Ruhr-Universität Bochum

LEHRSTUHL FÜR KRYPTOLOGIE UND IT-SICHERHEIT

Prof. Dr. Alexander May

Maike Ritzenhofen

Präsenzübungen zur Vorlesung Kryptanalyse ss 2008 Blatt 2 / 02. Mai 2008

AUFGABE 1:

Sei $c = m^e \mod N$ ein RSA-Chiffretext. Zeigen Sie, dass m effizient aus c berechnet werden kann, falls $m < N^{\frac{1}{e}}$.

AUFGABE 2:

Zeigen Sie: Für einen bekannten RSA-Modul N gilt:

 $\varphi(N)$ ist effizient berechenbar $\Leftrightarrow p,q$ sind effizient berechenbar

AUFGABE 3:

Sei (N, e) ein öffentlicher RSA Schlüssel mit zugehörigen CRT-Exponenten $d_p \neq d_q$. Zeigen Sie, dass dann die Faktorisierung von N in Zeit $\tilde{\mathcal{O}}(\min\{d_p, d_q\})$ und Platz $\tilde{\mathcal{O}}(1)$ berechnet werden kann.

AUFGABE 4:

Angenommen wir haben einen Algorithmus ELGAMAL, der bei Eingabe einer ElGamal verschlüsselten Nachrichten den Klartext ausgibt, d.h. ELGAMAL $(p, \alpha, \beta, \alpha^r, m\beta^r) = m$. Zeigen Sie, dass man daraus einen Algorithmus DH konstruieren kann, der das Diffie-Hellman Problem löst, d.h. DH $(p, \alpha, \alpha^a, \alpha^b) = \alpha^{ab}$.

AUFGABE 5:

Wir betrachten das DL-Problem: Sei $\beta = \alpha^a \in Z_p^*$, wobei $n = \operatorname{ord}(\alpha)$ gegeben ist und a ermittelt werden soll. Beschreiben Sie einen Meet-in-the-Middle Angriff auf a mit Zeit und Platz $\tilde{\mathcal{O}}(\sqrt{n})$.

Verwenden Sie Ihren Algorithmus, um $\log_5(10)$ in \mathbb{Z}_{17}^* zu berechnen.