Ruhr-Universität Bochum

LEHRSTUHL FÜR KRYPTOLOGIE UND IT-SICHERHEIT

Prof. Dr. Alexander May

Maike Ritzenhofen

Präsenzübungen zur Vorlesung Kryptanalyse SS 2008

Blatt 1 / 17. April 2008

AUFGABE 1:

Zeigen Sie, dass kein Public-Key Kryptosystem mit deterministischer Verschlüsselungsfunktion semantisch sicher ist.

AUFGABE 2:

(a) Finden Sie alle Lösungen der folgenden Gleichung.

$$5x + 2 \equiv 6 \pmod{9}$$

(b) Berechnen Sie mit Hilfe des Erweiterten Euklidischen Algorithmus das Inverse von 8 in \mathbb{Z}_{19}^* .

AUFGABE 3:

Gegeben sei ein RSA-Signierorakel, dass bei Eingabe $m' \neq m$ die RSA-Signatur von m' zurückliefert. Zeigen Sie, dass man dann effizient die Signatur von m berechnen kann, d.h. man kann RSA-Signaturen universell fälschen.

AUFGABE 4:

Bestimmen Sie die Ordnungen der multiplikativen Gruppen \mathbb{Z}_{19}^* , \mathbb{Z}_{21}^* und \mathbb{Z}_{27}^* . Bestimmen Sie außerdem ord(2) in diesen Gruppen.

AUFGABE 5:

- (a) Sei $N \in \mathbb{N}$. Zeigen Sie, dass \mathbb{Z}_N^* eine multiplikative Gruppe ist.
- (b) Sei $p \in \mathbb{N}$ prim. Zeigen Sie, dass $\varphi(p) := \operatorname{ord}(\mathbb{Z}_p^*) = p 1$.
- (c) Sei N=pq mit p, q prim. Zeigen Sie, dass $\varphi(N):=\operatorname{ord}(\mathbb{Z}_N^*)=(p-1)(q-1)$.