Ruhr-Universität Bochum

LEHRSTUHL FÜR KRYPTOLOGIE UND IT-SICHERHEIT

Prof. Dr. Alexander May

Maike Ritzenhofen

Hausübungen zur Vorlesung

Kryptanalyse

SS 2008

Blatt 1 / 17. April 2008 / Abgabe bis 2. Mai 2008, 12 Uhr, in den Kasten auf NA 02

AUFGABE 1 (4 Punkte):

Sei $n \in \mathbb{N}$. Zeigen Sie, dass gilt:

 \mathbb{Z}_n Körper $\Leftrightarrow n$ prim.

AUFGABE 2 (6 Punkte):

(a) Sei $N\in\mathbb{N}$ und $x\in\mathbb{Z}_N^*$ mit $\mathrm{ord}(x)=k\in\mathbb{N}.$ Zeigen Sie , dass mit $a,b\in\mathbb{Z}$ gilt:

$$x^a \equiv x^b \pmod{N} \Leftrightarrow a \equiv b \pmod{k}$$
.

(b) Seien $a,b\in\mathbb{Z}$ mit $a\equiv b\pmod{\varphi(N)}$. Zeigen Sie, dass dann für alle $x\in\mathbb{Z}_N^*$ gilt:

$$x^a \equiv x^b \pmod{N}$$
.

- (c) Berechnen Sie $5^{2222211} \pmod{19}$.
- (d) Bestimmen Sie das Inverse zu $5^{2222225} \pmod{19}$.

AUFGABE 3 (2 Punkte):

Sei G eine zyklische Gruppe. Zeigen Sie, dass es $\varphi(\operatorname{ord}(G))$ viele Generatoren in G gibt.

AUFGABE 4 (4 Punkte):

Seien $a, b, k, n, p \in \mathbb{N}$, p prim.

Zeigen Sie die folgenden Eigenschaften der Eulerschen φ -Funktion:

(a)
$$\varphi(p^k) = p^k (1 - \frac{1}{p})$$

(b)
$$\varphi(ab) = \varphi(a)\varphi(b)$$
, falls $ggT(a, b) = 1$.

(c)
$$\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p})$$
, falls $n = \prod_{p|n} p^{k_p}$ die Primfaktorzerlegung von n ist.

AUFGABE 5 (4 Punkte):

Zeigen Sie den verallgemeinerten Chinesischen Restsatz:

Seien m_1, m_2, \dots, m_n teilerfremde natürliche Zahlen. Es existiert genau eine Lösung $x \mod m_1 m_2 \dots m_n$ des Gleichungssystems

$$\begin{vmatrix} x & = a_1 \mod m_1 \\ x & = a_2 \mod m_2 \\ \vdots \\ x & = a_n \mod m_n \end{vmatrix}.$$