjecture, we show that all but a negligible80

fraction of instances of subset sum can be solved quantumly in time and space 20.226n,81

giving polynomial speedups over the best classical complexity 20.291n and the best quantum82

complexity 20.241n.83
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In a nutshell, our conjecture states that in the run-time analysis we can replace in a84

quantum walk an update with expected constant cost by an update with polynomially85

upper-bounded cost (that might stop), without significantly affecting the error probability86

and the structure of the random walk graph. A similar heuristic was already used in Kachigar,87

Tillich [16] for analyzing quantum decoding algorithms. While it might be legitimate to use88

an unproven non-standard conjecture to say something reasonable on the quantum complexity89

of problems in post-quantum cryptography, especially in the context of the present NIST90

standardization process, our conjecture is somewhat unsatisfactory from a theoretical point91

of view. We hope that our work encourages people to base this conjecture on more solid92

theoretical foundations.93

Apart from that our result holds for random subset sums with ` = poly(n), i.e. with94

polynomial density. However, our algorithm behaves worst for subset sum instances with95

unique solution, i.e. in the case `(n) ≥ n. In the high-density case `(n) < n, our analysis is96

non-optimal and might be subject to improvements.97

The complexity 20.226n is achieved for subset sum solutions t ≡
∑
i∈I ai mod 2`(n) with98

worst case |I| = n/2. We also analyze the complexity for |I| = βn with arbitrary β ∈ [0, 1].99

For instance for β = 0.2, our quantum-BCJ algorithm runs in time and space 20.175n.100

The paper is organized as follows. Section 2 defines some notation. In Section 3, we101

repeat the BCJ algorithm and its classical complexity analysis that we later adapt to the102

quantum case. In Section 4, we analyze the cost of a random walk on the search space defined103

by the BCJ algorithm and define an appropriate data structure. In Section 5, we put things104

together and analyze the complexity of the BCJ algorithm, enhanced by a quantum walk105

technique.106

2 Preliminaries107

Let D = {−1, 0, 1} be a digit set, and let α, β ∈ Q ∩ [0, 1] with 2α + β ≤ 1. We use108

the notation e ∈ Dn[α, β] to denote that e ∈ Dn has αn (−1)-entries, (α + β)n 1-entries109

and (1 − 2α − β)n 0-entries. Especially, e ∈ Dn[0, β] is a binary vector with βn 1-entries.110

Throughout the paper we ignore rounding issues and assume that αn and (α+ β)n take on111

integer values.112

We naturally extend the binomial coefficient notation
(
n
k

)
= n!

k!(n−k)! to a multinomial113

coefficient notation114 (
n

k1, . . . , kr

)
= n!
k1! . . . kr!(n− k1 − . . .− kr)!

.115

Let H (x) = −x · log2 (x)− (1− x) · log2 (1− x) denote the binary entropy function. From116

Stirling’s formula one easily derives117 (
αn

βn

)
≈ 2α·H( βα )n,118

where the ≈-notation suppresses polynomial factors.119

Analogous, let g(x, y) := −x · log2 (x)− y · log2 (y)− (1− x− y) · log2 (1− x− y). Then120 (
αn

βn, γn

)
≈ 2α·g(

β
α ,

γ
α )n.121

Let Z2`(n) be the ring of integers modulo 2`(n). For the n-dimensional vectors a =122

TQC 2018
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(a1, . . . , an) ∈ (Z2`(n))n, e = (e1, . . . , en) ∈ Dn[α, β] the inner product is denoted123

〈a, e〉 =
n∑
i=1

aiei mod 2`(n).124

We define a random weight-β (solvable) subset sum instance as follows.125

I Definition 1 (Random Subset Sum). Let a be chosen uniformly at random from (Z2`(n))n.126

For β ∈ [0, 1], choose a random e ∈ Dn[0, β] and compute t = 〈a, e〉 ∈ Z2`(n) . Then127

(a, t) ∈ (Z2`(n))n+1 is a random subset sum instance. For (a, t), any e′ ∈ {0, 1}n with128

〈a, e′〉 ≡ t mod 2`(n) is called a solution.129

3 Subset Sum Classically – The BCJ Algorithm130

Let D = {−1, 0, 1} and let (a, t) = (a1, . . . , an, t) ∈ (Z2`(n))n+1 be a subset sum instance131

with solution e ∈ Dn[0, 1
2 ]. That is 〈e,a〉 ≡ t mod 2`(n), where n/2 of the coefficients of e132

are 1 and n/2 coefficients are 0.133

Representations.134

The core idea of the Becker-Coron-Joux (BCJ) algorithm is to represent the solution e135

ambiguously as a sum136

e = e(1)
1 + e(2)

1 with e(1)
1 , e(2)

1 ∈ Dn[α1, 1/4].137

This means that we represent e ∈ Dn[0, 1/2] as a sum of vectors with α1n (−1)-entries,138

(1/4 + α1)n 1-entries and (3/4− 2α1)n 0-entries. We call (e(1)
1 , e(2)

1 ) a representation of e.139

Thus, every 1-coordinate ei of e can be represented as either 1 + 0 or 0 + 1 via the140

ith-coordinates of e(1)
1 , e(2)

1 . Since we have n/2 1-coordinates in e, we can fix among these141

n/4 0-coordinates and n/4 1-coordinates in e(1)
1 , determining the corresponding entries in142

e(1)
2 . This can be done in

(
n/2
n/4
)
ways.143

Analogously, the 0-coordinates in e can be represented as either (−1)+1, 1+(−1) or 0+0.144

Again, we can fix among these n/2 coordinates α1n (−1)-coordinates, α1n 1-coordinates and145

n/2− 2α1n 0-coordinates in e(1)
1 . This can be done in

(
n/2

α1n,α1n

)
ways.146

Thus, in total we represent our desired solution e in147

R1 =
(
n/2
n/4

)(
n/2

α1n, α1n

)
ways.148

However, notice that constructing a single representation of e is sufficient for solving subset149

sum. Thus, the main idea of the BCJ algorithm is to compute only a 1/R1-fraction of all150

representations such that on expectation a single representation survives.151

This is done by computing only those representations (e(1)
1 , e(2)

1 ) such that the partial152

sums153

〈e(1)
1 ,a〉 and t− 〈e(2)

1 ,a〉154

attain a fixed value modulo 2r1 , where r1 = blogR1c. This value can be chosen randomly,155

but for simplicity of notation we assume in the following that both partial sums are 0 modulo156

2r.157
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More precisely, we construct the lists158

L
(1)
1 = {(e(1)

1 , 〈e(1)
1 ,a〉) ∈ Dn[α1, 1/4]× Z2`(n) | 〈e(1)

1 ,a〉 ≡ 0 mod 2r1} and159

L
(2)
1 = {(e(2)

1 , 〈e(2)
1 ,a〉) ∈ Dn[α1, 1/4]× Z2`(n) | t− 〈e(2)

1 ,a〉 ≡ 0 mod 2r1}.160

Hence, L(1)
1 , L

(2)
1 have the same expected list length, which we denote shortly by161

E[|L1|] =
(

n
α1n,(1/4+α1)n

)
2r1

.162

Constructing the lists.163

L
(1)
1 , L

(2)
1 are constructed recursively, see also Fig. 1. Let us first explain the construction of164

L
(1)
1 . We represent e(1)

1 ∈ Dn[α1, 1/4] as165

e(1)
1 = e(1)

2 + e(2)
2 with e(1)

2 , e(2)
2 ∈ Dn[α2, 1/8], where α2 ≥ α1/2.166

By the same reasoning as before, the number of representations is167

R2 =
(
α1n

α1/2n

)(
(1/4 + α1)n

(1/8 + α1/2)n

)(
(3/4− 2α1)n

(α2 − α1/2)n, (α2 − α1/2)n

)
,168

where the three factors stand for the number of ways of representing (−1)-, 1- and 0-169

coordinates of e(1)
1 . Let r2 = blogR2c. We define170

L
(j)
2 = {(e(j)

2 , 〈e(j)
2 ,a〉) ∈ Dn[α2, 1/8]× Z2`(n) | 〈e(j)

2 ,a〉 ≡ 0 mod 2r2} for j = 1, 2, 3,171

L
(4)
2 = {(e(4)

2 , 〈e(4)
2 ,a〉) ∈ Dn[α2, 1/8]× Z2`(n) | t− 〈e(4)

2 ,a〉 ≡ 0 mod 2r2}.172

Thus, we obtain on level 2 of our search tree in Fig. 1 expected list sizes173

E[|L2|] =
(

n
α2n,(1/8+α2)n

)
2r2

.174

An analogous recursive construction of level-3 lists L(j)
3 from our level-2 lists yields175

E[|L3|] =
(

n
α3n,(1/16+α3)n

)
2r3

,176

where r3 = blogR3c with177

R3 =
(
α2n

α2/2n

)(
(1/8 + α2)n

(1/16 + α2/2)n

)(
(7/8− 2α2)n

(α3 − α2/2)n, (α3 − α2/2)n

)
.178

179

The level-3 lists are eventually constructed by a standard Meet-in-the-Middle approach180

from the following level-4 lists (where we omit the definition of L(15)
4 , L

(16)
4 that is analogous181

with t− 〈e(·)
4 ,a〉)182

L
(2j−1)
4 = {(e(2j−1)

4 , 〈e(2j−1)
4 ,a〉) ∈ Dn/2[α3/2, 1/32]× 0n/2 × Z2`(n)} and183

L
(2j)
4 = {(e(2j)

4 , 〈e(2j)
4 ,a〉) ∈ 0n/2 ×Dn/2[α3/2, 1/32]× Z2`(n)} for j = 1, . . . , 7184

of size185

|L4| =
(

n/2
(α3/2)n, (1/32 + α3/2)n

)
.186

TQC 2018
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Figure 1 Tree structure of the BCJ-Algorithm

Let us define indicator variables187

Xi,j = 〈e(2j−1)
i ,a〉 and X+

i,j = 〈e(2j)
i ,a〉 for i = 1, 2, 3, 4 and j = 1, . . . , 2i−1.188

By the randomness of a, we have Pr[Xi,j = c] = Pr[X+
i,j = c] = 1

2`(n) for all c ∈ Z2`(n) . Thus,189

all Xi,j , X+
i,j are uniformly distributed in Z2`(n) , and therefore also uniformly distributed190

modulo 2ri for any ri ≤ `(n). Unfortunately, for fixed i, j the pairXi,j , X
+
i,j is not independent.191

We assume in the following that this (mild) dependence does not affect the run time analysis.192

I Heuristic 1. For the BCJ runtime analysis, we can treat all pairs Xi,j , X
+
i,j as independent.193

Under Heuristic 1 it can easily be shown that for all but a negligible fraction of random194

subset sum instances the lists sizes are sharply concentrated around their expectation. More195

precisely, a standard Chernoff bound shows that for all but a negligible fraction of instances196

the list size of L(j)
i lies in the interval197

E(|Li|)− E(|Li|)1/2 ≤ |Li| ≤ E(|Li|) + E(|Li|)1/2 for i = 1, 2, 3. (1)198

In other words, for all but some pathological instances we have |Li| = O(E(|Li|).199

200

We give a description of the BCJ algorithm in Algorithm 1. Here we assume in more201

generality that a subset sum instance (a, t) has a solution e ∈ Dn[0, β]. As one would expect,202

Algorithm 1 achieves its worst-case complexity for β = 1
2 with a balanced number of zeros203
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and ones in e. However, one can also analyze the complexity for arbitrary β, as we will do204

for our quantum version of BCJ.205

For generalizing our description from before to arbitrary β, we have to simply replace206

e(j)
i ∈ Dn[αi, 1

2 2−i] by e(j)
i ∈ Dn[αi, β2−i].207

Algorithm 1: Becker-Coron-Joux (BCJ) algorithm

Input : (a, t) ∈ (Z2`(n))n+1, β ∈ [0, 1]
Output : e ∈ Dn[0, β]
Parameters : Optimize α1, α2, α3.
Construct all level-4 lists L(j)

4 for j = 1, . . . , 16.
for i = 3 down to 0 do

Compute L(j)
i from L

(2j−1)
i+1 , L(2j)

i+1 for j = 1, . . . , 2i.
end
if |L(1)

0 | > 0 then output an arbitrary element from L
(1)
0 .

By the discussion before, the final condition |L(1)
0 | > 0 in Algorithm 1 implies that we208

succeed in constructing a representation (e(1)
1 , e(2)

1 ) ∈ (Dn[α1, βn/2])2 of e ∈ Dn[0, β], where209

the e(j)
1 recursively admit representations (e(2j−1)

2 , e(2j−1)
2 ) ∈ (Dn[α2, βn/4])2), and so forth.210

Thus, one can eventually express211

e = e(1)
4 + e(2)

4 + . . .+ e(16)
4 .212

However, notice that we constructed all lists in such a way that on expectation at least one213

representation survives for every list L(j)
i from the for-loop of Algorithm 1. This implies that214

the BCJ algorithm succeeds in finding the desired solution e, and therefore the leaves of215

our search tree in Fig. 1 contain elements that sum up to e. The following theorem and its216

proof show how to optimize the parameters αi, i = 1, 2, 3 such that BCJ’s running time is217

minimized while still guaranteeing a solution.218

I Theorem 2 (BCJ 2011). Under Heuristic 1 Algorithm 1 solves all but a negligible fraction219

of random subset sum instances (a, t) ∈ (Z2`(n))n+1 (Definition 1) in time and memory220

20.291n.221

Proof. Numerical optimization yields the parameters222

α1 = 0.0267, α2 = 0.0302, α3 = 0.0180.223

This leads to224

R3 = 20.241n, R2 = 20.532n, R1 = 20.799n representations,225

which in turn yield expected list sizes226

|L4| = 20.266n, E(|L3|) = 20.2909n, E(|L2|) = 20.279n, E(|L1|) = 20.217n, E(|L0|) = 1.227

For i = 1, 2, 3 the level-i lists L(j)
i can be constructed in time 20.2909n by looking at all pairs228

in L(2j−1)
i−1 × L(2j)

i−1 . Under Heuristic 1, we conclude by Eq. (1) that for all but a negligible229

fraction of instance we have |Li| = O(E(|Li|) for i = 1, 2, 3. Thus, the total running time230

and memory complexity can be bounded by 20.291n.231

J232

TQC 2018
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4 From Trees to Random Walks to Quantum Walks233

In Section 3, we showed how the BCJ algorithm builds a search tree t whose root contains a234

solution e to the subset sum problem. More precisely, the analysis of the BCJ algorithm in235

the proof of Theorem 2 shows that the leaves of t contain a representation (e(1)
4 , . . . , e(16)

4 ) ∈236

L
(1)
4 × . . .× L

(16)
4 of e, i.e. e = e(1)

4 + . . .+ e(16)
4 .237

Idea of Random Walk.238

In a random walk, we no longer enumerate the lists L(j)
4 completely, but only a random subset239

U
(j)
4 ⊆ L

(j)
4 of some fixed size |U4| := |U (j)

4 |, that has to be optimized. We run on these240

projected leaves the original BCJ algorithm, but with parameters α1, α2, α3 that have to be241

optimized anew. On the one hand, a small |U4| yields small list sizes, which in turn speeds242

up the BCJ algorithm. On the other hand, a small |U4| reduces the probability that BCJ243

succeeds. Namely, BCJ outputs the desired solution e iff (e(1)
4 , . . . , e(16)

4 ) ∈ U (1)
4 × . . .×U (16)

4 ,244

which happens with probability245

ε =
(
|U4|
|L4|

)16
. (2)246

The graph G = (V,E) of our Random Walk.247

We define vertices V with labels U (1)
4 × . . . × U

(16)
4 . Each vertex v ∈ V contains the248

complete BCJ search tree with leaf lists defined by its label. Two vertices with labels249

` = U
(1)
4 × . . .× U (16)

4 and `′ = V
(1)

4 × . . .× V (16)
4 are adjacent iff their symmetric difference250

is |∆(`, `′)| = 1. I.e., we have U (j)
4 = V

(j)
4 for all j but one V (i)

4 6= V
(i)

4 for which U (i)
4 , V

(i)
4251

differ by only one element.252

I Definition 3 (Johnson graph). Given an N -size set L the Johnson graph J (N, r) is an253

undirected graph GJ = (VJ , EJ) with vertices labeled by all r-size subsets of L. An edge254

between two vertices v, v′ ∈ VJ with labels `, `′ exists iff |∆(`, `′)| = 1.255

In our case, we define N = |L4|, r = |U4| and for each of our 16 lists L(j)
4 its corresponding256

Johnson graph Jj(N, r). However, by our construction above we want that two vertices are257

adjacent iff they differ in only one element throughout all 16 lists.258

Let us therefore first define the Cartesian product of graphs. We will then show that our259

graph G = (V,E) is exactly the Cartesian product260

J16(N, r) := J1(N, r)× . . .× J16(N, r).261

I Definition 4. Let G1 = (V1, E1), G2 = (V2, E2) be undirected graphs. The Cartesian262

product G1 ×G2 = (V,E) is defined via263

V = V1 × V2 = {v1v2 | v1 ∈ V1, v2 ∈ V2} and264

E = {(u1u2, v1v2) | (u1 = v1 ∧ (u2, v2) ∈ E2) ∨ ((u1, v1) ∈ E1 ∧ u2 = v2)}265

Thus, in J1(n, r)× J2(n, r) the labels v1v2 are Cartesian products of the labels U (1)
4 , U

(2)
4 .266

An edge in J1(n, r)× J2(n, r) is set between two vertices with labels U (1)
4 ×U (2)

4 , V (1)
4 × V (2)

4267

iff U (1)
4 = V

(1)
4 and U (2)

4 , V (2)
4 differ by exactly one element or vice versa, as desired.268
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Mixing time.269

The mixing time of a random walk depends on its so-called spectral gap.270

I Definition 5 (Spectral gap). Let G be an undirected graph. Let λ1, λ2 be the eigenvalues271

with largest absolute value of the transition matrix of the random walk on G. Then the272

spectral gap of a random walk on G is defined as δ(G) := |λ1| − |λ2|.273

For Johnson graphs it is well-known that δ(J(N, r)) = N
r(N−r) = Ω( 1

r ). The following274

lemma shows that for our graph J16(N, r) we have as well275

δ(J16(N, r)) = Ω
(

1
r

)
= Ω

(
1
|U4|

)
. (3)276

I Lemma 6 (Kachigar, Tillich [16]). Let J (N, r) be a Johnson graph, and let Jm (N, r) :=277
m

×
i=1

J (n, r). Then δ (Jm) ≥ 1
mδ (J).278

Walking on G.279

We start our random walk on a random vertex v ∈ V , i.e. we choose random U
(j)
4 ⊆ L(j)

4 for280

j = 1, . . . , 16 and compute the corresponding BCJ tree tv on these sets. This computation of281

the starting vertex v defines the setup cost TS of our random walk.282

Let us quickly compute TS for the BCJ algorithm, neglecting all polynomial factors.283

The level-4 lists U (j)
4 can be computed and sorted with respect to the inner products284

〈e(j)
4 ,a〉 mod 2r3 in time |U4|. The level-3 lists contain all elements from their two level-4285

children lists that match on the inner products. Thus we expect E(|U3|) = |U4|2 /2r3 elements286

that match on their inner products. Analogous, we compute level-2 lists in expected time287

|U3|2/2r2−r3 . However, now we have to filter out all e(j)
2 that do not possess the correct288

weight distribution, i.e. the desired number of (−1)s, 0s, and 1s. Let us call any level-i e(j)
i289

consistent if e(j)
i has the correct weight distribution on level i. Let p3,2 denote the probability290

that a level-2 vector constructed as a sum of two level-3 vectors is consistent. From Section 3291

we have292

|L3|2

2r2−r3
· p3,2 = E(|L2|),293

which implies294

p3,2 :=
(

n
α2n,(1/8+α2)n

)(
n

α3n,(1/16+α3)n
)2 · 2

r2−r3 .295

Thus, after filtering for the correct weight distribution we obtain an expected level-2 list296

size of E(|U2|) = |U3|2/2r2−r3 · p3,2. Analogous, on level 1 we obtain expected list size297

E(|U1|) = |U2|2/2r1−r2 · p2,1 with298

p2,1 :=
(

n
α1n,(1/4+α1)n

)(
n

α2n,(1/8+α2)n
)2 · 2

r1−r2 .299

The level-0 list can be computed in expected time |U1|2/2n−r1 . In total we obtain300

E[TS ] = max
{
|U4|,

|U4|2

2r3
,
|U3|2

2r2−r3
,
|U2|2

2r1−r2
,
|U1|2

2n−r1

}
301
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Analogous to the reasoning in Section 3 (see Eq. 1), for all but a negligible fraction of random302

subset sum instances we have |Ui| = O (E(|Ui|)). Thus, for all but a negligible fraction of303

instances and neglecting constants we have304

TS = max
{
|U4|, |U4|2

2r3 , E(|U3|)2

2r2−r3 ,
E(|U2|)2

2r1−r2 ,
E(|U1|)2

2n−r1

}
(4)305

≤ max
{
|U4|, |U4|2

2r3 , |U4|4
2r2+r3 ,

|U4|8
2r1+r2+2r3 ,

|U4|16

2n+r1+2r2+4r3

}
:= T̃S . (5)306

If tv contains a non-empty root with subset-sum solution e, we denote v marked. Hence,307

we walk our graph G = J1(|L4|, |U4|) × . . . × J16(|L4|, |U4|) until we hit a marked vertex,308

which solves subset sum.309

The cost for checking whether a vertex v is marked is denoted checking cost TC . In310

our case checking can be done easily by looking at tv’s root. Thus, we obtain (neglecting311

polynomials)312

TC = 1. (6)313

Since any neighboring vertices v, v′ in G only differ by one element in some leaf U (j)
4 ,314

when walking from v to v′ we do not have to compute the whole tree tv′ anew, but instead315

we update tv to tv′ by changing the nodes on the path from list U (j)
4 to its root accordingly.316

The cost of this step is therefore called update cost TU . Our cost TU heavily depends on the317

way we internally represent tv. In the following, we define a data structure that allows for318

optimal update cost per operation.319

4.1 Data Structure for Updates320

Let us assume that we have a data structure that allows the three operations search, insertion321

and deletion in time logarithmic in the number of stored elements. In Bernstein et al. [?],322

it is e.g. suggested to use radix trees. Since our lists have exponential size and we ignore323

polynomials in the run time analysis, every operation has cost 1. This data structure also324

ensures the uniqueness of quantum states |U (1)
4 , . . . , U

(16)
4 〉, which in turn guarantees correct325

interference of quantum states with identical lists.326

Definition of data structure.327

Recall from Section 3, that BCJ level-4 lists are of the form L
(j)
4 = {(e(j)

4 , 〈e(j)
4 ,a〉)}. For our328

U
(j)
4 ⊂ L(j)

4 we store in our data structure the e(j)
4 and their inner products with a separately329

in330

E
(j)
4 = {e(j)

4 | e(j)
4 ∈ U (j)

4 } and S
(j)
4 = {(〈e(j)

4 ,a〉, e(j)
4 ) | e(j)

4 ∈ U (j)
4 }, (7)331

where in S
(j)
4 elements are addressed via their first datum 〈e(j)

4 ,a〉. Analogous, for U (j)
i ,332

i = 3, 2, 1 we also build separate E(j)
i and S(j)

i . For the root list U (1)
0 , it suffices to build333

E
(1)
0 .334

We denote the operations on our data structure as follows. Insert(E(j)
i , e) inserts e335

into E
(j)
i , whereas Delete(E(j)

i , e) deletes one entry e from E
(j)
i . Furthermore, {ei} ←336

Search(S(j)
i , 〈e(j)

i ,a〉) returns the list of all ei with first datum 〈e(j)
i ,a〉.337
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Deletion/Insertion of an element.338

Our random walk replaces a list element in exactly one of the leaf lists U (j)
4 . We can perform339

the update by first deleting the replaced element and update the path to the root accordingly,340

and second adding the new element and again updating the path to the root.341

Let us look more closely at the deletion process. On every level we delete a value, and342

then compute via the sibbling vertex, which values we have to be deleted recursively on the343

parent level. For illustration, deletion of e in U (3)
4 triggers the following actions.344

Delete (E(3)
4 , e).345

{e(4)
4 } ← Search(S(4)

4 , 〈e,a〉 mod 2r3) // E(|{e(4)
4 }|) = |U4|

2r3346

For all e(2)
3 = e + e′ with e′ ∈ {e(4)

4 }347

Delete (E(2)
3 , e(2)

3 )348

{e(1)
3 } ← Search(S(1)

3 , 〈e(2)
3 ,a〉 mod 2r2) // E(|{e(1)

3 }|) = |U3|
2r2−r3349

For all e(1)
2 = e(2)

3 + e′ with e′ ∈ {e(1)
3 }350

∗ Delete (E(1)
2 , e(1)

2 )351

∗ {e(2)
2 } ← Search(S(2)

2 , 〈e(1)
2 ,a〉 mod 2r1) // E(|{e(2)

2 }|) = |U2|
2r1−r2352

∗ For all e(1)
1 = e(1)

2 + e′ with e′ ∈ {e(2)
2 }353

· Delete (E(1)
1 , e(1)

1 ).354

· {e(2)
1 } ← Search(S(2)

1 , 〈e(1)
1 ,a〉 mod 2n) // E(|{e(2)

1 }|) = |U1|
2n−r1355

· For all e(1)
0 = e(1)

1 + e′ with e′ ∈ {e(2)
1 }356

o Delete (E(1)
0 , e(1)

0 ).357

Insertion of an element is analogous to deletion. Hence, the expected update cost is358

E(TU ) = max
{

1, |U4|
2r3

,
|U4|E(|U3|)

2r2
,
|U4|E(|U3|)E(|U2|)

2r1
,
|U4|E(|U3|)E(|U2|)E(|U1|)

2n

}
(8)359

≤ max
{

1, |U4|
2r3

,
|U4|3

2r2+r3
,
|U4|7

2r1+r2+2r3
,
|U4|15

2n

}
:= T̃U . (9)360

Notice that for the upper bounds T̃S , T̃U from Eq. (5) and (9) we have361

T̃S = |U4| · T̃U . (10)362

Quantum Walk Framework363

While random walks take time T = TS + 1
ε

(
TC + 1

δTU
)
, their quantum counterparts achieve364

some significant speedup due to their rapid mixing, as summarized in the following theorem.365

I Theorem 7 (Magniez et al. [19]). Let G = (V,E) be a regular graph with eigenvalue gap366

δ > 0. Let ε > 0 be a lower bound on the probability that a vertex chosen randomly of G367

is marked. For a random walk on G, let TS , TU , TC be the setup, update and checking cost.368

Then there exists a quantum algorithm that with high probability finds a marked vertex in369

time370

T = TS + 1√
ε

(
TC + 1√

δ
TU

)
.371
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Stopping unusually long updates372

Recall that for setup, we showed that all instances but an exponentially small fraction finish373

the construction of the desired data structure in time TS . However, the update cost is374

determined by the maximum cost over all superexponentially many vertices in a superposition.375

So even one node with unusually slow update may ruin our run time.376

Therefore, we modify our quantum walk algorithm QW by imposing an upper bound377

of κ = poly(n) steps for the update. After κ steps, we simply stop the update of all nodes378

and proceed as if the update has been completed. We denote by Stop-QW the resulting379

algorithm.380

A first drawback of stopping is that some nodes that would get marked in QW, might381

stay unmarked in Stop-QW. However, since the event of stopping should not dependent382

on whether a node is marked or not, the ratio between marked and unmarked nodes and383

thus the success probability ε should not change significantly between QW and Stop-QW.384

Moreover, under Heuristic 1 and a standard Chernoff argument the probability of a node not385

finishing his update properly after κ steps is exponentially small.386

A second drawback of stopping is that unfinished nodes partially destroy the structure387

of the Johnson graph, since different (truncated) representations of the same node do no388

longer interfere properly in a quantum superposition. We conjecture that this only mildly389

affects the spectral gap of the graph. A possible direction to prove such a conjecture might390

be to allow some kind of self-repairing process for a node. If a node cannot finish its update391

in time in one step, it might postpone the remaining work to subsequent steps to amortize392

the cost of especially expensive updates. After the repair work, a node then again joins the393

correct Johnson graph data structure in quantum superposition.394

In the following heuristic, we assume that the change from QW to Stop-QW changes395

the success probability ε and the bound δ for the spectral gap only by a polynomial factor.396

This in turn allows us to analyze Stop-QW with the known parameters ε, δ from QW.397

I Heuristic 2. Let ε be the fraction of marked states and δ be the spectral gap of the random398

walk in QW. Then the fraction of marked states in Stop-QW is at least εstop = ε
poly(n) , and399

the spectral gap of the random walk on the graph in StopQW is at least δstop = δ
poly(n) .400

Moreover, the stationary distribution of Stop-QW is close to the distribution of its setup.401

Namely, we obtain with high probability a random node of the Johnson graph with correctly402

built data structure.403

We would like to point out that Kachigar-Tillich [16] already used (implicitly) the same404

assumption as Heuristic 2 for the analysis of decoding algorithms. With the upcoming NIST405

standardization for post-quantum cryptography, there is an even stronger need to analyze406

quantum algorithms for cryptographic problems. There is a strong need to provide more407

solid theoretical foundations that justify assumptions like Heuristic 2, since cryptographic408

parameter selections will be based on best quantum attacks. Hence, any progress in proving409

Heuristic 2 finds a broad spectrum of applications in the cryptographic community.410

5 Results411

In this section, we describe the BCJ algorithm enhanced by a quantum random walk, see412

Algorithm 2. Our following main theorem shows the correctness of our quantum version of413

the BCJ algorithm and how to optimize the parameters for achieving the stated complexity.414

I Theorem 8 (BCJ-QW Algorithm). Under Heuristic 1 and Heuristic 2, Algorithm 2 solves415

with high probability all but a negligible fraction of random subset sum instances (a, t) ∈416
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Algorithm 2: BCJ-QW algorithm

Input : (a, t) ∈ (Z2`(n))n+1, β ∈ [0, 1]
Output : e ∈ Dn[0, β]
Parameters : Optimize α1, α2, α3.
Construct all level-4 lists E(j)

4 and S(j)
4 for j = 1, . . . , 16. . Setup (see Eq. (7))

Construct all level-3 lists E(j)
3 and S(j)

3 for j = 1, . . . , 8.
Construct all level-2 lists E(j)

2 and S(j)
2 for j = 1, . . . , 4.

Construct all level-1 lists E(j)
1 and S(j)

1 for j = 1, 2.
Construct level-0 list E0.

. Checkwhile E0 6= ∅ do
for 1/

√
δ times (via phase estimation) do

Take a quantum step of the walk. . Update
Update the data structure accordingly, stop after κ = poly(n) steps.

end
end
Output e ∈ E0.

(Z2`(n))n+1 (as defined in Definition 1) in time and memory 20.226n.417

Proof. By Theorem 7, the running time T of Algorithm 2 can be expressed as418

T = TS + 1
√
εstop

(
TC + 1√

δstop
TU

)
.419

We recall from Heuristic 2, Eq. (2), (3) and (6)420

εstop ≈ ε =
(
|U4|
|L4|

)16
, δstop ≈ δ = Ω

(
1
|U4|

)
and TC = 1,421

where the ≈-notation suppresses polynomial factors.422

423

Let us first find an optimal size of |U4|. Plugging ε, δ and TC into T and neglecting424

constants yields run time425

T = TS + |L4|8|U4|−15/2TU .426

Let us substitute TU by its expectation E[TU ]. We later show that TU and E[TU ] differ by427

only a polynomial factor, and thus do not change the analysis. We can upper bound the428

right hand side using our bounds T̃S ≥ TS , T̃U ≥ E[TU ] from Eq. (5) and (9). We minimize429

the resulting term by equating both summands430

T̃S = |L4|8|U4|−15/2T̃U .431

Using the relation T̃S = |U4| · T̃U from Eq. (10) results in432

|U4| = |L4|16/17.433

Therefore, |L4|8|U4|−15/2 · E[TU ] = |U4| · E[TU ]. Thus for minimizing the runtime T of434

Algorithm 2, we have to minimize the term max{TS , |U4| · E[TU ]}, which equals T up to a435
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factor of at most 2. Recall from Eq. (4), which holds under Heuristic 1 and for all but a436

negligible fraction of instances, and Eq. (8) that437

TS = max
{
|U4|,

|U4|2

2r3
,
E(|U3|)2

2r2−r3
,
E(|U2|)2

2r1−r2
,
E(|U1|)2

2n−r1

}
,438

E[TU ] = max
{

1, |U4|
2r3

,
|U4|E(|U3|)

2r2
,
|U4|E(|U3|)E(|U2|)

2r1
,
|U4|E(|U3|)E(|U2|)E(|U1|)

2n

}
.439

Numerical optimization for minimizing max{TS , |U4| · E[TU ]} leads to parameters440

α1 = 0.0120, α2 = 0.0181, α3 = 0.0125.441

This gives442

2r3 = 20.2259n, 2r2 = 20.4518n, 2r1 = 20.6627n representations,443

which in turn yield expected list sizes444

|U4| = 20.2259n, E(|U3|) = 20.2259n, E(|U2|) = 20.2109n, E(|U1|) = 20.1424n.445

Plugging these values into our formulas for TS , E[TU ] gives446

TS = max{20.2259n, 20.2259n, 20.2259n, 20.2109n, 2−0.0524n} and447

|U4| · E[TU ] = max{20.2259n, 20.2259n, 20.2259n, 20.2259n, 20.0310n}.448

It follows that E[TU ] = 1. Since we have TU ≤ κ = poly(n) by definition in Algorithm 2, the449

values TU and E[TU ] differ by only a polynomial factor that we can safely ignore (by rounding450

up the runtime exponent). Thus, we conclude that Algorithm 2 runs in time T = 20.226n
451

using |U4| = 20.226n memory. J452

0 0.1 0.2 0.3 0.4 0.50

0.05

0.1

0.15

0.2

β

c

Figure 2 c = log T
n

as a function of β for BCJ-QW

453

I Remark. As in the classical BCJ case, a tree depth of 4 seems to be optimal for BCJ-QW.454

When analyzing varying depths, we could not improve over the run time from Theorem 8.455
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Complexity for the unbalanced case.456

We also analyzed subset sum instances with t =
∑
i∈I ai, where |I| = βn for arbitrary457

β ∈ [0, 1]. Notice that w.l.o.g. we can assume β ≤ 1/2, since for β > 1/2 we can solve a458

subset sum instance with target t′ =
∑n
i=1 ai − t. Hence, the complexity graph is symmetric459

around β = 1/2. Fig. 2 shows the run time exponent c for our BCJ-QW algorithm with time460

T = 2cn as a function of β.461
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