On Efficiently Calculating Small Solutions
of Systems of Polynomial Equations

Lattice-Based Methods and Applications to Cryptography

Dissertation
zur Erlangung des Doktorgrades
der Naturwissenschaften
der Fakultat fiir Mathematik

der Ruhr-Universitat Bochum

vorgelegt von

Dipl.-Math. Maike Ritzenhofen

Januar 2010

Reviewer:

Prof. Dr. Alexander May (Ruhr-University of Bochum)

Prof. Dr. Hans Ulrich Simon (Ruhr-University of Bochum)

Contents

1 Introduction 5
2 Mathematical Background 11
2.1 General Notationo 11
2.2 Algebraic Methods 18
2.3 Lattices 27
3 Solving Systems of Modular Univariate Polynomial Equations 41
3.1 Solving Systems of Modular Univariate Polynomial Equations with a Com-
mon Modulus (SMUPEL) 42
3.2 Solving Systems of Modular Univariate Polynomial Equations with Coprime
Moduli (SMUPE2) 45
3.2.1 Optimality of Our Bound for Solving SMUPE2 48
322 An Example 49
4 Basic Approaches for Solving Systems of Multivariate Polynomial Equa-
tions 51
4.1 RSA with Related Messages and Implicit Relations 52
4.2 The Problem of Implicit Factoring with Shared Least Significant Bits . . . 54
4.2.1 Implicit Factoring of Two RSA Moduli 55
4.2.2 Implicit Factoring of k RSA Moduli 58
4.2.3 Implicit Factoring of Balanced RSA Moduli 59
4.2.4 A Counting Argument that Supports our Assumptions 62
4.2.5 Experiments 62
4.3 The Problem of Implicit Factoring with Shared Most Significant Bits . . . 64
4.4 Some General Criteria for Solving Systems of Multivariate Polynomial Equa-
tions via Shortest Vector Problems 66

5 Solving Systems of Multivariate Polynomial Equations with Copper-

smith’s Method 73
5.1 Coppersmith’s Algorithm with Systems of Equations 73
5.2 Systems of Equations with a Common Modulus 83

5.2.1 RSA with Related Messages and Implicit Relations 85

3

4 CONTENTS

5.2.2 RSA with Random Paddings 95

5.3 Systems of Equations with Coprime Moduli 104
5.3.1 Solving SMUPE2 via Systems 106

5.4 General Systems of Modular Equations 114

6 Solving Systems of Multivariate Polynomial Equations over the Integers117
6.1 Analyzing the Problem of Implicit Factoring 120
6.1.1 The Case of One Equation 122

6.1.2 The Case of More than One Equation 137

6.2 Open Problems and Future Work 152

Bibliography 155

Chapter 1

Introduction

Cryptology is an old science, its roots reaching back to the ancient Romans and Greeks.
It can be divided into two branches, cryptography and cryptanalysis. Whereas the main
interest of cryptographers is to design new cryptosystems, cryptanalysts try to break them.
The developments of both directions of cryptology are, of course, strongly related. The
development of a new cryptosystem offers new problems to attack, and a newly developed
attack leads to the need to develop new cryptosystems.

At its inception, cryptography stood mainly for enciphering and deciphering. One assumed
a cryptosystem to be secure as long as no attack was known. In the cause of time, require-
ments concerning cryptosystems emerged. Different types of security models were defined,
and one tried to prove the security of a cryptosystem on certain assumptions.

Until 1976, there was only one type of cryptosystem known as symmetric cryptosystems.
In a symmetric cryptosystem two communication partners, say Alice and Bob, have a com-
mon secret k. We call k the key. Using k and an encryption function E, Alice encrypts
a message m as ¢ := FEy(m) and sends ¢ to Bob. Bob obtains the message by using a
decryption function D and computing m = Dy(c). For a symmetric encryption scheme to
work correctly, it has to verify m = Dy(FEx(m)). A third party, Eve, eavesdropping on the
communication should find it difficult to obtain the message m or even useful information
on m from ¢ without knowing the key k.

A second type of cryptosystem known as asymmetric cryptosystems was introduced by
Whitfield Diffie and Martin Hellman in 1976 [DH76]. They proposed a method of commu-
nicating privately without having to share a secret key beforehand. That is, they developed
a way to exchange keys via an insecure channel.

The development of the Diffie-Hellman key exchange protocol encouraged the development
of asymmetric cryptosystems in the following years. The principle of an asymmetric cryp-
tosystem works as follows: In contrast to symmetric systems, only the receiver Bob has
to keep a secret sk. We call sk the secret key. Based on the secret key, Bob constructs a
public key pk. This key is published in a way that it is guaranteed that this public key
belongs to Bob. The key pk may be seen by anybody. When Alice wants to send a message

6 CHAPTER 1. INTRODUCTION

to Bob, she takes Bob’s public key pk, encrypts the message as ¢ := E,;(m) and sends ¢
to Bob. Then Bob decrypts the message as m = Dg(c). Thus, he needs his secret key to
recover m. As in symmetric cryptography, for an asymmetric encryption scheme to work
correctly, it has to verify m = Dg,(E,,(m)). The tuple (pk, sk) should form a pair of cor-
responding public and private keys. Furthermore, for a third party, Eve, eavesdropping on
the communication, it should be difficult to obtain the message m from ¢ without knowing
the secret key sk.

One of the main asymmetric cryptosystems was developed by Ron Rivest, Adi Shamir and
Leonard Adleman in 1977 [RSAT78|. It is still one of the most widely used asymmetric
cryptosystems today.

It works on the following principle. Bob chooses two large primes p and ¢ of equal bit-
size and defines the value N := pq. Furthermore, he chooses e € Zy such that e and
©(N) = (p—1)(¢—1) are coprime. Then he calculates d such that ed =1 (mod p(N)).
Subsequently, Bob publishes (N, e) as his public key and keeps (N, d) as his private key.
The encryption function is defined as E.(m) := m® (mod N) for m € Zy. The decryption
function is defined as Dy(c) := ¢? (mod N). As ed = 1 (mod ¢(N)) the computation
verifies Dy(E.(m)) = (m®)* = m (mod N). We denote the variant defined here by plain
RSA. For security reasons, it is modified for practical use, e.g. by padding the message.
The standard of RSA encryption is given in [RSA].

The security of cryptosystems is proven on the assumption that an underlying problem is
difficult. In the case of RSA the underlying number theoretic problem is the so called RSA
problem: Let N = pq be the product of two large primes p and ¢, and let e be a positive
integer such that ged(e, ¢(N)) = 1. Then given N, e and an element z, the challenge is to
determine the unique element y € Zy such that y* =z (mod N).

The RSA problem is assumed to be difficult to solve. That is, we assume that there is no
efficient algorithm that solves the problem. Indications for this are given by Ivan Damgard
and Maciej Koprowski [DKO02|. They show that solving the RSA problem with generic
group algorithms is intractable in groups of unknown order. However, the model they use
is quite restrictive as it only allows for the use of multiplications.

The problem of factoring is closely related to the RSA problem and is defined as fol-
lows: Let N = pq be the product of two large primes p and ¢q. Given N, the challenge is
to determine its factors p and q.

So far, we have defined the problem of factoring only with respect to moduli which are
products of two primes. We call these moduli RSA moduli. One can generalize the defini-
tion to include arbitrary composite integers.

It is easy to see that the difficulty of the RSA problem implies the difficulty of factoring.
That is to say, if we can factor an RSA modulus N, we can use p and ¢ to compute p(N)
and then d. Calculating 2 then gives us the required element y. The opposite, however, is
not clear. Partial results are known in restricted models. On the one hand, Dan Boneh and
Ramarathnam Venkatesan [BV98] as well as Antoine Joux, David Naccache and Emmanuel

Thomé [JNTO07| provide evidence against the equivalence of breaking the RSA problem and
factoring, whereas Daniel Brown [Bro06], Gregor Leander and Andy Rupp [LR06]| as well
as Divesh Aggarwal and Ueli Maurer [AMO09] give arguments in favor of the equivalence.
The models used in any of the works are restrictive as the proofs are given with respect
to straight line programs ([BV98, Bro06|) or generic ring algorithms ([LR06, AMO09]).
In [JNTO7] the attacker is given additional sub exponential access to an oracle determining
e-th roots of integers of the form x + ¢. Moreover, the works of [BV98, Bro06, LR06]| only
consider a special version of the RSA problem with low exponents.

There are, thus, two possible ways of attacking the RSA problem. One can either attack
the problem directly or attack the factorization problem. Hence, let us have a more detailed
look at the difficulty of the problem of factoring. On the one hand, Peter Shor’s algorithm
from 1994 [Sho94| demonstrates that the factorization problem is polynomial time solvable
on quantum Turing machines. On the other hand, it seems to be highly unclear whether
these machines can ever be realized in practice. Furthermore, on classical Turing machines
only super polynomial algorithms are known, the Quadratic Sieve [Pom84|, the Elliptic
Curve Method |Len87] and eventually the Number Field Sieve [LHWL93.

A different line of research to analyze the difficulty of factoring is an oracle-based approach.
It was first studied at Eurocrypt 1985 by Ron Rivest and Adi Shamir [RS85|, who showed
that N = pq can be factored given an oracle that provides an attacker with bits of one of
the prime factors. The task is to factor in polynomial time by putting as few queries as
possible to the oracle. Ron Rivest and Adi Shamir showed that glogp queries suffice in
order to factor efficiently.

At Eurocrypt 1992, Ueli Maurer [Mau92| allowed for an oracle that is able to answer any
type of questions by YES/NO answers. Using this powerful oracle, he showed that €logp
oracle queries are sufficient for any ¢ > 0 in order to factor efficiently. This algorithm, how-
ever, is probabilistic. At Eurocrypt 1996, Don Coppersmith [Cop96a| in turn improved the
Rivest-Shamir oracle complexity to %log p queries. Don Coppersmith used this result to
break the Vanstone-Zuccherato ID-based cryptosystem [VZ95| that leaks half of the most
significant bits of one prime factor.

In what follows we will further pursue this goal and try to attack RSA by either attack-
ing instances of the problem itself or by attacking instances of the factorization problem.
Therefore, we transform a problem into a polynomial equation or a set of polynomial
equations. Then we calculate the solutions or conditions on which the solutions can be
determined. The main techniques we use to do so are based on lattices. A lattice is a
discrete Abelian subgroup of Z*.

We use a given set of equations to define a lattice which contains the values we are search-
ing for. If these values fulfill certain properties, e.g. correspond to a small basis vector,
we can apply methods to analyze a lattice to determine our target values. We concentrate
on a special method introduced by Don Coppersmith in 1996 to find small solutions of a
single equation [Cop96b, Cop96a| and analyze on which conditions we can generalize his
approach to systems of equations. Hence, the main goal of this thesis is twofold. On the

8 CHAPTER 1. INTRODUCTION

one hand we would like to apply lattice-based methods and attack special instances of
problems related to RSA and factoring. On the other hand, we would like to improve the
theoretical knowledge of how to solve systems of multivariate equations with lattice-based
techniques.

We will now present the organization of the thesis in more detail.

In Chapter 2 we give the mathematical background. It comprises three sections. Section 2.1
deals with the notation and basic linear algebra. In Section 2.2 multivariate polynomial
rings are introduced. Furthermore, some algebraic techniques to solve systems of multi-
variate equations are presented. In Section 2.3 we define lattices and show how they can
be used to determine solutions of a multivariate polynomial equation.

Chapter 3 deals with modular univariate systems of equations. Systems of equations with
one common modulus have already been analyzed in [CFPR96]. It is shown that in most
cases solutions of such systems can be determined efficiently with algebraic methods. Sys-
tems with mutually coprime moduli have been analyzed by Johan Hastad in [Has88|. As a
main result we improve on the bound obtained using Johan Hastad’s approach combined
with the techniques presented by Don Coppersmith. That is, we present a method to solve
systems of modular univariate equations with coprime moduli. The result is obtained
due to special polynomial modeling. By this, we can determine larger solutions than one
could determine with the previously known methods. We obtain the following result. Let
Ni, ..., Ny be mutually coprime moduli. For i = 1,...,k let f;(z) = 0 (mod N;) be an
equation of degree ;. Then we can determine all solutions zy such that |zo| < X and
1

fi(zo) =0 (mod N;) for all i = 1,...,k efficiently if X < [[N,”. This implies that any
solution can be determined if Zle 5%_ > 1.

Moreover, we give an argument why the new bound is optimal for general systems by giving
an example of a system for which the bound cannot be improved.

A result with respect to our second goal, namely that of attacking specific problems, is
that we can apply the general technique to an RSA broadcast scenario. A passive attacker
can determine a message m sent to k different users with coprime moduli /N; and public
keys (Ni,e;),i=1,... . kif 30 L >1.

The results presented in this chapzter are joint work with Alexander May and published
in [MROS|.

In the following chapters we deal with general multivariate systems of equations.

In Chapter 4 we treat modular systems of equations with a common modulus. Their solu-
tions are determined by solving a shortest vector problem in a suitable lattice. As a main
contribution we introduce and analyze the problem of implicit factoring. This problem fits
into the framework of oracle-based factoring. For a given composite number Ny = poqo
with gy being an a-bit prime, our target is to compute py and gy. During the attack we
are allowed to query an oracle which on each query answers with another RSA modulus
N; = p;q; such that ¢; again is an « bit prime and p; and p, share ¢ least significant bits.
We show that with k oracle queries we can heuristically factor all the N; on condition that

t> %a. In case of only one oracle query, the method is provable on the slightly stronger
constraint that ¢ > 2 (o + 1).

This result is joint work with Alexander May and published in [MR09]. To our knowledge,
it is the first result which shows that only implicit information is sufficient in order to
factor efficiently. This implies that already a weak form of an oracle is in itself sufficient to
achieve a polynomial time factorization process. This gives further insight into the com-
plexity of the underlying factorization problem.

Chapter 5 divides into two parts. The contribution of Section 5.1 is of rather theoretical na-
ture. We try to generalize the algorithm of Don Coppersmith to systems of equations. We
denote this algorithm by Coppersmith’s algorithm. However, in the process of a straight-
forward generalization of Coppersmith’s algorithm problems occur. One basic step in the
original algorithm is the construction of a sublattice with the same determinant as the
original one. This step does not necessarily work with a general system. Therefore, as a
main result, we introduce the new notion of being determinant preserving and state a
necessary and sufficient condition of this. This contributes to the theoretical understanding
of Coppersmith’s algorithm.

In the following two sections we apply the theoretical results to modular systems of poly-
nomial equations and give examples of this. Section 5.2 deals with systems of equations
with one common modulus. We show how the necessary and sufficient conditions apply to
such systems of equations. Subsequently, we use these observations with respect to RSA
with related messages and implicit relations as well as with respect to RSA with random
paddings.

In RSA with related messages a set of k£ secret messages my, ..., my is encrypted with an
RSA public key (N, e). That is, we get k encryptions ¢; = m¢ (mod N). Furthermore, we
have some implicit polynomial relation p(my,...,mg) = 0 (mod N). In this context, we
apply the generalization of Coppersmith’s algorithm to equations in independent variables.
If one considers only the condition on the size of the variables we get in this way, one could
hope to be able to determine more solutions than with a separate analysis of the equations.
This, however, is not the case. We prove the equivalence of both approaches. This result
is quite plausible. However, we do not know of any proof of this in the literature published
in this subject.

Furthermore, we develop a general strategy on how to apply the generalization of Copper-
smith’s algorithm to specific systems of independent equations with additional equations
providing relations between the unknowns. Unfortunately, the construction is not generic.
The problem of RSA with random paddings is defined as follows. For a user’s pub-
lic key (N,e) with N some n-bit number, a message m of a < n bits is encrypted
as ¢ = (2°7Tu; +2"m + w;)° (mod N) for a random 7-bit number w; and a random
(n — a — 7)-bit number v; and ¢ = 1,...,k. The value £k € N denotes the number of
different encryptions. The message m as well as the values v; and w; are secret and not
known to any attacker. Given two encryptions with different paddings, the message can
be determined by combining techniques presented in [Jut98, Cop96b, CFPRI6|.

Usually, additional information obtained from additional encryptions enables us to de-

10 CHAPTER 1. INTRODUCTION

termine the solutions on weaker conditions. In this section we analyze two strategies to
improve the conditions with more equations and argue why these strategies are not suc-
cessful. This indicates that we cannot always make use of additional information and
contradicts what one might intuitively expect. Moreover, by the given arguments, we in-
dicate a way of using the property of being determinant preserving to prove impossibility
results.

In Section 5.3 we consider systems of equations with coprime moduli. One approach to
determine solutions of these systems of equations is to reduce the problem to the problem
of calculating solutions of a single multivariate equation. This is done by applying the
Chinese Remainder Theorem to the original system of equations. Then we can analyze the
resulting equation.

We compare this approach to directly analyzing the system with a generalized version of
Coppersmith’s algorithm. Interestingly, in systems of equations with coprime moduli the
necessary and sufficient conditions for the sublattice construction to work become signifi-
cantly simpler than in the general case. We use this observation to prove the equivalence
of the generalized Coppersmith’s algorithm and the method via the Chinese Remainder
Theorem for univariate equations on some rather natural additional assumptions. In the
case of multivariate equations, however, this equivalence does not hold. Any solutions de-
termined with the method based on the Chinese Remainder Theorem can also be obtained
with a generalization of Coppersmith’s algorithm. For the opposite implication, though,
we give a counterexample.

Finally, in Chapter 6 we consider systems of equations over the integers. This case is the
most complex one as even the necessary and sufficient condition for the sublattice step in
the generalization of Coppersmith’s algorithm to work cannot be checked for efficiently.
We introduce an additional precondition to obtain a more helpful necessary and sufficient
condition. Keeping these constraints in mind, we return to the problem of implicit factor-
ing. That is, we intend to factor an integer Ny = ppqo, where Ny is an n-bit composite
number and ¢y an a-bit prime. In contrast to what is done in Chapter 4, we now allow
for the shared bits to be at any position in py as long as they are subsequent. Then we
analyze the problem over the integers. We show how to use this method to reconstruct the
bound ¢ > %a we have already obtained with this method using k oracle queries. The
value t corresponds to the number of shared bits.

Furthermore, with only one oracle query but a large lattice, we can improve the bound
to t > 2« (1 — %) + % + € for some ¢ > 0. Using a similar approach with further oracle
queries, we can only reproduce the latter bound. Unfortunately, we cannot improve on
it. Any potential strategy for this violates the property of being determinant preserving.
When adapting the strategy such that the necessary and sufficient condition is fulfilled,
the bound we obtain as a final result gets worse. We claim that a reason for these obser-
vations is the special structure of the polynomials we consider. This claim is supported by
a counting argument. Hence, this chapter gives an introduction to the use of a generalized
variant of Coppersmith’s algorithm with equations over the integers, but also indicates
open problems and directions for future research.

Chapter 2

Mathematical Background

2.1 General Notation

We start by introducing the notation which we will use in the following chapters. Let N
be the set of positive integers, Ny := NU {0} and Z be the ring of integers. For N € N let
Zy denote the ring Z/NZ. 1f p € N is prime, let [, denote the field with p elements. A
ring is denoted by R, and we implicitly assume R to be a commutative unit ring.
Moreover, we implicitly assume all logarithms to be binary and denote them by log.

Bold upper case letters denote matrices whereas bold lower case letters denote row vectors.
Column vectors are given as the transposed of row vectors, namely, for a row vector v the
corresponding column vector is vI. The ordinary inner product of two vectors v and w is
denoted by (v, w).

A set of | vectors vq,...,v; is called linearly independent in some ring R iff the only
R-linear combination of these vectors adding up to the zero vector is the zero linear com-
bination. If a set of vectors is not linearly independent, it is called linearly dependent.

For s,t € N the matrix 05%% describes the s x t zero matrix. For any positive integer n the
n x n identity matrix is given by I,. The i-th unit vector is called e’.

For a vector v the value (v); denotes the i-th entry of v. For a matrix M the value (M);;
denotes the entry in the i-th row and in the j-th column. Note that these values are
elements of R. The value M, . is the i-th row vector and M. ; the j-th column vector of M.
By M_; ., we denote the matrix constructed from M by deleting the i-th row. Analogously,
M. _; is constructed by deleting the j-th column of M and M_; _; by deleting the i-th row
and the j-th column.

t+1 s+1)x1

Given a matrix M € Z***, a row vector r € Z> 1) and a column vector ¢’ € Z(

11

12 CHAPTER 2. MATHEMATICAL BACKGROUND

and two indices 4, j such that (r); = (c);, let M) 4j(c)r be the matrix

(M) M)ig-1y (e)r (M)y (M),
(M) (i—1)1 (M)(i;1>(j,1) (€)im1 (M)g-1); (M) (1)
M.iir),+je) = (r): (r)j—1 (r); (v)jn ()41
(M) (M)ii—1y (€)in (M) (M)
M)y My (©wr My - (M),

That is, we get the new matrix by inserting r as i-th row and ¢’ as j-th column into M.
The matrices defined by inserting only a row vector r € Z*! or a column vector ¢! € Z*!
are denoted by M. and M.) respectively.

Apart from these general operations on matrices, we will need some special matrices
and their properties. Therefore, we will quote some theorems here. For more details
regard [SW99).

Let P always denote a permutation matrix, that is, in each row/column of P there is
exactly one component of value one, whereas all other components are zero.

Let A := A(z,a,b) be the matrix such that AM describes the matrix derived from M by
addition of x times row b to row a in M. The addition of z times column b to column a in
M is then done by multiplying M with A from the right. Matrices of this form are called
elementary matrices.

Let P ;) be the permutation matrix which represents swapping the i-th and j-th row of a
matrix M when multiplied to it from the left. Remark that

Puj = A(1,5,9)A(-1,i,5)A(1,4,i)D;,

where D; is a diagonal matrix with —1 on the j-th position and 1 on any other posi-
tion. Thus, admitting a small change in the sign any permutation can be expressed via
elementary matrices.

The matrices A, AT and P are unimodular, i.e. their determinant is of absolute value 1.
Note that the product of two unimodular matrices is a unimodular matrix as well.
Having introduced the notation necessary, we can now cite the first theorem.

Theorem 2.1.1 ([SW99], Theorem 8.C.11)

Let s,t € N and M € Z5*' be an s X t-matrix of rank r with coefficients in 7Z and let k :=
min{s,t}. Then there are elementary matrices Uy, ..., U, € Z°*° and Vy,...,V, € Z"*
such that U,--- UMV, .-V, is a diagonal matrix D = Diag(ai,...,a;) € Z°*', where
a;laiq fori=1,...;r—1land a,y; = ... = a = 0.

This theorem brings up a new definition.

Definition 2.1.2
The numbers aq,...,a, of Theorem 2.1.1 are called elementary divisors.

2.1. GENERAL NOTATION 13

Note that the elementary divisors are uniquely determined except for the sign. For nota-
tional convenience throughout this thesis we assume all elementary divisors to be positive.
The proof of Theorem 2.1.1 in [SW99| already gives the construction of the elementary
divisors. As we are mainly interested in conditions on which all elementary divisors of a
matrix are one, we will not give a proof of the general theorem here. Instead, we will prove
a variant of this theorem which is adapted to our needs. Therefore, we will permute the
elementary divisors to the last rows.

Further, note that in case of matrices with entries from a field, we can conclude easily that
if M is of rank k = ¢, then the transformation works without Vy,...,V,. We include a
similar observation for matrices with values in Z in our theorem. We will make use of the
following theorem in Section 5.1.

Theorem 2.1.3
Let m € Ng,n € N and M € Z™*+)*" rank(M) = n. Then

All elementary divisors of M are equal to 1 <

mxn
There exists a unimodular matrix U € Zmt)x(m+n) guch that UM = (OI >)

In order to prove Theorem 2.1.3 we will use the two following lemmata. Recall that the
greatest common divisor of a vector is defined as the greatest common divisor of all its
components.

Lemma 2.1.4
Let r,t € N, t < r and v € Z™! with ged(v) = 1. Then there exists a unimodular

transformation U € Z"*" such that Uv’ = (e)”.

PROOF: First, remark that ged(v) = ged((v)1, ..., (V),) = ged(ged((v)1, -+, (V)r_1), (V))
= ged(...ged((V)1,(v)2), ..., (Vv);). The basic idea of the proof is to use the Euclidean
Algorithm to iteratively compute the greatest common divisors. Each step of the Euclidean
Algorithm induces a unimodular transformation which can be performed on v. In the end,
we can combine these transformations and obtain U. As the greatest common divisor is
one, Uv” then denotes a unit vector.

Now let us look at the single steps in more detail. First, we compute the greatest common
divisor of (v); and (v);. We assume (v); > (v)2. If not, set Usg := P9 and regard
(V)T .= Uyev”. In the first step of the Euclidean Algorithm, we divide (v2°); by (v2°),
with remainder. That is, we compute s; and r; € Z such that (v2?); = s;(v??), + ry.
The inputs to the next step are (v29)y and r; = (v29); (mod (v2%),). To transform v2°
accordingly, set U2 := P15)A(—s1,1,2). Then (v¥')" := U?(v?°)T is a column vector
with first entry (v2°)y, second entry r; and all other entries equal to the corresponding
entries in v. Iterating this process until 7, = 0 (a situation which we reach due to the
construction of the Euclidean Algorithm), we get

Uz U2 = (ged((v)1, (V)2),0, (V)s, ..., (v),)" = (v®)T.

e

14 CHAPTER 2. MATHEMATICAL BACKGROUND

We then iterate the process for ¢ = 3,...,r performing the Euclidean Algorithm on the

first and the 4-th value of v! and determining the unimodular transformations analogously.

In the end we obtain a unimodular transformation U = U . .. U2° such that Uv’ =

ged(v) (€)', As ged(v) = 1 with a final permutation we obtain P)Uv’ = (e, All
g

the matrices forming U are unimodular matrices. Thus, U is unimodular. This implies

the claim. |

Note that in actual computations the method described in the above proof often con-
tains superfluous steps. Whenever a greatest common divisor of 1 is obtained, the value
1 can directly be used to eliminate all further entries of v. The unit vector is, thus, ob-
tained faster. This may already happen after one execution of the Euclidean algorithm if
ged (V)1 (v)2) = 1.

Now we would like to extend our analysis from one single column to a matrix. Nevertheless,
in the following lemma we take only knowledge on the greatest common divisors of columns
into account as this is information which is easy to get from any matrix.

Lemma 2.1.5

Letn € N, m € Ny. Let M € Z*)xn [f g;(M) := ged(M.;) > 1 forall j = 1,...,n,
then either M has at least one elementary divisor which is not equal to 1 or the number
of elementary divisors of M is smaller than n.

PROOF: The lemma holds for all singular matrices M: If M is singular, then at least one
column is linearly dependent on the other columns. This column can be eliminated by
multiplication with a unimodular matrix V from the right. Thus, MV contains a zero
column. We permute this column to the last one. Then performing the elementary divisor
algorithm on MV ignoring the last column will result in a matrix having only entries on
the diagonal. This is due to the elementary divisor condition of Theorem 2.1.1. The last
diagonal entry of UMVV is equal to zero. Thus, we have less than n elementary divisors.
Therefore, we now restrict ourselves to matrices of full rank. We prove the lemma for
regular matrices by induction on n.

First let n=1: Let M € Z"TD*! with g;(M) = ged(M.;) > 1. Then, as M = M.,
g1(M) divides any component of M. Any entry in a matrix which can be constructed by
unimodular transformations of M is a linear combination of entries of M and, thus, is a
multiple of g;(M) as well. The same holds for the elementary divisor. This concludes the
proof in the case of n = 1.

The hypothesis of the induction is as follows: For an n € N and an arbitrary m € Ny let
M € Zm+M>X" he a full rank matrix such that g;(M) := ged(M. ;) > 1 forall j =1,...,n.
Then M has at least one elementary divisor which is not equal to 1.

For the inductive step we consider two cases.
First, let n € N, M € Zmtn+Dx(+l) guch that g;(M) = ged(M.;) > 1 for all j =
1,...,n+1. Then if g(M) := ged(g1 (M), ..., gns1(M)) > 1, all entries of M are multiples

2.1. GENERAL NOTATION 15

of g(M). Thus, all linear combinations of entries of M including the elementary divisors
are multiples of g(M) and, therefore, not equal to 1 and we are done.

Thus, we only have to consider the case of g(M) := ged(g1(M),...,gn+1(M)) = 1. We
start by performing the elementary divisor algorithm. That is, we apply the algorithm
which gives the construction of Theorem 2.1.1. Here it is not important how the algorithm
works exactly. We just have to know that in each step M is either multiplied from the left
with a unimodular matrix U or from the right with a unimodular matrix V.
Multiplications from the left only perform row operations on M. Consequently, all elements
in the j-th column of UM are divisible by g;(M) as they are linear combinations of elements
of M. ; which are divisible by ¢;(IM). Therefore, the value of ¢g;(IM) cannot be decreased
by these operations.

Multiplications from the right are either column permutations or additions of multiples of
one column to another. As permutations of columns only permute the greatest com-
mon divisors, it is sufficient to consider additions of multiples of one column to an-
other. We perform only one such addition in one step. This implies that only the
greatest common divisor of one column may be changed. We continue the process of
transformations, using other transformations in between as the algorithm requires un-
til the greatest common divisor g;(M) of one column becomes 1. (This will happen as
g(M) = ged(g1 (M), ..., gnr1(M)) = 1 and, thus, not all elements in the matrix share the
same common divisor.) We then permute the j-th column to the first position. Let U; and
V1 be the unimodular transformations used so far. Let M; := U;MVy. Then ¢;(M;) = 1
and g;(My) > 1 for j > 2. By further row operations using Lemma 2.1.4 we get a unimodu-

lar transformation Uy such that UsM; = < (el)T M,) for some My € Z(mHnthxn with

g;(Mz) = gj11(My) > 1. Now adding —(M3);(j_1)-times the first column to the j-th only
changes the component in the first row as all other entries in the first column are equal to
zero. Let V(j) be the unimodular matrix performing this operation. Let Vo = H;l;l V(j).
Then
10 --- 0
T 0

(@m0
0
As (Ms).; = (Mz2).;)_, . we have g;(M2)|g;(Ms) for all j =1,...,n. Moreover, M3 is of
full rank n as M; was.
This implies that Mg € Z(mT")>" fylfills the conditions of the hypothesis. Thus, there
are unimodular transformations Ug € ZMm+Tmx(m+n) and V3 € Z™ " such that My :=
U3zM3V3 is a diagonal matrix with at least one diagonal element not equal to 1. Let

10 - 0 10 - 0

0
U, =) and V4 =

16 CHAPTER 2. MATHEMATICAL BACKGROUND

Then
10 --- 0 10 --- 0 10 --- 0
0 0 0
B U, : M, Vs
0 0 0
10 0 10 0
0 0
B U3M3V3 B M4
0 0

is a diagonal matrix the components of which are not all equal to 1. This implies that the
elementary divisors of M do not all have the value 1 and the lemma is proven. |

Now we can prove the main theorem.

PROOF of Theorem 2.1.3: In a first step we prove the necessary condition.

mxn
Suppose there exists a unimodular matrix U € Z(m+m*(m+n) gych that UM = (OI)

Let V:=1I, and P € Zmtm)x(m+n) 16 defined as P = Plomin)) - - - - - Pa(m+1)). Namely, P
is a permutation matrix which permutes the n last rows to the first n positions. Both U
and P are unimodular. Consequently, PU is unimodular. The matrix V is unimodular as

well. It is
Ole’l In
(PUMYV =P I I, = omxn | -

This implies that the elementary divisors of M are all equal to 1.

We prove the sufficient condition by induction on n for arbitrary m € Ny. Suppose all
elementary divisors of M are equal to 1.

For a better understanding we start with the cases of n =1 and n = 2.

Let n=1: Then M = M.; is one column vector with ¢;(M) = ged(M.;) = 1. (If
g1 (M) > 1, we directly get a contradiction by Lemma 2.1.5.)

By Lemma 2.1.4 there exists a unimodular transformation U € Zm+Dx(m+1) guch that
UM = UM.; = (™). This implies that the case of n = 1 is correct.

Now let n = 2: We divide this case into further subcases.

1. Suppose there exists a column M. ;, j € {1,2}, with ¢;(M) = ged(M. ;) = 1.
Analogous to the case of one column, there exists a unimodular transformation U; €
Zm+2x(m+2) quch that U M. ; = (em+j)T. Let M; = U;M. Then M; consists of

two columns, the j-th column which is equal to (em“)T and the (3 — j)-th column
with unknown components. Then My = (Mj)_(;n4j),—; is a one column matrix and
g1(Mz) = ged(M3. ;). We again distinguish two subcases.

2.1. GENERAL NOTATION 17

(a) 91(M3) = 1.
Then a unimodular transformation Uy € Zm+Dx(m+1) exists by Lemma 2.1.4
such that UsM, = (e™™)T. We define Uz := (U2) 4 () (@m+5) 4 (mot) (em-H) T+
That is, Uz is a matrix operating like Uy on My but leaving the rest of M,
unchanged. Let UsM; = U3U;M =: Mj3. The matrix M3 consists of two
columns (emﬂ)T and (em3-j) +c’, where ¢ € Z"+2*! with ¢ .| = x for
an unknown x € Z and C;}FJ = 0 for all £ # m + j. That means, M3 is nearly
of the required shape except for an integer in the (m + j)-th row and (3 — j)-th
column. Using the newly constructed 1 in the (3 — j)-th column, which is the
only entry in its corresponding row, we can now eliminate this value x as well.
Let A := A(—x,m + j,m + 3 — j) be the matrix such that AM describes the
addition of —z times row m+3—j torow m+j in M. Then AU3U;M = AM3 =
mx2

(012) . Here, AU3U; is a unimodular transformation as the consisting
matrices are unimodular. Consequently, the theorem holds in this case.

(b) g1(M2) > 1:
By Lemma 2.1.5 we get that My has an elementary divisor greater than 1 and,
therefore, the same holds for M. This contradicts the preconditions.

2. Suppose that g, (M), g2(M) # 1.
Then we directly get a contradiction by Lemma 2.1.5.

Combining both subcases concludes the proof in the case of n = 2.

The hypothesis of our induction is as follows:
For an n € N, all m € Ny, let M € Z™*" he g matrix of which all n elementary divisors
are equal to 1. Then there exists a unimodular transformation U € Z(m+mx(m+n) gych

that
Oan
ow- () o

Now let n € N, M € Z(m+n+)x(+1) with n 4 1 elementary divisors of value 1. We proceed
analogously to the case of n = 2 and distinguish two cases.

1. Thereis j € {1,...,n+ 1} such that ¢g;(M) := gcd(M. ;) = 1:
Then by Lemma 2.1.4 there is a unimodular matrix Uy such that UiM. ; = (em+j)T.
Let My := U;M. This implies that the first elementary divisor of M equals 1. Let
M := (My)_(m+j),—;- Then My has n elementary divisors which are the elementary
divisors of M except for the elementary divisor already computed. Consequently, all
n elementary divisors of My are of value 1. Then by the hypothesis of the induc-

mxn
tion (2.1) there exists a unimodular matrix Ug such that UsMy = (OI) =: M3.

18 CHAPTER 2. MATHEMATICAL BACKGROUND

Let U3 = (U2)+(m+j)(em+j),+(m+j)(em+j)T' Then

U3U1M = U3M1
(Uz) 4 (ms)(em+) 4 (met) (em+5)T (M2) 4 (mt) (), +j(em+)T

(M) 4+ (mt)(e), +i(em+)T -

Here ¢ := (Mj);4,,.. Consequently, ¢c; = 1. In the last step, we want to eliminate
all non-zero entries in the (m + j)-th row except for the one in the j-th column. To
do so, we subtract c; times the (m +i)-th from the (m + j)-th row, fori =1,...,j —
1,7+ 1,...,m+n. Let A denote the unimodular transformation corresponding to
these operations. Then

OmX(n+1)
A(M3)+(m+j)(C)v+J'(em+j)T - (| Y)

Thus, the theorem is proven.

2. For all j € {1,...,n+ 1} it holds that g;(M) := ged(M. ;) > 1:
Then we get a contradiction by Lemma 2.1.5. |

2.2 Algebraic Methods

In this section basic notation, definitions and constructions from algebra are introduced.
This thesis deals with problems that occur in the context of cryptography. An example
is the problem of factoring: Given a composite integer N = pq, determine its factors p
and ¢. This as well as variants of it will be introduced in the subsequent chapters. Hence,
we need tools to describe such problems. First, we introduce polynomial rings. For more
details consider for example [CLO97|.

Definition 2.2.1

A monomial in x,... 2, is a product z%z2 - ... - xfl with i1,...,4 € Ny. The value
deg(xifxé2 e x?) =4y + ...+ i is called the total degree of z'x% - ... - xé’, whereas
deg, (zi'wy -...-x)") = i; is called the degree in z;. Let R be a ring. An R-linear combi-
nation of monomials f(xq,...,x;) = Z(il,..‘,zj) Ay, i ®Y - o) with ag, . ;) € R is called
a polynomial. The set of all these polynomials is the polynomial ring R|x1, ..., x].

Using this notation, the problem of factoring can be interpreted as the problem of finding
non-trivial solutions of the polynomial equation f(zy,x2) := N — zy29 = 0. This way,
additional information can be added easily to the description of a problem. Instead of
describing a problem by a single polynomial equation, we describe it by a system of poly-
nomial equations. Then a solution of the problem is given by a common solution of all of
the equations.

In general, however, it is not clear if a new equation also contains new information. Two

2.2. ALGEBRAIC METHODS 19

equations fi(x1,...,x;) = 0 and fo(xy,...,2;) = 0 can either share the same set of so-
lutions, share some solutions or the set of their solutions can be completely disjoint. In
the two latter cases, we get additional information by taking two instead of one equation.
However, in the first case taking two equations does not help to find the solution. We need
a criterion to identify this case. We remark that two polynomials share exactly the same
set of solutions if one of the polynomials is an integer multiple of the other. For systems
of polynomials, this is captured by the following definition.

Definition 2.2.2

Let fi(x1,...,x), ..., fu(x1,...,2;) and g(xq,...,2;) € R[z1,..., 2] be a set of polynomi-
als. Let F := {fi(z1,...,21),..., fu(x1,...,2)}. Then F is called linearly independent
over R iff

k
> aifilxr,...,m) =0 witha; ER = a; =0 foralli=1,... k. (2.2)
=1

If condition (2.2) does not hold, then F is called linearly dependent over R.
The polynomial g(x1,...,x;) is called linearly independent of F over R iff

k
there are no a; € R such that Z a; fi(x1,...,x) =g. (2.3)

i=1
If such an R-linear combination of elements of F exists, then g(x1, ..., x;) is called linearly

dependent of F over R.

Note that if R is a field, the two notions of linear independence given above are equivalent.
In a ring R which is not a field, however, a set of polynomials F U {g} can be linearly
dependent whereas g still is linearly independent of F over R. We will make use of this
difference in Section 5.1.

Now we have found a criterion whether an additional equation gives additional information
on the solutions. That is, if the additional equation is linearly independent of the previous
ones, we obtain further information using it. Unfortunately, this does not tell anything
whether we can really determine the solutions. A major interest of this thesis is solving
such systems of equations. Special systems of equations which can be solved efficiently
are systems of dimension zero. We are going to define these systems now. Solving them
also forms an important step in the analyses in the method of Coppersmith which will be
presented in Section 2.3.

Let us regard the following system of £ € N equations in [€ N variables over a field F
fl(l’l, e ,ZL'[) =0

: (2.4)
fk(l‘h...,xl) = 0.

20 CHAPTER 2. MATHEMATICAL BACKGROUND

Definition 2.2.3
The system (2.4) is called system of dimension zero iff it has a finite number of solutions
in the algebraic closure F of IF.

In our analyses we will often encounter systems of multivariate polynomial equations in Z,
not in any field. For our analyses, however, we can consider them as equations over Q. If
the given system is zero dimensional when regarded as system in Q, then the number of
solutions (in Q) is finite. Thus, the number of solutions which are elements of Z is finite
as well. They can be determined by determining all solutions in the algebraic closure of Q
and then just taking the ones in Z which we are searching for.

In what follows we will discuss two methods how to determine the solutions of zero dimen-
sional systems, namely, Groebner bases and resultants. First of all, we need to introduce
some additional notation.

If we consider e. g. division algorithms operating on polynomials, we need to decide which
monomials to consider first. That is, we need an ordering of monomials.

Definition 2.2.4
A monomial ordering on a set of monomials * = [[_, %, oy € Ny, is a relation < on
N}, satisfying:

1. < is a total (or linear) ordering on N}, namely, it is reflexive (@ < «), transitive
(a < 3,8 <y = a<+)and antisymmetric (a < < a = a = ().

2. Ifa< B and vy €N), then o +v < 3 +7.

3. < is a well-ordering on N, i.e. every non-empty subset of N}, has a smallest element
with regard to <.

We give some standard monomial orderings as well as other orderings which will come in
useful later.

Example 2.2.5
Let o = (aq,...,q0),8=(B1,...,0) €N, l € N and |af := 22:10%-

1. Lexicographical ordering
It is o > e (8 if the leftmost non-zero entry of o — [3 is positive, and o = 3 if a« — (3
denotes the zero vector. This definition implies 1 > ... > x;. Allowing to permute
the variables, that is setting ¢ = Hﬁzl xz(l) with a permutation v, we obtain a
different lexicographical ordering. Unless stated otherwise, we assume xy > ... > x;.

2. Graded lexicographical ordering
It is o >gpex O if || > |B| or |a| = |B] and a >jex (. Further, o =gpjex [if & =jex S

3. Graded reverse lexicographical ordering
It is @ >greviex B if || > |B] or |a| = |8 and in o — 3 € Z' the rightmost non-zero
entry is negative.

2.2. ALGEBRAIC METHODS 21

4. Inverse graded lexicographical ordering

It is & Zjnyer B if @ <griex B. Note that although we call this construction “ordering”,
it actually is not an ordering according to our definition. We do not always have a
smallest element in any non-empty set. However, we do have a largest element in
any set as the graded lexicographical ordering fulfills the definition of a monomial
ordering. Furthermore, when using this “ordering” we will only deal with finite sets
of monomials. In those sets, we can determine a smallest element. This suffices for
our applications.

With regard to monomial orderings one can define certain distinguished monomials and
terms in polynomials.

Definition 2.2.6

For « € N} and & = (zy,...,3;) let 2* denote [[._, 2. Let f(z1,...,1) = 3., car® be
a non-zero polynomial in R|xy,...,x;]. Let < be a monomial ordering. Let & denote the
maximum of all a occurring in f.

Then LM (f) := x* is called the leading monomial of f, and LC(f) := c4 is called the
leading coefficient of f. Together, LT(f) := czz® = LC(f)-LM(f) denotes the leading
term of f.

So far we have defined systems of equations of dimension zero. The system itself is described
by a set F of polynomials. We can add as many multiples hf, h € R[zy,...,2;] of
polynomials f € F to F as they have at least the same solutions as f and, therefore, do not
change the set of common solutions. Furthermore, we can include any linear combination of
elements of F. By this, we get a more general description of the given system of equations.
This is captured by the notion of an ideal.

Definition 2.2.7
Let I C Rlzy,...,x|. Then I is called an ideal if

1.0el
2. If f,ge I, then f —g e,
3. If fel and h € Rlzy,...,x, then hf € I.

For a given set of polynomials {gi, ..., gx} let (g1, ...gx) := {Zle higi,hi € Rlz1, ..., 2]}
denote the ideal defined by these polynomials.

Further, if for any f,g € R[z1,...,x;] the fact that fg € I C R[xy,..., ;) implies f € T
or g € I, then I is called a prime ideal.

Note that the set {};crhsf | hy € Rlz1,...,z]} forms an ideal. We call it the ideal
induced by F and denote it by (F). Thus, the solutions we are searching for correspond
to the set of joint solutions of all polynomials in the ideal (F).

22 CHAPTER 2. MATHEMATICAL BACKGROUND

Definition 2.2.8
Let fi,..., fx be polynomials in R|xy,...,x;|. Let I C Rlxy,..., x| be an ideal. Then the
set

V(flv'-'afk) = {(ala'-'al) | fi(ala"'aal) =0 for all 1 <1< k}

is called the affine variety of fi, ..., fr. Analogously, the set
V() :={(a1,...a) | flar,...,aq;) =0 forall f €}

is called the variety of the ideal I.

A variety is said to be of dimension zero if it comprises only finitely many elements. A
variety of dimension zero, thus, corresponds to a system of dimension zero.

Starting with a system of dimension zero, let us have a look at how we can determine its
solutions. One method makes use of resultants. We recall their definition and some basic
properties here to see how they can be used.

Definition 2.2.9

Let fi(z1,...,2) == >y ai(za,...,z)xt and fo(xr,...,21) = Y i obi(2a, ..., x)x} be
two polynomials in R|xy,...,x;]. Then the resultant of f; and f, with respect to x; is
defined as the determinant

Am bn
Amp—1 A, bn,1 bn
Am—1 e bnfl
. . Am . . bn
Res:rl (fl; f2) = det App—1 b1
Qo bo
Qo b()
Qo bo
n CO;],lmnS m CO‘IrllmIlS
Remark that a; = a;(z2, ...,x;) and b; = b;j(z2, ..., x;) denote polynomials in Rz, . ..,z
The resultant is a polynomial in R[zs, ..., x|, that is, a polynomial in only [— 1 variables.

It has the following properties which we only quote from [CLO97].

Lemma 2.2.10 (J[CLO97], Section 3.6)
Let fi(xq,...,x;) and fo(z1, ..., 7)) € Rlz1,..., x| be two polynomials with positive degree
in x1. Then

1. Res,, (f1, f2) is in the first elimination ideal (fi, fo) N R[za, ..., x].

2.2. ALGEBRAIC METHODS 23

2. Resy, (f1, f2) = 0 iff fi and f, have a common factor in R[z1,...,x;] which has
positive degree in x1.

3. If (Zy,...,T;) denotes a common zero of fi and fs, then also
RGSII (fl, fg)(fg, c. ,i’l) =0.

These properties already indicate how we can make use of resultants to solve a given
system of [polynomial equations in R[zy,...,x;]. Whenever we combine two equations
in [variables, we obtain a new equation in [— 1 variables. Therefore, if we combine all
equations with the first one, we obtain [— 1 new equations in [— 1 variables. We can iterate
this process until we have only one equation in one variable. If R denotes a field or the
ring of integers Z, which is the case in most of our applications, we can solve the univariate
equation. Plugging the result into a bivariate equation constructed one step before, this
equation becomes univariate. Then it can be solved as well. By successively substituting
all the values which we have obtained, we can determine the solutions of the given system
of equations. The following scheme illustrates the process of successively computing the
resultants:

;;EZ”Z) Resg, (f1, f2) = fi2

: Y : }Resxz_l(f(zfz)(zq)? fa—2y) = fu—1y- (2.5)
' Resq, (f1, f1) =: fu

fl('rla ce. ,l’l)

Problems during the computation might occur if one of the resultants becomes zero. This,
however, violates the precondition that our system is of dimension zero.

Remark that we have just considered systems of [equations in R[zy,...,x;]. We can, of
course, extend this method to systems of k£ € N equations. Then it is k > [as otherwise we
would not have a system of dimension zero. Computations can be performed analogously.
However, resultants with value zero may occur. This does not pose any problems as the
system is zero dimensional. This ensures that there will be at least [non-zero polynomials
in [variables. It might be necessary though to compute resultants using other pairs of
polynomials.

Let us have a look at the running time of computing roots of polynomials by successively
computing resultants. We again consider a zero dimensional system of [equations in [
variables. Let 0 denote the maximum total degree occurring in any of the equations.
Thus, the maximum total degree of any of the coefficients of % in any of the f; is also d.
Consequently, the resultant Res,, (f1, f;) = fi, is a polynomial of total degree smaller than
or equal to §2. Tterating this process, the total degree of Resy, | (fu—2)u-1), fu—21) = fu-1y
is smaller than or equal to 627" The major step in the resultant computation is the
determinant calculation which has running time cubic in its dimension. That is, in the
i-th iteration, the computation complexity is O((I — i)6*?"). By some rough estimates
the general running time of determining the solutions is then O(I26%2'). This is double

24 CHAPTER 2. MATHEMATICAL BACKGROUND

exponential in [and, thus, not efficient for a non-constant number of variables.

Now we present the second method to solve systems of equations of dimension zero. This
method is not based on the system of polynomials F itself but on the ideal (F) defined
by them. The same general ideal can be described in many different ways. Here we give
a special description of an ideal. In what follows, we will see how this "good description”
helps to determine solutions of the equations.

Definition 2.2.11
Let I be an ideal. A finite subset G = {hy,...,h,} of I is called a Groebner basis if

(LT(hy),...,LT(hy)) = (LT(I)) .

A minimal set with this property is called minimal Groebner basis.

If not stated otherwise, we will compute Groebner bases with respect to lexicographical or-
dering. In the context of this work we often encounter systems of equations S = {g1,...,gx}
which we would like to solve. When saying that we compute the Groebner basis of S, we
implicitly assume to construct the ideal I of S and then to compute its Groebner basis.
Groebner bases have several advantageous properties compared to arbitrary bases of ide-
als. Here we concentrate on those properties that help us to determine solutions of a
system of equations. By a Groebner basis G of an ideal I C R[zy,...,x;] computed
with respect to lexicographical ordering we directly get the Groebner bases of the ideals
I, :==1NR[zjs1,...,x, the so called j-th elimination ideals.

Theorem 2.2.12 (Elimination Theorem)
Let I C R[xy,...,x;] be an ideal and let G be a Groebner basis of I computed with respect
to the lexicographical ordering such that x1 > ... > x;. Then, for every 0 < j < [, the set

Gj =GN R[.fl?j+1, ce ,ZEl] (26)

is a Groebner basis of the j-th elimination ideal I; :== I N R[xj11, ..., Tl].

PROOF: To prove this, we have to show that for all j = 0,...,1 — 1 it is (LT(G,)) =
(LT(1,))

Let j € {0,...,1 — 1} be fixed. As all polynomials in G; are trivially also in [;, it is
(LT(Gy)) C (LT(L,)).

For the opposite inclusion let f € I;. To show that LT(f) € (LT(G,)) we have to show
that LT'(h) divides LT(f) for some h € G;. As f € I and G is a Groebner basis of I, we
know that there is a polynomial g € G such that LT (g) divides LT(f). As f € I, it follows
that LT (g) is a monomial in R[z;41,...,2;]. As G has been computed with respect to the
lexicographical ordering with weights 21 > ... > z;, any monomial which contains a power
of x; with ¢ < j is greater than all monomials not involving any of these variables. Thus,
all monomials of ¢ are elements of R[z,41,...,2;]. As a consequence, g € R[zj1, ...,
and, thus, g € G;. This concludes the proof. |

2.2. ALGEBRAIC METHODS 25

The Elimination Theorem thereby helps us to structure the elements of an ideal I. If
the ideal I contains a univariate polynomial in x;, a univariate polynomial will also be
contained in G. Analogously, if contains a polynomial f in z;q,...,2;, then a polynomial
in zj41,...,2; is also part of G. On the assumption that for all j = 0,...,0 — 1 the set
G; \ Gj41 is not empty, the Groebner basis directly gives us a sequence of polynomials
g1, ..., g; such that g; is a polynomial in x;, ..., 2;. We can then calculate the solutions by
solving a system of equations of the following structure:

gi(z1,...,x)) = 0
(2.7)

Gi—1(xi—1,7) = 0
gl<£li'l> = 0

This system of equations can be solved easily. First, we calculate the solution Zz; of
gi(z;) = 0. This is a univariate equation over the integers and can be solved efficiently by
standard techniques like Newton iteration ([SB02|, Chapter 5). Then we substitute z; by
Z; in g;_ and obtain a univariate equation in x;_;. We iterate this process until we have
calculated all solutions as solutions of univariate equations. Hence, the problem can be
solved efficiently.

To apply this method, however, we have to ensure that G; \ G411 # 0 for all values of j.
This fact is implied by the zero dimensionality of V'([).

There are various algorithms to compute Groebner bases of ideals which are adapted to
different types of ideals or orderings. They differ with regard to efficiency. The original
algorithm to compute a Groebner basis was given by Bruno Buchberger [Buc65, Buc06]. If
R is Noetherian, i.e. in any ascending chain of ideals the ideals are equal from some point
on, then by Buchberger’s algorithm a Groebner basis is computed in finitely many steps.
The algorithm, however, includes several superfluous computations. In 1993, Jean-Charles
Faugére et al. developed an algorithm called FGLM to compute Groebner bases more ef-
ficiently [FGLM93|. With this algorithm it is further possible to switch between orders.
Namely, the Groebner basis can be computed with respect to any order. A transformation
is applied afterwards to get back to the lexicographical ordering we need in our application.
This is helpful as Groebner bases with respect to graded orders often perform better.

In 1999, Jean-Charles Faugere presented a different algorithm, F4 [Fau99|, which is again
based on Buchberger’s algorithm but leaves out several unnecessary computations. By
this, the algorithm becomes more efficient. Some years later, Jean-Charles Faugeére again
improved on his algorithm. The new algorithm F5 [Fau02] eliminates all superfluous com-
putations but imposes some additional constraints. These two algorithms are more adapted
to graded reverse lexicographical ordering. They are, thus, more efficient but do not include
the step of transforming a Groebner basis with respect to one ordering into a Groebner
basis with respect to a different one. An elementary algorithm which provides exactly this
step is the Groebner Walk by Stéphane Collart et al. [CKM97|.

26 CHAPTER 2. MATHEMATICAL BACKGROUND

Unfortunately, the running time of none of the algorithms to compute a Groebner basis is
completely understood. An upper bound on the calculation of a Groebner basis of some
ideal I = (f1,..., fi) C Flz1,..., 2] with deg(f;) < 6 is given by 62°". This bound is
proven to be strict in [MM82]. The worst case complexity of computing a Groebner basis
is, thus, double exponential in the number of variables. For several other ideals of more
practical interest better bounds like §°®) have been shown [Laz83].

Note that these bounds are only given for ideals in F|xy, ..., ;] for a field F. This, however,
does not pose any problems. Although we mainly have polynomials with coefficients in
Z, we can take any field like Q comprising Z and perform the computations there. If the
number of elements in the variety is finite, one can just choose the ones which are also
elements of Z afterwards. Note that the set of solutions of a system of dimension zero can
be described as a set of solutions of a system of the structure given in (2.7). Namely, by a
system of equations in which each equation introduces a new variable. A univariate equa-
tion of degree ¢ has at most ¢ roots in Q. Consequently, the number of solutions in Q is
polynomial in the maximum total degree § of polynomials in a Groebner basis. Therefore,
for a constant number of variables, the correct solutions can be found efficiently. This is
the case in all our applications.

Up to now we have considered systems of equations in R[zy,...,z;]. That is, all the
equations are elements of the same polynomial ring. This includes the cases R = Z and
R = Zy for some N € N. Namely, we can analyze systems of modular equations. In the
context of this thesis, however, we will also encounter systems of modular equations with
different moduli, such that f;(z1,...,2;) =0 (mod N;),i=1,...k, and ged(N;, N;) = 1 if
1 # 7. We have to apply different techniques to determine the solutions of such a system. A
possible way to combine these equations is by Chinese Remaindering which is described e. g.
in [Has88, Sho05]. The resulting polynomial can then be analyzed as a single polynomial
in some polynomial ring.

Theorem 2.2.13 (Chinese Remainder Theorem)

Let Kk € N. Let w € N, w > 1. Fort = 1,...,k let N; € N be pairwise relatively
prime numbers, and let fi(xy,...,x;) € Zn,[21,...,2;] be polynomials such that at most
w different monomials occur in any of the polynomials.

Then there exists a unique polynomial f(xy,...,x;) modulo M := Hle N; such that

flxy,....x) = filzy,...,7;) (mod N;). (2.8)
The polynomial f(x1,...,x;) can be determined in time O(wlog® M).

PROOF: Let M = Hle N;, M; = % and M/ be the inverse of M; modulo N; for i =
1,..., k. The existence of such an inverse is guaranteed by ged(M;, N;) = 1. Then

k
f(xla s ,Q?l) = ZMZlefl(xh s ,.Tl)
=1

2.3. LATTICES 27

is the desired polynomial. If we look at f(xy,...,2;) modulo N; for j € {1,...,k}, all
summands with index i # j cancel out (as N; divides M;) and M;M;f;(xy,...,x) =
fi(z1,...,2;) (mod Nj).

Now suppose that g(z1,...,x;) is another polynomial fulfilling the required conditions.
Then this implies f(z1,...,7;) — g(x1,...,2;) = 0 (mod V;) for all ¢ = 1,... k, and,
therefore, also f(z1,...,2;) = g(x1,...,2;) (mod M).

Multiplication modulo M and calculating the inverses by the Extended Euclidean Algo-
rithm can be performed in time O(log? M). Determining all coefficients of f then results
in a running time of O(wlog® M) for the complete algorithm. |

Note that in case of univariate polynomials f;(z) € Zy,[z] the maximum number of mono-
mials w corresponds to the maximum degree ¢ of any of the polynomials. More precisely,
we have w < 9§ + 1.

2.3 Lattices

Problems derived from public key encryption or factoring can often be described as mul-
tivariate equations in the secret parameters, sometimes modular, sometimes over the in-
tegers. KEquations of this type can be linearized by introducing new unknowns for any
unknown monomial. If the unknowns are small enough, solutions can then be determined
with methods used in the theory of lattices. Thus, we will give a brief introduction to
lattices here. For a more thorough introduction we refer the reader to [MGO02].

For our purposes it is sufficient to consider only integer lattices. However, analogous
definitions can be made over the reals.

Definition 2.3.1
Let d,n € N, d <n. Let vq,...,vq € Z" be linearly independent vectors. Then the set of
all integer linear combinations of the v; spans an integer lattice L, i.e.

d
L= {Z%Vi | a; EZ} .

i=1
Vi

We call B = : a basis matrix of the lattice L, the value d denotes the dimension
Vd

or rank of the lattice. The lattice is said to have full rank if d = n. The determinant

det(L) of a lattice is the volume of the parallelepiped spanned by the basis vectors.

If L has full rank, the determinant of L can be calculated as the absolute value of the
determinant of its basis matrix B. Note that the determinant det(L) is invariant under
unimodular basis transformations of B. Equivalently, a lattice L can be defined as a
discrete additive subgroup of Z".

Let us denote by ||v|| the Euclidean ¢;-norm of a vector v. Hadamard’s inequality [Mey00]
relates the length of the basis vectors to the determinant.

28 CHAPTER 2. MATHEMATICAL BACKGROUND

Lemma 2.3.2 (Hadamard)

Vi
Let B = : € Z"",n € N, be an arbitrary non-singular matrix. Then

Vn

det(B) < [JIIvill -
i=1

The successive minima A;(L) of the lattice L are defined as the minimal radius of a ball
containing ¢ linearly independent lattice vectors of L. In a two-dimensional lattice L, basis
vectors by, bg with lengths ||by|| = A1 (L) and ||bs|| = A\y(L) are efficiently computable via
Gaussian reduction.

Theorem 2.3.3

Let vi,va € Z™ be basis vectors of a two-dimensional lattice L. Then the Gauss-reduced
lattice basis vectors by, by can be determined in time O(log®(max{||v1]|,||va||}). Further-
more,

[b1|| = Ai(L) and ||bz|| = A2(L).

Information on Gaussian reduction and its running time can be found in [Mey00].
A shortest vector of a lattice satisfies the Minkowski bound, which relates the length of a
shortest vector to the determinant and dimension of the lattice.

Lemma 2.3.4 (Minkowski [Min96])
Let L be an integer lattice with basis matrix B C Z**". Then L contains a non-zero vector
v with

Iv]] = M(L) < Vddet(L)7 .

The question remains how to find these small lattice vectors.

In 1982, Arjen K. Lenstra and Henrik W. Lenstra Jr. and Laszl6 Lovasz [LLL82| introduced
a way to efficiently determine an approximate shortest vector. They compute a new basis
for the lattice in which several conditions are imposed on the vectors.

First, recall the Gram-Schmidt orthogonalization process. Given a set of linearly inde-

pendent vectors vq,...,vq the orthogonalized vectors vji,..., v} are recursively defined
by
i1 .
Vi =V — E Vi with p;; = (vi, vj)
i- 1 Ml] J /~’L1,] (V* V*) .
j=1 377

The construction given by Arjen K. Lenstra and Henrik W. Lenstra Jr. and Laszl6 Lovasz
modifies this technique. Iteratively sets of Gram-Schmidt orthogonalized vectors are com-
puted and vectors are swapped if they do not fulfill some given conditions concerning their
length. This results in a so called LLL-reduced basis.

2.3. LATTICES 29

Theorem 2.3.5 (LLL [LLL82])
Let L be a d-dimensional lattice with basis vy,...,vq € Z". Then the LLL algorithm
outputs a reduced basis by, ..., bgq with the following properties:

°]uij‘géfor1§j<i§d,
o 165 + pis_bi [P > S, 2 for 1 < < d

The running time of this algorithm is O(d*n(d+10g buax) 10g binax), Where bya, € N denotes
the absolute value of the largest entry in the basis matrix. The value J is chosen in (i, 1],
in the original work it is § = %.

The running time is the running time of the so-called L? algorithm, an efficient LLL version
due to Phong Nguyen and Damien Stehlé [NS05].
From the basic properties further conditions on LLL-reduced bases can be derived.

Lemma 2.3.6
Let bq,...,bq be a basis output by the LLL algorithm. Then it holds that

I|bs|| < 2% det(L)1.

For a proof of the theorem and the lemma compare [LLL82].

Another property of an LLL-reduced basis which is especially useful in multivariate settings
is given by the following lemma stated by Charanjit S. Jutla in [Jut98|:

Lemma 2.3.7
Let by, ...,bgq be a basis output by the LLL algorithm. Then for i < d it holds that

l'
\mez%(wﬂvﬁ

bd—i

max
The value b, denotes the largest absolute value in the basis matrix.

The LLL algorithm only calculates an approximate shortest vector. There are other algo-
rithms with which we can deterministically compute a shortest vector of a lattice L. They
work on the Gram-Schmidt orthogonalization of a given lattice basis and enumerate all lat-
tice vectors shorter than some bound A > A(L). Such algorithms were introduced by Ravi
Kannan [Kan83| and Ulrich Fincke and Michael Pohst [FP83]. However, the running time
of these algorithms is exponential. Even given as input an LLL-reduced basis the running
time of Fincke and Pohst’s algorithm is 2°@*). The worst case complexity of Kannan’s
algorithm is 93¢ +o(d) [HSO07]. Here, d denotes the lattice dimension. We state these results
ignoring multiplicative factors which are polynomial in the size of the lattice basis. During
this thesis, we will use the LLL algorithm as it works well enough for our purposes. This
way, we can develop algorithms with polynomial running time.

30 CHAPTER 2. MATHEMATICAL BACKGROUND

Small solutions (Zy, ..., ;) of linear modular multivariate equations

flxy, ... ;) = Zaia:i =0 (mod N)

can be determined by shortest vector algorithms. The idea is to embed the given infor-
mation into a lattice. That is, define a lattice as the set of solutions of f(z1,...,2;) =0
(mod N). Then the set L := {(x1,...,2;) € Z' | f(x1,...,2;) =0 (mod N)} is indeed a
lattice. First, as a subset of Z', it is discrete and the addition of elements is associative.
Second, as f is linear, it is f(0,...,0) = 0 (mod N), thus, (0,...,0) € L. Further, if

(x1,...,2;) € L, then f(xy,...,2)) =0 (mod N) & —f(x1,...,2;) =0 (mod N) Sl

f(=z1,...,—x;) = 0 (mod N). Consequently, (—zi,...,—x;) € L. Moreover, L is

closed under addition because if (x1,...,2;),(y1,...,u) € L, then f(xy,...,2) =0 =
f linear

f(y1,...,y) (mod N)and, thus, f(x1+y1,...,z+y) = flay,...,x)+f(y, ..., q) =

0 (mod N). Note that we require f to be a linear polynomial as lattices are linear struc-
tures.

If the solution of f(xy,...,2;) =0 (mod N) we are searching for is small enough, it cor-
responds to a shortest vector in the lattice L. Without loss of generality we assume q;
to be invertible modulo N. (Otherwise, we can determine a factor p of N, analyze the
two equations f(z1,...,2;) =0 (mod p) and f(z1,...,2;) =0 (mod %), and combine the
results.) Let

1 —alal_l

1 —al_lal_l
N

Then all integer linear combinations of the row vectors of B which we denote by (B)
form the lattice L. We will briefly show this. Let (xi,...,2;) € L and t defined such
that —a; ' f(21,...,2) = tN. Then (21,...,27) = (z1,...,2-1,—t)B. Consequently,
L C (B). Now, let b; = ((b;)1,...,(b;);) denote the i-th row vector of B. Then for
i=1,...,0—1itis (by); = 1,(b;); = —a;a; " and (b;); = 0 for all j ¢ {i,[}. It follows
that f((b;)1,..., (b)) = a; — a;a;'a; = 0 (mod N). Tt is (b;); = N and (b;); = 0 for
j=1,...,1—1. Then f((b;)1,...,(b;);) =0 (mod N). Therefore, all b; belong to L. As f
is linear, the same holds for all linear combinations of the basis vectors b;. This results in
(B) C L. Thus, (B) = L and, as the basis vectors b; are linearly independent, B is a basis
of L. Then we can determine an approximate shortest vector of L by lattice reduction of
B as described previously.

Let us consider on which conditions this method is going to work. Minkowski’s condi-
tion (2.3.4) states that the norm of a shortest vector is smaller than or equal to v/ det(L)7.
As B is an upper triangular matrix we can easily determine det(L) = N. Thus, we can
determine (zq,...,x;) if its norm is smaller than or equal to VINT. Let X; denote an
upper bound on |z;], i.e. |7;] < X;. We know that [[(Zy,...,7)| < [|(X1,...,X)|] <

2.3. LATTICES 31

Vimax{X;}. This gives the stronger condition max{X;}! < N. For unknowns of equal
size this is the same as H§:1 X; < N. If the sizes of the unknowns are imbalanced, the
same result can obtained by adding weights in the lattice basis. For more details con-
sider [May06].

If f is not a modular equation but an integer one, we can proceed analogously. The basis
matrix B is then constructed as before but without the last row which corresponds to the
modular reduction. As the basis matrix B is no longer a square matrix, the calculation
of the bound becomes more complicated. An alternative is to choose a large coefficient in
the integer equation and regard it as a modular equation modulo exactly this coefficient.
Then the analysis of the modular case can be reused.

This technique can be generalized to non-linear equations f(zy,...,2;) = 0. For the
analysis we just insert a linearization step before defining the lattice. Then we can proceed
analogously. As an example on how linearization can be used in practice, let us have
a look at Michael Wiener’s attack from 1990 [Wie90]. Michael Wiener used continued
fractions to determine the private RSA exponent d if its absolute value is smaller than
one fourth of the public modulus, i.e. |d| < N 7. The same bound can be achieved via
linearization [May06, Kat01].

Example 2.3.8
We analyze the RSA key equation ed = 1 (mod ¢(N)) for known values e and N, but
unknown factorization of N = pq and unknown d. The factors p and q are of equal bitsize
with p < q. As we do not know the modulus in this case, we first write the equation as an
integer equation

ed—k(N—p—q+1)—1=0.

Then we take the known value N as new modulus and linearize by setting x; := d and
x9 = k(p+ q—1) — 1. The resulting equation is

f(z1,29) :=ex; + 22 =0 (mod N).

1 e<p(N)
Let d < %N“. Then k(p+q—1)—1 < k-3p < 3N2"® because k = % < ﬁd <
d < N* p < Nz as the smaller factor and p and q of approximately equal size. We
would like to determine the solution via the presented technique, namely, by constructing
the corresponding lattice L and calculating a shortest vector in it. Thus, there are two
conditions on which we can determine the target values. First, they have to correspond
to a shortest vector in the lattice L. This is taken as a heuristic assumption. The second
condition is necessary for the first one and imposes some size constraints: %N a.3Nzte < N
which is equivalent to a < %.
Let x, and Ty be the solutions we have determined. Then we directly get the private
exponent d = 1. To determine the factorization some additional computations are needed.
First, k is calculated as k = %, then p + q is calculated as p+ q = W Then p and
q can be determined as roots of z* — (p + q)z + N = 0.

32 CHAPTER 2. MATHEMATICAL BACKGROUND

When linearizing equations, however, a lot of information on the monomials gets lost. In
Example 2.3.8 the variable x; corresponds to a single variable of the original equation, but
Zo is a function of several variables of total degree two.

As an even worse example of loosing information take the simple equation f(z) = z?+z+A
(mod N) for known values A and N. Let z denote a root of f. By linearization we derive
the equation f(z) = x; 4+ z2 + Azs (mod N). From the above analysis we know that all
solutions (Z1, Zg, Z3) with |Z1] < X, |Z2| < X5 and |Z3] < X3 can be determined which
fulfill X;X>,X3 < N. Let |Z] < N* Then we can set X; = N?**, X, = N® and X3 = 1.
The bound in this case is |z| < N 3. However, we are only interested in solutions with
x1 = x3. Thus, it is likely that the given bound can be improved if we take the additional
knowledge into account.

The basis for these more elaborate analyses is an algorithm which Don Coppersmith
presented in 1996 [Cop96b, Cop97|. With the help of this algorithm and some further
ideas, Dan Boneh and Glenn Durfee improved Michael Wiener’s bound to the value of
0.292 [BD99]. We will not look at their analysis in detail. However, the algorithm in-
troduced by Don Coppersmith will be of use for the analyses we will do in the following
chapters.

Therefore, we will present it in what follows. In the algorithm, lattice reduction methods
are used to solve multivariate modular and non-modular polynomial equations. The basic
idea is to construct sufficiently many polynomials having the same root over the integers.
Then a univariate polynomial with the correct solutions over the integers can be deter-
mined by the methods presented in Section 2.2. Throughout this thesis we will refer to
this method as Coppersmith’s method or Coppersmith’s algorithm.

The modular univariate variant of Coppersmith’s method can be stated as follows:

Theorem 2.3.9 (Coppersmith [Cop97])
Let f(x) be a monic polynomial of degree § € N in one variable modulo an integer N
of unknown factorization. Let X be a bound on the desired solution xy. If X < N %,

then we can find all integers xy such that f(xy) = 0 (mod N) and |xo| < X in time
O(6°(6 +log N)log N).

As the method introduced by Don Coppersmith will serve us as a basic tool in many
of our analyses, we will describe its major steps here. Generally, given a polynomial
f(x) = Z?:o a;x' with a; € Z, the algorithm to determine all values |zo| < X such that
f(zo) =0 (mod N) consists of three steps:

1. Building a lattice L such that a solution to the polynomial equation is induced by a
reduced basis of a sublattice Lg.

2. Determining an LLL-reduced basis of the sublattice Lg and orthogonalizing it.

3. Determining an equation with the same solutions valid over the integers and solving
it.

2.3. LATTICES 33

We will now describe the steps in more detail.

Building a lattice L.
Let f(z) = Zf:o a;x* be the polynomial of which we would like to determine the roots
modulo N. Let A € N A > 2. Fori=0,...,0 —1land j = 1,...,A — 1 we define the
following set of polynomials.

fij(x) = 2" f(x). (2.9)
Throughout the thesis we will call the sets F of polynomials used to build the lattice shift
polynomials. The monomials m such that mf(x) is a shift polynomial are denoted by
shift monomials. The set Mon(F) is the set of monomials that occur in polynomials of
F.
Note that if f(x9) = 0 (mod N), then fij(zg) = 0 (mod N7). With regard to graded
lexicographical ordering, the largest monomial occurring in the set of all f;; is 2°*~!. For
each polynomial f;; let fi; be the coefficient vector containing the respective coefficients
of the monomials (1,z,z2%,...,2°*7!), i.e. the monomials are ordered from smallest to
highest degree. For example, the vector fo; is defined as (ag, a1, ..., as0,...,0).
Let F, := (forl ... f((;,l)(,\,l)T) and Fy, := Diag(N, ..., N*71) be a diagonal matrix
with powers of N on the diagonal. The k-th value on the diagonal of F,, corresponds

1
to the k-th column vector fijT of F¢ and equals N7. Let D = be a
Xf6)\+1

diagonal matrix with the inverses of the monomials evaluated on the upper bounds on its
diagonal.
In practice all values are multiplied by the least common multiple of all denominators so
that all calculations can be performed with integer values. This multiplication does not
influence the method. For ease of notation in the analysis, however, we work over the
rationals here.
Then we define a lattice L via a basis matrix B as follows:

B .= (o P]’?;) . (2.10)

For the desired solution xy we have f(x¢) = yoN with yo € Z. Let y be a variable denoting
this multiple of N. Further, we define the vectors

v=(1,z,2% ... s TR T —:v‘sfly’*l)
and
vo = (1, zo, x%, e ,:Ug’_l, —Yo, —ToYo, - - - —xg_lyo, —yg, e —:Ug_lyé‘_l))
Then 2 SA—1
voB = (1,20 %0 Y0 0,...,0) = to.

This implies that all vectors related to roots of the polynomials f;; are part of the sublattice
Lg of vectors with 6(A — 1) zeros in the end. Thus, our aim is to determine a basis of the
sublattice Lg from which we can get an equation which can be solved over the integers.

34 CHAPTER 2. MATHEMATICAL BACKGROUND

Determining a suitable basis.

In a first step, we determine a basis of the sublattice. In order to do so, we transform
the given basis B into another basis B’ of the same lattice. The basis B’ should allow
to extract a basis of the sublattice Lg easily. Thus, we aim at constructing vectors with
zeros in the last components. The other basis vectors restricted to these last components
should then form a basis of the lattice corresponding only to the last components. In the
best case they also form a basis of Z**~1). Such a basis can be transformed to the basis
of unit vectors. Thus, the determinant of the lattice only depends on the basis vectors of
the sublattice.

As a new basis of the sublattice we can use the basis vectors with zeros in the end shortened
to their first components. That is, we would like to transform the original basis to the

form
B = (Bs 0) (2.11)
* Iso-t)

where Bg is a basis matrix of the sublattice we are looking for, and * is some matrix with
entries which are not important for our purposes.

A lattice basis can be transformed to another basis of the same lattice by permutation of
basis vectors or adding multiples of one basis vector to another basis vector. This is, the
transformations we are allowed to make are unimodular transformations. For conditions
on which a basis can be transformed accordingly, compare Section 2.1. From now on we
only consider the basis Bg of the sublattice. We perform LLL-reduction on Bg to get a
new LLL-reduced basis Br.

Calculating the solution.

Having a basis Br of the sublattice Lg, we still need a further step in order to get another
equation which we can use to determine the solution. Therefore, we quote the following
lemma.

Lemma 2.3.10 (Coppersmith [Cop97])

by
Let L be a lattice and B = : be an LLL-reduced basis matrix of L. Further, let
by

D = det(L) be its determinant. Then the following holds:

(a) Any lattice element t with |[t|| < D%2~"7" is an element of the hyperplane spanned
by bl, Ce >bn71-

(b) Any lattice element t with |[t|| < ||by"|| for all j = k+1,...,n is an element of the
space spanned by by, ..., by.

2.3. LATTICES 35

PROOF:

(a) First, note that by combining the conditions of an LLL-reduced basis B given in
Theorem 2.3.5, we get Hbi* + ui(i,l)bi,1*| 2 > % Hbi,l*H2 = Hbi*H2 + % Hbi,l*H2 >
%Hbi,l*w & 2|bi*[]* > ||bi_1]|*. As by*,... by form an orthogonal basis, it is
D = det(B) =[]}, ||bi"||]. Combining these two results, we obtain

- n—i * n(n—1) x| |n
D<TI(V2)" "Iba'll = 2 |iby|
=1

—1

= ||bn*|| > Dw2™"T (2.12)
Hence, the precondition implies that |[t|| < |[bn"]|.
Now let us have a closer look at the vector t. Ast € L we can write t = ZLI a; b
with a; € Z. As the vectors by, ..., b, and by*, ..., b," span the same vector space,
we can also write t = 2?21 ¢;bi" with coefficients ¢; € R. Note, however, that
¢, = a, because b,* = b, — Z:.:ll nibi™. Consequently, it is |[t|| > |a,|||bn*||- The
inequality is only valid if a,, = 0 as ||t|| < ||bn"|| as well. This concludes the proof.

(b) From the preconditions we have |[t|| < ||by"||. By the proof of part (a) this implies
that t = Z?:_ll a;bj. That is, t is contained in the sublattice spanned by the first

n— 1 basis vectors. Iteratively repeating the argumentation of part (a), we can prove
that a; =0 for all i =n —1,...,k + 1. This results in the claim. |

To be able to apply Lemma 2.3.10 we orthogonalize Bg. Let By denote the orthogonalized
basis.

Now, let tg be the vector tg reduced to its first 6\ components. Let n correspond to the
dimension of the sublattice, namely n := d\. If the vector is small enough, namely, ||to]| <
det(L)%Z_(nzl), then to will be part of the hyperplane spanned by all but the last basis
vector b,,. Consequently, to is orthogonal to b,", i.e. 0 = (b,",tg) = Zfigl(bn*)iﬂf(—é.
Substituting zo by the variable z in this equation and multiplying with X°*~! we get
S (b)iy X171 = 0. This is a univariate equation valid over the integers. It can
be solved by standard techniques like Newton iteration (e.g. [SB02|, Chapter 5) or Sturm
sequences (|[McNO7|, Chapter 2).

Conditions on the existence of a solution.

As seen in the previous paragraphs a solution of the modular equation can be determined
on condition that the constructed target vector tg is small enough. Here we will determine
which are the conditions thereof. '

By construction we have |[to|| < VX as |z9| < X and, consequently, (2)" <1 for any i.
Therefore, applying the above lemma we get the condition

(n=1)
4 .

VA < det(L)n2” (2.13)

36 CHAPTER 2. MATHEMATICAL BACKGROUND

CSAGBA=1) _SA(A—1)
2

Calculating det(L) using the basis B, we derive det(L) = X N2 . Using this

and n = 0\, we get the condition

Vor < XN L
& X < N»o1.273(5)\) &,

To see what this condition implies, we can either plug in a specific value for A or compute the
limit with respect to A. In the first case, we obtain an exact bound and the corresponding
lattice to compute it. In the latter case, the bound we obtain is asymptotic. Here the
condition asymptotically becomes X < N 5. This bound is also obtained by directly
requiring

det(L) > 1. (2.14)

In the following, we will refer to this condition as simplified condition.

Performing exact calculations, for a given value of € > 0 we can determine a corresponding
value A(€) such that we can calculate all solutions z¢ if X < N 5~ using a lattice constructed
with respect to A > A(e).

In the case of the example f(z) = 2> + z + A (mod N), the asymptotic condition is
1Z| < N2. This is significantly better than the old bound of |Z] < N3 we have obtained
via linearization.

Coppersmith’s method can be generalized to multivariate equations f(zq,...,2;) = 0
(mod N) easily. To define the coefficient vectors, an ordering of the occurring mono-
mials has to be defined. Apart from that, decisions have to be made on which polynomials
to take as shift polynomials.

Shift polynomials in the multivariate case.

A general strategy on how to choose shift polynomials to build a lattice is described by Ellen
Jochemsz and Alexander May in [JM06]. The basic idea of this strategy is to determine
all monomials occurring in powers of the original polynomial f. These monomials should
form the set of all monomials which occur in the lattice construction. The shift monomials
are then defined to ensure this.

We will describe the approach in more detail. The polynomial f is assumed to be monic
and to have a non-zero constant term. Depending on a small value € > 0, a positive integer
A is fixed. Then for k € {0,..., A+ 1} and a value j the sets

! l
M, = U {fo”xf | fo“ is a monomial of fA
0<p<t i=1 i=1
l i
Hizl o
LM(f)k

are defined. The values of ¢t and (are chosen with respect to the specific equation and
sizes of the unknowns. The shifts derived from monomials with # > 0 are called extra

and is a monomial of f)‘_k}

2.3. LATTICES 37

shifts. Such extra shifts can also be applied to several variables.
Then the shift polynomials are defined as

. !
Hl'—l i k o

Jora(T1s) = 2= [(2,) for k= 0,000, A, and l_Izvz € My \ My -
LM(f) i1

Geometrically, this can be interpreted as follows. To any monomial Hézl x;" we can as-
sociate a point (ay,...,q;) € Z'. Applying this correspondence, we can associate a set of
points to any polynomial f. We just take the points corresponding to the monomials of
f- The convex hull of this set is defined as the Newton polytope of f. We denote the
Newton polytope by N(f). Then an enlarged and maybe shifted version of the Newton
polytope gives rise to the definition of the shift monomials. The shift polynomials are
defined such that the set Mon(F) corresponds to the enlarged and shifted version of N(f).

Having defined the shift polynomial set, we can proceed as in the univariate case. How-
ever, it is no longer sufficient to construct only one polynomial f,(x1,..., ;) € Z[xy, ..., 1]
which is valid over the integers. We need to be able to determine the solution efficiently.
A sufficient conditions of this is a zero dimensional system of at least [equations. Given
such a system, we can determine the solutions by the techniques presented in Section 2.2.
Note, however, that the system of equations we obtain is not necessarily of dimension zero.
Therefore, the general method is heuristic. Sometimes even fewer equations suffice. This
can be seen in the practical experiments in Chapter 6.

The bound obtained this way is

! = o .
T < N, for § = ZLgeiehn (2.15)
i=1 SN = Do K ([M| — [M) -

Coppersmith’s method over the integers.

In a similar manner Coppersmith’s method can be applied to multivariate polynomials over
the integers. Roots of univariate integer polynomials can be easily determined using e. g.
Newton iteration. However, as soon as we have more than one unknown we need further
equations to be able to determine the solutions efficiently. The system formed by the
original and the new equations should then be zero dimensional or have other properties
that allow to determine its solutions efficiently. In order to get further equations we can
again use Coppersmith’s algorithm [Cop96a, Cop97|. He described a provable method to
solve bivariate equations over the integers.

Theorem 2.3.11 (Coppersmith [Cop97])
Let f(x1,z5) be an irreducible polynomial over Z. Further, let X1, X, be bounds on the
desired solution (1, Z2). The value W denotes the absolute value of the largest coefficient

Of f(.??le, Z’QXz).

38 CHAPTER 2. MATHEMATICAL BACKGROUND

1. Assume f(x1,x2) to be of degree § € N in each variable separately. If X; X, < W%,
then we can find all integer pairs (Z1,Zs) such that f(z1,%2) = 0 and |z;| < X,
i = 1,2, in time polynomial in log W, 2°.

2. Suppose f(x1,23) to be of total degree 6 € N. If X;X, < W%, then we can find
all integer pairs (Z1,Z2) such that f(Z1,Z2) = 0 and |Z;| < X;, i = 1,2, in time
polynomial in log W, 29,

The proof of this theorem is similar to the proof of Theorem 2.3.9 in the univariate modular
case. However, the construction of a suitable basis matrix has to be slightly adopted.

Before building a basis matrix, the set of shift polynomials has to be chosen. In the
first case, the set of shift polynomials is defined as py;(z1, x9) := xiad f (21, 29) with i,5 =
0,...,\ for a suitable A € N. In the second case, it is defined as p; (1, 2) := zia)f(x1,)
such that 7 + 7 < A for a suitable A € N.

Note that in the modular case the right side of the basis matrix B given in (2.10) consists
of two parts, one part corresponding to the polynomials by containing their coefficients,
the second part corresponding to the moduli. In the integer case, however, there are no
moduli. Thus, we have to build the matrix using only the coefficient vectors of the poly-
nomials.

We present here one method to build a basis matrix in the integer case similar to the one
in [BMO5]. This is basically the method we will use for analyses in more complex cases in
the following chapters as well.

Let F denote the set of all shift polynomials and Mon(F) the set of all monomials occurring
in F. Let m be the monomial corresponding to the largest coefficient of f(x1 Xy, 22X5), | F]|

denote the number of shift monomials and my, ..., m z be an ordering of all shift mono-
mials such that the monomial m;m does not occur in the set of monomials of m; f(xy, x2)
for any j < i. Let w := |Mon(F)| be the number of monomials occurring in F and let
M|F|41, - - -, My De an ordering of the monomials of Mon(F) \ {mim, ..., mzm}. Further-
more, let M; denote the evaluation of m; in the values (X, X») with i = |F| + 1,...,w.
We set x := (myz141; - - - s M, mum, ..., myzm). Let D := Diag(M‘}lHl, ..., M;'). For any

polynomial p;;(x1,x2) let py denote the coefficient vector of the monomials in p;; ordered
such that pyx’ = p;j(71,22). Let F be the matrix consisting of the coefficient vectors
(psj)? for all p;; € F. Using these definitions, we define the lattice L via a basis matrix

M| F|+1
D .
F m
B = v
mim
0
mmm

Like in the modular case the basis matrix B is an upper triangular matrix. The diagonal
values due to F, however, are no longer derived from any moduli but correspond to a

2.3. LATTICES 39

(preferably) large coefficient of a shift polynomial. Furthermore, we can no longer take
advantage of powers of the initial polynomial f, but only multiply f with monomials to
obtain shift polynomials.

From this point on we can proceed in the same manner as in the modular case. We perform
lattice reduction on B. If the size conditions are fulfilled, we provably get a second equation
g(x1,2z2) in the two unknowns such that f and g form a system of dimension zero. Then
techniques like Groebner basis computations or calculation of a resultant presented in
Section 2.2 can be used to determine the solution.

In [BMO5]|, Johannes Blomer and Alexander May generalize this approach. They give
further constructions of shift polynomial sets and show that solving a modular univariate
polynomial equation with a composite modulus of unknown factorization can be reduced
to solving a bivariate integer equation. The shift polynomial sets they use, however, are
required to have a certain property. This property ensures that the newly determined
polynomial is coprime to the initial one.

In contrast to their construction, the monomial sets {mim, ... ,mzm} and Mon(F) we
use may have any structure. This allows to compute better bounds. On the negative side,
however, it might happen that a newly constructed polynomial is a multiple of the first one
or that both polynomials have a non-trivial common divisor. Then we do not get any new
information from the new polynomial. This implies that the solution cannot be recovered
efficiently. However, in practice, the method usually works even without being provable so
that this can be used as a heuristic. In more general cases of more variables or systems
of equations a heuristic is usually needed anyway. Hence, in our analyses, we would have
to include a heuristic even in the bivariate case. We will use this technique to analyze the
problem of implicit factoring in Chapter 6. For the description of this problem, however,
we need at least three variables.

Other variants to build a basis matrix and their analyses can be found in [Cop97, Cor04,
Cor07].

An application of this method to the problem of factorization with partially known factors
is given by Don Coppersmith.

Theorem 2.3.12 (|[Cop97| Theorem 5)
Let N be an n-bit composite number. Then we can find the factorization of N = pq in
polynomial time if we know the low order % bits of p.

Like in the modular case Coppersmith’s method can be generalized to multivariate equa-
tions over the integers in k£ > 2 unknowns as well. However, to solve equations over the
integers in more than &£ > 2 variables we need to determine more than one additional equa-
tion. One sufficient condition to be able to determine the roots is that we can determine
k — 1 new equations such that they, together with the original equation, form a system of
dimension zero. Then we can determine the solutions by successive resultant computation
or the use of Groebner bases described in Section 2.2.

40 CHAPTER 2. MATHEMATICAL BACKGROUND

In his work, Don Coppersmith includes the condition that suitable equations are generated
as a heuristic.

In 2007, Aurélie Bauer and Antoine Joux [BJ07| showed how this condition can be provably
achieved in the case of three variables. The drawbacks of their method, however, are an
increased running time and smaller bounds on the size of the solutions which can be
determined. A short description of their method is given in Chapter 6.

Due to the worse bounds and the fact that the heuristic approach usually works well in
practice, we will stick to the heuristic methods in the subsequent chapters.

Some examples of different attacks with Coppersmith’s method for which the heuristic is
practically verified are given in [BD99, JM06, JMO07, HMOS|.

However, different heuristics may be used as well. For example, Santanu Sarkar and Sub-
hamoy Maitra do not get a system of dimension zero [SM09| when analyzing the problem of
implicit factoring of two integers. Nevertheless, a Groebner basis of the set of polynomial
equations reveals the solution. Additional information on this will be given in Section 6.1.

Chapter 3

Solving Systems of Modular Univariate
Polynomial Equations

In this chapter we deal with the problem of solving univariate equations or systems of
univariate equations. Assume f(z) is an arbitrary univariate polynomial. Our aim is
to determine all values xy such that f(zo) = 0. If f(x) € Z[z] is a polynomial over the
integers (or rationals or reals), its roots can efficiently be found by Newton iteration [SB02]
or binary search.

Let us now consider modular polynomials f(z) € Zy[z], N € N. If N is prime or a prime
power, then again the equation f(x) =0 (mod N) can be solved using e.g. Berlekamp’s
algorithm [Ber67, Ber70, BS96|. In its basic form, however, the algorithm has a complexity
exponential in n, the number of factors of f(z). Mark van Hoeij improved the complexity
to a polynomial time complexity in n by using lattice reduction [vHO1|. The polynomial
complexity bound for this algorithm is given in [BvHKSO07|. Note that n is not necessarily
polynomial in the bitsize of N. In the sequel of this chapter we will without loss of
generality assume all given moduli to be composite.

For arbitrary moduli the best result known so far was given by Don Coppersmith (The-
orem 2.3.9). We briefly recall the result here. Let 0 := deg(f) be the degree of f. Then
all |zo] < N3 such that f(zo) = 0 (mod N) can be determined in polynomial time in
log(N) and 6. In [CopOl|, Don Coppersmith further argues that by this method the
bound cannot be improved for general polynomials. Let N = ¢* for a prime ¢ and set
f(x) := 23 + Dqx?® + Eq¢*x with D, E € Z. Any z, which is a multiple of ¢ clearly solves
f(zo) = 0 (mod N). For e > 0 the number of zy such that |zo| < N3t¢ = ¢N¢ and
f(zo) = 0 (mod N) is about 2N¢. That is, we have exponentially many such values zg
and cannot hope to find them with Coppersmith’s algorithm as the number of small roots
is bounded by the lattice dimension. Furthermore, the running time of the algorithm is
polynomial in the lattice dimension as well. That is, we cannot even output exponentially
many solutions in polynomial time.

Sometimes, however, we get additional equations with the same solution. The question
arises what happens then. Does this information help to determine larger solutions as
well? Instead of one equation, let us now consider the following system of k € N equations

41

42 CHAPTER 3. SOLVING SMUPE

with a shared solution xy. We define the problem of solving systems of modular univariate
polynomial equations (SMUPE-problem).

Definition 3.0.13 (SMUPE-problem)
Let k € N, 01,...,0, € N, and Ny,..., N, € N. Suppose N7 < Ny < ... < N,. Assume

fi(x),..., fr(x) to be polynomials of degree 01,...,0, in Zn,[z],...,Zn,[z], respectively.
Let
fi(z) = 0 (mod Ny)
fo(x) = 0 (mod Ny)
(3.1)

be a system of univariate polynomial equations.

Let X < Ny, X € R. Find all common roots x of (3.1) with size |xo| < X.

We would like to analyze up to which size of the unknown the solutions can be found in
polynomial time. This depends on the structure of the given set of equations. Without loss
of generality we assume that for all N; and Nj, i,7 = 1,...,k, it is either N; = N;, or IV;
and N; are relatively prime. In any other case we can determine factors of N; and N; by
calculating their greatest common divisor ged(N;, N;) = N;;. Then we can transform the
given equation into equations modulo these factors by the Chinese Remainder Theorem
(Theorem 2.2.13). More precisely, the equation f;(z) = 0 (mod ;) is equivalent to a

system f;;(z) =0 (mod N;;) and fi2(z) =0 (mod]]VVJ) Analogously, fj(z) =0 (mod N;)
is equivalent to a system f;1(z) = 0 (mod N;;) and fj2(z) = 0 (mod]]\\,[—JJ) Putting the

equations f;i(z) = 0 (mod Ny;), fia(z) = 0 (mod Nli"),fjl(a:) = 0 (mod Nyj), fj2(z) =0

J

(mod]J\\,]—J) into the system instead of f;(z) = 0 (mod N;) and f;(z) = 0 (mod N;), we
obtain a system with equal or coprime moduli. If this system contains a prime modulus
p, we can determine x(y by regarding only the equation with this modulus. Therefore, we
still assume all moduli to be composite.

To better analyze the system, we distinguish the following two cases: The subsequent
section deals with systems of equations of which at least two share the same modulus. The
case of mutually coprime moduli is analyzed in Section 3.2.

3.1 Solving Systems of Modular Univariate Polynomial
Equations with a Common Modulus (SMUPE1)

Often two equations fi(z) =0 (mod N)and fo(x) =0 (mod N) are sufficient to determine
all common solutions. Let us start with two examples where this is easy to see as the given
systems of two equations have a special structure. Both examples are derived from the

3.1. SOLVING SMUPE]I 43

context of RSA encryption. An unknown message m is encrypted by exponentiation by a
public exponent e to a known ciphertext ¢ = m® (mod N). Determining m corresponds to
finding the solutions of the equation f(x) :=2¢ —¢ =0 (mod N). Combining more than
one of these equations with the same root can lead to easy algorithms to calculate m.

Example 3.1.1 (G. Simmons [Sim83])

Let e1,e € N with ged(eq,e2) = 1 and N € N be composite. Let fi(x) := z® —m® and
fa(z) == 2% — m** be two polynomials in Zy[z|. Our aim is to find the common root m
of fi(x) and fa(x). To achieve this, we compute integers uy, ug such that uje; + ugeg = 1
with the help of the Extended Euclidean Algorithm. This gives us m = (m®)" (m®)"2
(mod N). The running time of this attack is polynomial in the bitlength of (eq,e3) as the
Extended Fuclidean Algorithm and exponentiation are.

In practice such equations occur in a plain RSA scenario in which the same message m
is sent to two users with coprime public exponents e; and e; and common public moduli
Ny = Ny = N.

In a different scenario, instead of sending the same message twice to different users, similar
messages can be sent to the same user.

At the Crypto’95 rump session Matthew K. Franklin and Michael K. Reiter presented an
algorithm to recover linearly related messages, both encrypted with the RSA public key
e=3and N.

Example 3.1.2 (Franklin, Reiter [FR95])

Let my and my = my + 1 be two unknown messages. And let ¢; = m3 (mod N) and
¢ = m3 (mod N) be their known RSA encryptions under the RSA public key (N, 3).
Then the messages can be recovered by calculating

o+ 20— 1 (my+1)3+2m3 —1
co—c1+2 (mp+1)P3—md+2

_3m} +3m? +3my
= 3m2+3m; +3
andmy = m;+1 (mod N).

= my; (mod N)

For any other affinely related messages m; and mqe = am; + 3, o € Z%,, 8 € Zn encrypted
under the RSA public key (IV, 3), the messages can be recovered in a similar way:

Blca +2ac; — 3°) B((amy + B8)* + 2a°mi — 3°)

a(ey — adey +26°) a((amy + B)3 — adm? + 263)

_3a38m3 + 302 32m? + 3aPmy
= 3a38m2 + 30232my + 33

and me = amp+ 0 (mod N).

= my (mod N)

This approach was generalized to other public exponents, more equations and relations of
different degrees by Don Coppersmith, Matthew K. Franklin, Jacques Patarin and Michael
K. Reiter in [CFPR96|.

44 CHAPTER 3. SOLVING SMUPE

In a first step, they relax the restriction on e and regard any two equations m{ = ¢
(mod N) and m§ = ¢ (mod N). Following the approach described in Example 3.1.2, one
can construct two equations P(m;) and Q(m;) such that Q(m;) = myP(m;) (mod N) us-
ing only the publicly known parameters. This computation, however, is quite complicated.

For larger exponents e, Don Coppersmith etal. pursue a different approach. Let again
m{ = ¢; (mod N) and m§ = ¢; (mod N) be encryptions of two unknown messages m;
and my related by a polynomial p(z) of degree deg(p) = d such that my = p(mq). We
transform these equations to m$ —¢; =0 (mod N) and p®(m;) —ca =0 (mod N). Then
my is a common solution of the two equations fi(x) := 2 —¢; =0 (mod N) and fa(x) :=
pé(z)—co =0 (mod N). Consequently, fi(z) and f(x) share a factor (z—my). Computing
the greatest common divisor ged (f1(z), fo(x)) (mod N) reveals this factor if it is the only
common factor and the computation does not fail. We will comment on both problems in
the subsequent paragraph with respect to more general equations. The running time of
this method is O(ed log*(ed) log?(N)).

Further extending the problem, one might have an implicit relation p(my, ms) = 0 between
my and my instead of the explicit one ms = p(my). The given equations are then multi-
variate and the analysis becomes more complicated. We will refer to this in Section 4.1.

Another interesting generalization will be the topic of the rest of this section. It is a
generalization from RSA polynomials to arbitrary univariate polynomials. Let fi(x) and
fo(x) € Zy[z] be polynomials of degree §; and 09, respectively. The goal is again to find
all solutions z(such that fi(zg) =0 = fa(29) (mod N). This system can be solved in the
same manner as the RSA equations given before. Just compute ged(fi(x), f2(x)) (mod N).
If both polynomials share exactly one common root (with multiplicity one), a linear factor
f(x) := ax + B is revealed. Thus, o = —fBa~! (mod N).

However, two problems may occur during the computation of a greatest common divisor.
First, the computation might be impossible. This happens whenever the leading coefficient
¢ of a polynomial which is computed by the Euclidean Algorithm is not invertible in Z .
Then ged(c, N) > 1, and we have found a divisor of N. Thus, we can split up the equations
modulo N into two equations modulo ged(e, N) and W]\;N) by the Chinese Remainder
Theorem. If the new moduli are prime, we can determine xy easily. Otherwise we can
restart the algorithm with smaller moduli. In the following we, therefore, assume that the
greatest common divisor computation always succeeds.

Even if successful, the result of the greatest common divisor computation might be a
polynomial g of degree d, greater than 1. In this case we cannot compute all possible

solutions of the system under consideration but only all solutions zy such that |z¢| < N .
These solutions xy can be determined by applying Coppersmith’s method to the greatest
common divisor polynomial g. Then further equations with the same solution might help
to reveal a factor of smaller degree.

3.2. SOLVING SMUPE2 45

3.2 Solving Systems of Modular Univariate Polynomial
Equations with Coprime Moduli (SMUPE2)

In Section 3.1 we have seen that given a system of modular equations a common solution
can usually be determined from any two equations with equal moduli. Therefore, we now
assume that no pair of such equations occurs in our system, i.e. we focus on the analysis
of univariate systems of equations with pairwise coprime moduli. Let us formally state
the problem of solving systems of modular univariate polynomial equations with mutually
coprime moduli (SMUPE2-problem). It is a special case of Definition 3.0.13.

Definition 3.2.1 (SMUPE2-problem)

Letk € N, 61,...,0, € N, and let N1, ..., N, € N be mutually coprime composite numbers
of unknown factorization. Suppose N1 < Ny < ... < Ny. Assume fi(x),..., fe(z) to be
polynomials of degree 6y, ...,0y in Zn, [z], ..., Zn,[x], respectively. Let

fi(x) = 0 (mod Ny)
fo(z) = 0 (mod Ns)

fe(x) = 0 (mod Ny)
be a system of univariate polynomial equations.

Let X < Ny, X € R. Find all common roots x of (3.2) with size |xo| < X.

Solving SMUPE2 is, thus, equivalent to determining all common solutions up to a certain
bound of a given system of modular univariate equations.

Johan Hastad [Has88| gave the following algorithm for solving the SMUPE2-problem.
Let 6 € N be the maximum degree of all polynomials occurring in the system, i.e.
§ := max;—1__;{d;}. One first multiplies the given polynomials with 2°~% to adjust their
degrees. Then one combines the resulting polynomials using the Chinese Remainder Theo-
rem to a univariate polynomial f(x) with the same roots modulo Hle N;. Applying lattice
reduction methods, Johan Hastad derived k£ > @ as a lower bound on the number of
polynomials for efficiently finding all roots zq with |zo| < N;. As f(x) is a polynomial of
degree 9, this bound can be easily improved to k > ¢ by directly applying Coppersmith’s

lattice-based techniques [Cop97] to f(z) (see e.g. [Bon99]).

An Approach with Better Polynomial Modeling

We give a different construction to combine all £ polynomial equations into a single equation
f(z) =0 (mod []L_, N;) in [MROS|. Instead of multiplying the polynomials by powers of z
like in Hastad’s approach, we take powers of the polynomials f;(x) themselves. This results
in the condition Zle 5%- > 1 for solving the SMUPE2-problem for all xy with |z| < Nj.
In case all polynomials share the same degree 9, this corresponds to the condition k& > .

46 CHAPTER 3. SOLVING SMUPE

For polynomials of different degrees, however, our new condition is superior. In particular,
a few polynomials of low degree suffice to calculate all joint solutions.

As an introductory example let us consider Coppersmith’s method (Theorem 2.3.9) for the
1

first equation fi(z) =0 (mod N;) in (3.2). This way, only small roots zo with || < N;*
can be found in polynomial time. By regarding further equations, this bound can be
improved until all solutions can be found eventually.

By Hastad’s algorithm in combination with Theorem 2.3.9 the condition k > ¢ with § :=
max;—1 _,{d;} is sufficient to solve a system of equations efficiently. However, this condition
is clearly not optimal as the following trivial example shows. Let Ny < ... < N4 and take
the following equations:

¥ = ¢ (mod Ny)
> = ¢y (mod Ny)
2> = 3 (mod Ns)
° = ¢4 (mod Ny)

Then k =4 < 5 =0, i.e. Hastad’s condition is not fulfilled. However, if we just take the
first three equations, we are able to compute all common solutions smaller than N;. This
indicates that we should take the proportion of higher and lower degrees of the polynomials
into account. Let us now change the given example a little bit into a non-trivial one so
that no subsystem of the equations fulfills the sufficient condition:

2 = ¢ (mod Ny)
2 = ¢ (mod Ny)
7° = ¢z (mod Ns)
2 = ¢4 (mod Ny).

The parameters k& and § as well as the IV; remain the same. Can we still determine all
solutions? We notice that we can transform the first equation by squaring into

° = 2c2° — ¢} (mod N?).

Applying Theorem 2.3.9 to this equation, we can find all solutions z(for which |zy| <

1
(Nf)% = N} holds. This is the same bound which we get for the solutions of the original
equation z° = ¢; (mod N;). We proceed with the second equation in the same way, then
multiply the two other equations by x and finally combine all the equations by the Chinese

Remainder Theorem (Theorem 2.2.13). By this we obtain

2% = a1(2c12% — &) + ay(2c00° — 3) + aswes + agrey (mod NZNZN3Ny),

where the a; are the coefficients from the Chinese Remainder Theorem, i.e. a; = 1
(mod N;), a; = 0 (mod N;), j # i. The above equation can be solved applying Cop-
persmith’s algorithm for z, with |zo| < (N2N2N3N,)s. This condition is fulfilled for any

3.2. SOLVING SMUPE2 47

zo with |zo| < Ny = (N8)s < (N2N2N3N,)s. Therefore, we can determine all solutions of
the above system of equations, although the condition k£ > ¢ is not fulfilled.

In order to generalize our approach, we make the following crucial observation. Let f(x)
be a polynomial of degree ¢. Let f(x) = 0 (mod N) for N € N, and let m € N. Then
g(x) := f"(x) =0 (mod N™). The solutions xy with |zg| < N of the two equations remain
unchanged. Moreover, with Coppersmith’s Theorem 2.3.9 we can determine those solu-
tions x for which the condition |zo| < N5 < |zo| < (N™)ms holds. Thus, Coppersmith’s
bound is invariant under taking powers of the polynomial f(x).

As opposed to our approach, in Hastad’s algorithm one does not take powers of the poly-
nomials but multiplications of polynomials with powers of x. This increases the degree of
the polynomial but leaves the modulus unchanged. Let f(x) be a polynomial of degree §
with f(z) =0 (mod N) for N € N. Then with v > § the equation g(z) := 27 °f(x) = 0
(mod N) contains all the solutions zy of f(z) = 0 (mod N) with |zq] < N. However,
applying Coppersmith’s method to determine roots of g(x) we only get roots x, with

|zo| < N % < N%. So obviously, Coppersmith’s bound is not invariant under multiplication
with powers of x. This explains why we obtain a superior bound on the size of the roots.
In the following analysis we will restrict ourselves to monic polynomials. If one of the given
polynomials f;(z) is not monic, either the coefficient of the leading monomial is invertible,
or we can find a factor of the modulus. In the first case, we transform the polynomial to a
monic one by multiplication with the inverse of the leading coefficient. In the latter case,
we can replace the modular equation f;(x) =0 (mod N) by two equations modulo the two
factors. For RSA moduli we even obtain the complete factorization, which in turn allows
for efficiently solving this polynomial equation modulo the prime factors provided that the
degree 9; is polynomial in log(V).

Theorem 3.2.2
Let (fi, 0;, N;),i = 1,...,k, be an instance of the SMUPE2-problem with monic f;. Define

d
M = Hle N/ with § := lem{&;,i = 1,...,k}. Then the SMUPE2-problem can be solved
for all xq with
o] < M3

in time O(6%log® M).

PROOF: Let zy be a solution of the system of polynomial equations (3.2). Then zg is a
solution of

s s

fli(x)=0 (mod N") foralli=1,... k.

All these equations have common degree § and are monic. Combining them by Chinese

Remaindering yields a polynomial f(x) of degree ¢ such that xq is a solution of f(x) =0
)

(mod M) with M := [J*_, N*. Moreover, this polynomial is still monic. For the coeffi-

5
cient as of the monomial z° in f(x) it holds that as = 1 (mod N,*) for alli = 1,... k
and, therefore, as =1 (mod M).

48 CHAPTER 3. SOLVING SMUPE

The above step can be performed in time O(6log® M) by Theorem 2.2.13. With Theo-

5
rem 2.3.9 all solutions x of the above equation which fulfill |z, < M 5 = (Hf:1 N,)§ can
be found in time O(§°(d + log M) log M). Therefore, the result can be obtained in time
0(56 10g2 M) []

Theorem 3.2.2 immediately gives us a sufficient condition on & and the d; for solving the
SMUPE2-problem for all xg € Zy;,.

Corollary 3.2.3
The SMUPE2-problem can be solved for all xy € Zy, in time O(5%log® M) provided that

Z 51 (3.3)

PROOF: Let x4y be a common solution to all the equations. An application of Theorem 3.2.2

5
gives us |z| < M3 = (TT, N)3 as an upper bound for all roots that can be computed
)

s 1 kL
in time O(6%log® M). As ([T, NJ)s > [, N = NIZI 2 > Nj all solutions xy € Zy,

can be found. n

By this we get an algorithm to solve the SMUPE2-problem with running time polynomial
in the bitsize of the N;, i = 1,...,k, if 0 is polynomial in the bitsize of the N;.

Remark 3.2.4

The same result is obtained by applying Coppersmith’s method [Cop97| directly to the
polynomials fi(x), ..., fr(z) instead of f(x). The polynomial modeling is then revealed in
the choice of shift polynomials. To do so, however, we need some further information on
applying Coppersmith’s algorithm to systems of equations. Therefore, the corresponding
proof will be given in Section 5.3.1.

Comparing this to the result due to Hastad and Coppersmith, we observe that in the case
0 := 0; = ... = 0, the sufficient condition is k > ¢ with both methods. For different 6;
however, our method is always superior. Taking e.g. the illustrating example with public
exponents (3,3,5,5) from the beginning of this section, we see that our new condition
T4+ 3+3+: =1 > 1is fulfilled.

Moreover, our formula captures the intuition that equations of low degree d; comprise more
information since they contribute to the sum in (3.3) with a larger term 5%_ than equations
with higher degree.

3.2.1 Optimality of Our Bound for Solving SMUPE2

In this section, we will see that the condition |z,| < M3 for efficiently solving the SMUPE2-
problem given in Theorem 3.2.2 is optimal if the moduli /V; are prime powers. This implies
that the condition cannot be improved in general, unless we make use of the structure of

3.2. SOLVING SMUPE2 49

the moduli or of the specific polynomials occurring in the system. Thus, our argument
does not exclude the existence of superior conditions for special moduli, e.g. square-free
N;.

The counting argument that we use is a generalization of the argument in [Cop0l] to
systems of polynomial equations instead of a single equation.

Let £k € N. Let py,...,pr be different prime numbers and 61,...,0;, € N. We define
N, = p‘il, vy Ny = pi’“. Suppose N1 < ... < Ni. Let us look at the following system of
polynomial equations:

fi(z) = 2™
fo(x) = %2

(mod Ny)
(mod Ns)

0
0

: (3.4)
fr(x) = 2 =0 (mod Ny).

We would like to determine all solutions z of this system with |zo] < N; = p'. An
application of Theorem 2.3.9 to a single equation f;(z) =0 (mod ;) efficiently yields all

solutions xy with |zo| < (Nz)é = p;. Furthermore, each multiple of p; is a solution of
fi(x) =0 (mod N;). Thus, if x4 is a multiple of Hle pi, then z(is a common zero of all
the polynomials.

Let ¢ :=lem{d;,i = 1,...,k}. We apply the same method as in the proof of Theorem 3.2.2
to the polynomial equations in system (3.4). Namely, we take their (%—th powers and
combine them by Chinese Remaindering (Theorem 2.2.13). This gives us an equation

)

flz) =2 (mod M) with M =[]\, N, =[], p? with the same roots as in (3.4).

We assume that M3 < N;. Otherwise M5 > Ny > ||, i. e. the condition of Theorem 3.2.2
is fulfilled and there is nothing to be shown. Therefore, let ¢ > 0 such that M ste < Ny
Suppose now we could calculate all simultaneous solutions zy of the system such that
zo] < M3t = ([]5, pi)'*%. Since we know that every integer multiple of [[%_, p; is
a solution of (3.4), the number of roots is roughly Q(Hlepi)&. This implies that we
have exponentially many roots zy with |zo| < M %J“E, which we cannot even output in
polynomial time. Consequently, there is no polynomial time algorithm that improves upon
the exponent in the condition |zo| < M3 of Theorem 3.2.2.

3.2.2 An Example

A typical example in which polynomially related messages occur is an RSA broadcast
scenario. Assume a user wants to broadcast a message m to k different users using an
RSA encryption scheme with public exponents ey, ..., e; and coprime public moduli N, <
... < Ng. From the ciphertexts ¢; (mod Nj),..., ¢, (mod Ni) an attacker can compute
the message m if m is smaller than the upper bound given in Theorem 3.2.2. He sets
fi(z) == 2% — ¢; (mod N;) and applies Theorem 3.2.2.

In order to avoid sending various encryptions of the same message, a user might add
some randomness 7; and then encrypt the linearly related messages (m +r;),i=1,...,k,

20 CHAPTER 3. SOLVING SMUPE

instead of m. However, if the attacker gets to know the randomness, he can calculate
Fi(z) := fi(x + r;) (mod N;) and analyze the system of equations F;(z) = 0 (mod N;),
i=1,...,k. As degree, modulus and leading coefficient are the same for F;(z) and f;(x),
the upper bound on m up to which m can be recovered efficiently also remains unchanged.
More generally, taking polynomially related messages instead of linearly related ones, the
degree of Fj(z), i =1,...,k, changes from e; to e;y;, where ~; is the degree of the known
polynomial relation.

Corollary 3.2.5

Let k € N, (N;,e;), i = 1,...,k, be RSA public keys with N; < Ny < ... < N and
coprime N;. Furthermore, let m € Zy, and let g;(z) € Z[x] be polynomials of degree
vi € N with a;,, being the coefficient of " for « = 1,...,k. Let cy,...,c; be the RSA-

5
encryptions of g;(m) under the public key (N;,e;). Define §; := e;y; and M := Hle N,
with 0 := lem{d;,i =1,... k}.

Then an adversary can recover the message m in time O(6%log® M) provided that

k
=1

PROOF: Without loss of generality we assume that all a;,, are invertible modulo N;. (Oth-
erwise ged(aiy,, NV;) and will give us the factorization of N; for at least one

| —

>1.

=3

N;
ged(aiy, ,Ni)
i € {1,...,k}. We can then compute m modulo the prime factors. This can be done
efficiently if d; is polynomial in log(XV;) as explained in the introduction of this chapter.)
We are looking for a solution m of f;(z) := g;(z)*—¢; =0 (mod N;),i =1,..., k. However,
the polynomials f;(x) are not necessarily monic. Therefore, we modify them slightly to
be able to apply Corollary 3.2.3. Let Fi(z) := a;(gi(x)% — ¢;) (mod N;), i = 1,... k.
Hence, F;(z) is a monic polynomial of degree d; = e;;. The corollary then directly follows
as an application of Corollary 3.2.3. |

Chapter 4

Basic Approaches for Solving Systems
of Multivariate Polynomial Equations

Many problems occurring in the context of cryptography cannot be described as polynomial
equations in one unknown but comprise several unknowns. Take, for example, the problem
of factoring, i.e. given N € N which is the product of two large primes p and ¢, determine
p and gq. We can easily transfer the problem of finding p and ¢ into the problem of finding
the non-trivial roots of a multivariate polynomial f: Define f(x,y) := N — xy € Z[z,y].

Then f(p,q) = 0.
In a more general setting, we are not only given one equation but several ones. The

following three chapters deal with the problem of solving systems of multivariate polyno-
mial equations (SMPE-problem), either over the integers (SIMPE-problem) or as modular
systems (SMMPE-problem). The case of systems of modular equations can be divided
up further into systems with a common modulus (SMMPE1) and systems with mutually
coprime moduli (SMMPE2). That is, we consider the following problems:

Definition 4.0.6 (SIMPE-problem)
Assume k € N and fi(xy,...,2;),..., fr(x1,...,2;) to be polynomials of degree 41, ..., 0
in Zlxy, ...,z respectively. Let

filzy,...;z) = 0
folxy, ... x) =

: (4.1)
fr(xy,...;z) = 0

be a system of multivariate polynomial equations.

Let X; € R, i=1,...,l. Find all common roots (Z1,...,Z;) of (4.1) with size |z;| < X.

and

o1

52 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

Definition 4.0.7 (SMMPE-problem)
Assumek € N, 61, ...,0, € N and let Ny, ..., N, € N. Let fi(zq1,...,x), ..., fr(x1,...,2))
be polynomials of degree o1, ...,0, in Zy,[x1,...,21),...,ZN,[21,..., 2], respectively. Let

filwe,...,2) = 0 (mod Ny)
fa(xy,...,2) = 0 (mod Ny)

: (4.2)
fel@,...,z) = 0 (mod Ny)

be a system of multivariate polynomial equations.

Let X; < N;, X; € R, i =1,...,l. Find all common roots (Z1,...,x;) of (4.2) with size
|z < X.

If Ny = ... = Ny, then we denote the problem by SMMPE]1; if the N; are mutually coprime,
we assume N1 < Ny < ... < Ny and refer to the problem as SMMPE?2.

Our goal is to analyze up to which size of the upper bounds Xj,..., X; we can determine
the solutions 71, ..., Z; of either system of equations efficiently. In contrast to the univari-
ate case (comp. Chapter 3), there are no algorithms working in general for multivariate
equations over the integers either. That is why we are interested in analyzing the integer
as well as the modular case. The analysis will be divided into three parts.

In the following two chapters we adapt Coppersmith’s algorithm to be used to analyze
systems of equations in the modular (Chapter 5) and in the integer case (Chapter 6). The
rest of the current chapter deals with simpler approaches to solve systems of multivariate
equations. Depending on the structure of the equations, a system can be modeled as a
lattice such that a short vector in this lattice directly reveals the solution. The result
is, thus, obtained by a simple lattice reduction. Before generally stating some criteria on
which this analysis is useful, we treat the examples of related messages RSA [CFPR96]
and implicit factoring [MRO09].

4.1 RSA with Related Messages and Implicit Relations

We reconsider the problem of RSA with related messages. Assume two messages m; and
msy are encrypted with respect to the same modulus N. The corresponding equations with
solutions (my, ms) are fi(x1) := 2{—c; =0 (mod N) and fo(xs) := 25—y =0 (mod N).
In Example 3.1.2 the relation between m; and ms was explicit, namely, ms = p(m;)
(mod N). Thus, the system could be transformed into a system of two univariate equa-
tions fi(z1) =0 (mod N) and fo(p(z1)) =0 (mod N).

In [CFPRY6| implicit polynomial relations p(mq,ms) =0 (mod N) are considered as well.
With such relations it is no longer possible to just substitute x5 by a polynomial in x;.
Therefore, Don Coppersmith et al. add a further step in the method described in Exam-
ple 3.1.2. As my can no longer be directly substituted in m§ —co =0 (mod N), we regard

4.1. RSA WITH RELATED MESSAGES AND IMPLICIT RELATIONS 93

a system of three polynomial equations in two unknowns x; and x5 corresponding to the
solutions my and msy:

filz1) = 2{—c (mod N)
fa(x2) x5 — ¢y (mod N)
p(x1,x2) = 0 (mod N).

To get two polynomials in the same unknown, the resultant (compare Definition 2.2.9) of
fi(z1) and p(z1, x2) with regard to 7 is computed. This results in a polynomial r(z3) in
the unknown z,. We now have two polynomials in one unknown like in case of explicit
relations, and (in most cases) we can compute ged(r(xs), fo(x2)) = 22 — my (mod N),
which gives us my. Plugging this value into p(z1,x2), we get two polynomials p(zq, ms)
and fi(x1) in the unknown x; and can proceed as before to determine m;.

An alternative way to achieve this result is to compute a Groebner basis (compare Defini-
tion 2.2.11) of F = {fi(z1), fa(x2), p(x1,22)}. In most cases the Groebner basis contains
the polynomials xy —m, and x5 — mso. From these polynomials we can immediately derive
our solutions m; and msy. Both variants of the attack can theoretically be performed with
equations of any degree. However, the complexity of the attack is polynomial in the degree
of the equations. Therefore, it is only efficient for equations of small degree. Commonly
used moduli like e = 3 or e = 216 + 1 fit into the framework of the attack.

Resultant or Groebner basis computations can be applied to solve nearly any two equations
with the same modulus. This implies that it is usually sufficient to have two equations
fi(x) =0 (mod N) and fo(x) =0 (mod N) in order to recover the common solutions as
explained in Section 3.1.

The problem of RSA with related messages can be generalized to an arbitrary number
of k£ messages. If the relations between these messages can be expressed explicitly such
that m; only depends on my,...,m;_1, we can restrict our considerations to the first two
equations and their common relation. Then we can perform the same analysis as described
above. This gives us m; and ms. Iteratively, any further message m;, i = 3,...,k, can be
calculated from my, ..., m;_1 by its explicit description.

A natural generalization, thus, includes only one implicit relation between the messages.
Suppose we have the following system of k + 1 € N equations

fi(z1):=2{—c; = 0 (mod N)

e_

fr(xy) =z},
p(z1, ..., xL)

0 (mod N)
0 (mod N).

Ck

As before, in most cases we can either compute the Groebner basis of all polynomials and
obtain the answer [x; — myq, ...,z — my]. Or, we set

go(x1,...,xp) = plxy,...,x8)

o4 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

and iteratively compute

gi(xi-&-ly--'axk) = Tesxi(gi—1<xi7---axk)afi<xi))'

After k iterations one gets g_1(x). Computing the greatest common divisor of gi_1(zy)
and fi(zx) in most cases leads to ged(gr—1(zk), fr(zx)) = xr — my. Recursively, for i =
k—1,...,1, we can substitute z;11,...,2x by m;y1,...,mg, and calculate

ng(Qi—l(Z‘z‘, mitq, ... 7mk); fz(xz)) = Ty —my

to get m; until we have m;.

The techniques used to analyze this problem are basically the same techniques described in
Section 2.2. The only difference is that the coefficients here are elements of Zy. Therefore,
we have to use a definition and computation of Groebner bases adapted to coefficients
in any ring (compare [Pau07]). Then we can determine all solutions via Groebner basis
computations if the Groebner basis contains univariate linear polynomials in the different
variables. There are no constraints concerning the solutions we can determine. This is an
advantage of this method in contrast to the methods we will present in the following. In
those methods, lattice reduction techniques are used. This leads to size constraints on the
solutions which we can determine this way.

Practical problems, however, rarely correspond to systems of equations such that a Groeb-
ner basis directly reveals the solution. Instead, a Groebner basis computation leads to a
different, usually simpler system which is still too complicated to derive solutions from.
Note further that the complexity of Groebner basis computations is exponential in the
number of variables. Hence, this approach is not efficient in general (compare Section 2.2).
This is a drawback compared to the lattice-based methods we will use.

We will analyze the problem of RSA with related messages with the help of Coppersmith’s
method in Chapter 5.2. Now, we will continue with an example of a non zero dimensional
system of which we can determine solutions of a certain size.

4.2 The Problem of Implicit Factoring with Shared Least
Significant Bits

In this section we again regard the problem of factoring, that is, given a composite integer
Ny = poqo, compute py and qo. As this problem seems to be difficult to solve in general,
we use an additional oracle. In contrast to previous works like [RS85, Mau96, Cop96a|, we
highly restrict the power of the oracle. Namely, we allow for an oracle that on input an
RSA modulus Ny = poqo outputs another different RSA modulus N; = p1q; such that pg
and p; share their ¢ least significant bits. Moreover, we assume for notational simplicity
that the bitsize of p; is equal to the bitsize of py and the bitsize of ¢; is equal to the bitsize
of qo-

Thus, as opposed to an oracle that explicitly outputs bits of the prime factor py, we only
have an oracle that implicitly gives information about the bits of py. Intuitively, since

4.2. THE PROBLEM OF IMPLICIT FACTORING 95

Ni is a hard to factor RSA modulus, it should not be possible to extract this implicit
information. We show that this intuition is false. Namely, we show that the link of the
factorization problems Ny and N; gives rise to an efficient factorization algorithm provided
that ¢ is large enough.

More precisely, let gy and ¢; be a-bit numbers. Then our lattice-based algorithm provably
factors Ny, Ny with Ny # N; in quadratic time whenever ¢ > 2(a + 1). In order to give a
numerical example: Let Ny, N1 have 750-bit po, p; and 250-bit qg, g;. Then the factorization
of Ny, N7 can be efficiently found provided that pg, p; share more than 502 least significant
bits. The bound t > 2(« + 1) implies that our first result works only for imbalanced RSA
moduli. Namely, the prime factors p; have to have bitsizes larger than twice the bitsizes of
the g;.

Using more than one oracle query, we can further improve upon the bound on ¢. In case
of k queries, we obtain Ny, ..., N, different RSA moduli such that all p; share the ¢ least
significant bits. This gives rise to a lattice attack with a (k + 1)-dimensional lattice L
having a short vector q = (qo, q1,- - -, qr) that immediately yields the factorization of all
No, Ny, ..., Ni. For constant k, our algorithm runs in time polynomial in the bitsize of
the RSA moduli. As opposed to our first result, in the general case we are not able to
prove that our target vector q is a shortest vector in the lattice L. Thus, we leave this
as a heuristic assumption. This heuristic is supported by a counting argument and by
experimental results that demonstrate that we are almost always able to efficiently find
the factorization.

Moreover, when putting k queries for RSA moduli with a-bit ¢; that share ¢ least significant
bits of the p;, we improve our bound to ¢ > %a. Hence, for a larger number k of queries
our bound converges to t > «, which means that the p; should at least coincide on « bits,
where « is the bitsize of the ¢;. In case the two prime factors have the same bitsize, this
result tells us that Ng = poqo, . .., N = poqi. with the same pg can efficiently be factored,
which is trivially true by greatest common divisor computations. On the other hand, our
result is non-trivial whenever the bitsizes are not balanced.

If we do not restrict ourselves to polynomial running time, then we can easily adapt our
method to factor balanced RSA moduli as well. All that we have to do is to determine
a small quantity of the bits of ¢; by brute force search. Using these bits, we can apply
the previous method in order to determine at least half of the bits of all ¢g;. The complete
factorization of all RSA moduli N; is then retrieved by the aforementioned lattice-based
algorithm of Coppersmith [Cop96a].

4.2.1 Implicit Factoring of Two RSA Moduli

Let us start with the analysis of implicit factoring with only one oracle query. Assume that
we are given two different RSA moduli Ny = poqo, N1 = p1q1, where pg, p; coincide on the
t least significant bits. That is, py = p + 2'py and p; = p + 2!p; for a common value p that
is unknown to us. Can we use the information that the prime factors of Ny and N; share
their ¢ least significant bits without knowing these bits explicitly? That is, can we factor
Ny, Ny given only implicit information about one of the factors?

56 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

No Do p qo
N D1 p g1
Ny J Y,
g Y.
t bits « bits

Figure 4.1: Hlustration of Ny and N; for implicit factoring in terms of bits.

In this section, we will answer this question in the affirmative. We will show that there is
an algorithm that recovers the factorization of Ny and N; in quadratic time provided that
t is sufficiently large.

We start with

(p+2P0)g0 = No
(p+2'p1)pn = Ny.

These two equations contain five unknowns p, pg, p1, o and ¢;. By reducing both equations
modulo 2!, we can eliminate the two unknowns pg, p1 and obtain

pgo = Ny (mod 2")
pgi = N; (mod 2.

Since ¢y, ¢; are odd, we can solve both equations for p. This leaves us with % = %

(mod 2%), which we write in form of the linear equation
(N;*N1)go —q1 =0 (mod 2'). (4.3)
The set of solutions
L= {(z0,71) €Z*| (Ny'N1)xg — 21 =0 (mod 2")}

forms an additive, discrete subgroup of Z2. Thus, L is a 2-dimensional integer lattice. L
is spanned by the row vectors of the basis matrix

(1 N'N
B ()),

This equivalence has been proven in Section 2.3. Notice that by equation (4.3), we have
(qo,q1) € L. If we were able to find this vector in L, then we could factor Ny, N; easily.
Let us first provide some intuition on which condition the vector q = (qo, ¢1) is a short
vector in L. We know that an upper bound on the length of a shortest vector is given by
the Minkowski bound v/2det(L)z = /2 - 22.

Since we assumed that qq, ¢; are a-bit primes, we have qq, ¢; < 2¢. If « is sufficiently small,

4.2. THE PROBLEM OF IMPLICIT FACTORING 57

then ||q|| is smaller than the Minkowski bound and, therefore, we can expect that q is
among the shortest vectors in L. This happens if

lal| < V22 < V222,

Soift > 2a we expect that q is a short vector in L. We can find a shortest vector in L using
Gaussian reduction on the lattice basis By, in time O(log?(2t)) = O(log?(min{ Ny, N, })).
Hence, on the heuristic assumption that q = (go, ¢1) is a shortest vector in L, we can factor
Ng, N7 in quadratic time. On a slightly more restrictive condition, we can completely
remove the heuristic assumption.

Theorem 4.2.1
Let Ny = poqo, N1 = p1qp be two different RSA moduli with a-bit ¢;. Suppose that pg, p1
share at least t > 2(« + 1) bits. Then Ny and Ny can be factored in quadratic time.

1 NN
BL:(O 02t 1)

be the lattice basis defined as before.
The basis matrix By, spans a lattice L with a shortest vector v that satisfies

PROOF: Let

t+1

IIv]] < V2det(L)z =27 .

. : . . . b
Performing Gaussian reduction on By, we get an equivalent basis B = (bl) such that
2

[ba[| = Ai(L) and [[baf| = Ao(L).

Our goal is to show that by = £q = +(qo, ¢1) which is sufficient for factoring Ny and N;.
As L is of full rank, by Hadamard’s inequality we have

[[ba[|[[bz2]| > det(L).

This implies
det(L) det(L)
ball M(L)

Substituting det(L) = 2 and using A;(L) < 2% leads to

b2 =

ot _
|ba|| > = =27 .

%
This implies for any lattice vector 0 # v = a;by + asby with ||v|| < 25 that ay = 0, as
otherwise Ao(L) < ||v|| < ||bz]|, which contradicts the optimality of by from Theorem 2.3.3.
Thus, every v # 0 with |[v|| < 22" is a multiple of by. Notice that q = (¢o, ¢1) € L fulfills
lla|| = v2 - 2% = 2% Consequently, we have ||q|| < ||ba]| if

2a+1

t—1
272 <27 &2a+1)<t.

58 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

Therefore, we get q = aby with a € Z \ {0}. Let by = (b1, b12), then ged(qo, 1) =
ged(abyy, abia) > a. But g, q1 are primes and, without loss of generality, ¢y # ¢, since
otherwise we can factor Ny, N7 by computing ged(Ng, N1). Therefore, by the minimality
of by, |a| = 1 and we obtain q = by, which completes the factorization.

The running time of the factorization is determined by the running time of the Gaussian
reduction, which can be performed in O(#?) = O(log®(min{ Ny, N1})) steps. u

4.2.2 Implicit Factoring of k RSA Moduli

The approach from the previous section can be generalized to an arbitrary fixed number k
of oracle queries. This gives us k + 1 different RSA moduli

No = (p+2'Po)qo
: (4.4)
N, = (p+2'pr)ak

with a-bit ¢;.
We transform the system of equations into a system of k + 1 equations modulo 2

pgo—No = 0 (mod 2°)

pgx — N, = 0 (mod 2)

in k£ 4+ 2 variables.

Analogous to the case of two equations, we solve each equation for p. This can be done
because all the ¢; are odd. Thus, we get % = % (mod 2') for s = 1,..., k. Writing this
as k linear equations gives us:

Ny'Nigg—q. = 0 (mod 2)

Ny'Nvgo—qx = 0 (mod 2Y).
With the same arguments as in the preceding section, the set
L= {(z0,21,...,21) € ZF"" | Ny'Njzg —2; =0 (mod 2") foralli =1,..., k}

forms a lattice. This lattice L is spanned by the row vectors of the following basis matrix

1 Ny'Ny o Ny Ny

0 2t o - 0
Bpr=1| 0 0 :

: 0

o
o
o -
)
2

4.2. THE PROBLEM OF IMPLICIT FACTORING 29

Note that 9 = (qo,¢q1,-.-,q&) € L has norm ||q|| < Vk+1-2% We would like to have
lla]| = A1(L) as in Section 4.2.1. The length A;(L) of a shortest vector in L is bounded by

ML) <VE+1- (det(L))k*il = VE+1- (gtk)%ﬂ.
Thus, if q is indeed a shortest vector, then

lall = VE+1-2° < VEk+ 1.2 (4.5)

This implies the condition ¢ > %a. We make the following heuristic assumption.
Assumption 4.2.2
Let Ny, Ni,...,N; be as defined in equation (4.4) with t > ®La. Further, let by be a

2
shortest vector in L. Then by = +(qo, q1, - - -, @)-

Theorem 4.2.3
Let Ny, ..., Ny be as defined in the system of equations (4.4) with t > ®a. Under
Assumption 4.2.2, we can find the factorization of all Ny, Ny, ..., Ny in time polynomial in

((k+ 1), max;{log N;}).

We show the validity of Assumption 4.2.2 experimentally in Section 4.2.5.

The running time is determined by the time to compute a shortest vector in L [Kan87,
Hel85|. This implies that for any lattice L of rank k£ + 1 we can compute the factorization
of all N; in time polynomial in their bitsize if (k + 1)"2 = poly(max;{log N;}), that is,
especially, if the lattice has fixed rank k£ + 1.

For large k, our bound converges to ¢t > «. This means that the amount ¢ of common
least significant bits has to be at least as large as the bitsize of the ¢;. In turn, this implies
that our result only applies to RSA moduli with different bitsizes of p; and ¢;. On the
other hand, this is the best result that we could hope for in our algorithm. Notice that we
construct the values of the ¢; by solving equations modulo 2. Thus, we can fully recover
the g; only if their bitsize « is smaller than ¢. In the subsequent section, we will overcome
this problem by avoiding the full recovery of all ¢;, which in turn leads to an algorithm for

balanced RSA moduli.

Remark: All of our results still hold if 2¢ is replaced by an arbitrary modulus M > 2t. We
used a power of two only to illustrate our results in terms of bits.

4.2.3 Implicit Factoring of Balanced RSA Moduli

We slightly adapt the method from Section 4.2.2 in order to factor balanced n-bit integers,
i.e. N; = p;q; such that p; and ¢; have bitsize 5 each. The modification mainly incorporates
a small brute force search on the most significant bits of the g;.

Assume that we are given k& + 1 RSA moduli as in (4.4). From these moduli we derive k

60 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

Di qi
AL AL

No ﬁo p %\ Lo
Ny D1 p %\ 15

t bits 0 bits

% bits

Figure 4.2: Hlustration of balanced Ny and NV; for implicit factoring in terms of bits.

linear equations in k + 1 variables:

No_lquO —q1 = 0 (mod 2t)
Ny'Nego—qx = 0 (mod 2').

The bitsize of the g; is now fixed to o = 5, which is equal to the bitsize of the p;, i.e. now
the number t of bits on which the p; coincide has to satisfy ¢ < «. In the trivial case of
t = a = § we can directly factor the IV; via greatest common divisor computations as then
pi=pfori=0,... k.

Thus, we only consider ¢ < . With a slight modification of the method in Section 4.2.2,
we compute all ¢; (mod 2'). Since t < %, this does not give us the ¢; directly, but only
their ¢ least significant bits. But if ¢t > ”, we can use Theorem 2.3.12 for finding the full
factorization of each V; in polynomial time. In order to minimize the time complexity, we
assume ¢t = 7 throughout this section.

To apply Theorem 4.2.3 of Section 4.2.2 the bitsize of the unknown part of the ¢; has to be
smaller than k—Ht Thus, we have to guess roughly — +1 1= 4(k “ bits for each ¢;. Since
we consider k£ + 1 moduli, we have to guess a total number of 7 bits. Notice that this is
the same amount of bits as for guessing one half of the bits of one q;, which in turn allows
to efficiently find this ¢; using Theorem 2.3.12. With a total amount of 7 bits, however,
our algorithm will allow us to efficiently find all ¢;, i =0, ... k.

Let us describe our modification more precisely. We split ¢; (mod 27) into 2°¢; + =
(mod 2%) The number depends on the number of oracle calls k£ such that the condition

B <+ +1 -7 holds. Therefore, we choose 3 to be the largest integer smaller than (k +1 . This

implies that the x; < 2% are small enough to be determined analogously as in Sectlon 4.2.2,
provided that the ¢; are known. In practice we can guess an amount of 4(k =y bits for
determining each ¢;, or we can find these bits by other means, e.g. by side- channel attacks.

Suppose now that the ¢; are given for each i. We obtain the following set of equations

4.2. THE PROBLEM OF IMPLICIT FACTORING 61

Ny'Nizg — 1 = 2°%(¢ — Ny'Nigy) (mod 27%)
; (4.6)
Ny'Nezo —zx = 2°(G — Ny 'Nido) (mod 2%).

Let ¢; = 2°(Gi — Ny 'Nido), i = 1,...,k, denote the known right-hand terms. In contrast
to Section 4.2.2, the equations (4.6) that we have to solve are inhomogeneous. Let us first
consider the lattice L that consists of the homogeneous solutions

L ={(xo,21,...,21) e 7kt | Ny 'Nizg —2; =0 (mod 2%),2': L...,k}.

L is spanned by the rows of the following basis matrix

1 NNy - Ny ' Ny

0 27 0 - 0
BL=|0 0

: e 0

0 0 e 0 24

Let [; € Z such that NalNi$0 + 1,27 = x; + ¢;. Then we let

/

q = (l"o,lh---,lk)BL: (IO,{L‘l—I—Cl,...,CL’k"—Ck) - L

Moreover, if we define the target vector ¢ := (0, ¢y, ..., ¢c), then the distance between g’

and c is
d = cl| = [|(zo, 21, - 2p)|| < VEL1-2° < VE+ 1. 2500,

This is the same bound that we achieved in Section 4.2.2 for the length of a shortest vector
in equation (4.5) in the case of ¢ = 7. So instead of solving a shortest vector problem, we
have to solve a closest vector problem in L with target vector c. Closest vectors can be
found in polynomial time for fixed lattice dimension k£ + 1 (see Blomer [Bl1600]). We make
the heuristic assumption that q’ is indeed a closest vector to c in L.

Assumption 4.2.4
Let Ng, Ny,..., Ny be as defined in equation (4.6) with f < 4(1921) Further, let by be a
closest vector to ¢ in L. Then by = +q'.

Theorem 4.2.5
Let Ny, Ny, ..., Ny be as defined in equation (4.6) with § < k+1) On Assumption 4.2.4,

we can find the factorization of all Ny, N1, ..., Ny, in time 27 - poly((k +1)!, max; {log N;}).

The running time is determined by the time for guessing each ¢; and the time for finding
a closest vector in L.

In the following section we have a closer look at the two heuristics from the previous
sections, Assumption 4.2.2 and Assumption 4.2.4. We first give a counting argument that
supports our heuristics and then demonstrate experimentally that our constructions work
well in practice.

62 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

4.2.4 A Counting Argument that Supports our Assumptions

Recall that in Section 4.2.2; the lattice L consists of all solutions q = (qo, q1, - - -, gx) of the
system of equations

Ni'Nigg = ¢ (mod 2") (4.7)

Ny 'Nego = @ (mod 2.

As ged(Ny'N;,2Y) = 1 for any i, the mapping f; : — Nj'N;z (mod 2¢) is bijective.
Therefore, the value of gy uniquely determines the values of ¢;, i = 1,... k.
In total, the system of equations has as many solutions as there are values to choose qq
from, which is 2'. Now suppose gy < 2T, How many vectors q do we have such that
g; < 21 forall i = 0,....k and, thus, ||q|| < V& + 1 - 25417
Assume for each ¢ = 1,..., k that the value ¢; is uniformly distributed in {0,...,2" — 1}
and that the distributions of ¢; and ¢; are independent if ¢ # j. Then the probability that
gi < 277 s
kt ORIT ot
Pr(ql-§2k+1> = = 27 RT
2t

Furthermore, the probability that ¢; < 284 for all § = 1,...,kis

kt Kt e \k ke
Pr(q1§2k+l7"'>qk§2k+l>:<2 k+1> = 27 R+1

Consequently, the expected number of vectors q such that ¢; < 985 for all § = 0,....k
is 2T . 97T = 1. Therefore, we expect that only one lattice vector, namely q, is short
enough to satisfy the Minkowski bound. Hence, we expect that +q is a unique shortest
vector in L if its length is significantly below the bound vk +1 - 947, This counting
argument strongly supports our Assumption 4.2.2.

Remark: In order to analyze Assumption 4.2.4 we can argue in a completely analogous
manner. The inhomogeneous character of the equations does not influence the fact that
the ¢; are uniquely determined by qq.

4.2.5 Experiments

We verified our assumptions in practice by running experiments on a Core2 Duo 1.66GHz
notebook. The attacks were implemented using Magma! Version 2.11. Instead of taking a
lattice reduction algorithm which provably returns a basis with a shortest vector as first
basis vector, we have used the LLL algorithm |[LLL82|, more precisely its L? version of
Phong Nguyen and Damien Stehlé [NS05|, which is implemented in Magma. Although by

thttp://magma.maths.usyd.edu.au/magma/

4.2. THE PROBLEM OF IMPLICIT FACTORING 63

LLL-reduction the first basis vector only approximates a shortest vector in a lattice, for
our lattice bases with dimensions up to 100 LLL-reduction was sufficient. In nearly all
cases the first basis vector was equal to the vector £q = +(qo, ¢1,- - -, qx), provided that
we chose suitable attack parameters.

First, we considered the case of imbalanced RSA moduli from Theorem 4.2.3. We chose
N; = (p+2'p:)q;, 1 = 0,...,k, of bitsize n = 1000 with varying bitsizes of ¢;. For a fixed
bitsize a of ¢; and a fixed number k£ of moduli, we slightly played with the parameter ¢ of

k41

common bits close to the bound ¢ > toain order to determine the minimal ¢ for which

our heuristic is valid.

bitsize « | number of | bound | number of | success

of the ¢; | moduli k£ + 1 %a shared bits t | rate
250 3 375 377 0%
250 3 375 378 97%
350 10 389 390 0%
350 10 389 391 100%
400 100 405 409 0%
400 100 405 410 100%
440 50 449 452 16%
440 50 449 453 97%
480 100 485 491 38%
480 100 485 492 98%

Table 4.1: Attack for imbalanced RSA moduli

The running time of all experiments was below 10 seconds.

In Table 4.1, we called an experiment successful if the first basis vector by in our LLL-
reduced basis was of the form by = +q = +(qo,q1,...,qk), i.e. it satisfied Assump-
tion 4.2.2. There were some cases where other basis vectors were of the form +q, but we
did not consider these cases as successful.

As one can see by the experimental results, Assumption 4.2.2 only works smoothly when
our instances were a few extra bits beyond the bound of Theorem 4.2.3. This is not sur-
prising since the counting argument from Section 4.2.4 tells us that we loose uniqueness
of the shortest vector as we approach the theoretical bound. In practice, one could either
slightly increase the number ¢ of shared bits or the number k of oracle calls for making the
attack work. Alternatively, one could also perform a small brute force search in a few bits.

Analogously, we made experiments with balanced RSA moduli to verify Assumption 4.2.4.
Instead of computing closest vectors directly, we used the well-known standard embedding
of a d-dimensional closest vector problem into an (d + 1)-dimensional shortest vector prob-
lem ([MGO2|, Chapter 4.1), where the shortest vector is of the form by = (q' — ¢,), ¢
constant. Since ¢ and ¢’ are known, this directly yields q' and, therefore, the factorization
of all RSA moduli. For solving the shortest vector problem, we again used the LLL algo-

64 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

rithm.

As before we called an experiment successful if by was of the desired form, i.e. if Assump-
tion 4.2.4 held. In our experiments we used 1000-bit NV; with a common share p of t = 250
bits.

number of bound | bits known | success
moduli £+ 1 [ﬁ} from ¢; rate
3 84 85 74%
3 84 86 99%
10 25 26 20%
10 25 27 100%
50 5 8 46%
50 5 9 100%

Table 4.2: Attack for balanced 1000-bit /V; with 250 bits shared

All of our experiments ran in less than 10 seconds. Here we assumed that we know the
required bits of each ¢;, i.e. the running time does not include the factor for a brute-force
search.

Similar to the experimental results in the imbalanced RSA case, our heuristic Assump-
tion 4.2.4 works well in the balanced case, provided that we spend a few extra bits to the
theoretical bound in order to enforce uniqueness of the closest vector.

4.3 The Problem of Implicit Factoring with Shared Most
Significant Bits

In [MRO09| we have introduced the problem of implicit factoring with respect to shared least
significant bits. Jean-Charles Faugére, Raphaél Marinier and Guénaél Renault extended
the analysis to the problem of implicit factoring with shared most significant bits [FMR09].
This extension is not straightforward as the non-shared bits of the larger factor can no
longer be ignored. To see this, let us consider both variants of the factors in the case of
two composite numbers Ny and N;.

Recall that in the case of shared least significant bits we regard the equations

(20 +1p) a0 = No (4.8)
(2tl51 +p) @ = Ni.

Solving them for p and combining them, we obtain the equation

Nogi — Nigo — 2" (150 - 251) goq1 = 0. (4'9>

4.3. IMPLICIT FACTORING WITH SHARED MOST SIGNIFICANT BITS 65

Then we take the equation modulo 2¢. By this, we can remove the unknowns py and p;.
The remaining equation is equivalent to

Ny'Nigg=q: (mod 2').

This linear equation can then be embedded into a lattice. If gy and ¢; are small enough
(which is the case if ¢t > 2(a+1) as we have seen in the previous section), we can determine
them as solutions of a shortest vector problem.

In the case of shared most significant bits the situation changes. We are no longer able to
just remove py and p; by a modulo operation. In the case of shared most significant bits
the equations have the following shape:

(Bo+2"""p) @0 = No (4.10)
(251 + 2n7t7ap) @ = Np.

2n7tfa

Analogously to the previous case, they can be solved for p and combined:

Nigo — Nogi — (151 —ﬁo) g0 = 0 (4-11)
< Nigo — Nogi = (D1 — Do) 901 -

The variables py and p; are still contained in the integer equation. However, they corre-
spond to a monomial of size bounded by 2"+t@~**1 If this is still small enough, we can
embed the integer equation into a lattice L and determine it by calculating a shortest
vector. We define the lattice L via a basis matrix

b, on—t+3 0 N,
B = = 1 . 412
- (b2) (0 2t —N 412)

The vector q := (2" 2qo, 2" T2y, (1 — Po)goq1) = qob1 + qibs is contained in the lattice
L. If it is a shortest vector, it can be determined via lattice reduction. Jean-Charles
Faugére et al. show that q indeed is a shortest vector in L if ¢ > 2(a + 1). This matches
the bound we have obtained in the least significant bit case. The method can be extended
to more than two composite integers N; in a straightforward way. In order to obtain a

result, ¢t > %a + 6 is required. Then the norm of the vector q fulfills the condition given
by the Gaussian heuristic, that is, ||q|| < /5% det(L) e, where d denotes the dimension of

the lattice. We get the additive constant of 6 as the lattice dimension is smaller than the
number of entries in the vector. Under the heuristic that a vector fulfilling this bound is
indeed a shortest vector, q can be determined by lattice reduction. Jean-Charles Faugeére
et al. verify the heuristic experimentally.

Hence, the results obtained in the case of shared most significant bits are about the same
as in the case of shared least significant bits. The lattices used are sublattices of 7
instead of Z**'. This is due to the use of more combinations of the original equations. For

an illustration compare Figure 4.3. Each combination of two composite numbers N; and

66 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

1 N7'Ny Ng'Ns on—tts () 0 Ny Ny 0
0o 2 0 0 2v*2 0 =N, 0 N,
0 0 2! 0 0 23 0 —N, —N,
By, in [MR09) By, in [FMROY]

Figure 4.3: Comparison of the basis matrices By, used in the constructions of [MR09| and
[FMRO09] in case of k = 2.

N; can be used as it introduces a new monomial (p; — p;)¢;q;. All the monomials can be
described as linear combinations of ¢; and ¢;. In contrast to that, we introduce the new
monomials ¢i, ..., as (modular) linear functions of ¢o. Hence, we only combine all N;,
1=1,...,k, with Ny. That is, we cannot add further equations. In the case of the lattice
used by Jean-Charles Faugére et al., however, the additional combinations increase the size
of the determinant of the lattice and the sublattice they use.

Note that the analysis of the determinant gets more complicated due to the rectangular
shape of the basis matrix in the most significant bit case. For further details on the

calculation of the bounds and the cases of more than two equations we refer the reader to
the original work [FMRO09].

4.4 Some General Criteria for Solving Systems of Mul-
tivariate Polynomial Equations via Shortest Vector
Problems

In the previous sections some specific problems and their analyses via systems of equations
have been presented. The problem of RSA with related messages can often be solved for
any size of the unknowns by Groebner basis techniques (compare Section 4.1, for Groebner
basis techniques consult Section 2.2). There is no need for lattice-based techniques in the
analysis.

In what follows, we will only consider systems in which Groebner basis computations do not
help to find the solutions. Two examples of such systems related to the problem of implicit
factoring were given in Sections 4.2 and 4.3. They were solved by embedding the solutions
into a lattice. Then the solutions were determined by solving a shortest vector problem.
Based on these examples we derive criteria on which we can apply similar techniques to
solve a system of equations by solving a shortest vector problem.

The analysis will be divided into two parts, the analysis of modular systems of equations
and the analysis of systems of equations over the integers. Let us start with the modular
case. Here the analyses of common and coprime moduli coincide so that we do not have to
distinguish these two subcases. Thus, let us recall the general SMMPE problem presented

4.4. SOLVING SMPE VIA SHORTEST VECTOR PROBLEMS 67

in Definition 4.0.7. For given k£ € N, §1,...,0, € N, and Ny,..., Ny € N the following
system of multivariate polynomial equations shall be solved for its solutions (z1,...,Z;)
such that |z;| < X; € R:

filwe,...,2) = 0 (mod Ny)
f2<x17---7xl) = O (mOd NQ)
: (4.13)
fe(we,...,z) = 0 (mod Ny).
The polynomials fi(x1,...,2) € Zn,[z1, ..., 1), ., fu(®r, ..., 21) € Zn, |21, ..., 7] are of

total degree 01, ..., 0, respectively.

In order to solve the system of equations, we follow the approaches used in the previous
sections. Thus, we would like to transform the system of equations into a system of the
following structure:

fl(xl, o) =t (filxy,...,z)) —cymy) = my (mod Ny)

folzy, .. x) = =g (fo(ar, ..., 21) —coms) = my (mod Ny)
(4.14)
fe(ze, . om) = =" (fu(ze, ..o ym) —apmy) = my (mod Ny).
The parameter m; := m;(x1,...,x;) denotes a specific monomial which occurs in the poly-
nomial f;(x1,...,x;), the value ¢; the corresponding coefficient. Without loss of generality

we assume the coefficients ¢; to be invertible modulo N;. If they are not, we can determine
divisors of the moduli N;. Then by the Chinese Remainder Theorem 2.2.13 we get two new
equations f;; = 0 (mod N;) and f;2 = 0 (mod N;3) equivalent to the old one. Then we
modify the system by adding the system of the two new equations instead of the original
equation. The new system is equivalent to the previous one.

In order to proceed analogously to the analysis in the examples, the monomials my, ..., my
should not correspond to any row in the lattice, but only be introduced by linear combina-
tions of these rows. For this property to hold, we require the set of monomials {my, ..., my}
to be disjoint to the set of monomials M := Mon({fi, ..., fr}) which occur in the modi-
fied polynomials ﬁ We enumerate the monomials of M as myy1, ..., maq4x. Using this
notation, we rewrite the equations of system (4.14) as

| M|
Z(fi>jmk+j =m; (modN;), i=1,... k.
j=1
The vector f; is the coefficient vector of ﬁ with respect to myq1,. .., mp k. We define

M|
L= {(Mpg1, -, MMjls M, -, M) | Z(fi)jmk+]~ =m; (mod N;), i=1,...,k}.
j=1

68 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

The set L forms a discrete additive subgroup of ZMI+* Thus, it defines a lattice. Note
that in the examples of the previous sections we could just take the set L = {(z1,...,2) |
filx1,...,») =0 (mod N;), i=1,...,k} asalattice. This was possible as the equations
were linear. In this more general case we have to include a linearization step by taking the
monomials instead of the variables as components of the vectors. The lattice L is spanned
by the row vectors of the basis matrix

1
oW
1
By = N,
Ni
by
To prove this, we proceed in the same manner as in Section 2.3. Let By, = : .
b|M|+k

k

Then we have b; € L with j =1, .. |./\/l| because (f;);-1 = (£); (mod N;) fori =1,...,k,
and b; € L with j = M| +1,..., M|+ k because 0 = N; (mod N;) and 0 = 0
(mod NV;), [#i. Hence, (By,) C L.

Now let (mpy1,- .., M4k, Ma,-..,mi) € L. Then the equation Z (D iMe; = My
(mod N;) holds for i = 1,..., k. Consequently, there exists an 1nteger n; € 7 such that
Z ()jmk+J —i—nle m;. Then (mkH,...,m|M‘+k,n1,...,nk)BL = (mk+1,...,m‘M|+k,
mi,...,myg) € (Br). Combining the two inclusions results in the claim L = (By,).

By construction we have X := (my41(Z1, ..., T1),s -, Mm+6(T1, - -, T), ma (T, .-, Tp)s - - -
mg(Z1,...,7;)) € L. If X was a shortest vector in L, we would be able to find it by
lattice reduction. If, further, the solutions Z; could be written as rational functions of
the monomials mq(Z1,...,%;), ..., mm+x(Z1,...,7;), then we would be able to deter-
mine the variables Z;. A necessary condition for X to be a shortest vector in L is that
1X]| < V/IM|+E- det(L)m, i.e. X has to be smaller than Minkowski’s bound given in
Definition 2.3.4.

Note that the vector X is not balanced. Thus, its size is determined by its largest en-
try and it is rather unlikely to be a shortest vector in L. Hence, we change the vector
to balance the sizes of its components. Therefore, we multiply its entries by suitable

factors. Let K := lem{mi(Xq,..., X0),...,mpmx(X1, ..., X0)}, K == m and
m; == my(zy,...,7;). We set
Y = (K1 Mpes1, - - o Kjpae Mg ns Kama, ..o, Kpmy)

Then every component of § is approximately of size K. If we were able to determine the
solutions using X, we would still be able to do so using y as the K; are known. However,

4.4. SOLVING SMPE VIA SHORTEST VECTOR PROBLEMS 69

y ¢ L. Thus, we define a modified lattice L, via a basis matrix By,
K1
K\ .. Kiff

_ K mi+k
Br, = KN,

KNy,
Letl; € Z,1=1,...,k, denote the integers such that ZL’:&‘ (fi)jKimkﬂ-%—liNi = K;m;. That
is, l; = Kin;. Then § = (my1 (%1, ..., Z0), - o, mypmg+(Z15 - - T1)s 1, -, 1g) By, € Ly,. The
vector ¥ has norm ||y|| < +/|M|+ k- K. As we would like ¥ to be a shortest vector in

L, we get the necessary condition ||¥|| < \/|M| + k-det(L,) B by Minkowski’s bound.
Remark that due to the adaptation of the matrix det(L,) > det(L). It is det(L,) =

H'J/:ﬁk K, TI5_, N;. Thus, we have the condition:

‘M‘J’_k; k | M|+E

VMR TT 5TV > /IM|+k-K
j=1 i=1

v

k
& HNi

i=1 j=1

Based on this, we make the following heuristic assumption.

Assumption 4.4.1
Let N;; i =1,....k, and m;, j = 1,...,|M| + k, be defined as in the system of equa-
tions (4.14). Further, let by be a shortest vector in L,. Then by = 5.

For a complete analysis we add another assumption.

Assumption 4.4.2
Let myq,...,mam+k be defined with respect to the system of equations (4.14). Then the
values Z1,...,Z; can be uniquely determined using my(Z1,...,Z;), .., Mm+k(Z1, - - -, Ty).

The results of the method described above can be summarized in the following theorem.

Theorem 4.4.3
Let the system of equations (4.13) be given. Further, let m;, j =1,...,|M|+k, be defined
as in the system of equations (4.14).
Then on Assumptions 4.4.1 and 4.4.2 we can determine all solutions |z;| < X;,i=1,...,k,
|M|+k
of system (4.13) in time polynomial in ((|[M|+ k) h ,max;{log(KN;)}) if
k | M|+E

Iy = J] mixa,....x0).
. o

70 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

The running time is dominated by the computation of a shortest vector [Kan87, Hel85|.
Remark that the different equations which are used as input of the theorem have to be
independent of one another. If, for example, the same equation is added twice in the
lattice, the heuristic fails.

The SIMPE-problem can be analyzed in an analogous manner. However, some additional
problems may occur. We give a sketch of the method to point out the problems and
additional conditions we require such that this approach still works. First, the system of
equations

fl(l‘l, e ,CL’[)
fz(l’l,...,xl) = 0
: (4.15)
fk(xl,...,l’l) = 0
is transformed into a system of equations
fl(xl, coox) == (filz,. . x) —amy) = am
fQ(.CCl, Ce ,ilj'l> = — (fg(il?l, e ,SL’[) — szg) = C2M2
(4.16)
Jel@r, . ox) = = (fulzy, .. m) —aemy) = ey

As all calculations are performed over the integers, we can no longer assume that the
coefficients ¢; are invertible. Hence, a natural adaptation would be to directly construct
a lattice L; using the equations of system (4.16). Analogously to the modular case, the
solutions of system (4.16) (taking ¢;m; instead of m;) form a lattice L; for which we can
give a basis By,:

K
BLI = Klf‘ir kag
KMk

Remark that in this construction the values c¢;mq, ..., cpymy correspond to entries of our
target vector. As we intend to determine the target vector by calculating a shortest vector
in the lattice L;, we need these values to be small. Thus, for the method to work, we have
to make an additional claim: The coefficients ¢; have to be of small constant size.
Furthermore, note that the lattice L; is not of full dimension. Any basis of this lattice
is, thus, given by a rectangular matrix. For rectangular matrices determinant calculations
are more complicated than for square upper triangular matrices. Consequently, it is more
difficult to calculate bounds on the solutions in the integer case. Therefore, we can no
longer give a general bound here. It has to be calculated individually with respect to the
specific system of equations.

4.4. SOLVING SMPE VIA SHORTEST VECTOR PROBLEMS 71

In general, the method presented in this chapter works as follows. First, we have to
transform the given system of equations into a lattice in which our solution corresponds to
a shortest vector v. Then we can determine the vector v by lattice reduction. The basic
condition on which the target vector v is a shortest vector is given by Assumption 4.4.1.
This, however, is a rather strong requirement. Therefore, only very small solutions, if any,
can be found. It would be advantageous if we could relax this condition. A method in
which the target vector no longer has to be a shortest vector, but only smaller than some
basis vector has been given by Don Coppersmith in 1996 [Cop96b, Cop96al. For some
problems this method allows to find larger solutions than the method presented in this
chapter. We will use variants of it to solve systems of equations in the following chapters.

72

CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

Chapter 5

Solving Systems of Multivariate

Polynomial Equations with
Coppersmith’s Method

In 1996, Don Coppersmith presented a lattice-based technique to solve multivariate poly-
nomial equations over the integers as well as modular ones. A description of the technique,
which we call Coppersmith’s method, is given in Section 2.3. The original work mainly
refers to bivariate equations. Ellen Jochemsz and Alexander May show how to construct
shift polynomial sets for multivariate equations in more variables in [JMO06]. Directly ap-
plying Coppersmith’s method with those shift polynomial sets, we can give upper bounds
on the unknowns in case of one equation. In the following sections we will make some
progress in generalizing these techniques to systems of multivariate equations.

5.1 Coppersmith’s Algorithm with Systems of Equations

Let us briefly recall how Coppersmith’s method to find small solutions of multivariate
equations works in case of one equation: First, a set of shift polynomials is chosen and a
lattice is defined using these shift polynomials. In a second step, a sublattice of vectors
having zeros in the last components is determined. This sublattice is constructed to have
the same determinant as the original lattice. In order for this to hold, there has to exist a

I
a given set F of shift polynomials. By Theorem 2.1.3 such a transformation U exists if the
elementary divisors of F are all equal to one. In case of k =1 (i.e. the system consists of
a single equation), which is described in the original work of Don Coppersmith [Cop96b],
the condition can be verified easily. Let f be the polynomial the roots of which are to be
determined. As f is monic, the vector corresponding to this polynomial contains an entry
equal to 1. Consequently, each shift polynomial is monic as well as it is constructed by
multiplying f with some monomial. In the shift set, the shifts can be ordered by graded

unimodular transformation U such that UF = 0), where the matrix F is induced by

73

74 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

lexicographic ordering so that each polynomial introduces at least one new monomial,
namely its leading monomial. It is at a position in which all previous vectors were of value
zero. Thus, the matrix F corresponding to the set of shift polynomials contains an upper
triangular submatrix with a diagonal of value one. Consequently, all elementary divisors
of F are equal to one and the required unimodular transformation U exists.

The same holds for the analysis of a single multivariate polynomial equation using the shift
polynomial set F as defined in [JM06]|. There the polynomial to be analyzed is transformed
into a monic one in a first step. Then the shift polynomial set is calculated to consist of
shifted powers of the original polynomial. These polynomials are ordered in a way that
each shift polynomial introduces its leading monomial. Thus, the matrix F again contains
an upper triangular submatrix having only ones on its diagonal. This implies that all
elementary divisors of F are equal to one and a suitable unimodular transformation U
exists.

For a general set of shift polynomials, however, this is not that easy to see.

In what follows we will relate the condition of Theorem 2.1.3 to conditions on the set of
shift polynomials. Therefore, we introduce some additional notation.

When constructing sets of shift polynomials, the goal is to include additional information
with every additional polynomial. If a polynomial is an integer linear combination of the
polynomials already included, we do not gain anything by adding it to the shift polynomial
set. Hence, the polynomials are constructed to be linearly independent. This is a necessary
condition on the existence of a suitable transformation of the lattice. To see why, assume
F to be the matrix induced by a linearly dependent set of shift polynomials F. Then
there is a non-trivial linear combination of polynomials f € F which adds up to the zero
polynomial. The same non-trivial linear combination of the corresponding vectors f7 adds
up to the zero vector. Thus, at least one elementary divisor of F is equal to 0 and the
required unimodular transformation of F does not exist.

One might assume that linear independence immediately implies that the construction of
the sublattice with the same determinant works. However, this is not the case as can be
seen in the following example.

Example 5.1.1

Let N € Z\{—1,0,1} and f(x1,z3) = x129+ Nx1 and g(x1,x9) = X109+ Nxoy € Z[11, 2] bE
two bivariate polynomials over the integers. Both polynomials contain different monomials.
Thus, they are linearly independent over the integers. Building a Coppersmith type basis
matrix with the shift polynomial set F = {f, g}, we get

(Xng)il 1 1 T1T9
B = 0 N 0 1
0 0 N i)

In order to check whether we can determine a sublattice with the same determinant, we
only regard the submatrix F corresponding to the shift polynomial set. That is, we regard
the matrix consisting of the last two columns. First, we apply unimodular transformations

5.1. COPPERSMITH’S ALGORITHM WITH SYSTEMS OF EQUATIONS 5

in order to transform the first column. We permute the first and second row and then
eliminate the entry N in the first column. By this we obtain

. 0 —N
UF = 1 1
0 N

Having a look at the matrix UF, we can directly see that the elementary divisors are 1 and
N. By Theorem 2.1.3, this implies that we do not get a unimodular transformation U such

that UF = (I) . Instead of a second elementary divisor of value 1, we obtained one of

value N. Looking at f(x1,x5) and g(x1,xs) modulo N, we observe that f(z1,x2) = x129 =
g(x1,2z2) (mod N), i.e. the two polynomials are linearly dependent, here even equal, in
Zyxy, o).

The observation made in the above example can be generalized easily. Instead of using
polynomials which are linearly independent over the integers, we only use polynomials
which are linearly independent over the integers as well as in any ring Z, with 1 # a € N.
In contrast to the previously used condition, this one is not only an intuition, but provably
equivalent to the existence of a sublattice with the same determinant containing our target
vector. In the subsequent of this section, we will give conditions on which we can restrict
the number of potential moduli. At the moment, however, we use the general statement.
Note that modularly dependent polynomials could still be used in the lattice construction.
They do not cause the construction to fail, but do no longer allow for a direct computation
of the determinant. That is, a priori computations give too large upper bounds. In
practice, the determinant of the sublattice then is significantly smaller. In many examples,
this implies that we do not obtain interesting bounds on possible solutions any more.

Let | € N and F be a set of polynomials in Z[xy,...,2;]. Without loss of generality we
assume F to be ordered and denote the i-th polynomial in F by f;. Let w := |Mon(F)|
and my, ..., m, be an ordering of all monomials of Mon(F). Let f be the vector of the
coefficients of f such that (f); is the coefficient of the monomial m;. Let F be the matrix
whose column vectors are f7 for all f € F.

Definition 5.1.2
The set of polynomials F C Z|xy, ..., x;] is called a determinant preserving set if and
only if there exists a unimodular transformation U such that

0(w—IFD) x| 7]
UF = .
Iz

Note that any shift polynomial set G giving a good bound although it is not determinant
preserving corresponds to a smaller determinant preserving set F with the same bound.
The set F can be constructed by appropriately removing polynomials from G. Therefore,
we can restrict the analysis directly to determinant preserving shift polynomial sets.

76 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

Remark 5.1.3

In the introduction of this section we have already shown that the shift polynomial sets
Don Coppersmith [Cop96b| and Ellen Jochemsz and Alexander May [JMO06] derive for one
(multivariate) polynomial are determinant preserving.

In Example 5.1.1 the elementary divisors of F are 1 and N. Therefore, we know that no
appropriate unimodular transformation exists. The set {f, g} is, thus, not determinant
preserving.

However, changing the example slightly by setting fo(z1, x2) = 122+ Nzy and go(1, x2) =
129 + Moy with ged(M, N) = 1, the situation changes. The last two columns of the basis
matrix become

1 1 T1T9
F2 = N 0 1
0 M i)
Applying the same unimodular transformations, we get
3 0 —N
UF2 = 1 1
0 M

As the greatest common divisor of M and N is 1, this can easily be transformed to

UﬁFz =

o = O
_ o O

Consequently, the set {fs, g2} is determinant preserving. Compared to f and g, the new
polynomials are not linearly dependent modulo N or M or any other integer greater than
one either.

We generalize this observation to obtain a criterion for determinant preserving sets.

Theorem 5.1.4

Let F be a determinant preserving set and F U {g} C Z[z1, ..., x| linearly independent
over the integers.

Then G := F U {g} is a determinant preserving set if and only if for all 1 # a € N the
polynomial g is linearly independent of F in Z,.

PROOF: Let F = {fi1,..., fiz} be an enumeration of the shift polynomials.

We prove this theorem by proving the contraposition:

"The set G = F U {g} is not determinant preserving if and only if there is an 1 # a € N
such that g = Zﬁll ¢;f; (mod a) with ¢; € Z.”

First, let us introduce some additional values. Let wz := |[Mon(F)|, w, := |Mon(g) \
Mon(F)|, and My, 41, ..., My,4w, be an enumeration of the monomials occurring in g,
but not in F. Then let w := wr + w, denote the number of all monomials occurring in
G. Note that the case of w, = 0 is also included in the following proof although the proof
could be simplified in this special case.

5.1. COPPERSMITH’S ALGORITHM WITH SYSTEMS OF EQUATIONS 7

1|
]:

We start by proving "If there is 1 # a € N such that g =)
then G = F U {g} is not determinant preserving".

¢ f; (mod a) with ¢; € Z,

Suppose there are 1 # a € N and ¢; € Z, such that g = Z'fjl ¢;f; (mod a). Then it holds

that g7 = Zyjl c;fi" (mod a). Here we define the vectors with respect to the ordering
mi, ..., My. This means, the last w, components of vectors corresponding to elements of
F are zero modulo a.

0w —|F)x|7])

From the preconditions we know that there exists V such that VF = (I
|7

Here, the columns of F are only taken with regard to the monomials my,...,m,,. We
extend this with regard to m4, ..., m,, by adding w, zero rows to F and extending V as

vV QWFXWg
A)

I,

For the ease of notation, we denote the extended version of F as well by F. Let G denote the
matrix constructed by taking the matrix F and adding the vector g’ as last column. If not

stated otherwise, we are referring to vectors with regard to all the monomials mq, ..., m,.

Then Ug’ = Zﬁll ¢;UfT (mod a) = leill c;(e¥=~)T (mod a) with (eV#~F1H)T

being the (wr — |F| + j)-th unit vector of length w. Consequently,

0

(&1
Ug! = : (mod a)

7]

and with appropriate z; € Z

azy
owWr—IFDx|F]
AZ(wr—|F))
C1 + AZ(wr—|F|+1)

UG = L7 :

ClF| T 2wy
AZ(wr+1)
oWex|F| :

A2y

78 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

Eliminating the entries ¢; to ¢z by column operations one can directly see that a divides all
remaining values in the last column and, thus, the last elementary divisor of G. Applying
Theorem 2.1.3, we derive that G is not determinant preserving.

Now we prove "If the set G = F U {g} is not determinant preserving, then there is an
1 # a € Z such that g = Z‘jﬂl ¢;f; (mod a) with ¢; € Z".

Suppose G = F U {g} is not determinant preserving, that is, by Theorem 2.1.3, we either
have that the last elementary divisor of G is not equal to 1 or the number of elementary
divisors of G is smaller than |G]|.

First, we assume that at least one elementary divisor is equal to a # 1. Our goal is to show
that there exist coefficients cy,. .., ¢z € Z, such that g = leﬂl ¢;f; (mod a). Therefore,

we start by setting g = ZLQ1 ¢jf; + 7 (mod a) (such a representation always exists, take
for example 7 = ¢g and ¢; = 0). The aim is to change the coefficients ¢; until we have 7 = 0

(mod a).
(W r—IF)IF]

Let U again be the unimodular transformation such that UF = I 7
0Wg><|-7:|
Then
7|
Ug’ = Z &UR" + UF" (mod a)
j=1
7| .
= Z & (e V)T L UFT (mod a)
j=1
(UT")
(Uf”i)wa—m
¢+ (UL)41
= : (mod a) .
e+ (UT)y
(UfT)warl
(UTF"),,

By this we get ged((UF)1, ..., (UF)17, (UF)uwpit,- -, (UF),) =a > 1.

If ged((UF"), ..., (UF) wp 7], (UF)upits - - -, (UT')y) = b # a held, we could perform
the elementary divisor algorithm on UG, eliminate the j-th entries for j = wr — |F| +
1,...,wr by column operations, then set the next diagonal entry to b and eliminate all
further entries in this column by row operations. This implies that the last elementary
divisor is equal to b which contradicts the preconditions. Thus, (U¥"); = 0 (mod a) for
j: 1,...,w;— |.7:\,wf+1,...,w.

5.1. COPPERSMITH’S ALGORITHM WITH SYSTEMS OF EQUATIONS 79

Further, we need that (Ut"); = 0 (mod a) for j = wr — |F| +1,...,wr. Assume that
this does not hold, i.e. we have (UF"),, |7+ = d (mod a) for an index [€ {1,...,|F|}.
Then define ¢; ;= ¢, +d and r := 7 — df and c; = c¢j for all j # 1.

This implies Zlﬂ cifj+r (moda) = Z] waCGifitafi+di+7 —dfi =g (mod a).
Following the same line of argumentation used before, we have

|7
Ug" = chUij +Ur" (mod a)
j=1
7] .
= ch(e“’_‘f'ﬂ)T +Ur" (mod a)
j=1
(Ur')
(UI‘T)Tme
cr + (Ur e 741
= : (mod a)
C|F| + (UI‘T)wf
(UrT)warl
(UrT)w
with (Ur"); = 0 (mod a) for j = 1,...,wr — |F|,wr + 1,...,w. Moreover, we have
(UrD) w7141 = (UF) 0= U)0 = d— (d(e¥ T ip i =d—d =0
mod a). Performing this translation of ¢; for all l € {1,...,|F|} such that (Ur)T _ *
wr—|F|+l1

0 (mod a), we get Ur’ = 0%*! (mod a) and, as U is unimodular and, thus, invertible, we
get r7 = 0%*! (mod a). Therefore, g = Zm ¢jfj (mod a), which concludes the proof.

In case of G having only |F| elementary divisors, we know that there exist unimodular ma-
trices U and V such that UGV = Diag(ay,...,a#,0). Thus, rank(G) = rank(UGV) <
|G| = |F| + 1. This implies that the columns of G are linearly dependent over Z,
that is, there exist ci,..., ¢z, ¢F+1 € Z such that Zmﬂ ¢;G.; = 0% This implies
Z‘Zﬂ ¢ifi + 419 = 0, i.e. G is linearly dependent. This contradicts the preconditions.

Thus, the theorem is proven. |

As an extension of the theorem we get the following result.

Theorem 5.1.5

Let F C Z[x,. ..,z be a set of polynomials.

Then F is determinant preserving if and only if for all f € F and all 1 # a € N the
polynomial f is linearly independent of F\ {f} in Z,|x1, ...,z

PROOF: As a direct application of Theorem 5.1.4 setting g = f we have "If there is a
polynomial f € F and a parameter 1 # a € N such that f is linearly dependent of

80 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

F\{f}, then F is not determinant preserving". This is equivalent to "If F is determinant
preserving, then for all f € F and all 1 # a € N the polynomial f is linearly independent
of F\{f} in Zy[x1,...,2]".

We show the opposite direction of the equivalence "If for all f € F and all 1 # a € N the
polynomial f is linearly independent of F \ {f} in Z,[x1, ..., 2], then F is determinant
preserving" by induction on the size of F using Theorem 5.1.4 in the inductive step.
First assume |F| = 1. Then F = {f} for a non-zero polynomial f. Furthermore, the
positive greatest common divisor of the coefficients of f is equal to 1. In any other case,
if ged(f) = a > 1, then f = 0 (mod a), i.e. we have linear dependence in Z, which
contradicts the precondition. The claim then follows by Lemma 2.1.4, i.e. we have that
{f} is determinant preserving.

The hypothesis we use is as follows:

For an n € N and any set of polynomials F such that |F| = n it holds that if for all f € F
and all 1 # a € N the polynomial f is linearly independent of F \ {f} in Z,, then F is
determinant preserving.

We continue with the inductive step. Let F be a set of polynomials fulfilling the precon-
dition with |F| = n + 1. Choose an arbitrary g € F. Then |F \ {g}| = n, and by the
precondition it holds for all f € F\ {g} and all 1 # a € N that the polynomial f is
linearly independent of F \ {f, ¢} in Z,. Therefore, F \ {g} is determinant preserving by
the hypothesis.

From the preconditions we further get that for all 1 # a € N the polynomial ¢ is linearly
independent of F\ {g} in Z,[x1,...,x;]. In order to apply Theorem 5.1.4 we have to verify
the second precondition that the set F is linearly independent over the integers. Assume
on the contrary that there exist integers c¢; € Z such that Z?:ll c;f; = 0. Without loss
of generality let ¢ = f,41. Then ¢, ¢ {—1,0,1}. If ¢,01 = 0, then F \ {g} is not
determinant preserving. If ¢, = %1, then it is g = > 7 | (£¢;) f; over the integers and,
consequently also modulo a for any a € N. Both implications contradict the preconditions.
Thus, it is 37, ¢;f; = 0 (mod ¢,11). Without loss of generality we have i € {1,...,n}
such that f; € F\ {g} and ged(c;, cht1) = 1. (If not, either all ¢; share a common divisor
or different ¢; have different common divisors with ¢,;. In the first case we can divide the
whole equation by this divisor, in the second case we can just take ged(cj, ¢,41) for some
arbitrary j as new modulus.)

Therefore, we can rewrite the equation as f; = Z?:L#;(—c{l)cjfj (mod ¢,41), i.e. f5is
not linearly independent of F \ {g, f;} in Z., ,[z1,...,2;]. This is a contradiction to the
preconditions. Consequently, F is linearly independent over the integers.

A direct application of Theorem 5.1.4 thus gives that F is determinant preserving. This

concludes the proof. |
Remark 5.1.6
Note that a determinant preserving set only contains polynomials f € Zlxy,...,x;| with

relatively prime coefficients. Any polynomial with a > 1 as greatest common divisor of
the coefficients is the zero polynomial in Z,|xy,...,x;| and, therefore, linearly dependent

5.1. COPPERSMITH’S ALGORITHM WITH SYSTEMS OF EQUATIONS 81

modulo a.

The above theorem gives us a condition on which sets of polynomials can be used. However,
to use this condition we have to check linear independence for any a € N\ {1} which, of
course, cannot be done efficiently. Therefore, we would like to have only a selection of
integers which we have to check. However, there is no such selection in general as the
following example shows.

Example 5.1.7
Let

2 =41 3 (mod 5).

That is, we do have a modular relation modulo 5 between the two column vectors. The
modulus 5, however, does not have any obvious relation to the matrix and its entries.

Nevertheless, we do not have to check for all moduli 1 # a € N. An upper bound on the

: L 71 :
number of potential moduli is given by <\/m |cmax|> , where F C Z[xq,. .., 2] is the
shift polynomial set we consider, and ¢y is the largest coefficient which occurs in F.
This can be seen as follows. Let again F be the matrix induced by F. Combining the
proofs of Theorem 5.1.4 and Theorem 2.1.3, we know that any potential modulus is an
elementary divisor of F. Therefore, to calculate an upper bound on the size of the potential
moduli, we determine an upper bound on the size of the largest elementary divisor. Let
U denote the unimodular transformation such that UF is the matrix with the elementary

divisors on its diagonal and all other entries being equal to zero. Let UF denote the matrix
UF without its zero rows. Then UF is an |F| x |F| submatrix of UF. Moreover, det(UF)

is the product of the elementary divisors. Let F denote an |F| x |F| submatrix of F with
linearly independent rows. Then det(UF) < det(F). Furthermore,

7]

o) < [T || @3] < (VIFT-feund)

82 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

Thus, we obtain an upper bound on the largest elementary divisor and, consequently, on
| 7]
the largest potential modulus by (\/ | F| - |cmax|> .

Unfortunately, all these moduli still cannot be tested efficiently. Whereas we require the
algorithms to have running time polynomial in the bitsize of c,.x, the upper bound on the
number of moduli we have to check is only polynomial in c¢,.. That is, it is exponential
in log(cmax)-

In contrast to the matrix B given in the above example, the matrices we construct using
Coppersmith’s method have some special properties. While constructing the shift polyno-
mial set, the polynomials are built in a way that every new polynomial introduces at least
one new monomial. The part of the basis matrix corresponding to the shift polynomials
is, thus, a matrix comprised of an upper triangular matrix and additional rows. Luckily,
this property enables us to further restrict the number of moduli we have to check.

Lemma 5.1.8

Let F :={f,..., fir} C Z[xy,...,2;] be an ordered set of polynomials constructed such
that Mon(f;) \ (Uf;llMon(fi)) # () which is not determinant preserving. Let F be the
matrix induced by this set as before. Then there are 1 # a € C, f € F and cy € 7Z such
that f = > rery ¢ff (mod a). Here, C denotes the set of all coefficients of monomials
in Mon(F) and divisors of them.

PROOF: From the precondition using Theorem 5.1.5 it follows that there are f € F,
c; € Z for all f € F\{f}, and 1 # a € N such that drervpcrf = f (mod a). Let
w := [Mon(F)| and let m1, ..., Mpnon(z) be an enumeration of the monomials of Mon(F)
corresponding to the construction of F. Let h be the largest index such that the monomial
my, occurs in the equation with non-zero coefficient. Due to the upper triangular structure,
this monomial only occurs in one of the polynomials in the equation. (Otherwise, assume it
occurs in two polynomials f; and f; with j > ¢. Then f; must introduce another monomial
msy corresponding to a row index greater than h, which contradicts the choice of h.) Let
c(my) be the coefficient of mj. Then for the equation to hold we require alc(my,). Thus,
a € C which implies the claim. |

This lemma will be quite helpful in the following analyses as the polynomials we deal
with have coefficients which are mostly products of only two primes. This can be seen in
Section 6.1.

But, of course, we then have to construct a shift polynomial set in a way that it has the
required structure.

Before we turn to the analysis of various systems of equations, we will extend the defi-
nition of being determinant preserving. So far we have dealt with polynomial sets F C
Z[zy, ..., 1] to which the definition can be applied. In practice, we also have polynomial

equations f(zy,...,2z;) =0 (mod N). That is, we would like to determine solutions mod-
ulo an integer N. That is, the polynomial f(z1,...,;) is a polynomial in Zy[x1,..., 2.

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 83

To include various modular equations with equal or different moduli into our set, let F
denote the set of all shift polynomials and their corresponding moduli. Elements of F are
denoted by tuples (f(xl, ..., 21),N). Each polynomial f(xl, .., xy) € Zn[xq, ..., 7] can be
written as a polynomial in a polynomial ring over the integers with one more unknown. The
corresponding integer polynomial is f(z1,...,z;,t) := f(xl, co,x) —tN € Zxq, . .., 2y, t].
We call the polynomial f the integer polynomial induced by f. Accordingly, we define the
set F to consist of all integer polynomials f induced by polynomials f € F. The set F
is then called the polynomial set induced by F. Note that for each polynomial in F one
new variable is adjoint to the polynomial ring. Thus, F C Zlzy, ...,z t1,. .. ’tlfl]' With
this notation we can now extend the definition of determinant preserving sets to modular
polynomials.

Definition 5.1.9

Let the set of polynomials F consist of tuples of polynomials and their corresponding
moduli. Then the set F is called a determinant preserving set if and only if the set
F CZxy, ... x5t ... ’tlf'\] induced by F is determinant preserving.

With this definition we can derive similar conditions like the one of Lemma 5.1.8 for systems
of modular polynomial equations. As these conditions differ depending on the relation of
the moduli to each other, they will be presented in the corresponding sections.

5.2 Systems of Equations with a Common Modulus

In this section we analyze systems of modular multivariate polynomial equations with a
common modulus N, namely, we refer to a special case of the SMMPE problem. In analogy
to the univariate case, we define the problem of solving systems of modular multivariate
polynomial equations with a common modulus (SMMPE1-problem).

Definition 5.2.1 (SMMPE1-problem)

Let k € N, §y,...,0y € N, and N € N. Assume fi(zq,...,2;),..., fe(z1,...,27) to be

polynomials of degree 01, ...,0 in Zy|x1,. .., 1], respectively. Let
fi(xy,...,x;) = 0 (mod N)
fo(z1,...,2¢) = 0 (mod N)

: (5.1)

fr(z1,...,z) = 0 (mod N)

be a system of multivariate polynomial equations.

Let X; < N, X; € R, i =1,...,l. Find all common roots (Zy,...,%;) of (5.1) with size

|z;| < X;.

The analysis of modular systems is simpler than in the integer case. Let F be a set of
shift polynomials and their respective moduli used to apply Coppersmith’s method 2.3.9.

84 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

Then all f € F are polynomials of the form mfi(xy,...,2)" withm € Zy[zy, ..., 1] being
some monomial and A € N. Thus, the solution we are searching for is a solution of f =0
(mod N*) for all f € F.

Let F be the set of integer polynomials induced by F. From these polynomials a basis
matrix is constructed. The last columns of this basis matrix correspond to the shift poly-
nomials. Let us again denote this matrix by F as it is done in Section 2.3. It consists of
an upper part F. corresponding to the coefficients of the polynomials and a lower part F,
corresponding to the moduli. The matrix F,,, thus, forms a diagonal matrix with entries
which are powers of V.

In the analysis in Section 5.1 we have seen additional conditions which allow for a simpler
verification if F is determinant preserving. Namely, if F' consists of some upper triangular
matrix and some arbitrary matrix, the check becomes easier. In this example the upper
triangular part of F is given by Fy,. The matrix Fy, is not only upper triangular, but even
a diagonal matrix with the moduli as values on the diagonal. The moduli are always powers
N? for a value of A € N. Therefore, the only way to have linear dependence of vectors of
F is to have dependence modulo N or a divisor of N. Note that linear dependence modulo
N?* with A > 1 implies linear dependence modulo N. Hence, it is sufficient to test for
modular dependence with regard to N and its divisors.

Lemma 5.2.2

Let F C Zlzy,...,x;] x N be an ordered set of polynomials and corresponding moduli
which is not determinant preserving. All moduli occurring in F are powers of N. Let F
be the integer polynomial set induced by F , and F be the matrix induced by F as before.
Then there are f € F and ¢; € Z such that f = > ey ¢ f (mod a), where a|N and
a>1.

PROOF: We regard the polynomials f € F C Z[x1,...,2,t1,..., 47 induced by polyno-
mials f € F. From the precondition using Theorem 5.1.5 it follows that there are f € F,
c; € Z for all f € F\{f}, and 1 # a € N such that dorervp crf = f (mod a). By
construction there is a monomial ¢; which occurs only in f. Tts coefficient is N* for some
A € N as it corresponds to the modulus. Then for the equation to hold we require a|N*
which implies the claim. |

In many practical examples we take moduli N which are products of two unknown primes
p and ¢q. Consequently, we can only test for linear dependence modulo N, but not modulo
its divisors. Nevertheless, this does not pose any problems. Linear dependence modulo p
or ¢ implies that we get p or ¢ as elementary divisor of the matrix. Thus, a way to break
the system would be to take some set of polynomials which is not determinant preserving,
to build up the corresponding matrix, and to calculate its elementary divisors. This can
be done quite efficiently (compare [Liib02]). Then, given p or ¢, the system from which we
derived the equations is broken anyway.

In the following examples we, therefore, assume that we do not get any factors of the
moduli as elementary divisors. This assumption was valid in all our examples.

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 85

5.2.1 RSA with Related Messages and Implicit Relations

We recall the problem of RSA with related messages and implicit relations presented in
Section 4.1. A set of k secret messages my,..., m; is encrypted with an RSA public key
(N, e). Each encryption corresponds to an equation f;(x;) := xf —¢; =0 (mod N) with a
solution m;. Furthermore, the messages are related by some implicit polynomial relation
p(z1,...,x) such that p(my,...,my) = 0 (mod N). We have already seen how we can
determine all solutions of the system (Section 4.1) by computing a Groebner basis. Now we
will show a method to determine certain roots if Groebner basis computations do not help.
For ease of analysis we start with the case of £k = 2 and a simple lattice basis. The cases
k > 2 or more complex lattice bases can be treated analogously. Moreover, we assume to
get a relation p to be valid over the integers. That is, we regard the following problem:

fi(z1) = 0 (mod N)
fao(za) = 0 (mod N) (5.2)
p(z1,22) = 0.

Let X; < N, X; € R, i =1,2. Find all common roots (mq, ms) such that |m;| < X.

Thus, we look at the SMMPE1-problem with a simple system of multivariate equations.
For i € {1,2} let us first regard f;(x;) =0 (mod N) separately. We deal with a modular
univariate equation. We can determine its solutions |m;| < X; if X; < N ¢ in polynomial
time according to Theorem 2.3.9. The initial lattice basis used is

Bzz< 0 F); 0 %= 1 |. (5.3)
" 0 0 N

As the polynomials f;(z;) only consist of the monomials z§ and 1, we just put f; into
the shift polynomial set. Then the bound can directly be computed using the simplified
condition det(B?) > 1 given in equation (2.14).

In a first step to combine the analyses, we combine the basis matrices. That is, at the
moment we ignore the additional information we get by the additional polynomial p, but
only consider the original problem. We set

1 0 0 —c¢ —c
0L 0 1 0
B=|00 &+ 0 1 (5.4)
00 0 N 0
00 0 0 N

Il
o

as initial basis matrix for a lattice L to determine solutions of both equations f;(x;)
(mod N) in one analysis. We apply the simplified condition to this and obtain

det(B) >1 <« det(B')det(B?) > 1.

86 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

This condition is, of course, fulfilled if the basic conditions
det(B') > 1 and det(B?) > 1 (5.5)

hold. Thus, a sufficient condition that we can determine the solutions (mq,ms) using
the lattice basis B given in (5.4) in Coppersmith’s method is that we can determine it
separately using the lattice bases B! and B? described in (5.3), i.e. condition (5.5) holds.
As the equations f1(z1) =0 (mod N) and fy(x2) =0 (mod N) do not share any variables,
condition (5.5) ought to be necessary as well. However, just regarding the determinant,
this is obviously not the case. If e.g. |det(B')| > 1, then |det(B?)| could be smaller
than one without violating condition (5.5) anyway. To see why Coppersmith’s method
fails under these preconditions, we look at it in more detail. By failure in this case we
mean that we do not get any further equations containing the variable x5. Thus, we
are only able to determine my, but not my. Note, however, that we can calculate ms
by substituting x; by m; in p(z1,x2) and then determining the roots of the univariate
polynomial p(my, xs) € Z[xs] over the integers. This works in this case as only one message
is missing. In case of k£ > 2, however, we could fail to determine more than one message. In
order to develop a general strategy which can be applied to those cases as well, we continue
with our example without taking p into account.

Let us now assume |det(B)| > 1 but |det(B?)| < 1. The latter implies X§ > N. We start
with the basis B as basis of our lattice. In order to get a basis of the sublattice, the basis
matrix B is transformed into

1 % 2 00
0 —x 0 00
UB=|0 0 —;(Vsoo (5.6)
0 XL 0 10
00 5 01

by a unimodular transformation U. Let Lg denote the sublattice of vectors with zeros in
their last two components. Then a basis Bg of Lg is given by the first three rows of B.
When considering vectors in Lg, we regard them as vectors with only three components as
the other components are zero anyway. Recall that Lg contains the vector tg := (1 o m2)

with norm |[tg|| < v/3 € O(1).

Subsequently, we perform LLL-reduction on Bg and orthogonalize it. We denote the re-
sulting matrix by Br*. Let b;*, by", bs* be the rows of BR*. Due to the lower bound on
the absolute value of the determinant, the vector tg is at least orthogonal to bg*. That
is, by construction we have ||tg|| < ||b;*|| for at least ¢ = 3. It might also hold for further
basis vectors. Each such vector b;* is orthogonal to tg. Using this condition, we get a new

e
my

non-modular equation (b;*); + (b;")s - ?—z + (bi")3 - 52 = 0. The solutions m; and my are,
1 2

thus, integer solutions of the equation (b;*); + (b;")s - ;ﬁf (b;*)3 - ;55 =

We will show in the following paragraph that (b;"); = 0 for all b;* orthogonal to tg. This

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 87

implies that we only get additional information in x; and still cannot determine a solution
of fo(xy). Looking at the basis matrix, we can easily see that the vector v := (0,0, —Xﬁ)
2

also is a vector in Lg. From the condition X§ > N we derive | — ££| < 1 and, thus,
2

||v]] < 1. We even have ||v|| < |[ts||. Therefore, v is a vector in the same hyperplane as
tg is. Consequently, any vector b;* orthogonal to that hyperplane is also orthogonal to v.
Hence, we get the condition (b;"); -0+ (b;*)2-0— (b;")s3 - X% = 0. This implies (b;*)3 = 0.
We generalize this observation to an arbitrary number of k equations and show that com-
bining shift monomial sets does not improve the bound.

Theorem 5.2.3

Let k € N and f;(x;) = 0 (mod N), i = 1,...,k, be polynomials of degree 0;. Let Z;
denote a root of f;, i.e. fi(z;) = 0 (mod N). Let X; € R be a bound on the solution
7;, namely |T;| < X;. Then the following holds: If all solutions (¥, ...,Z;) € Z% can be
determined applying Coppersmith’s method to one lattice built with regard to a combined
shift polynomial set F = U¥_|F;, where F; C Zy[z;] denotes a shift polynomial set with
respect to f;, then we can determine the solutions using separate lattices with regard to
Fi as well. Furthermore, X; < N % for all i.

PROOF: First recall that Theorem 2.3.9 states that for any i the equation f;(z;) = 0

(mod N) can be solved if |z;| < X; < N % . The shift polynomial set used for the analysis is
Fi C Zn|zi]. Let F := UF | F;. The set Mon(F) denotes the set of all monomials occurring
in F. We denote by w; := |Mon(F;)| and by w := |Mon(F)| the number of monomials
occurring in F; and F, respectively. We will show that if all solutions (Z1,...,7;) € Z%
can be determined applying Coppersmith’s method with shift polynomial set F, then they
can be determined applying Coppersmith’s method to each polynomial f; separately using
F;. This results in the claim.

Without loss of generality we assume all f € F to be monic. If they are not, we can either
invert the leading coefficient modulo N or compute a divisor of N. By Theorem 2.3.9 it is
fi e F;. Let

0 Fn'

denote a basis matrix of the lattice L; constructed with regard to JF; to obtain this bound.
In the second representation of the initial basis matrix B¢, the row corresponding to the
monomial 1 is explicitly named so that the matrix D' equals D without its first row and
column. The matrix Fcl equals F." without its first row. The value fjy € Zy denotes
the constant term of f;. The values * correspond to the constant terms of the other shift
polynomials. They might also be equal to zero. A basis of the lattice L constructed with

88 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

regard to F is given by

D! F,'
B= D* F, (5.8)
F..'
F k

Non-included values are equal to zero.

We use this notation to prove the claim by contraposition. We show "If X; > N 5 for some
i € {1,...,k} (that is, if we cannot determine z; via Coppersmith’s algorithm using the
lattice L;), then we cannot determine z; using Coppersmith’s algorithm with basis matrix
B ecither”.)

Without loss of generality we assume X; > Né. (In any other case we simply permute
the polynomials in the shift polynomial set.)

The sets F; are determinant preserving by construction. As each set contains a different
variable z;, their union F is determinant preserving as well. For a proof let us assume
the contrary. Then there is a subset S C F with S N F; # 0 for at least two indices
i € {1,...,k} such that 37, scrf =0 (mod N) and ¢f # 0. Fori € {1,...,k} with
FiNS # 0 let f; denote the polynomial of maximal degree in x;. Let xiA" denote the
monomial of maximum degree. The polynomial f; is unique as any polynomial in F; (if
the polynomials are ordered appropriately) introduces a new monomial. Therefore, no
other polynomial in F; NS contains the monomial :IZZAZ Furthermore, polynomials in F;
with j # 4 do not contain monomials in ;. Consequently, f; € S is the only polynomial
in which the monomial acf" occurs. For the linear dependence relation to hold, we need
to have c¢;, = 0 (mod N). This contradicts the assumption that f; € S. Thus, F is
determinant preserving. This implies that there exists a unimodular transformation of B

’ (B*S I(a)f|) ' (59)

The matrix * is a matrix with arbitrary values which are not important for our analysis.
We denote by Lg the lattice spanned by the basis vectors of Bg. Let us look at Bg in more
detail. Recall that large vectors of the LLL-reduced and orthogonalized version of Bg are
orthogonal to some target vector t. This gives rise to additional equations in the unknowns.
Our goal is to show that these vectors have a special structure so that the induced equations
do not contain monomials in x;. Then we cannot get further information on z; and are,
therefore, unable to determine it this way. Due to the structure of B we can look at the

matrix B -
~ D' F.
B' = (0 Fo!) (5.10)

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 89

separately. What we do here is taking the second until (w;)-th and the (w + 1)-th until
(w 4 |F1|)-th basis vector. These basis vectors only have non-zero entries in the second
until (w)-th and the (w + 1)-th until (w + |Fi|)-th columns. Therefore, it suffices to
regard those. Operations on the rows of B! do not influence any other columns. As the
polynomials in F; are monic and each new polynomial introduces a new monomial with
coefficient one, fcl contains a diagonal with values one. The values below this diagonal
are equal to zero. The rows corresponding to the ones can be permuted with the rows of
Fun!. Then, we have transformed B! to

D! F,
0 F.' (5.11)
D} Fo

Here, D} denotes the lower || rows of D! and D} its upper part. Analogously,]Fll1

<1 <1,
denotes the lower |F;| rows of F. and F., its upper part. The last |F;| columns form a
rectangular matrix. Its last |F;| rows form an upper triangular matrix with value one on
the diagonal. To conclude, we use these last rows to eliminate all further values. Thus, by

further transformations, we get
Bs' 0
. 5.12
(* Ligy) ()

Note that each row vector is (w; — 1 + |Fi|)-dimensional as the first column, which corre-
sponds to constant terms, is not included. We are interested in the values in Bg' because
they correspond to row vectors in Bg as it is

Bg = . . (5.13)

A row of (Bs' 0) is constructed in one of two ways. Either it originates from a row of

< D}]fci > or it originates from a row of (0 F,') Ford=1,...,01 — 1 let 0q :=

(0,...,0, X%“ 0,...,0,¢c1,...,qm)) = Xifled + Z'illl c;e1~ 1 denote a row in the first case.
In this case all non-zero values ¢; have to be eliminated. Let ug := (0,...,0, N,0,...,0) =
Newr=1d d =1,...,|F|, denote a row vector in the second case. Here only the value N

has to be eliminated.
The question is what happens in the elimination step. The rows used for elimination are

S - 1 (d) (d) _ 1 §1—1+d
of type Vwi—14d = (0,...70,W,O,...,O,l,awl+d,...,awl_’_‘]_-l‘) = Wel + +
ewi—ltd 4 Z'ﬁ}‘l ag?ﬂewl“ for d = 1,...,|F| with afj?ﬂ € Z. In a first step, we
transform these vectors by eliminating the ag? 4o We set Vi, 147| 1= Vw147 and

iteratively define vy, 144 ‘= Vw,-1+d — a,fjll)ervwl,H(dH) for d = |F| —1,...,1. Thus,

90 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

—d I Ot
Z|.7-'1 s=d+1 %wys—1 51 1+ +ew1_1+d
thl 1+j5 .

VW1—1+d

We start by modifying the vectors ug. To eliminate N, one has to compute 551_1+d =
Ug — NV, 144, d = 1,...,|F1|, and gets a vector with zeros as last |F;| values because
it is wy — 1 > |Fi| + 01 — 1. The first values, thus, give a row vector in Bs', namely

1 Jj— d+1N J (1) ~
Z‘]il Y Wszas1 @urteo1 091145 Note that the (01 —1+d)-th component of bs, _14q is

X51 1+5

W It has absolute value smaller than one because due to the preconditions we have

Xf > Xfl > N if d > ;. Successively substracting appropriate multiples of b51_1+j,j =
d+1,...,|F] from 551—1+d, we get a vector by, 114 such that alle entries are smaller
than one. Consequently, an upper bound on the norm of bs, 1.4 is given by /|Fi| + 1.

To eliminate the last entries of tiq, we subtract c;-times vy, _14j from tq. This results

s—1
in by 1= et + S] CO7 T “wien) 14 with d = 1,6 — 1. A
m bq := X{le + j=1 —Cj j=d e w1 =1,...,00 — 1. As

X51 1+3

wy —1 > |Fi|+91 — 1, the last || values in this vector are zero. Its first entries, thus, give
a row vector in Bg'. We use the vectors bs, —1+a for further reducing the other entries and
denote the result by bg. As before all non-zero values in the reduced vector bgq are smaller
than one. There are at most |F;| + 1 non-zero values in bg. Hence, ||bg|| < +/|F1| + 1.
Overall,

by
(Bs' 0)= : : (5.14)
bs; 1417

Recall that when applying Coppersmith’s technique with regard to the lattice L using

. . L1711 Lot FEl-1
the basis B, the target vector is defined as t := (1, ;”’(11 . ,W, %, cee W)
1 k

The target vector is of size |[t|| < y/w. As each polynomial introduces at least one new
monomial, we have w = |Mon(F)| > |F| > |Fi| + 1. Let B* denote an LLL-reduced
and orthogonalized basis of the sublattice Lg. If ||bf|| > |[t|| for an index i, then also
||bf|| > ||bal| for all bg. The vectors bgq are 6; — 1 + |F;| vectors in a vector subspace of
dimension 6; — 1 + |F;|. As the determinant of B! is not equal to zero, the vectors are
linearly independent and form a basis of this vector subspace. Another basis of this vector
subspace is given by the set {e?, ... ,e51+|fl|}. Thus, if b;* is orthogonal to all by, it is also
orthogonal to €’ for i = 2,...,d; + |F;|. Consequently, (b;*)g = 0 with d =2,..., 6, +|Fy].
The values (b;*)4 correspond to the second until w;-th component of a vector in the original
lattice Lg. Therefore, any equation we get by applying Coppersmith’s method will not
contain any monomial in x;. This implies that we cannot determine Z; which concludes
the proof. |

In the analysis of a system of independent equations, i.e. equations not sharing any
variables, it is useless to construct a lattice like the lattice L to combine the analyses of the
equations. This matches the results we have expected beforehand. Another option would
be to shift the single polynomials by monomials in other variables. Advantage could then

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 91

be taken of shared monomials. The shared monomial of smallest degree when shifting f;
and f, is the monomial z{z§. We obtain this monomial by the shift polynomials z{ f, and
x5 f1. However, it is 2§ fo — c1 fo — 25 f1 + cof1 = fifo — fifs =0 (mod N). Hence, a shift
polynomial set including the shifts {x5fa, fo, 5 f1, f1} is not determinant preserving. At
least one of the polynomials has to be excluded from the shift polynomial set. Then the
contribution of the shift polynomial set to the determinant is X;2°X,?** N3. Without the
"mixed” shifts the bound is X; X, °N? > 1. As X;*X;?°N? > 1 implies X;°X;°N% > 1
all solutions that can be calculated with the former approach can also be calculated with
the latter. Hence, it is better only to include the shifts polynomials f; and f5 in the shift
polynomial set.

Same results hold for higher degree shift monomials leading to the same dependencies.
Thus, multiplication by monomials in other variables does not help to obtain a better
bound. This again meets our expectations as the polynomials are independent.

So why did we consider these shared lattices at all? Adding a single equation in both
variables to the lattice can significantly improve the bound. To see this, let us return to
the system of equations (5.2). We assume that z; < Ty and, thus, X; < X,. Suppose
p(x1,75) contains the monomial 2§ and only one monomial 222 not occurring in f; or
fo. Further, let 7o < e. The idea is to substitute z§ by the new monomial and build up
the corresponding lattice L. Then more powers of X;' but less powers of X, ' appear
in the determinant. To see if this helps to improve our analysis, we apply the simplified
condition (2.14) to our construction. That is, we require | det(L)| > 1 and, as X; ' > Xy,
the bound is improved. It is then better adapted to the different sizes of the unknowns.
As substitution becomes more difficult when monomials reappear due to shifts, we do not
explicitly perform the substitution but add further columns in the lattice. Let us continue
with the example to see how the technique is used. Let p(zy, 22) = 2§+ p12$ 2wy + po with
p1,Po € Z. We define a new lattice L, by a basis matrix which includes p:

o o
==

(5.15)

@]
aw]

coo oo
>
3
>
=

coo o or
o
—_
OZOO}—\A
S
ZOHOOA
)

e}
e}

Remark that the structure of By is different to what we have seen so far. It combines
column vectors used in the modular and in the integer case. If one compares it to B, the
column corresponding to the diagonal entry XLE is replaced by the column corresponding to
the new equation p(z1,x2) = 0. We no longer have to introduce the monomial explicitly in
the diagonal matrix but get it "for free” with the help of p. However, as p includes another
new monomial, this has to be added on the diagonal.

92 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

With unimodular transformations By, can be transformed to

1)"’(—l}ev 0 0 0 —c2—po
0O -% 0 00 0
! 1
VY s VY (5.16)
0 0 0 10 1
1
0 % 0O 01 0
0 0 0 0 0 N

Without loss of generality we can assume N and p; to be coprime. (Otherwise we can
compute a divisor of N which compromises the RSA public key (NN, e).) Therefore, there
is a unimodular transformation of By into

< (Bp)s IZ) . (5.17)

*

Further applying Coppersmith’s method, we get an additional equation in the unknowns
if the condition |det(L,)| > 1 is fulfilled. (For a better understanding we again use the
simplified condition.) It is det(L,) = X;*™?X;'N? > 1 & X?* 72X, < N2.

Note that the target vector here is (tp)s = (1, %, ;T_zz) Furthermore, remark that
plugging a solution m; into p(z1,z5) gives an equation in only one unknown zs over the
integers. The solution of the second unknown msy can, thus, be of any size if m; is small
enough. This is exactly what the determinant condition gives. Assume for example that
ms is of full size, i.e. X5 = N. The condition then becomes X; < Nzeos,

With respect to our initial problem, we have not improved the bounds this way. If we
regard f; separately, the upper bound on X; is N é, which is better than N7z, Using
p(mq, x2), any solutions my € Zy can then be determined. However, using additional shifts,
the condition can be improved further. We will show this with regard to a more general
setting. The above example should only illustrate the general method. For instance, if
k > 2, and if we have only one additional polynomial p denoting an implicit relation
of the messages my,...,my, the technique might be useful. Namely, we can use p only
to determine one message of arbitrary size provided that the other messages are given
beforehand. This implies that all other messages have to fulfill the condition X; < N ‘)
Building a lattice with the original equations and the implicit relation, however, might
allow to calculate different solutions. That is, more than one message may be of size larger
than N« if there are other messages which are significantly smaller.

In what follows we will give an algorithm to change a lattice basis and apply Coppersmith’s
algorithm when given a set of k independent equations f;(z;) = 0 (mod N) of degree ¢;,
i =1,...,k, and a set of kK < k implicit relations p;(x1,...,2x) = 0,4 = 1,...,k. The
major steps of the algorithm are as follows:

1. For each p; determine the most costly monomial not yet introduced and denote it by
my;.

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 93

2. Determine a determinant preserving shift polynomial set F with shifts of fi,..., fx
that uses many m; and powers of them.

3. Construct a standard lattice basis B with regard to the shift polynomial set F.
4. Substitute columns of D by columns corresponding to shifts of p;.
5. Perform Coppersmith’s method with the given basis matrix.

We elaborate on the steps of the algorithm.

Determine costly monomials

Recall from the example that the implicit relations are used to eliminate monomials and,
if necessary, replace them by others. For each polynomial p;(x1,...,zx) we have to decide
which monomial it shall introduce in the lattice. Further, we have to distinguish useful
from non-useful replacements.

The contribution of a monomial m(xy,...,z;) to D and, thereby, to the determinant of
the lattice is M~!, where M := m(Xj, ..., X},) denotes the evaluation of m on the upper
bounds of the unknowns. For the rest of this paragraph when talking about "larger” or
“smaller” monomials we think of larger or smaller with respect to the absolute values of
the monomials if evaluated at (Xi,..., X%). Given a single polynomial py, it is, therefore,
best to choose m; as the largest monomial of p;. When regarding more than one polyno-
mial, we have to take into account that different polynomials might share monomials. For
example, the same monomial should not be introduced by more than one polynomial. A
useful replacement can then be performed in the following way:

Let P := {p1,...,p} and M := Mon(P) denote the set of all monomials in P. For
1 =1,...,k perform the following steps:

Define m; to be the largest monomial in M and set p; to be the corresponding polyno-
mial. If there is more than one polynomial in which m; occurs, then we look at the other
monomials in both polynomials. Let p and ¢ denote these two polynomials. Further, let
M, := Mon(p) \ Mon(q) and M, := Mon(q) \ Mon(p). Suppose the largest monomial in
M,, is greater than the largest monomial in M,. Then choose p; to be the polynomial g.
If there are more than two polynomials, compare them successively. This leads to a unique
choice of p; as this comparison is transitive.

Redefine P := P\ {p;} and M := Mon(P) \ {m4,...,m;}.

In the end, we have defined a sequence my, ..., m, to be introduced, and ordered the poly-
nomials py,...,p, to correspond to this.

Determine a basic shift polynomial set

Unfortunately, there is no good generic method to determine a shift polynomial set given
any set of polynomial equations f;(z1,...,2;) = 0 (mod N), i = 1,...,k. Most times,
better bounds can be achieved if the choice of shift polynomials is adapted to the specific
set of polynomial equations and additional relations p;(x1,...,2x) =0,i=1,..., k. Nev-
ertheless, we will give two basic approaches here. Note that we define the shift polynomial
set only with respect to the polynomial equations f;(z1,...,x;) =0 (mod N), the implicit

94 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

relations are only included after the lattice basis has been constructed. Then they are used
to increase the value of the determinant and, hence, improve the bound.

We distinguish two cases with respect to the monomials which occur in the polynomials
fi- Case 1 denotes that the polynomials f; share most of the variables and many monomi-
als, whereas case 2 denotes that only a few monomials occur in two different polynomials.
Furthermore, there are variables only occurring in some of the polynomials. The example
of RSA with related messages falls into this category.

In the first case, we define the shift polynomial set as follows. For A\ € N let M :=

Mon ((Z,’;l fi))‘). The general idea is to follow the construction by Ellen Jochemsz and

Alexander May [JMO06]. Like them, we assume without loss of generality all polynomials
fi to be monic. Furthermore, we assume that all monomials which occur in fij ' also occur
in flj2 provided that js > 7.

For any monomial which shall occur, a polynomial by which it is introduced is defined.
When doing so, a polynomial power as large as possible is used. This is because any poly-
nomial power f! in the shift polynomial set contributes a power N' to the determinant.
Recall that the intention is to have a large determinant as a large determinant implies a
better bound. For each monomial m we search for a power as large as possible of a leading
monomial LM (f;) which divides m. In contrast to the approach in the case of one poly-
nomial, we have to take into account which of the polynomials f; to take. For ¢ =1,... k
and [=0,..., A4+ 1 we define the set of monomials

M :={m|m e M and

%(fi)l is monomial of f7'}.
The union of Mj; for equal values of [is denoted by M; := U¥_; M;;. Thus, a monomial

m in M; \ M,;; can be introduced by a shift polynomial of the form #(fz)l fL. Now, we
define the polynomials

gm(x1, .. 1)) = —— [=0,...,\, i=1,...,kand

We set F to be the set of all polynomials g,,.

In the second case, the joint shift polynomial set F is defined by joining the shift poly-
nomial sets F; of the polynomials f; shifted individually, exactly following the standard
approach by Ellen Jochemsz and Alexander May [JM06]. For a general system of equa-
tions, both approaches can be combined in an appropriate manner.

Construct a lattice basis
Given a shift polynomial set, the construction of a lattice basis is straightforward and can
be performed as in Section 2.3.

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 95

Substitute columns of the basis

For each m}*, i € {1,...,k}, and for all entries m in D, check if m; divides the monomial m.
If yes, check if { %-p;(x1, ..., x;) }UF is still determinant preserving. If yes, then substitute
the column of D by the coefficient vector of “%-p;(z1,...,2). If necessary, introduce

K3

further monomials occurring in "%-p;(z1,..., ;) on the diagonal. That is, add another
m.

row and column for each new monomial. As the monomials m; are ordered such that their
size decreases, substitutions in monomials occurring only due to other substitutions are
covered by this approach.

Perform Coppersmith’s method
Having constructed a lattice basis B, we can now proceed as described in Section 2.3. The
upper bounds on the sizes of the unknowns can be determined with the folklore analysis
and depend on the determinant of B.

The algorithm described here gives a method to analyze any modular multivariate system
of equations with the same modulus and additional integer relations. The method used
to introduce new columns is a variant of the unraveled linearization technique presented
by Mathias Herrmann and Alexander May in [HMO09| to analyze pseudo random number
generators. In unraveled linearization new monomials are directly substituted, whereas
we introduce new polynomials in the lattice. For integer relations, however, this does not
make a difference. In case of modular relations all sharing the same modulus, unraveled
linearization can be performed analogously, whereas there is no obvious way to include the
modular relations in the lattice without introducing a new monomial. However, if powers
of modular polynomials occur in the shift polynomial set, direct substitutions are no longer
possible with unraveled linearization either. The method of unraveled linearization, too, is
adapted to the special shape of the polynomials and the implicit relations. Unfortunately,
this implies that the algorithm in this form cannot be automated. In practical analyses
human interaction is required.

5.2.2 RSA with Random Paddings

Another example of a system of equations with a common modulus can be derived from
RSA with random paddings. Let (IV, 3) be a user’s public key, where N is an n-bit number.
A message m of o < n bits is then encrypted as ¢ = (2770 + 2"m +w)® (mod N) for
a random 7-bit number w and a random (n — « — 7)-bit number v. The message m as
well as the values v and w are secret and not known to any attacker. At first sight this
problem seems to be easier than the example given in the previous subsection as the
relations between two different RSA encrypted messages are explicit, linear and monic.
The relations, however, are no longer completely known but include further (relatively
small) unknowns.

The case of two such encryptions of the same message with different paddings is described

96 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

and analyzed in [Jut98]. Let

fi(m) == (2°7Tv + 27m + w1)3 —c¢; = 0 (mod N)
and fo(m) == (2*TTvy + 2"m + wg)3 —c; = 0 (mod N)

be the polynomial equations derived from two different encryptions of the same message
m with paddings (vi,w;) and (ve,ws). Set

my = 2°TTu +2"m + wy

and mo = 27wy +2Tm + wsy .

Charanjit S. Jutla aims at using the technique applied by Don Coppersmith et al. [CFPR96]
described in Section 3.1 to solve RSA with affinely related messages and known relations.
In contrast to the example given there, however, in this case we have further unknowns
from the unknown paddings. Therefore, in order to determine these unknowns, set vy, :=
Vg — V1, Wip = wy — wy and Aqp = 2Ty + wie. With this notation it follows that
ms = my + Ap (mod N). To define a system of equations, we replace the values by
variables. Let x represent my, t; represent v;, u; represent w; and pio := 2Tty + Uy =
2977 (ty — t1) + (ug — uq) correspond to Aqs.

Thus, we regard the following system of equations

(mod N)
(mod N).

gz)=2>-c = 0
and gi2(z, p12) := (v + p12)3 —c = 0
To eliminate the unknown x, Charanjit S. Jutla computes the resultant of the two polyno-
mials with respect to z in Zy, namely resjo(p12) := Res,(g1(x), g12(z, p12)). Resubstituting
p12, one gets a bivariate polynomial 715 in (f12, u12) with small roots vy — vy and we — wy
modulo N. Applying Coppersmith’s method to 712(¢12, u12), the roots can be found as long
as the unknowns are small enough. The product of the unknowns ought to be bounded by
N é, i.e. the total padding must be smaller than one ninth of the bitsize of N. This result
can be obtained by applying a generalization of Coppersmith’s original method and using
a generalized lower triangle to build up the shift polynomial set [JM06]. Subsequently, we
can substitute pi2 by the solution Ay := 2%77(vy — v1) + (we — wy) in g12. Then gi(x) =0
(mod N) and g12(z, A12) =0 (mod N) denote two equations derived from RSA encryption
with known relation. Such a system can be solved by the method of Don Coppersmith,
Matthew Franklin, Jacques Patarin and Michael Reiter [CFPR96] presented in Section 3.1.
Now let us consider what happens if we get another encryption of the same message with
a different padding. Intuitively, an additional equation implies additional information and
the bound should improve. This is trivially the case as we no longer have to require that
|(vg — v1)(wy — wy)| is smaller than Ns. Let

fs(m) == (2°"Tvg + 27m + w3)3 —c3 = 0 (mod N)

denote the equation derived from new encryption of the message m. Then, analogously to
the combination of f; and f, presented above, we can also combine f; with either f; or fs.

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 97

We obtain the analogue conditions |(vs — v;)(ws — w;)| < No, i = 1,2. Thus, if any of the
products of the unknowns is smaller than N é, the message m can be determined. That is,
we require the following condition:

min{|(vy — vi)(we —wy)|, [(v3 — v1)(ws — wy)l, |(v3 — va) (w3 — wy)|} < Nv.

=v13 =wis3 =:v23 =lw23

The question now is if we can improve on this result using lattice-based techniques like
Coppersmith’s method. Unfortunately, there are strong arguments that this is not the case.
First of all, we combine f; and f3 in the same manner as we have combined f; and f5 to get
: - 3 .— 9a+T :

a polynomial gi3(x) := (x4 p13)° — c3. Here p13 := 2977 (t3 t t1) 4+ (u3 — uq). The variables
t; and u; again correspond to the target values v; and w;, rlgspectively.1 ’ We would like to
eliminate the variable x as it corresponds to a large value and compute the resultant of
g1 and gi3 to get a polynomial res;3(p13) := Res,(g1(x), g13(z, p13)). By resubstituting pi3,
we get the bivariate polynomial 713(t13, u13) of maximum total degree nine. Note that the
variables t15 and ¢;3 as well as the variables u;, and u;3 are pairwise independent as they
are derived from independent variables. Consequently, the bounds we obtain for a joint
shift polynomial set will not improve on the bound we obtain for separate shift polynomial
sets. Explanations for this have been given in Subsection 5.2.1 for a system of univariate
equations in independent variables. The argumentation given in the proof of Theorem 5.2.3
analogously works in case of more than one variable. Thus, we get the condition

(2 — v1) (wy — wi)(v3 — v1)(ws — wy)| < N .
This implies
min{|(vy — v1)(wz — wi)], [(vs — v1)(ws —w1)|} < Ns ;
the condition we have already obtained using the trivial analysis.

So far we have combined ¢; and g5 as well as g; and ¢g13. A third alternative is to combine
g12 and ¢13. Note that Res,(g12(x, p12), g13(x, p13)) is a polynomial in py3 — p12 of maximum
degree nine. Resubstituting both variables results in the polynomial ro3((t5 — t2), (u3 — us))
likewise of maximum total degree nine. If ¢33 and us3 were independent of t1s, t13, 112 and
u13, we could again follow the argumentation given for two equations and the bound would
not improve. The variables to3 and us3, however, depend on t15, t13, u12 and w3 in a trivial
way: It is t23 = t3 — tz = tg — tl +t1 — tg = t13 — t12 and, analogously U923 = U113 — U12. ThUS,
P23 = p13 — p12- These are integer relations we might again use to eliminate variables in the
construction of the lattice basis . We define the polynomial r(p12, p13, pa3) := —pas+pi13—pi2
corresponding to the relation —py3 + p13 — p12 = 0.

The question is if this relation helps to improve the bound. Unfortunately, we can give
strong arguments that it does not. To see why this is the case, we look at possible lattice

98 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

constructions. We pursue two different approaches to choose a shift polynomial set. Then
we argue why these shift polynomial sets do not help to improve the bound. As the
lattice constructions we consider are relatively general, we can exclude many at first sight
promising shift polynomial sets. Note however, that we do not prove that no better lattice
construction exists.

The first shift polynomial set is based on shifts of r15(p12), 713(p13) and 793(pa3). Then, like
in the previous section, we use the known relation r between the unknowns to introduce
some of the monomials which occur in the shift polynomial set. As usual, let D denote
the left part of the basis matrix we use in Coppersmith’s algorithm. Adding a multiple of
the relation r in the shift polynomial set only influences the determinant of the lattice by
changing the set of monomials which have to be introduced. That is, the elements on the
diagonal of D are changed. This implies that the bound can only be improved if more or
larger monomials can be eliminated from D than have to be introduced. However, this is
not the case as we show by a counting argument.

The second shift polynomial set is constructed with respect to the polynomials 715(p12),
r13(p13) and ra3(p12, p13). That is, we use the known relation to describe 793 directly as a
polynomial in the unknowns pi2 and p;3.

We determine the maximum total degree of a monomial in the shift polynomial set. We
assume all monomials with degree [= 3\, A\ € N, of small enough degree to occur in the
shift polynomial set. This is a sensible assumption due to the structure of ro3.

Then we calculate the maximum number max, of shifts of each polynomial that can be
included in the shift polynomial set. By this, we maximize the number of factors N! we
can obtain in the determinant of our lattice.

On the other hand, we determine the maximum number max, of polynomials that form a
determinant preserving set. An upper bound for this is given by the number of monomials
that occur in F. Then we compare the number of potential shift polynomials to the
upper bound on the size of a determinant preserving shift polynomial set. With growing
maximum total degree, we observe that max, and max, are of approximately the same size.
More precisely, max, — max, = o(l?), whereas max; = Q({?) and max, = Q(l?). Thus, if
we take all possible shifts of one of the polynomials, we cannot add any further shifts to
our shift polynomial set. Otherwise, the set would not remain determinant preserving.
Consequently, we may assume that adding shifts of a second polynomial does not help to
improve the bound. Shifts of a second polynomial can only be included if shifts of the first
polynomial are left out.

We will now describe the two variants in detail.

Approach 1
The first variant is to build up the lattice as before. Then we can add shifts of the
integer polynomial 7(pia, p13, p23) := —pas + p13 — p12- By this additional relation we can

eliminate monomials as in the previous section. During the elimination process, however,
we introduce more new monomials than we can eliminate old ones without getting further
positive factors in the determinant. Let us have a look at a simple basis matrix constructed

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 99

with the shift polynomial set {ry2, 713, 723 }. Furthermore, let us assume v; = 0 fori = 1,2, 3.
Then we can omit the variables ¢;;. Instead, we can work with p;; = u;;. We set

T12 r13 23
1 (c1 —9)? (c1 —c3)? (ca — c3)?
J 3c2 + 2leiey + 3¢3
Pia 3(c1 = ¢2)
Pia 1
pis 3¢t + 21eies + 3c3
pis| D 3(e1 — ¢3)
pis 1
i 3c3 + 21cacs + 3c3
P53 3(c2 —¢3)
P33 1

:B. (5.18)

N

N
Let R;; denote an upper bound on the absolute value of p;;. The matrix
D := Diag(1, R, Riy, Ry, R1_33> Rl_3ﬁa R1_39> R2_33, R2_367 R2_39)

is the diagonal matrix corresponding to the monomials that occur in the shift polynomial
set. Now we would like to use the relation r to reduce the number of entries on the
diagonal of D. We choose to eliminate py3. As the problem is symmetric in pyo, p13 and pog
(disrespecting signs) the argumentation is the same for any other variable. The relation r
is linear, the monomials which occur in the shift polynomial set are of degrees 3,6 and 9.
Hence, in order to eliminate powers of py3, we have to multiply r by further monomials. To
eliminate p3;, we use the shift polynomial p2;7(p12, p13, pa3) = —pas + p1apas — p12pss. This
shift polynomial introduces two new monomials p13p3; and piap3;. Recall that a useful
new set of shift polynomials should enlarge the size of the determinant. The contribution
of each monomial to the determinant is the inverse of the monomial evaluated at the
upper bounds of the unknowns. This implies that the factor R,; in the determinant is
replaced by a factor of Rj; Ry Ryy. As a single replacement this cannot be useful as
Ry Ry Ryt < Ry We can do better by using further shifts of the polynomial r. That
is, we add the set {p2,r, pazp13r, paspiar, pisT, p13p1aT, prar} to the shift polynomial set. By
adequately ordering the six polynomials, we can use them to introduce six monomials.
Note that the monomials p?, and p3; already exist in the lattice. However, there are ten
monomials of degree 3 in pia, p13 and py3, namely, pi? plk? pi% such that i; = 0,...,3 i3 =
0,...,3 —i1p and i3 = 3 — 719 — 413. Thus, we obtain two new monomials.

In the case of higher degree monomials, similar substitutions can be made. However, the
difference between the number of monomials which can be introduced by a polynomial in
the shift polynomial set and the total number of monomials of this degree which we get

100 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

increases with the degree. Thus, we have to introduce even more new monomials. Suppose
that we would like to substitute ph; for an integer [which is divisible by 3. Only introducing
the monomial by the shift ph;'r results in two new monomials pbs'p1s and phs'pio. Hence,
for the determinant to become larger, we need R;SQ(FUR;;R;; > Ryl & 1> R2RipRys,
which is never fulfilled. Successively adding more shifts leads to a similar condition. Each
shift polynomial used to introduce one already existing monomial also contains another
monomial not yet contained in the set of monomials. Thus, when eliminating one value
from the determinant, we have to introduce a different one.

Alternatively, we can introduce all possible monomials by shifts of r. Altogether, there are
Zé:o Z;;i[) 1= %12 + %l + 1 monomials of total degree [in pi2, p13 and po3. The monomials
Py and pls have already been introduced by shifts of 715 and r3, respectively. Any other
monomial has to be introduced by a shift of . The number of shifts of r to give monomials
of total degree [is limited by the number %ZQ + %l of monomials of total degree [— 1
with which we can shift r. Consequently, in total (3024 31+1) — (32 +1) —-2=1-1
monomials of degree [have to be introduced anew. A basis matrix corresponding to this
is given by
712 713 723

1 (Cl — C2)3 (Cl — 03)3 (CQ — 03)3

Ji 3¢2 + 2leiey + 3¢3

Pi2 3(c1 —)

Pl 1

Plapis

: 0
p12pfs
pis 3¢t + 21eies + 3c3
Pls D R 3(er —¢3)
Pis 1 =
Piap23

pjz

p13p§3
P33 3¢3 + 21cacs + 3c3
P53 3(c2 — c3)

/733 1

N
The matrix
D := Diag(1, Ry, Ry, Ry, Riy Ry, Ry Ry, Ry Rus, ., Ry Ry, Ry, Ry, Ryy)
is the diagonal matrix corresponding to the monomials that occur in the new shift polyno-
mial set. The matrix R is the matrix induced by the coefficient vectors of the polynomials

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 101

R :
p%2r7 P12pP137, - - - ,p%3’f‘, pi)Qra s 7p33T7 P?QT, cee 7p§3r' Note that R = 1:{11l)) where Rl 1S
an upper triangular matrix with value one on its diagonal. That is because the diagonal
entries correspond to monomials introduced by the shifts of . Due to this structure, it is

det(R;) = 1. Thus, det(B) = det(D) det(R;) N® = det(D)N3.

In order for the substitution to give a better bound, the new determinant ought to be
larger than the previous one. The condition for this is det(D) > det(D). This is equiva-
lent to RIS > R}SR} & Rz > R3,R3,. Asymptotically, the number of monomials which
have to be introduced increases and the condition gets even worse. The reason for this
can be seen easily. Let ph, for some [€ N denote the monomial that shall be substituted.
Then, as argued above, [— 1 monomials of degree [have to be newly introduced. Mul-
tiplying these monomials gives a monomial of total degree [— [. Thus, the determinant
gets larger provided that Rg_?f < RI_QZURI_SZBRQ_;Q?’ with lig 4+ lis +log = 2 — 1. If ly3 > 1,
this condition cannot be fulfilled. Hence, lo3 < [. Then the condition is equivalent to

Ry > RBRE. Ttis Lo+ Lz = 12— 1 — Iy 2o lys > 2(1 — lp3). Further, l;5 and
l13 are greater than [— ls3 each. This can be seen as follows. Assume the contrary, i.e.
l13 <1 —1l3. (The case of l15 <[—ls3 can be treated analogously.) Then, on the one hand,
lip = 12— 1 —ly3 — 13 > 1> — 2]. On the other hand, it is 12 — 1 — lo3 = (I — 2) + [— 3.
Consequently, the product we consider consists of at least [— 2 monomials not comprising
any power of po3. If we take the highest powers of pio possible in these monomials, they
sum up to 22:32' = %l2 + %l — 3. To get the highest power in p;o we assume the last two
monomials to be pl5!pas and pl52p1spes. This implies Iy < %l2 + gl — 6. Combining the
two conditions, we get 12 — 2l < I3 < £1* + 21 — 6. This can only be fulfilled if [< 8.
Hence, if the value of [increases, the influence of monomials of degree 3 and 6 on the size
of the determinant will be compensated for by higher degree monomials. That is to say,
the substitution does not help to improve the bound we can obtain asymptotically.

Consequently, any of these conditions can only be fulfilled provided that the weaker con-

dition Ra3 > RyaRy3 holds as well. Note, however, that |pas| = [p12 — p1s| < |p12| + |p13] <
log(N)>512
2max{|p12], |p13|} < |p12p13]. Thus, an upper bound Rss such that Ros > RiaRi3

would not fit to the problem. Consequently, this approach should not be pursued.

Approach 2

As a second variant, we can directly substitute py3 = pi13 — p12 in ro3. For notational
convenience, we denote by ro3 the original polynomial in ¢53 and us3, whereas we denote by
T3 the polynomial r93(t13 — t12, u13 — u12) as polynomial in t13, t12, 413 and uy3. Then we
construct a lattice with respect to 719,713 and 793. Remark that all monomials which occur
in 7, for an [€ N already include all monomials which occur in i, or t,. Hence, to get a
good bound, we can take the folklore shifts of 793 and add as many shifts of the two other
polynomials as possible. These additional shifts only help to increase the bound without
any additional costs. However, we can only take shifts such that the shift polynomial set
remains determinant preserving.

Note that as long as we take all possible shifts of 793 and the same shifts of r;, for a fixed

102 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

v € {1,2}, we will obtain the original condition Ry, Ro3 < N 5. Thus, for this approach to
work, we have to be able to add most of the shifts of r;, and a number of shifts of ry3_,
which does not disappear asymptotically. Unfortunately, there is no such determinant
preserving shift polynomial set. This can be seen as follows. Of a fixed degree d, there
are exactly + 1 monomials in the variables p15 and p3. Thus, the number of different
monomials which occur if we include 793 up to the power of [€ N (and shifts of lower
powers of 93) in our shift polynomial set is Zil:o (3k + 1) = 21>+ 22/ + 1. The analogous
shifts of ri3 and 73 do not introduce further monomials. The coefficient vectors of the
shift polynomials are, thus, vectors in Z% 3+ (if we ignore the moduli).

We look at how many shift polynomials we can maximally include in our shift monomial
set. To start, we determine the number of shift polynomials of #53. The polynomial 73" is
shifted by all monomials of degree 0, 3, 6 and all but one of degree 9. Any other polynomial
Fhe with @ = 1,... 1 — 2 is also shifted by these monomials. Further, it is shifted by all
monomials of degree 12,15,...,9(I — i) which are not divisible by the leading monomial
(e.g. pl, if using graded lexicographical ordering with p;» > pi3). There are nine such
monomials of each degree. The number of the polynomials in the shift set is, thus,

l—

—_

2
(21+(i—1)27):?7l2—?l+6.

i=1

Let us assume we could add the same shifts of 719, 713. Then the number of shift polyno-
mials is 3 (%F — %l + 6). The coeflicient vectors of these shift polynomials form a set of

3 (Z1* — 21+ 6) vectors in 72+ (again ignoring the moduli). Hence, at least

27, 39 27, 15 ,
Ng 3<2l 2[—!—6) (2l+2l+) 7° — 660 + 17

vectors linearly depend on the others provided that this value is positive. Returning to
the polynomials, ny polynomials are linearly dependent of the set of the other polynomials
modulo N and cannot be included in our lattice construction.

On condition that [> 5 it is

27 15
27l2—66l+17>712+?l+1.

This implies that we cannot include any of the shifts of e. g. 713 in the shift polynomial set.
Hence, the bound cannot get better than the original one. Note that this condition does
not state anything about which shifts we can take. It might be that we can include shifts
of 115 as well as of r13. Their total number, however, may not be larger than the total
number of shifts which could be taken of one of the polynomials. Thus, the contribution
of powers of NV on the determinant will not increase. Then the only way to improve the
bound is by using significantly less monomials.

In case of [= 3 we cannot exclude 69 but only 62 shift polynomials by these rough
estimations. In case of [= 2 we cannot even exclude any of the shift polynomials this way.

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 103

Actual computations, however, give 5 polynomials which have to be excluded. The bounds
obtained with the lattices constructed in the case of | = 2, however, are worse than the
bound of Ns.

Thus, we return to the former approach. That is, we use the polynomials r15, 713 and ro3
with their basic shifts to construct a lattice basis to use with Coppersmith’s method. This
way, we can determine A;; and, thereby, also m, if |(v; — v;)(w; — w;)| < N5 for any pair
1,7

The analysis can be generalized to an arbitrary number of equations in a straightforward

manner. The condition we obtain is the same. That is, the difference of two paddings has
1

to be smaller than N9 for at least one pair of paddings.

In the case of RSA encryption with a different public exponent e, the value N s has to be
substituted by N 2 in all steps of the analysis. The bounds get worse. The running time
of the algorithm depends on the running time of Coppersmith’s method and the number
of possible choices of pairs. Both running times are polynomial in e. Thus, for constant
values of e the attack is feasible if |(v; — v;)(w; — w;)| < Nz,

We have seen in our example that combining equations does not help to improve the bound.
The reason for this is the independence of the variables p;; we can include in one lattice.
The main variable occurring in all of the equations is the variable x. It corresponds to the
unknown message m. In our analysis, we have eliminated x in the first step by computing
resultants with respect to x. If we do not do this, but directly perform Coppersmith’s
algorithm on one of the original equations, we obtain rather small upper bounds M such
that we can determine all m such that |m| < M. In this approach taking more than one
of the original polynomials and shifting them to obtain shared monomials would allow for
a larger value of M. However, the bounds we obtain by any of those analyses are still
too small as in practice m has nearly full size. Thus, the above approach in which m is
eliminated beforehand is better suited to the problem.

Recapitulating the examples of systems of modular equations with the same modulus, we
observe the following: Additional equations in the same variables help to improve certain
bounds in case of small lattices provided that the additional equations help to reduce the
number of unknown monomials. By additional integer equations the bounds can also be
improved. In asymptotically large systems, however, care has to be taken not to introduce
too many shifts and, thus, destroy the property that the given system is determinant pre-
serving. Unfortunately, the choice of shift polynomials strongly depends on the original
system of equations. Thus, we cannot give a general strategy and bound working for an
arbitrary system.

For some specific systems of equations like the ones derived from RSA with random
paddings, there are even indications that the known bounds cannot be improved. A reason
for this may be the fact that we try to reuse additional information twice. Recall that in a
first step, we have computed the resultant of two polynomials. That is, we have included
additional information in the new polynomial. In a second step, we aim at getting ad-
vantage by combining two such polynomials. However, we have given arguments that this

104 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

does not help further. Unfortunately, these arguments can only be given with respect to
specific systems of equations. Thus, human interaction is required in these analyses.

5.3 Systems of Equations with Coprime Moduli

Let us again deal with systems of modular multivariate equations. However, in contrast to
the previous section we now assume the moduli to be coprime, that is, we analyze Systems
of Modular Multivariate Polynomial Equations with Mutually Coprime Moduli (SMMPE2-
problem).

Definition 5.3.1 (SMMPE2-problem)

Let k € N, 01,...,0, € N, and Ny, ..., Ny € N mutually coprime with N; < ... < Nj.
Suppose that f;(x1,...,x;) are polynomials of degree 0; in Zy,[x1,..., x|, i = 1,...,k,
respectively. Let

fl(.iﬂl, Ce ,.QTZ) =
fQ(ZL’l, Ce ,ZL‘Z) =

(mod Ny)

0
0 (mod Ny)

: (5.19)
fe(xy,...;z) = 0 (mod Ng)

be a system of multivariate polynomial equations.

Let X; < N;, X; € R, i=1,...,l. Find all common roots (Zy,...,%;) of (5.19) with size
|z < X.

The analysis of system (5.19) is similar to the analysis of system (5.1) with one shared
modulus. When considering linear independence, however, we have to take the different
moduli into account.

Let F be the set of shift polynomials used to apply Coppersmith’s method (Theorem 2.3.9).
Then all (f, N) € F consist of a polynomial f of the form mezl iz, .., x) with a
monomial m € Zy[xy,..., 2], A\i € Ny, and a modulus N = Hle N € N. The solution
we are searching for is a solution of f(z1,...,2;) =0 (mod N) for all (f, N) € F.

Using these polynomials, a basis matrix is constructed. We again use the notation as with
systems with the same modulus. The last columns of the basis matrix corresponding to
the shift polynomials are denoted by F. It consists of an upper part F. corresponding to
the coefficients in the polynomials and a lower part F, corresponding to the moduli. The
matrix Fp, again forms a diagonal matrix. The values on its diagonal are of type Hle Ni)‘i
with \; € Ny. We call them diagonal values.

To obtain linear dependence of column vectors of F modulo an integer a > 1, we again
have to eliminate the values occurring in F, as they only occur in one column. Thus, they
cannot be eliminated by linear combination of columns but have to be eliminated by the
modular operation.

In contrast to the system in the previous section, however, the diagonal values do not

5.3. SYSTEMS OF EQUATIONS WITH COPRIME MODULI 105

necessarily share a common divisor. Therefore, we have to check for linear independence
modulo a for all a # 1 dividing more than one of the diagonal values. Namely, we have to
check for linear independence modulo the N; and their divisors. As the N; are coprime by
definition this implies that for a fixed value of j we only have to check the set of columns
corresponding to polynomials with A; > 0 for linear independence modulo N; and its
divisors.

Lem{na 5.3.2
Let F C Z[zy,...,x;] x N be an ordered set of polynomials and corresponding moduli

which Is not determinant preserving. Let F be the integer polynomial set induced by F.
Let F be the matrix induced by F as before. Then there are f € F and ¢y € Z such that
f=2eryp ¢sf (mod a) where a|N for some modulus N occurring in F and a > 1.

PROOF: We regard the polynomials f € F, the set induced by F, as polynomials in
Zlxq, ..., o, t1, ..., tiz]. From the precondition using Theorem 5.1.5 it follows that there
are f € F,c; € Zfor all f € F\{f} and 1 # a € N such that drervpcrf = f (mod a).
By construction there is a monomial ¢; which occurs only in f. Tts coefficient corresponds
to the modulus N of the respective polynomial equation. Then for the linear dependency
relation to hold we require a|N which implies the claim. |

In many practical examples we take moduli N which are products of two unknown primes
p and ¢. Thus, we can only test for modular dependence modulo N. Like in Section 5.2
we, therefore, assume that we do not get the factors of the moduli as elementary divisors.
Otherwise, this would be a way to determine the factorization of N. This assumption was
true in all our examples.

Note that the analysis of systems of equations with mutually coprime moduli is thus easier
than the analysis of systems of equations with the same modulus. From Lemma 5.3.2
we have that modular dependence only has to be checked with respect to the different
moduli V; and their divisors. A set of polynomials P C F modularly dependent modulo a
divisor a of N; will only include shift polynomials which are multiples of f;. This is because
any other shift polynomial f € F will include a term Nt such that ¢ only occurs in this
polynomial (as it is constructed by transforming f to f) and ged(N,a) = 1. Consequently,
the coefficient of ¢ would not be 0 (mod a). This observation simplifies the analysis as we
can take arbitrary shifts of f?" (x1,...,2), 1 = 1,...,k, \; € N, without taking care of
shared monomials. Only if we consider products of the polynomials as well, we have to be
more careful.

We start the analysis of systems with mutually coprime moduli by returning to the case
of univariate equations.

106 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

5.3.1 Directly Applying Coppersmith’s Lattice-Based Techniques
to a System of Equations to Solve SMUPE2

Let us recall the SMUPE2-problem which has been presented in Chapter 3: Let

fi(x) = 0 (mod Ny)
fa(z) 0 (mod Ny)

fi(x) = 0 (mod Ny)

be a system of univariate polynomial equations. Here, N < Ny < ... < N} are pairwise
coprime composite numbers of unknown factorization and fi(x), ..., fx(z) are polynomials
of degree 01,...,0; in Zn,[z],. .., Zy,[z], respectively.

Let X < Ny, X € R. The aim is to find all common roots xq of these equations with size
|zo| < X. In order to be able to calculate all roots, we would like to have X = %Nl.

This problem is a special case of the general problem of solving systems of equations with
mutually coprime moduli as we are restricted to one variable.

In Chapter 3, Corollary 3.2.3, we have shown that if Zle 5% > 1, then we can determine
all xg € Zy, which are solutions of the system. To obtain this result, we have combined the
polynomials fi,..., fi to one polynomial f with the same solutions modulo some product
N of powers of the original moduli. The equation f(z) =0 (mod N) could then be solved
provably by a direct application of Coppersmith’s algorithm.

Now we will analyze the problem differently. We will directly apply Coppersmith’s algo-
rithm to the system of equations. This implies that we first have to define a suitable set
of shift polynomials. This choice also gives a general insight into applying Coppersmith’s
algorithm to systems of modular equations with pairwise coprime moduli.

We will give a different proof of the bound given in Corollary 3.2.3.

PROOF of Corollary 3.2.3: In a first step, we define a set of shift polynomials and cor-
responding moduli F to use with Coppersmith’s algorithm. Then we show that it is
determinant preserving and prove that we get a new equation with zero xg, which is valid
over the integers, if |zo] < X = LN/ for an € > 0. Then we will extend the result to
Tg € ZNl-

Let € >0, § :=lem(dy,...,d;) and A € N such that A\ > max{k_:&“,%)

Recall that in order to achieve a large bound on the unknown we essentially need many
powers of N; and few powers of X ! in the determinant of our lattice. As the lattice basis
is constructed such that it is described by an upper triangular basis matrix, we require
many powers of N; and few powers of X! on the diagonal of the lattice basis.

Recall further that a monomial X~ occurs on the diagonal if 2! is a monomial in any
polynomial in F. To obtain a good ratio of powers of X~ and N;, we simply reuse the
parameter A given by Coppersmith. This leads to the bound given above. We limit the
degree of X% to AJ. Additionally, we would like to have as many powers of N; as possible

5.3. SYSTEMS OF EQUATIONS WITH COPRIME MODULI 107

contributing to the determinant. For any polynomial f;(z) we have f;(z) = 0 (mod Nj).
Thus, f/(z) =0 (mod N;) for any j € N. Therefore, whenever introducing a new mono-
mial we take the largest power of f;(z) with which it is possible to do so. We define

F={@"fi(x)),N))|i=1,....k; 0<h<Jd; and1§j<)\£}.

This set is determinant preserving. To prove this, let F denote the set of integer poly-
nomials induced by F and assume the contrary. Then, by Lemma 5.3.2 there are ferF
and coefficients ¢y € Z not all equal to zero and 1 # a € N such that Zfef\{f} crf = f
(mod a). Furthermore, a divides one of the moduli, i.e. a|N; for some index i. Due to
our construction the moduli are either powers of the same value V; or coprime to it. Con-
sequently, linear dependence may only occur in a set of polynomials constructed with the
same index . Without loss of generality we assume this index to be 1. For any other index,
we can argue analogously. Let Fy := {(z"fi(z)),N]) |0 < h < & and 1 < j < /\%} and
let 71 be induced by this set. Thus, >= .z \ (7 crf — f =0 (mod a) with a|N;. Ordering
the polynomials in F; by their degree in x, however, one can see that each polynomial
introduces a new monomial. Thus, it cannot be dependent on the other polynomials. This
contradicts the assumption. Hence, F is determinant preserving.

To determine a solution, we apply Coppersmith’s method with shift polynomial set F.
We denote the lattice constructed with respect to F by L. In order to calculate the
upper bound X up to which size we can determine the unknown x,, we calculate the
determinant of our lattice L. Its basic structure is det(L) = X% Hle N7t This is
because the part induced by the shift polynomials set contributes with powers of the mod-
uli, whereas from the part corresponding to the monomials we get powers of X 1. It is
D = Diag(1, X~',..., X~ 1) Thus,

oA—1

For 1 <4 < k we have

Consequently,

2

. (Aé(kil))
det(z) = x (I N,
=1

Note that VoA denotes an upper bound on the size of the target vector. Using equa-
tion (2.13), we, therefore, get the following condition:
1

L (Aé(A({l)) X
Vo < | x () HN 9=
i=1

(2

108 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

This is equivalent to the condition

As O\ > 7 we can conclude (6)\)_Tl—1 > 775 > 8%
1

k—1+4e k—1 k
Further, as A > "= & e > 5= and } | =

\"_‘ [
—
-+
=
]
—_—
(@
n

-+
=
&

+

S
Il

Ay —1

k

s
Il
_

0«1'@2
I
Mk
| —
Sl
|
[«%)
>
| e
—_
_/

Il
]~
>

|
>,
>

| —
[S—
\'M?r
—_
VR

—

|
S| =
~

@

I

-

-
[

I
ME
ol
|
™
<
|0
LIE
S

s
Il
—

IV
M-
Q’]l}—l

|
(@)
> ™
[
—_| -

@
Il
=
s

Y,
Sl
.

N
Il
—
S

Consequently,
k >\771 k
_1 __1 -5 1 Zi: 5. €
) 2<5)\) ‘5*11—_‘!]\@&1 > §N1 13
> Ly
2

For X = %Nll_e we can, thus, determine f(x) with Coppersmith’s algorithm such that
f(x) = 0 over the integers. This requires time polynomial in &, max{log(N;)} and *.

In order to determine all solutions xy € Zy,, we have to redo the algorithm. Setting
e.g €= we can recover all zy in the interval [—}lNl, }LNJ. To cover a complete set

1
log N
of represengtatives (mod N;), we additionally need to cover e.g. the interval [1N;, 2N;].
Therefore, we repeat the above algorithm with a set of polynomial equations ﬁ(x +7)=0
(mod N;), i =1,...,k centered at z := [$N;]. The computation of the new polynomials
is polynomial in §; < d. Thus, we can determine any solution xg of our given system in
time polynomial in k,d and max{log(N;)}.]

The construction described here shows an easy way to construct a shift polynomial set
based on a set of univariate modular equations. This set seems to be a good choice as
we recalculate the same bounds we have obtained in the proof of Corollary 3.2.3 by using

5.3. SYSTEMS OF EQUATIONS WITH COPRIME MODULI 109

the Chinese Remainder Theorem 2.2.13. Moreover, we have argued in Section 3.2.1 that
this bound is optimal for general problems. With the Chinese Remainder Theorem the
optimality is quite intuitive. First, the polynomials are taken to powers. The bound on
the zero we can obtain when analyzing a single polynomial is not influenced by this. Then
the Chinese Remainder Theorem is applied. It gives a good construction to obtain one
polynomial of common degree. Thus, the degree remains, as modulus we get the product
of the single moduli. Coppersmith’s algorithm, which is then applied to this polynomial,
is believed to be optimal as we have explained in the introduction of Section 3.

Using the method presented above, however, the optimality is not obvious as the choice of
a "good” set of shifts for systems of equations is not that clear. Let us consider possible
changes of the shift polynomial set F. As the value of \ is optimized afterwards, we do not
need to think about including shifts of higher powers of f;(z). Another idea to increase the
determinant is to add further shift polynomials, e.g. products of polynomials f;(x)fi(x) of
small enough degree. They do not introduce new monomials on the diagonal but contribute
with powers of the N;. Adding such products to F and thereby to F, however, smashes
the property of being determinant preserving of F (and thus F) as can be seen in the
following lemma.

Lemma 5.3.3 ‘ B
Let F := {(z"fi(z)),N}) | i = 1,....k; 0 < h < dandl < j < A2} and [:=
eI, £ (x) with \; € N for at least two indices i and \; = 0 for all other indices.

Furthermore, let deg f < 6A. Then the set F, == F U {(f,[]_, N}*)} is not determinant
preserving.

Before proving this, we give an auxiliary lemma.

Lemma 5.3.4
Let A1, Ny € N. Let f(z), fi(z) € Zy,[x] be polynomials such that

fx)= f*(2) - g(x) (mod Ny),

where g(x) € Zn,[z] is a polynomial of degree 0, := deg(g) = deg(f) — A1 deg(f1) > 1. Let
dr :=deg(f) and deg(f1) =: 01. Furthermore, let c; be the leading coefficient of f(x

5 i .
Then h(z) = f(x) —cfa:‘sf_tﬁj‘slflblj(x) € Zn,[z] is a polynomial of degree 05, := deg(h) <
d;. Moreover, either h(x) = f'(x) - gn(z) (mod N,) for a non-zero polynomial g, (x) or
h(z) =0 (mod Ny).

PROOF: The proof of this lemma is straightforward. It is f(x) = c;2% + f,(z) (mod Ny

~—

s or
with deg(f,) < d; as c;2%/ denotes the leading term of f. Similarly, x(sftéjélfl[le(q;)
5 °f
2% + fri(x) (mod Ny) with deg(f.1) < d;. Thus, h(z) := f(z) — cfxafﬂ%yslfllm(x)
fr(x) —csfri(x) (mod Ny). By this we have d, < d;.

By construction, we have f{'(z)|f(z). Further, it is dp > Mo & g—’; > A, As A\

110 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

5 o
is an integer, even Ld—fj A1 holds. Therefore, fl)‘1 (:1;)|:c5f L3I0 flLalj(x). Consequently,
M(x)|h(z), i.e. h(z) = f(2)-gn(z) (mod Ny) for a non-zero polynomial g, () or h(z) =
0 (mod Ny).]

Now we can give the proof of Lemma 5.3.3:

PROOF: Let F, be the integer polynomial set induced by F,. To show that F,, is not

determlnant preserving, we will show that F,, is not determinant preserving. Let f :=
tHZ L N A be the integer polynomial induced by f. Without loss of generality we

assume A; > 0. (If not, enumerate the (f;, N;) differently. This can be done as this proof

does not depend on the fact that the N; are ordered according to their size.) We will

show that f is linearly dependent on F modulo N;. Then, by Theorem 5.1.5, F,, is not

determinant preserving.

Let 0, := deg(f1) and &, := deg(f). By construction we have f(z) = f(z) = f}"(z) - g(z)

(mod Ny) with 0, := deg(g) = dy — A\101 > 0.

By iteratively applying Lemma 5.3.4 on f, we get a sequence f = hy, hs,..., h, € Zy,[z]

of polynomials of decreasing degree. It is finite as the degree decreases in each step.

Let v be defined such that h, = 0, but h,_; # 0. Further, for ¢ = 1,...,v — 1, it is

e g(h) Ldeg(h)J
hi(x) = hiz1(x) + cp, pdes(hi)—L Jélfl
h"(a?), we get

() (mod Nj). Successively substituting the

deg(h)

vt deg(hy)
= 3 6T G (mod V).

This shows that F,, is not determinant preserving. |

Remark that in the above proof the representation of f as a linear combination of poly-
nomials in F only includes polynomials of the form x”f{(z) with j > \;. Thus, with the
same proof we get a more specific version of Lemma 5.3.3.

Lemma 5.3.5

Let Fiy, = {(@"fi(z)),N]) |0 < h < d; and \, < j <)\5%} and f = 2" [, £ (x) with
A, A € N with ¢ # 1 and \; € Ny for all other indices. Furthermore, let degf < 0A. Then
the set F,, := Fin, U{(f, Hle N)} is not determinant preserving.

We have seen that we cannot include any further polynomial in the shift polynomial set

F={(@ @) M) i =1k 0<h<sand1<j<Al)

in order to improve the bound. Nevertheless, a completely different choice of F, not includ-
ing all the polynomials we have used so far, might lead to an improved bound. Therefore,
we have to check which bounds can be obtained if we use different shift polynomial sets.

Let us assume that any shift polynomial set under consideration contains all monomials
#' with i < &, where ¢ is the maximum degree of a polynomial in F. This is a sensible

5.3. SYSTEMS OF EQUATIONS WITH COPRIME MODULI 111

assumption as the bound obtained with Coppersmith’s method for univariate polynomials
only depends on the degree of the original polynomial and not on its sparseness. The lack
of monomials does not influence the asymptotic behavior.

A direct analysis shows that any arbitrary determinant preserving shift polynomial set can
be substituted by a shift polynomial set which is a subset of our original set F.

Lemma 5.3.6
Let \,0 € N. Let

k
G C{@" T A @), [NM) i =1, k;h, A € Ny such that » Xid; + h < 6A}

=1 =1 =1

be a determinant preserving shift polynomial set. Let Mon(gl) include all monomials up
to the maximum degree of a polynomial in F. Then there exists another determinant
preserving shift polynomial set

Gy CF ={(a"fi(x)),N/)|i=1,....k; 0<h<§; and1gj<A§}

with which we obtain at least the same upper bound X on the size of the solution we can
determine.

PROOF: Let G; be the integer polynomial set induced by Gy.Let (g,N) € G, such that g is
the polynomial of smallest degree which is a product of at least two different polynomials
fi(x), 1 <i < k. Then j can be written as j(z) = =" [[%_, £ (z) and N, := [[_, N} with
Ai € N for at least two indices ¢ and \; = 0 for all other indices. Furthermore, deg(g) < dA.
Without loss of generality we assume A; > 0. (If not, enumerate the f; differently.) Let
g(x) be the integer polynomial induced by g(x), that is g(x,t) := g(z) — tN,.

We would like to substitute § by a polynomial or a set of polynomials belonging to F. In
order to do so, we proceed in two major steps: First, we show that there exist polynomials
which we can take for the substitution, i.e. polynomials which are not yet in G;. Then
we show that these polynomials either keep or improve the bound, but do not worsen
it. The proof of this consists of two steps. On the one hand, we show that the positive
contribution, i.e. the contribution of powers of N; to the determinant, is equal to the
contribution when using g. On the other hand, we need to have that the negative contri-
bution, i.e. the contribution of powers of X ! to the determinant, is smaller than or equal
to the contribution when using g. This is already given by the assumption that Mon(g~1)
contains all monomials. Hence, no further monomials can be introduced by substituting
the polynomial. Thus, the value of the determinant can only increase and, consequently,
the same holds for the bound.

We now prove the first claim. Let fl’ A, denote the set of all polynomials in F which are
divisible by f;'(z) as in Lemma 5.3.5. By Lemma 5.3.5 we have that 7, U {g} is not
determinant preserving. Consequently, as (g, N,) € G1 there exists (g1, Ny,) € ﬁl,kl \ G
with g (z) = f1(2)g,1(z) (mod NM). Analogously, for all other i such that \; > 0 there

112 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

exist polynomials §;(z) = £ (x)gri(z) (mod N;*) which are not contained in G;. We then
substitute (g, N,) by the set {(g;, N}) | \; > 0}.

Now we consider the influence of this substitution on the determinant of the lattice. The
contribution of N; to the determinant using g is IV, := Hle NZ-’\". That is, for each \; > 0,
we get a factor of Ni)‘i in the determinant. For each of the g;, the contribution to the
determinant is Ni’\i. The product of these contributions is, thus, Hle Ni’\i. Hence, the
substitution does not change the power of N; occurring in the determinant.

Moreover, as F is determinant preserving, G, C F is determinant preserving as well. |

We have seen that a shift polynomial set which is a subset of F can be used to analyze
systems of modular univariate equations with coprime moduli. As we have assumed the
sets to contain all monomials up to a certain degree anyway, it is best to take as many
polynomials as possible. This implies that the bound using F is better than the bound
taking a subset. Therefore, on the assumption that any useful shift polynomial set includes
all monomials up to a certain degree, we conclude in the univariate case:

Theorem 5.3.7
The following two analyses of the SMUPEZ2 problem give the same bounds:

1. Combining the equations by the Chinese Remainder Theorem to a polynomial f(x)
and applying Coppersmith’s algorithm to f(x).

2. Defining a good shift polynomial set like F for the system of equations and applying
Coppersmith’s algorithm to this.

Both analyses can be performed in time polynomial in §, k and max{log(N;)}.

PROOF: By the proof of Corollary 3.2.3 given in this section we get that any bound obtained
with method (1) can also be obtained directly using a suitable shift polynomial set. For
the converse, assume we are given a shift polynomial set F; which gives a good bound. By
Lemma 5.3.6 we get a second shift polynomial set F, C F which gives the same (or even a
better) bound. As the polynomials in F contain all monomials, the shift polynomial set F
gives a better bound than any of its subsets. Taking these shifts, however, is equivalent to
combining the original polynomials by the Chinese Remainder Theorem and shifting the
resulting polynomial f up to a power f*.

The running time of method (1) is polynomial in § and log M by Theorem 3.2.2. The

)

value M is defined as M = Hle NF. Hence, the running time is polynomial in 9, k
and max{log(N;)}. Regarding the second method, we directly get the running time by the
proof of Corollary 3.2.3 given in this section. This concludes the proof. |

We are interested in generalizing the observations made during the analysis of the SMUPE2-
problem to systems of multivariate equations. The analysis gets more complicated as we
can no longer assume the shift polynomial set to contain all monomials. It would be a
vast overload to assume that a polynomial contains all monomials up to a certain degree.
There may even be variables which do not occur in all of the equations. Nevertheless, as

5.3. SYSTEMS OF EQUATIONS WITH COPRIME MODULI 113

a first approach we return to the method used in Section 3.2. We combine the given set
of equations by the Chinese Remainder Theorem and obtain a polynomial f. Then we
pursue the standard analysis of a single multivariate modular equation f(z1,...,2;) =0
(mod N) given in [JMO06]. That is, we take the monomials of the Newton polytope to shift
the powers of f.

The same result can again be obtained by an analysis using a corresponding shift polyno-
mial set. The proof in this case is analogous to the proof of Corollary 3.2.3 in Section 5.3.1.
Unfortunately, an analogue to Lemma 5.3.6 would no longer be interesting as the under-
lying assumption is too strong in the multivariate case.

The following example shows that the bounds we obtain by analyzing the polynomial f
instead of the system of equations are far from optimal.

T EN(E

z1

Figure 5.1: Newton polytopes of fi, f» and f; of Example 5.3.8.

Example 5.3.8
Let

fi(zr, z2) = IE% +x+1
fa@r, z2) = x%xg + x5+ 1

0 (mod Ny)
0 (mod Ny)

be a system of equations with the solution (Z1,Z3). As fi(x1,x2) is a univariate equa-
tion in Zy, [x1], we know from Theorem 2.3.9 that we can determine all solutions &, such

that |z,| < Nlé. Substituting the value x1 by Ty in fs, we get the equation fo(Z1,x5) =
(72 + 1)y + 1 =0 (mod N,), which is linear in xo. Thus, we can determine all solutions
Ty € Ly, such that fo(Z1,Z2) =0 (mod Ny).

Consequently, in a combi{led analysis via Coppersmith’s method we would expect to obtain

the condition X1 Xo < N Ny, where X; denotes an upper bound on the size of |z;|, 1 = 1,2.
We apply the Chinese Remainder Theorem to combine f; and fy. Let f(x1,79) = (Ny*
(mod N1))Nofi(x1,29) + (N;' (mod No))Nifo(x1,25) = 0 (mod Ny Ny) denote the re-
sulting polynomial equation. The bound we obtain if we analyze the polynomial f with
standard shift polynomial sets using Coppersmith’s method, however, is worse than the
trivial bound. The Newton polytope of the polynomial f is a rectangle. Thus, applying
the basic strategy of [JM06] for generalized rectangles we obtain the bound

3
X3X7 < NN, .

114 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

Hence, directly applying the Chinese Remainder Theorem to a system of multivariate
equations will not generally lead to good bounds. Having a look at the Newton poly-
topes of f; and fy, this is not really surprising. The Newton polytope of f; forms a
line on the x-axis whereas the Newton polytope of f; is a triangle which leaves out
the x-axis. The only monomial which is shared by both polynomials is, thus, the con-
stant term. Consequently, by combining the two polynomials via Chinese Remaindering,
we get several superfluous monomials. To overcome these difficulties, we aim at con-
structing polynomials which share many monomials. Let us consider the polynomial
fl (w1, 22) = xof1(21,22) = 23wy + 11279 — T5. Its Newton polytope is contained in the
Newton polytope of fo. By the Chinese Remainder Theorem we combine f; and f, and
get g(x1,20) = (N3 * (mod Ny))Nofi(y, 22)+ (N7 (mod No))Ny folay, 22). To determine
the roots of g (mod N;N3) we can again use Coppersmith’s method with the basic strategy
of [JM06]. The Newton polytope is a generalized triangle. Therefore, we obtain the bound

X12X2 < NiNs. (520)

This bound corresponds to the one we have expected beforehand. More precisely, X; < N. 1%
and X, < Ny imply X2X, < N;N,. The opposite implication, however, does not hold.
This is quite natural as fo comprises both unknowns. A separate analysis using this poly-
nomial would, thus, allow to solve for any value |Z;| < X as long as XIQXQ < Ny. This is
the result we also obtain by the analysis of fo(z1,22) =0 (mod Ny).

A general approach to solve systems of multivariate equations with coprime moduli, conse-
quently, has to be adapted to the specific system of equations. The following basic strategy
will be quite helpful. First, transform the original polynomials (by powering or multipli-
cations) such that the new polynomials have a shared Newton polytope. Then combine
the equations by the Chinese Remainder Theorem to a polynomial g and determine its
solutions with standard Coppersmith techniques.

5.4 General Systems of Modular Equations

In the previous sections of this chapter systems of modular equations either all sharing the
same modulus or all having mutually coprime moduli were analyzed. These techniques can
be combined to solve any system of modular equations. For arbitrary Ny < ... < N, € N
we are given the following system of equations:

filze,...,2) = 0 (mod Ny)
fo(z1,...,x) = 0 (mod Ns)

: (5.21)
fr(z1,...,z) = 0 (mod Ny).

Without loss of generality we assume that all moduli are indeed equal or coprime. If not,
we can compute their greatest common divisor. Then we can apply the Chinese Remainder

5.4. GENERAL SYSTEMS OF MODULAR EQUATIONS 115

Theorem and substitute equations by a system of isomorphic ones. This can be performed
iteratively until we have a system of equations which fulfills the requirement.

Then we can arrange the equations by common or mutually coprime moduli. For any
group of equations which share the same modulus, we test by Groebner basis computation
if the resulting system contains a linear univariate polynomial. If yes, we determine the
corresponding solutions Z; of z; and substitute them in all equations. By this, we get a
system of equations in less variables.

As a next step, we choose possibly helpful sets of equations with mutually coprime moduli
and apply the techniques from the previous section.

An alternative way to analyze the given system is to directly define a combined shift
polynomial set F and then apply Coppersmith’s method with this shift polynomial set.
Note however, that the choice of shift polynomials has to be made extremely carefully.
Whereas any shifts of polynomials with coprime moduli can be taken and the set remains
determinant preserving, shifts of polynomials with common moduli have to be taken very
carefully. A possible choice is to let them introduce different monomials.

The bounds we obtain this way strongly depend on the specific system of equations and
the choice of the special subsystems we choose to analyze. Therefore, we cannot state any
general bounds here.

116 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

Chapter 6

Solving Systems of Multivariate
Polynomial Equations over the Integers

In the previous chapter we have seen how to adapt Coppersmith’s method to analyze
systems of modular multivariate equations. The equations to describe specific problems,
however, can also be integer equations. One possible way to analyze them is to regard
them as modular equations. An integer equation can be transformed into a modular one
by taking one of its coefficients as modulus. However, information gets lost this way. In
case of a single equation we may loose information on the relation of the unknowns. In case
of a system of equations even more problems may occur. In the worst case, by the modular
operation, we could eliminate the only variable which occurs in more than one equation.
Therefore, we should adapt our analyses to systems of non-modular equations. To do so,
we analyze Systems of Integer Multivariate Polynomial Equations (SIMPE-problem) in
this chapter.

Definition 6.0.1 (SIMPE-problem)
Let k € N, 61,...,0, € N. Assume fi(xy,...,27),..., fr(x1,...,2;) to be polynomials of

degree 01, ...,0y in Z[xq,. .., x|, respectively. Let
filxy, ... x) =
fg(l‘l,...,l’l) =

: (6.1)
fk(l’l, e ,l‘l) = 0

be a system of multivariate polynomial equations.
Let X; € R, i=1,...,l. Find all common roots (Z1,...,Z;) of (6.1) with size |z;| < X.

All the systems of polynomial equations we have considered in the previous chapters can
be interpreted as special cases of this system. Any modular equation f(xy,...,2;) = 0
(mod N) can be written as an equation f(z1,...,2;) —t;N = 0 valid over the integers.
Thus, any system of modular equations can be transformed into a system of equations

117

118 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

valid over the integers. The SIMPE-problem, however, includes further problems which
are directly given as systems of integer polynomial equations. Our final goal is to determine
bounds X; such that we can compute all solutions smaller than these bounds.

We would like to calculate the solutions using Coppersmith’s method. As the SIMPE-
problem is the most general instance of a system of equations we would like to solve, its
analysis is the most difficult one. Let F denote a shift polynomial set constructed using
the polynomial equations given in (6.1), and let F be the matrix the columns of which
correspond to the polynomials in F. Recall that in the modular case the matrix F consists
of an upper part F. corresponding to the coefficients of the polynomials and a lower part
F,, corresponding to the moduli. The matrix F,, is a diagonal matrix. Thus, F is an
upper triangular matrix in the modular case.

However, as the polynomials we are considering now are valid over the integers, the matrix
F can be of any shape. Given an arbitrary shift polynomial set, we do no longer have a
triangular structure. To see this, let

fi(z1,29) == —2x129 + 325 + 425 = 0 (6.2)

fo(z1,) := —3x129 + Qx? + mg = 0

be a system of equations with the solution (71, Z2) = (—2,2). Let F := { f1, fo} denote the
shift polynomial set used to analyze the system of equations. The matrix F corresponding
to this shift polynomial set is
-2 =3
F = 3 2 : (6.3)
4 1

As F does not have a triangular structure, determinant calculations, and, consequently,
calculations of bounds get complicated. Even if we manage to calculate the determinant
of the lattice, we will have to check if it is also the determinant of the sublattice.

We have already analyzed the matrix F in Example 5.1.7. From that analysis we know that
F is not determinant preserving as f; and fs are modularly dependent modulo 5. Recall
that in order to check if an arbitrary shift polynomial set F is determinant preserving, we

have to check if the polynomials in F are linear independent modulo N for any positive
|7
integer 1 < N < (\/ | F| - |cmax|) , where ¢, denotes the largest coefficient which occurs

in F. This is not efficiently possible.

Recall further that, in case of modular systems of equations, the number of potential
moduli for linear dependence is restricted by the number of moduli (and their divisors)
occurring in the system itself. These conditions were described in Lemma 5.2.2 with
respect to common moduli and in Lemma 5.3.2 with respect to coprime moduli. For a
general integer polynomial set, though, we only have the general condition of a determinant
preserving set given in Theorem 5.1.5. This condition, however, is impossible to check for.
Hence, we have to consider this problem beforehand. Namely, while constructing a shift
polynomial set, we construct a shift polynomial set that allows for simpler checks if the
set is determinant preserving and for easier calculations of the bounds. One possibility is

119

to construct the shift polynomial set in a way that a new monomial is introduced with
each new polynomial. Then we obtain a simpler condition (Lemma 5.1.8). That is, while
building a shift polynomial set with respect to a system of integer polynomial equations,
we have to concentrate on two aspects: On the one hand, we always have to check if the
set we define really is determinant preserving. On the other hand, we have to construct
the shift polynomial set in a way that gives us a good bound.

Before we develop new strategies, let us present an existing method which comprises an
analysis of a special system of equations over the integers. Aurélie Bauer and Antoine Joux
have shown how to provably determine small solutions of a trivariate integer polynomial
equation py(xy1,x9,23) = 0 [BJO7, Bau08|. Their analysis consists of two basic steps.
First, they determine a polynomial ps(xy,z9,x3) by Coppersmith’s basic method. By
construction, the polynomial po(z1, 2, x3) is coprime to pi(xy, 2, x3). In the second step
of their analysis they determine a third polynomial ps(z1, 2, x3) using p; and ps such that
the system

pi(ZEl,ZEQ,JIP,) :O, 1= 1,2,3, (64)

is zero dimensional. In order to determine ps3, they apply Coppersmith’s method using a
shift polynomial set F which they derive from p; and ps. Let us briefly summarize the
construction of ps.

To prove the zero dimensionality of system (6.4), the polynomial ps is constructed such that
ps & I = (p1,p2). If p; and p, are coprime and [is prime, this condition is sufficient. To
construct ps, a minimal Groebner basis G = {qi, ..., ¢, } of I is calculated. The polynomials
qi,---,q. are then shifted by monomials from sets Si,...,S,, respectively. Let F :=
{miq; | m; € S; and m; LM (q;) # m;LM(g;) for some j < i} denote the shift polynomial
set determined this way, and let M denote the set of monomials which occur in F. We
would like to describe any polynomial p € I of bounded degree as a linear combination of
polynomials of 7. We know p = fiq1 + ... f.q, with polynomials f;. Thus, we require the
set S; to be a generating set of monomials to generate the polynomials f;. This is captured
by the notion of admissibility.

Definition 6.0.2
Let (S1,...,S,, M) denote non-empty sets of monomials in Z[x1, 22, x3]. Then the tuple
(S1,...,S,, M) is called admissible for an ideal I with the Groebner basis {q1,...,q.} if:

1. For all (my,...,m,) € S; X ... X S, the polynomial myq, + ...+ m,q, only contains
monomials of M.

2. For any polynomial g containing only monomials of M which can be written as
g = fiq1 + ...+ frq. it holds that f; only consists of monomials of S; for all 1.

Aurélie Bauer and Antoine Joux impose admissibility as a condition on (S,...,S,, M)
in their construction and build the sets accordingly. This, however, is not yet enough to
prove the zero dimensionality of system (6.4). In order to be able to construct the sets
S; by polynomial division no new monomials may be introduced by the division process.
This property is ensured by using a set M and an order < which are compatible.

120 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

Definition 6.0.3
The tuple (M, <) is called compatible if m; € M implies my € M for any monomial
meo < My.

On the aforementioned constraints, a polynomial ps constructed by Coppersmith’s method
is coprime to p; and ps. Due to construction, p; and p, are coprime as well. Thus, sys-
tem (6.4) is zero dimensional as required.

Furthermore, the preconditions given in [BJ07| already imply that the shift polynomial
set F is determinant preserving. To see this, assume the contrary. Then there exists a
linear combination of polynomials of F which is zero modulo some integer N, that is,
> sercrf =0 (mod N). Thus, over the integers, it is >, rcrf = Nfy, where fy is a
polynomial comprising only monomials of M. Moreover, fy ¢ F. (If it was, the polyno-
mials in F would be linearly dependent over the integers. This is impossible due to the
construction of F. Namely, the polynomials can be enumerated in such a way that each
polynomial introduces a new monomial.) As [is a prime ideal and N ¢ [by construc-
tion, it is fy € I. That is, fy = >.._, fig; with polynomials f; € Z[zy,xs,z3]. This,
combined with the facts that fy only contains monomials of M and fy ¢ F, implies that
(S1,...,5,, M) used to define F is not admissible, a contradiction to the preconditions.
Consequently, no modular linear combination of polynomials of F equal to zero exists.
Hence, F is determinant preserving.

Moreover, the shift polynomial set F corresponds to an upper triangular matrix. Conse-
quently, bounds can be calculated directly.

The drawback of this method is, however, that the ideal I is not necessarily prime. If it is
not, a prime ideal has to be constructed from I by decomposition and taking the radical.
For details, compare |[Bau08].

Altogether, Aurélie Bauer and Antoine Joux construct shift polynomial sets in a way to
provably determine small solutions. They do not consider, however, if they could get a
better bound with a less restrictive choice of shift polynomials. In case of some specific
systems of polynomials a heuristic approach might work better. Then we can construct
shifts in a way that a lot of monomials reappear. Such methods are, of course, specialized
with respect to the system of polynomial equations under consideration and cannot be used
for general analyses. If searching for a general method to be applicable to any system, we
refer the reader to the approach pursued by A. Bauer and A. Joux [BJ07, Bau0§|.

Here we restrict our analysis to a special case. In the following section we will return to
the example of implicit factoring introduced in Section 4.2 and analyze it over the integers.

6.1 Analyzing the Problem of Implicit Factoring

The problem of implicit factoring can be analyzed in various manners. Before elaborating
on its analyses, let us briefly recall the problem. The goal is to factor an n-bit RSA modulus
Ny = poqo, where pg and gy denote prime numbers. As this problem is difficult in general,
we make use of an restricted oracle that on the i-th query, ¢ = 1,...,k, outputs another
different RSA modulus N; = p;q; such that py and p; share ¢ bits. The non-shared bits of

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 121

po and p; are subsequent. Moreover, we assume ¢o and ¢; to be a-bit numbers.

In Section 4.2 we have shown that we can determine the vector q = (qo, ¢1,---,qx) by a
heuristic lattice attack using a (k+ 1)-dimensional lattice L in polynomial time if ¢ > % a.
The condition there is, however, that the factors py and p; share their least significant bits.
The case of shared most significant bits has been treated in Section 4.3. In that heuristic
lattice attack a lattice of size quadratic in the number of oracle queries k is used. The bound
obtained is (disregarding a small constant) the same as in the case of shared least significant
bits. Both analyses use lattices in which we can extract the factors q = (qo, q1, - - ., gx) from
a short vector.

Using the more advanced technique by Coppersmith and regarding integer equations, we
can partly obtain better bounds. Furthermore, Coppersmith’s method allows for a more
general analysis, independent of the position of the subsequent non-shared bits. We start
with a system of equations we get by putting k oracle queries. This gives us k + 1 different
RSA moduli

No = (o +2%po+2"*"*"pn) qo

: (6.5)
Ny = (o +27ps + 2" p,) g
with a-bit ¢;.
This is equivalent to
2"pogo — No = — (m+2"" """ pn) @
2Pk — Ne = — (pe+2"" """ p) ai-
We transform the system of equations into a system of k integer equations. For:=1,... k

we multiply the ¢-th equation with ¢y, the O-th equation with ¢; and combine these two
equations. Then we obtain

2 pogoqs — Nogi = 2"Prgoqs — N1qo

2" poqoqr. — Nogx = 2" Prgoqr — Niqo -

Hence, we derive the following system of equations:

2 (P1—Po) g1 +No 1 —N1v @0 = 0
~—— ~— ~—~—
Y1 1 xo
2 (P —Po) @oqk + No ¢ —Ni @0 = 0.
N——— —~— ~—~

Yk Tk o

122 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

Replacing the values qq, ..., qk, P1 — Do, ..., Pr — Do by unknowns xg, ..., Tg, Y1, ..., Yk, We
define the system of polynomial equations

fil@o, - Ty Yrs oY) = 2z0z1y1 — Nizo + Norp = 0

: (6.6)
fe(@o, .o @k Y1, oo Uk) = 2 xoxryr — Npxo + Nozg = 0.

Our goal is to solve system (6.6) and determine its solutions applying Coppersmith’s
method. Thus, if the values qo,...,q, D1 — Do,---,DPr — Po are small enough, we obtain
them by this method. This implies that we can factor all IV; for any position of the bits p;
in p;. In what follows we will write f;(xo,x;,y;) instead of fi(xo,..., Tk, y1,-..,yx) as the
polynomial only depends on the variables xg, x;, y;.

6.1.1 The Case of One Equation

First, let us have a look at the equation fi(zg,z1,v1) := 2”xoz1y1 + Nox1 — N1 = 0,
which has been determined using the two moduli Ny and N;. By construction of f;, we
know that fi(qo, q1,P1 — Po) = 0.
Let again X; = 2% and Y; = 2" *~* denote the upper bounds on |¢]| and [p; — pol, respec-
tively. Let us recall Coppersmith’s method presented in Section 2.3. We apply it to find
sufficiently small solutions of f;(xo,z1,y1) = 0. For simplicity we only use the polynomial
f1 itself to construct a lattice basis. We do not define any larger shift polynomial sets F
yet. We set
(X()lel)il 0 2tr ToT1Y1
B = 0 (Xo)il —-N; Zo
0 0 NO T

The matrix B is a basis matrix of a lattice L containing the vector (qoq1(p1—po), G0, q1)B =

(QOQ1(;51—150) qo 0) —t
XoX1Y1 7 Xp’ S . . .
There are two properties of the vector t which we will use. First, the norm of the vector

is particularly small, i.e. it holds that ||t|| < V(%)Q + <)q(_(;>2 +0 < V2.

Second, the last entry is 0. This implies that t is also a vector in a sublattice Lg of L of
vectors having 0 in their last component. We can determine a basis Bg of this sublattice
via unimodular transformations on B. Furthermore, as the greatest common divisor of the

coefficients of f; equals one, there is a unimodular matrix T such that

0
TB = Bs
* % 1

Thus, it is det(B) = det(Bg). We will apply lattice basis reduction to Bg and then

*

orthogonalize the reduced basis. Let us denote the result by (Ei) By Lemma 2.3.10
2

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 123

we get that t is a multiple of b} if
lt|| < det(Lg)227 7. (6.7)

The determinant of the sublattice is det(Lg) = det(L) = det(B) = X, 2 X, 'Y, ' No.
Condition (6.7) is fulfilled if

As « and t are integers as they describe numbers of bits, we require
20+1 < t.

This is essentially the bound we got via the modular analysis (Theorem 4.2.1). A result
like this was to be expected. Both during the modular analysis as well as in this simple
lattice construction the problem was linearized. Thus, algebraic relations between different
monomials were not taken into account.

Hence, we conclude, if 2a + 1 < t, the vector t is orthogonal to b; and we get another
equation in the unknowns, namely,

o
(b3)1 + ~—(b3)2 = 0.

ToT1Y1
Jn(To, z1,91) =
(0, L1 1) X,

- Xo X1V

However, we are not yet finished. We have two equations in three unknowns which does
not necessarily imply that we can solve the system of equations. As the greatest common
divisor of both equations is one, we can eliminate one of the variables. That is, we get one
equation in two unknowns.

Let us consider an example of two 256-bit RSA-moduli with 140 shared bits of the larger
196-bit factor.

Example 6.1.1
Let

Ny = (256 - 812673540453457095612765286246825237797002 + 66763130916719055)
-55353788004451507

= 3241479081396338383767602816098777307849166574844502255653955136311902508989 ,

N1 = (2°0-812673540453457095612765286246825237797002 + 71789524880268405)
-224075567809535399

= 13121708412226537409254487715048399315004981583420160875601531613923194589523 .

124 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

The polynomial to be analyzed is then fi(xg,x1,v1) := xox1y1 + Nox1 — Nizo with root

(QO7 q1,P1 — 150) =

(55353788004451507, 224075567809535399, 71789524880268405 — 66763130916719055) .

Applying Coppersmith’s method as described above, we get as second polynomial the
polynomial:

g1(zo, z1,y1) = 55353788004451507 - xox1y1
726336265706615736574927467890451722267082924402083 7805874074835
11268708781079485733814225762 - xg
+ 1794281458924771256925238976402448764669769224379604307770771596
79479524226168234746077644916 - ;.

The polynomial g, is by construction not a multiple of fi(xo, x1, 1), but shares the same
roots. In order to recover a solution, we compute a Groebner basis of { f1, g1} with respect
to lexicographic ordering. The Groebner basis is

{h1, ha, h3} := {xox1y1 — 27822994588516547535129767637045021,

224075567809535399z¢ — 55353788004451507 21,
55353788004451507x%y; — 62344533105834761034062392288028515403475112559550x, } .

Having a look at the second polynomial of the Groebner basis, namely, ho(zo,x1,y1) =
22407556780953539929 —55353788004451507x1, we remark that ho(xo, 1,y1) = q120—qox1-
Thus, we get both factorizations by using the coefficients of ho(xg, 1, y1).

Remark that in this example we do not even need to compute a Groebner basis as the
value qq is also a coefficient of the polynomial g;.

Note that the variety V' (hq, hs, h3) is not zero dimensional. Therefore, we cannot apply the
folklore heuristic from [JMO06]. Nevertheless, we have seen in Example 6.1.1 that we can
determine the solution (qo, q1,p1 — Po)-

Our experiments showed that similar observations generally hold in this setting. A descrip-
tion of the experiments will be given at the end of this section. Based on these observations,
we introduce the following heuristic.

Assumption 6.1.2

Let F denote a shift polynomial set which is constructed with respect to a polynomial
f € Z[xg,x1,31]. Assume {f, g1,...,gx} is the set of polynomials in Z[zy, x1,y1| we get by
applying Coppersmith’s method with the shift polynomial set F. Let GB := {hy,..., h.}
be a Groebner basis of {f, g1,...,9x}. Then GB contains a polynomial h(x, z1,y;) such
that the factors qo and g, can be determined as ged(c, N;), i = 0, 1, for appropriate coeffi-
cients ¢ of h.

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 125

A similar heuristic is also used by Santanu Sarkar and Subhamoy Maitra in [SM09] who
did related analyses independently. We will elaborate on this in what follows.

Now, let us consider which shifts to use to define F. The polynomial fi(xg,x1,71) =
2 xox1y1 + Nowi — Nizg we regard here does not have any constant term. To apply the
folklore techniques of analysis presented in [JM06] we would have to substitute e.g. xy by
ro — 1 to introduce a constant term. This is the approach Santanu Sarkar and Subhamoy
Maitra followed. We will not directly define a standard shift polynomial set, but use a
different approach.

For [€ N we denote by M;(f1) the set of monomials occurring in fi. For any monomial
m € M,;(f1) multiples mfi(zg,x1,71) do not contain monomials occurring in any power
f for A < 1. This is because zy and z; are of the same total degree, namely one, and
xror1y; contains another variable yq, i.e. has degree one in this variable. Therefore, we can
regard the shift polynomial sets separately as there are no monomials which occur in two
shift polynomial sets with different indices [. Furthermore, by increasing the number of
shifts, we get higher powers of Ny in the determinant but also higher powers of X;*, X !
and Y;'. Their ratio, however, remains constant. Thus, we suppose that using such
polynomials mfi(xo, z1,y1), with m € M,(f1), as shift polynomials to build a lattice and
to apply Coppersmith’s method results in the same bound for any /. This intuition proves
correct as can be seen in the proof of the following theorem. That is, the condition is the
same using the simplest lattice construction as well as sets of standard shifts. The reason
to look at this shift polynomial set anyway is that it can be used for extensions. This is
also the motivation to give the proof with respect to any [€ N, otherwise a fixed value of
[would be sufficient.

Theorem 6.1.3
Suppose Assumption 6.1.2 holds. Let No,N; € N be of size 2" and fi(xg,x1,91) =
2 zox1yy + Noxy — Nixg € Zlxg, x1,11]. Let X; =2% i =0,1, Y; = 2""'"* be bounds on
the absolute value of the solutions qg and q1, py — Po, respectively. Then in time polyno-
mial in n we can determine all integer solutions (qo, ¢1, 1 — Do) such that |¢;| < X; and
[P1 — Po| < Y1 if
2+ 1<t.
PROOF: Let [€ N. Let My(fy) = {zizlyf | k=0,..., i =Fk,...,land j = | + k — i}

be the set of all shift monomials. We take all polynomials m fi(xg, x1,y1) for m € M;(f1)
to construct the lattice. That is, we set F := {mfi(xo,z1,11) | m € M(f1)}. Let

ny := |M;(f1)| be the number of monomials used as shifts. Then
1o ! 1 5
n; = 1= l—k+1)=-P+-l+1.
TLEITEITIT

Let M;(f1) = {m1,...,my,,} be an enumeration of the monomials of M;(f;) such that
M >ariex My if @ < j, and let g1;(x0, 21, y1) == m; f1(xo, x1,y1). Then for every polynomial
g1; the monomial zym; is not contained in the set of monomials of all g;; with j < <.

126 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

(X0X1Y1)_2 0 0 2t 0 0 x%x%y%
0 (Xo)*(Xaiyy))™t 0 =Ny 2% 0 T3T1Y1
B— 0 0 (X0)72 0 —N; 0 x% .
0 0 0 No 0 2t ToTTY
0 O 0 0 NO _Nl o1
0 0 0 0 0 Ny JJ%

Figure 6.1: A lattice basis matrix in the case of [= 1.

This can be proven by contradiction. Assume that there exists j < ¢ such that zym; is a
monomial of g;. Then zym; € {x1m;, xom;, voz1y1m;}. If zym; = xym;, then m; = m;
and, consequently, ¢« = j, which is a contradiction. If zym; = zom;, then the degree of
Ty in m; is positive and m; = m;z 25", This implies that deg(m;) = deg(m;) and due to
the ordering m; >g1ex m;. Therefore, ¢ < j, a contradiction. If zym; = zoz1y1m;, then
deg(m;) > deg(m;) and, thus, we again get the contradiction i < j.

This observation can be used to build an upper triangular basis matrix B of a lattice L.
Such a lattice can then be analyzed easier as e.g. the determinant computation is simply
the multiplication of the diagonal elements of B.

The idea of the construction of B is to let the last rows correspond to the monomials
x1m;, 1 =1,...,n;, and the first rows correspond to all other monomials in any order. An
example of a basis matrix B in the case of [= 1 is given in Figure 6.1.

Now we describe the construction more formally. Let r; be the number of monomials

occurring in the set of shift polynomials and m,,+1,...,m,, be an enumeration of all the
monomials which are not contained in xymy,...,z1m,,. The monomials m,,+1,...,m,,
can be ordered in any way. For consistency we assume that they are ordered such that
My >grex My if 1 < . We set X := (Myy41, - - -, My, 1M, . ., T1My,).

Furthermore, let M; denote the evaluation of m; in the values (Xo, X1,Y7). Let D :=
Diag(Mn’l}H, .., M "), Let f denote the coefficient vector of f(xo,z1,y1) ordered such

that fxT = f(xo,x1,y1). Let F be the matrix consisting of the coefficient vectors (gq;)”
for+=1,...,n;. That is, F denotes the matrix induced by F. Using these definitions, we

define a lattice L via the basis matrix

mnH—l
D .
B_ F my,
xr1mgy
0
xlmnl

We apply Coppersmith’s algorithm to this lattice. Then we get a second polynomial,
rp—n;—1

1
coprime to fi, on condition that det(L)n—2"""1— > /1, —ny.
We calculate the determinant of our lattice L. Recall that B is an upper triangular matrix

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 127

by construction. Thus, the matrix F can be divided into an (r; — n;) x n; matrix Fy

I . It holds that
F,

det(L) = P, - P», where Py denotes the product of the diagonal entries of D and P, denotes
the product of the diagonal entries of F5. The elements on the diagonal of F5 correspond
to monomials of type x1ym;, ¢ = 1,...,n;. Hence, all values on the diagonal of F are equal

12,3
to Ny. Their number is n; = %ZQ + %l + 1. Consequently, we have P, = NOQl AERRNP
12,3
2n(2l +2l+1)_

and an upper triangular n; X n; matrix Fa. More precisely, F =

In order to evaluate P, we need to describe the monomials m, 41, ..., m,, explicitly. The

set of all monomials occurring in the shift polynomials is exactly

1

Mg (fy) ={alajy¥ | k=0,..., 1+ 1i=k,....l+1land j=1+1+Fk—i}.
The set M := {xymy,...,x1my,, } can be described as
M= {zilyf | k=0,....Li=Fk, ..., land j=14+1+k—i}.

The powers of any of X;*, X;* and ;! occurring on the diagonal of D correspond to
the powers of the variables zg, 1, y; occurring in monomials in the set M;,1(f1) \ M. Let
so and s; denote the powers of X; ' and X!, respectively, and let u denote the power of
Y, '. Then we have

I+1 1+1 l l
PSS Bl (6.8)
k=0 i=k k=0 i=k
= P+30+2,
I+1 141 L
sio= D) (UHldk=0) =3 > (+k—i+1) (6.9)
k=0 i=k k=0 i=k
- ey
= 3 5 7
I+1 141 L
wo= 3 > k=) >k (6.10)
k=0 i=k k=0 i=k
1 3
= _l2 _l 1
5 + 5 +
This gives
Pl _ Xo—(l2+3l+2)Xl—(%l2+%l+1)1q_(%12+%l+l)‘

Using the calculations of P, P, and Xy = X; = 2%, Y] = 272! as well as Ny > 2", we

obtain
det(L) > 2—a(%l2+%l+3)—(n—a—t)(%l2+§l+1)+n(%l2+§l+1)—(§l2+%l+1)

128 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

_ 2t(§l2+gz+1)—a(z2+3l+2)—(%l2+%z+1)

In order to apply the condition given in Lemma 2.3.10, we have to determine the dimension

r of the sublattice Lg in Coppersmith’s method. As the last n; entries of the target vector

are zeros, it is r = r; — n;. We have r; = |M;1(f1)] = Zﬁ;lo i;lcl = %lz + gl + 3.

Consequently,
1 > 1 3
=(sP+l+3) = (sP+sl+1)=1+2.
r=(grges) - (5reaier) =14
All components of the target vector t are smaller than 1 so that |[t|| < v/l + 2. Therefore,
we get the following condition on the existence of a second equation:

VT2 < () o) (30) P

[+2 [+1)(1+2) (1 1
DL TS P Gt B (S VE TP Y (VT —a(+3l+2)
2 4 2" "2 2" "2
3 log(l+2)
2 — =2, 7
R T

Ifl=0,...,4, our condition is 2a + 2 < t, for any [> 4, it is 2a+ 1 < t.

On the heuristic Assumption 6.1.2 this implies that we are able to determine the solution
(g0, q1,P1 — Po). As we can use the construction with [= 5, we have a fixed number of
components in the basis vectors and a fixed lattice dimension so that the running time
of the LLL algorithm 2.3.5 only depends on the size of the largest values in the lattice,
which is determined by n. Thus, the attack works in time polynomial in n. This proves
the theorem. |

Remark that we get essentially the same lower bound on ¢ with this method as we have
obtained with the modular approach (Theorem 4.2.1). Ignoring the bit which has to be
added, this bound is illustrated by the function g(«) = 2« in Figure 6.2 in comparison to
further bounds. This way, it corresponds to the result of the modular analysis.

Sometimes better bounds can be achieved via so called extra shifts, i. e. instead of regarding
polynomials m f; such that m € M;(f,), we take different monomials m. The question now
is how to choose the monomials m appropriately. As we would like to have a large deter-
minant, a "good” polynomial in the shift polynomial set is a polynomial which introduces
a large term on the determinant. Thus, we would like to have a polynomial with a new
monomial with a large coefficient, and as few other new monomials as possible. Therefore,
we take shifts which transform monomials of one polynomial into other monomials which
already exist. Take a look at the monomials of fi(xg,z1,y1). They are zo, x1 and xoz1y;.
Multiplying xy by x1y; results in xgz1y;1, and, analogously, 1 - (xoy1) = zox1y;. Thus, a
promising approach seems to be to choose m € {(zoy1)*(z1y1)%,a,b = 0,...,1} =: Ei(f)
as the following example shows.

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 129

Example 6.1.4
Let | = 1 and use mfi(xg,z1,y1) with m € FEy(f1) as set of shift polynomials. That is,
F = {xom1yi f1, oy f1, v1y1f1, f1}. Then we define B as follows:

(XXt 0 0 0 200 0 0 zi2iy}
0 (XX 2! 0 0 ~-N; 2% 0 0 r3r1y?
0 0 (X2t 0 0 -N 0 0 z3y
B.— 0 0 0 (Xo)™t 0 0 0 -N o
T 0 0 0 0 No 0 2 0 Tox3Y?
0 0 0 0 0 Ny —-MN; 2tr ToT1Y1
0 0 0 0 0 0 No O 3y
0 0 0 0 0 0 0 N T

The matrix B is a basis matrix of a lattice L with determinant det(L) = X, X, ?Y,; ° N} >
2-10a9=6(n—a=t)od(n=1) for Xy = X; = 2%, Y; = 200=2"Y and Ny, Ny > 2" L.

Let again t := sB = (qgﬁéﬁgf‘ég)g, q3§§§;€§)2, qg()’%;fO),?{—%,O,O,O,O) with s := (¢3q?(p1 —
P0)%, 45q1(Pr — Do)?, 43 (P1 — Po), qos 9043 (P1 — Po)?, qoq1(P1 — Po), 45 (P1 — Po), 1) denote our
target vector. It is ||t|| < v/4 = 2. Thus, by Lemma 2.3.10, we get another equation in the
unknowns not being a multiple of the original one if

1
||t|| <2 < (2_100‘2_6(”_0‘—15)24@—1))z 2_%
@ 100+6(n—a—t)+7 < dn-1)
dov+2n + 11

t.
6

A natural upper bound on t is given by the fact that the number of shared bits of one
factor has to be smaller than the total number of bits of this factor, which implies that we
have

da+ 2n + 11

t<n—a = — 5 <n-—a«
N 2n 11
a<l — — —.
-5 10
Consequently, the attack described in this example can only be applied to imbalanced
moduli with a < %" — %. We again have a lattice of constant size. Thus, the running time

is only influenced by the size n of the largest value in the matrix. Hence, the attack can
be performed in time polynomial in n.

Comparing the lower bound 2¢+2 < ¢ of Example 6.1.4 to the lower bound 20 +1 < ¢
of Theorem 6.1.3, we have

da+2n + 11

200 + 1
5 !

~3
+
oo | Ut
A
o

130 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

That is, for factors g; of bitsize o in the range from approximately 7 to <* we obtain better
results using this simple set of new shift polynomials. The result is 1llustrated in Figure 6.2
as function e.

Analogously, we can apply Coppersmith’s method with the shift polynomial set F :=
{mfi(zo, x1,y1) | m € E;(f1)} for any [€ N. The analysis is straightforward. We obtain
better results by combining the basic approach of Theorem 6.1.3 with further shifts by
monomials m € Ej(f;). Therefore, we do not give the analysis with respect to this shift
polynomial set F here. We only remark that the bound we obtain regarding the limit
| — oo only depends on n. Namely, it is f(a) := § < t. This bound is illustrated in
Figure 6.2.

In the following theorem we will give the bound obtained by a combined analysis. That is,
we will use shifts in monomials of M;(f;) and in monomials of F;(f;) as well as combinations
of those shifts. Shifts in monomials m € E;(f;) are called extra shifts. Note that in contrast
to what is usually done, we do not use extra shifts in single variables here but extra shifts
in special monomials.

Theorem 6.1.5
Suppose Assumption 6.1.2 holds. Let Ny, Ny € N be n-bit numbers and fi(xg,z1,y1) =
2'rxowyy; + Noxy — Nizg € Zlxg, x1,11]. Let X; =2% i =0,1, Y] = 2"~ be bounds on
the solutions qo and q1, p1 — po, respectively. Then for all € > 0 there is l(€) such that we
can determine all integer solutions (qo, 1, p1 — Po) with |¢;| < X; and |p1 — po| < Y7 in time
polynomial in n,l(€) if

« 3

2a<1——>+—<t—e.

n 2
PROOF: Let | € N,7 € R such that 71 € N. Let S(f;) = {abtoz]ystot* | | =
0,....Lt=Fk,....l;j=1l+k—4;a=0,...,7land b = 0,...,7l} be the set of all shift
monomials. We take all polynomials mfi(xo,z1,y1) for m € S;(f1) to construct the
lattice. That is, we set F := {mfi(zo,x1,y1) | m € Si(f1)}. Let ny := [Si(f1)] be
the number of monomials used as shifts. For ease of the analysis we now write S; -;(f1) =
{zialyf | k=0,...,1+27l;i = max{0,k — 71},... ,min{l + 71,] + k} and j = + k — i}.
Then

Tl k+l 271+l 147l 3
=y 1+ 3y > 1—r2l2+27l+—l+1+ 12+27l2
k=0 i=0 k=rl+1 i=k—rl
Let Si(fi1) = {m1,...,my,} be an enumeration of the monomials of S;-;(f1) such that

m; >gex My if 4 < j, and let gi;(zo, x1,y1) := m;fi(zo, x1,y1). Then, as in the proof of
Theorem 6.1.3, for every polynomial g;; the monomial xym; is not contained in the set of
monomials of all g;; with j < ¢. We now proceed analogously to that proof and construct
an upper triangular basis matrix B of a lattice L to which we can apply Coppersmith’s
method.

Recall the notation used: Let 7, be the number of monomials occurring in the set of
shift polynomials and m,,41,...,m,, be an enumeration of all these monomials which
are not contained in {zymy,...,xymy,,}. Let the monomials my,41,...,m,, be ordered

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 131

such that m; >giex m; if @ < j. We set x 1= (M1, ..., My, T1M1, ..., T1My,). Fur-
thermore, let M; denote the evaluation of m; in the values (Xo, X;,Y1). Let D :=
Diag(M,, ", ..., M '). Again, let f denote the coefficient vector of f(wo,x1,y1) ordered
such that fx?' = f(xg,71,51). Let F be the matrix consisting of the coefficient vectors
(gli)T = (mifl)T for ¢ = 1, Lo, Ny

Then we define the lattice L via a basis matrix

mnl+l
D .
B_ F my,
xrima
0
:L‘lmnl

We apply Coppersmith’s algorithm to this lattice. By this method we get a coprime second
rp—my;—1

1
polynomial provided that det(L)7= - 2771 > \/r; — n,.

Therefore, we determine the determinant of our lattice like in Theorem 6.1.3. It holds
that det(L) = P, - P,, where P; denotes the product of the diagonal entries of D, and P,
denotes the product of the diagonal entries of Fa. Again F5 is the upper triangular n; x n,

matrix such that F = (Fy
F,

equal to No. Their number is ny = 7212 + 271 + 31 + 1 + 31> + 271%. Consequently, we have
j Ng2l2+2ﬂ+%l+l+%l2+27l2.

In order to evaluate P, we need to describe the monomials my,+1,...,m,
set of all monomials occurring in the shift polynomials is exactly

) . All contributions we derive from diagonal entries of F5 are

explicitly. The

1

Siiin(fr) = {xbalyf |k =0,.. . 1+1427];i = max{0, k—7},..., min{l+ 1471, 1+ 1+k}

and j =1+1+k—1i}.

The set M := {zymy,...,x1my,, } can be described as

M = {ziadyf | k=0,...,1+27l;i = max{0,k — 71}, ..., min{l + 71,1 + k}

and j =1+1+k—1i}.

The number of powers of any of X; ', X;* and Y, ! occurring on the diagonal of D equals
the number of powers of the variables zg, z1,y; occurring in monomials in Siy1 +(f1) \ M,
respectively. Let so and s; denote the powers of X; ' and X ', respectively, and u denote

132 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

the power of Y;"'. Then we have

Tl I+14+k 27l+141 I+14711

S0 = Z Z i+t) > (6.11)
= k=7l+1 i=k—rl
Tl l+k 27141 I+l
(z >y Y
1= k=1l+1 i=k—rl
= 2+31+l2+g7'l+37'l2+g7'2l2,

Tl I+1+4+k 27l+1+1 I+1+71

sio= > > (Hl+k—i)+ >) (+1+k—i) (6.12)

k=7l+1 i=k—7l
7l l+k 271+l I+7l
—(Z d+1+k—i)+ > Z(l+1+k—z')>
k=0 =0 k=rl+1 i=k—7l

3 1 3 1
— 1 —l —l2 e 2 — 272
+2—|—2 +27'l+7'l+27'l,

7l I+1+k 2714141 I+14-71

u = Z Zk+ oDk (6.13)
1= k=7l+1 i=k—7l
7l I+k 271+ I+l
(z ST YD SR
= i= k=71l+1 i=k—rl

3
= 1+ 5l+ §l2 + 371 + 2712 + 27212 .

This gives

— (2431424 743712+ 27212) _ — (14514 3124 Srl+7124 L7212)

X — (14 31+ L2 3ri42r 2420 202)
1 :

P =X, Y,
Substituting P, P, and Xy = X; = 2% Y]} = 27727 as well as Ny > 2"~ in det(L), we get
det(L) >
2—04(3+gl+%l2+57'l+47'l2+272l2)—(n—a—t)(1+%l+%l2+37l+27'l2+272l2)—I—(n—l)(T2l2+2Tl+%l+1+%l2+27’l2)

_ ot (13U 51243142712 420202) — (2712 4271+ 43142) —n (7212l) — (721 4 2714 Sl 1 5 1242717

In order to apply the condition given in Lemma 2.3.10, we have to determine the dimension

r of the sublattice Lg in Coppersmith’s method. It is 7, = [Si41.4(f1)] = ZZLO l+1+k 1+

IS L = 47l + 3 4+ 7212 + 2702 + 312 + 21 Consequently,

r o= Trn—-n
272 9 1o O 272 3 1, 2
= 47l+3—|—7’l+27‘l—|—§l+§l — Tl+27’l+§l+1+§l+27'l
= 27l+1+2.

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 133

All components of the target vector t are smaller than or equal to 1 so that |[t|] <
V27l 4+ 1 + 2. Therefore, we get the following condition on the existence of a second equa-

tion:
27l +1+2 <2 75

1
. <Qt(l"'%H‘%l2+37—l+27l2+27212)—a<2TZ2+27'l+l2+3l+2)—n(7—212+rl)—(7—2l2+27—l+%l+1+%l2+27—l2)) 274142

211+ 1+ 2 21l 4+ 1+ 1)27l+1+2
%log(%l—i—l—i—?)—k(T—'— i)4(T+ +2)

1
+ (7%2 + 271 + ;l +1+ 512 + 2¢l2)

t<27l+l+2)2(27l+l+1) —a@rl+14+2)(I+1) —n (P22 +7) .

As
2(m2 PP 4211+ 31+ 14 512 +211%) 27212 + 271

—1—
AT22 + 472 + 671+ 12+ 31+ 2 AT212 + 4712 + 671 + 12+ 31 + 2
we use the slightly stronger constraint

2(0+1) 27l (114 1) 3 log (21l +1+2)
= t. 14
ol + 1+ 1 (27’l+l+2)(27l+l+1)n+2+ 27l +1+1 < (6.14)
::h((i,,n,lﬂ')

This implies that for fixed [and 7 we can factor the integers N; if ¢t is greater than
h(ca,n,l, 7). Remark that the result of Theorem 6.1.3 is exactly this result in the case of
7=0.
It is

- 1272 4+ 3 4 87 + 127 + 4o + 47°n

h(a,n,7) = fim o, 1, 7) = 872 + 87 + 2

Let € > 0. Then there is [(¢) such that for [> I(¢) condition (6.14) simplifies to

1272 + 3 4+ 87ar + 127 + 4a + 47%n
872 + 87+ 2

t—e. (6.15)

The optimal value 7o, of 7, such that the lower bound on the number of shared bits

h(a,n, Topy) is as small as possible, is 7o = —%- for a # §. Substituting this value in the
function, we can determine the lower bound on ¢ as
- 4an + 3n — 4o’

h(c,n, Topt) = o < t—e.

This is equivalent to

3
2a<1——>+§ < t—e. (6.16)

134 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

1000

800 A

600

400

200

0 200 400 600 800 1000

: . . . 4da+2n+11 . n . .
Figure 6.2: b :t <n—oa, e:t >l f. ¢t >2 g:t>20 h:t>
200(1—2) 43
Bounds on the number t of shared bits, dependent on the bitsize o of the smaller factor
with n = 1000.

On the heuristic Assumption 6.1.2 this implies that we are able to determine the solution
and proves the bound. The running time of the algorithm is dominated by the running
time of the LLL-reduction, which is polynomial in the lattice dimension and the size of
the largest values in the lattice. The former is polynomial in [(¢), the latter in n. This
concludes the proof. n
Remark that the condition W < t—e implies W <n—a,a#g5ast <n—a
by definition. Thus, a < %n — —”ﬁrl%. This condition implies that o < %n Therefore,
Theorem 6.1.5 can only be applied to composite numbers with imbalanced factors.

In order to obtain better bounds, we have used monomials of f! as shift monomials. In
contrast to our first analysis, they are useful here as further monomials reoccur in shifted
polynomials if the shifts we use are a combination of those shifts and extra shifts.
Furthermore, note that the motivating Example 6.1.4 is not included in our analysis.
However, this does not pose any problems as the bound for valid values of o gets better
already in the case of [=7 = 1.

In Figure 6.2, a comparison of the various bounds is given.

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 135
theoretical | experimental | theoretical theoretical experimental asymptotic
«a result result result of bound with result with bound of
of [SMO09] of [SMO09] modular l=4,7=1in l=4,7=1in integer
approach | integer approach | integer approach | approach
230 505 434 460 391 390 356
240 521 446 480 402 401 367
250 525 454 500 413 413 377
260 530 472 520 425 423 387
270 534 479 540 436 434 396

Table 6.1: Lower bounds on ¢ for special values of a with n = 1000

To verify our heuristic assumptions in practice, we have run experiments on a Core2 Duo
1.66GHz notebook. The attacks were implemented using Magma' Version 2.11. As in
Section 4.2, we have used the implementation of L? by Phong Nguyen and Damien Stehlé
[NS05|, which is implemented in Magma. We performed experiments using 1000-bit moduli
N; with various bitsizes of the ¢; and several values of ¢,. We set [=4 and 7 = % Then
the heuristic was valid for all t > h(«, n, [, 7) in our experiments. Sometimes an attack was
also successful although t was a few bits smaller than the theoretical bound. The bounds
obtained for some values of « are given in columns five and six of Table 6.1.

Santanu Sarkar and Subhamoy Maitra independently used an integer approach to analyze
the problem of implicit factoring with one oracle call [SM09]. They regard the same
polynomial fi(zg,z1,y1) = 2%zox1y1 — N1 + Nozy. However, instead of adapting the
shifts to a polynomial without a constant term, they substitute x¢ by xqg — 1 and use the
folklore analysis given in [JMO6] to determine the roots of fi(zo,21,y1) = 2Pmoz1y; —
2%x1y; — N1wg+ N1 + Noz1. By this, they get the following result: The factorization of Ny
and N can be efficiently determined if the heuristic given in Assumption 6.1.2 holds and

o> _an—a-t) (m—a—-1t? a Hn—a—t)
—4— -2 — 4—+ —— > —1<0 6.17
n? n? 4n? * n + 3n ()
as well as 3 .
n—o— o
l-—=—2—>0. 6.18
2n n - ()

In order to compare it to our result, we transform the above inequalities into conditions
on t: Then the first inequality (6.17) becomes

™ 4v—6an + 4n? ™ 4y —6an + 4n?
S t 0 1
3a 3 3 <t< 3« 3 + 3 , (6.19)
inequality (6.18) can be transformed into
1 1

thttp://magma.maths.usyd.edu.au/magma/

136 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

1000
800

600

. f
400 1
h
200
S
200 400 600 800

1000

a

Figure 6.3: b:t<n—a, [f:t>3, g:t>2aq, h:t>2a(1—%) %
Upper bound S and lower bound s on ¢ given in equations (6.19) and (6.20), com-
pare [SM09].

Comparison of the results of [SM09] with our modular and integer ones for k = 1 with
n = 1000.

A comparison of these results to ours is given in Table 6.1. We give lower bounds on ¢ for
some values of a. The values of a which are considered were also analyzed in the work of
Santanu Sarkar and Subhamoy Maitra.

A general comparison between the different conditions on ¢ can be seen in Figure 6.3.
It is

4an + 3n — 4a?

n+ o

3 3 2n
N 5n —v/n? 4+ 108n e 5n + vn? + 108n
o)
12 12
This implies that our bound is better in case of o < 2n=vn-+108n ”{Z“OS". This includes most of

the possible values of ar. The bound obtained in [SM09] is better in the remaining cases.
However, the advantage is only slight. Moreover, this is exactly the region in which the
experiments in [SM09] do not correspond to their theoretical result but give worse bounds.

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 137

6.1.2 The Case of More than One Equation

Having analyzed the problem of implicit factoring with one oracle call, we extend the anal-
ysis to more oracle calls. In the modular case the bounds we have obtained improved the
more oracle calls were made. We hope to obtain a similar result here as more informa-
tion is given by more oracle calls. As in the previous section we start with the equation
f1(xo, w1, 1) = 2% 202191 + Nox1 — N1z = 0, which we derived from the two moduli Ny
and N;. By construction of f;, we know that fi(qo,q1,01 — Po) = 0. By any further oracle
call we obtain another equation f;(xo, x;, y;) := 2" xox;y; + Nox; — Njzo = 0 with solutions
(90, Gi»Pi — Do), @ = 2,..., k, where k is the number of oracle calls.

Our goal is as follows. Given the polynomial equations fi(xg, z1,y1) := 2"xoz1y1 + Noz1 —
Nizg = 0,..., fe(xo, Tr, yr) := 2% xoxpyr + Noxp — Npxg = 0, determine conditions such
that we can find (qo, q1,- .., @k D1 — Do, - - -, P — Do) efficiently by Coppersmith’s method.
Let again X; = 2% and Y; = 277! denote the upper bounds on the absolute values of the
solutions ¢; and p; — pg, respectively. Like in the case of one equation we introduce the
following heuristic.

Assumption 6.1.6

Let F denote a shift polynomial set which is constructed with respect to some polyno-
mials fi,..., fx € Zlxo, ..., Tk, Y1, .,Yk|. Assume that the set {fi,..., fr,q1,---,9n} C
Lo, ..., Tk, Y1, .., Yk is the set of polynomials we get by applying Coppersmith’s method
with the shift polynomial set F. Let GB := {hy, ..., h.} be a Groebner basis of { f1, ..., fx,
g1,---,9x}. Then the factors qo, q1, - .., q, can be efficiently determined from GB.

Using this heuristic and the simplest shift polynomial set possible, we can again recalculate
the bound k—zla < t by applying Coppersmith’s method. This is the bound we have
obtained by the modular analysis (Theorem 4.2.3).

Theorem 6.1.7
Assume k € N to be fixed. As before let fi(xo,xi, ;) := 2"xox;y; + Nox; — Nywg with
i =1,..., k. Furthermore, suppose F := {fi(xo,x;,y;) | i € {1,...,k}}. Then, by Copper-
smith’s method with shift polynomial set F, all common roots (Zo, T1, ..., Tk, Y1, -+, Yk) =
(G0 q1s -+ > Qs D1 — Pos - - - Pk — Po) With |q;| < 2% and |p; — po| < 2" "' can be determined
efficiently if

k+1

Ta+6k<t

for a small integer 9, and if Assumption 6.1.6 holds.

PROOF: The proof is analogous to the proof in the case of only one equation fi(xg, z1,y1) =
0. The only difference is that we extend our lattice basis. That is, we add the information

138 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

we get by the further equations f;(xg,z;,y;) = 0,7 =2,..., k. Thus, we set

(XoX Y1)~ 0 0 2% 0 ZToT1Y1
0 0 0 0 .0 :
0 (XoXpYe)™! 0 0 2t ToTLYrk
B .= 0 0 (Xo)_l -Ny ... =N, ity
0 0 0 No 0 T
0 0 0 0 0
0 0 0 0 Ny Tk

The matrix B is a basis matrix of a lattice L containing the vector

t = (q0@(Pr — Do), 900k (Pr — Po)s 905 G - - -, q1) B
q0q1(P1 — Po) q0qx(Pr. — Po) 90 0 0)
X()Xl}/vl [XOXk;Yk 7X07 [)

which is our target vector. The vector t is part of a sublattice Lg of L such that the last k
entries in vectors of Lg are zero. Let Bg be a basis matrix of the lattice Lg. According to
Lemma 2.3.10, we get a new equation f,(zo, ..., %k, Y1, -.,yx) = 0 with the same solutions
if

I[t]] < det(Lg)m127% . (6.21)

The determinant of the sublattice is
k
det(Ls) = det(L) = det(B) = X, "™V T (x,7'v) N§.-
i=1

Therefore, using N; > 2"~! condition (6.21) becomes

1

(k?—i- 1)% < 2k—+1(f(2k+1)a7k(nfa7t)+k(n71))7%

E+1 (k+1)log(k+1) k+1
3 o+ % + 1 +1 < t,

As o and t are integers as they describe numbers of bits, we require

E+1
k

a+op < t,

where 0, is the first integer larger than % + % + 1.

The computation complexity is dominated by the complexity of the LLL-reduction. As the
lattice under consideration is of constant dimension, the running time is polynomial in the
bitsize of the values in B. That is, it is polynomial in n. Let GB denote a Groebner basis
of {fn, f1,---, fx}. It can be computed efficiently for fixed values of k as we are dealing
with polynomials of maximum degree 3 in 2k + 1 variables. If Assumption 6.1.6 holds, then
we can efficiently determine the values qg, q1, ..., qx from GB and the claim follows. |

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 139

The above result is rather obvious. When we analyzed the problem of implicit factoring
with a modular approach in Section 4.2, the equations were linearized in order to use them
in the description of a lattice. Here, using Coppersmith’s method with {fi,..., fi} as shift
polynomial set, we do essentially the same. Instead of eliminating the non-linear monomial
by the modular operation, we use it as a separate element. As we do not take its structure
and relation to other monomials into account, we treat it like an additional variable. That
is, we implicitly linearize the given problem. Thus, we obtain essentially the same bound
as before.

bitsize o | number of | bound | number of | success

of the ¢; | moduli k£ + 1 %a shared bits ¢ | rate
250 3 375 377 33%
250 3 375 378 5%
350 10 389 390 0%
350 10 389 391 100%
400 100 405 409 0%
400 100 405 410 95%
440 50 449 452 0%
440 50 449 453 80%
480 100 485 491 33%
480 100 485 492 90%

Table 6.2: Attack for imbalanced RSA moduli using Coppersmith’s method

Again, we have verified the heuristic given in Assumption 6.1.6 in practice by running
experiments on a Core2 Duo 1.66GHz notebook. The attacks were implemented using
Magma? Version 2.11 using the implementation of L? by Nguyen and Stehlé [NS05]. We
performed experiments for 1000-bit moduli N; with various bitsizes of the ¢;. We have
tested for the same parameter sets as in Section 4.2. The results are presented in Table 6.2.

In the previous section we have seen that we could easily improve the first bound by using
special shift polynomials in Coppersmith’s method. We would like to do this with respect
to systems of equations as well. However, we have to choose the shift polynomial sets
carefully. Otherwise we do not have a determinant preserving set and, therefore, cannot
calculate the correct bounds. Then the real bounds are worse than predicted. Sufficient
criteria of being determinant preserving have been described in Section 5.1.

As we do not have any general strategy to apply Coppersmith’s method in case of more
than one equation, we now restrict to the case of £k = 2. By this, we can better see what
happens if more equations are used. Further, we can observe how the criteria on systems
of equations we determined in Section 5 influence the analysis.

Zhttp://magma.maths.usyd.edu.au/magma,/

140 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

As a first approach, we just shift both polynomials separately with the same shifts we
have used to obtain the bound of Theorem 6.1.5. This is possible as a set of this kind
remains determinant preserving. Each new shift gives new monomials. The only monomials
occurring in shifts of f; as well as in shifts of f;, i = 2,..., k, are powers of xy. The number
of these monomials, however, does not influence the bound asymptotically. The bounds
we get are essentially the same we had in the case of only one equation as the following
lemma shows. The only difference is a small additional constant.

Lemma 6.1.8

Let k = 2 and suppose Assumption 6.1.6 holds. Let Ny, N1, Ny € N be of size 2". Further-
more, for 1 = 1,2 let f,(xo,x,,y.) = 2" xox,y, + Nox, — N,xg € ZL|xg, T1, T2, Y1, Ya]. Assume
X;=2%1=0,1,2,Y; = 2" 4 = 1,2, are bounds on the absolute values of the solutions
Jo, 1 and qa, p1 — Po and Py — Py, respectively. Then for all € > 0 there exists [(€) such that
we can determine all integer solutions (qo, q1,q2, D1 — Po, P2 — Po) such that |¢;| < X; and
|pi — Po| <Y; in time polynomial in n,l(e) if

o
2a<1——> +2<t—e.
n
PROOF: The proof proceeds analogously to the proof of Theorem 6.1.5. We consider the
polynomials f; and f5 separately and take optimized shift sets for each of the polynomials.
For a better understanding we repeat some important steps of the proof of Theorem 6.1.5
and point out the differences which occur due to the use of two polynomials. Let [€
N,7 € R such that 7/ € N. We again construct the lattice by shifting f,, ¢ := 1,2,
with all monomials in the set S;.(f,) = {z{xiy* | k = 0,...,1 + 27l;i = max{0,k —
270}, ...,min{l + 71, + k} and j = [+ k —¢}. Let ny(f,) := |Si.~(f.)| be the number of
monomials used as shifts of f,. Then the total number of shift polynomials is

1
ng = m(f1)+m(f2) = 2 (7212 + 271 + gz +1+ 512 | 2712) = 272+ 471+ 3142+ +4717 .

We enumerate the monomials like in the proof of Theorem 6.1.5 and build a lattice basis
B such that we can determine the determinant of the lattice easily. Then we use Copper-
smith’s algorithm with this lattice basis and, by this, obtain conditions on the sizes of the
unknowns.

Here we just present the basic steps of the determinant calculation. This will give us the
bound. We reuse results of the proof of Theorem 6.1.5.

The powers of any of X;*, X;', X, ', ¥, " and Y, ! occurring on the diagonal of B are the
powers of the variables occurring in (Sj41.-(f1) \ M(f1)) U (Si1,.71(f2) \ M(f2)). Here, the
set M(f,) = {aixiy® | k=0,...,1+27l;i = max{0,k—7l},...,min{l+7l,k+1} and j =
I+ 1+ k — i} denotes the set of all monomials introduced by the shift polynomials with
respect to f,. However, the two sets (Sip1.~(f1) \ M(f1)) and (S;11.-1(f2) \ M(f2)) are not
disjoint. Monomials which occur in both sets may only contain the shared variable x;.
Therefore, the only monomial in both sets is 5™

Let sg, s; and so denote the powers of Xy, X; ' and X, ', respectively, and u; and us

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 141

denote the powers of ¥, ! and Y, !. As the polynomials have been regarded separately, the
total number of powers of X; ' is exactly the total number of powers of X; ' in the proof
of Theorem 6.1.5. The value of sy equals s;. The same observations hold for u; and wus.
Thus,

3 1 3 1

S1 = SS9 = 1+§l+§l2+§7'l+7'l2+§7'2l2, (622)
3 12 2 272

Uy =uy = 1+§l+§l + 371+ 2717 + 27717 . (6.23)

In contrast to the other variables, we have to double the number of powers of X' deter-
mined in Theorem 6.1.5 as this variable occurs in both equations. To calculate sy, we then
have to subtract [+ 1, which is the power of X !'in the shared monomial. This implies

so = 2 (2+3l+l2+grl+3712+27212) —(+1)
= 3+ 50+ 2%+ 77l + 671> + 3721 . (6.24)

Using these values and substituting Xg = X; = Xy = 2%, Y] = Y, = 2" as well as
Ny > 27! we obtain
det(L) >

2t(2+3l+l2+67'l+47l2+47212)—a(47—l2+47—l+2l2+5l+3)—n<27'2l2+27'l)—(27’212+4Tl+31+2+l2+47—12)

The dimension of the lattice in this case is 7, = [Si11.:(f1) U Sip1n(f2)| = S~ (f1)] +
1Sii1m(f2)| =1 =2 (47l + 3+ 7212 + 2712 + 112 + 31) = 1 = 871+ 54 2721 + 471> + [+ 5l
Consequently, the size of the sublattice is
ro= r—mn
= (87145427 + 4717 + P +51) — (27°1° + 471 + 3L + 2 + I* + 471°)
ATl + 20+ 3.

All components of the target vector t are smaller than 1 so that ||t|| < V47l + 2]+ 3.
Therefore, we get the following condition on the existence of a third equation:

_ 4ri42142
VATI+20+3 <271
1
) (2t(2+3[+l2+67l+4712+472l2)fa(47—l2+47—l+212+5l+3)fn(27—2l2+27—l)7(27—212+47—l+3l+2+l2+47l2)) ArlF20+3

471 + 2 471+ 2 47l + 21 + 2
Tl+2l+310g(47_l+2[+3)+(Tl+ l+3)4(Tl + 20+ 2)

+ (27 + 471 + 3L+ 2 + I? + 471°)
< Q241+ 2) 271+ 1+ 1) —a(@rl+20+3) (I +1) —n (27°1° + 271) .

142 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

(47'l—|—2l—|—3{4(47’l—&-2l—&-2) + (27_2[2 S+ AT+ 3]+ 2 + 12 +4Tl2) <1
rl+1+2)27l+1+1) -

we use the slightly stronger constraint

+1=2,

(Ari+20+3)(1+1) (27212 + 271) ht2 ATLE2EES Nog (471 4 21 + 3) _
@Crl+1+4+2)21l+1+1) @rl+1+4+2)21l+1+1) Q2rl+1+2) 21l +1+1)
=:h(a,n,l,T)

IhiS implies that fOI' lixed l and T We can factor tlle Nz lft 1s greater tllan h(a, n, l,T),
It 1S
h 82+ 87+ 2+ 4100+ 2 972
h(a,n,;):_ lim h(a,n,l,r) = o+ Tn.

Let € > 0. For [> [(e) the condition h(a,n,l,7) < t simplifies to

872 + 87 + 2+ 417a + 2a + 27°n
472 4+ 417 4+ 1

<t—c. (6.25)

The optimal value 7op¢ of 7, such that the lower bound on the number of shared bits

h(c,n, Topt) is as small as possible, is Topy = 5~ for a # 5. Using this value in the
function, we can determine the lower bound on ¢ as
_ 2n + 2an — 202

h(o,n, Top) = - <t—e.

This is equivalent to

h(c,n, Top) = 2ax (1 - g) +2<t—e. (6.26)
n

On the heuristic Assumption 6.1.6, this implies that we are able to determine the solution
and proves the lemma. The running time is dominated by the running time of the LLL-
reduction, which is polynomial in n and I(e). n

Defining the shift polynomial sets of f; and f;, ¢ # j, independently, we have seen that
it does not make a difference if we take one or two polynomials. The bound we obtain
is asymptotically the same, except for a small constant. The same property holds if we
use more equations. That is, a result analogue to that of Theorem 6.1.5 can be obtained
with k£ oracle calls as well. Theorem and proof can be given completely analogously to
Lemma 6.1.8 using k instead of 2 equations. However, as this phenomenon could already
be seen with two equations we have only presented that proof. For practical analyses,
combining equations this way does not help. Therefore, one would only combine two
moduli ;, and analyze the equation derived from these moduli. By combining equations,
only the lattice dimension increases without any improvement with respect to the bound.

Consequently, we need to pursue different approaches in order to take advantage of having
more than one equation. We again restrict our considerations to two equations to get

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 143

a better insight into this approach. Intuitively, we ought to construct shift polynomial
sets comprising more common monomials. The key idea is to use x5 and y» in the shift
monomials applied to f; and x; and ¥, in the shift monomials applied to f;. By this, more
monomials occur several times in various of the shift polynomials. These monomials have
to occur on the diagonal only once. Then we can reuse them for other shift polynomials. By
this, the value of the determinant should increase. Thus, the bound should be improved.
The choice of such a set of shift polynomials, however, has to be made extremely carefully
in order to keep the set determinant preserving.

Let us consider an at first sight tempting approach. We shift f; by xoys and fo by z1y;
such that the monomial of highest degree is the same monomial xgxiz2y1y> in both new
polynomials. Furthermore, the new polynomials already contain the leading monomials
xox1yy of f1 and xoxays of fo. Thus, setting F := {xoys f1, z131 fo, f1, fo} we hope to obtain
a good bound.

Example 6.1.9

Let F = {xoys fi(xo, 1,y1), x1y1 f2(x0, T2, Y2), fo(X0, T2,Y2), f1(x0, 21,y1)} denote a set of
shift polynomials. Let us enumerate the monomials which occur in F as xoriTay1Yys,
Tox2Y2, ToT1Y1, Lo, T1ToY2, T1X2Y1, Lo, T1. Let B denote a lattice basis constructed to apply
Coppersmith’s method. In the construction, the column vectors f7 to build F are defined
with respect to the above enumeration of monomials. Then the value Ny occurs four times
on the diagonal of F. The product of the diagonal elements of D is (X¢X2X2Y2Y2) ™"
Applying the simplified condition det(B) > 1, this leads to the bound « < t. This result
is achieved only with infinitely many moduli using the modular analysis (Theorem 4.2.5).
Unfortunately, the bound is not correct as the set F is not determinant preserving: We
have that 2 xyy; fo — 2 xoys f1 + Naofi — N1fo = 0 (mod Ny). Thus, the determinant of
the sublattice differs by a factor of Ny from the one we expected.

If we take only three of the polynomials, e.g. if we define the shift polynomial set F' :=
{z2ya f1 (0, T1,y1), [1(To, 1, Y1), fo(T0, T2, y2)}, then we obtain the following bound:

+ n <t

o+ — :

4

Here we again used the simplified condition. This bound does not change if we choose
another subset of F with cardinality 3.

Let us compare the bound o+ %4 <t to the one obtained in the modular case as well as in
Theorem 6.1.7 with k£ = 2. On the one hand, o+ 7 < %oz < 5 < a. That is, the new lower
bound on ¢ is smaller for o having more than half the bitsize of n. On the other hand, «
denotes the size of the smaller factor. Moreover, due to ¢ < n — «, we have the condition
at+i<n—asa< %n. Consequently, the bound given in Example 6.1.9 is worse than
the bound %a < t for any possible value of a and large enough values of n. We have to
search for other, more useful sets of shift polynomials instead.

Let us consider a different example.

144 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

b2
OOOOOOOOOOOOOOOG‘OOOOZ
=

,g‘o

[\)

OOO,&*OOOOOOOZO
»

N

OOOOOOOO,&*OO
N

OOOOOO,‘?OOOOOOOOOOOOOOOOOZOOO
—

ZOOOO

M

[}
|
OOOOOOOOOOOOO,&*OOZOOOOO
—
|
+TO OO O OO

k-l

[\

N

»

N

%) |
OCOCO0O0 FOO0 000000
—

[\o)
O O O OO
ZOOO

»

OO0 OO0 FO0O
) |

OOOO,&*OOOZOOOOOOO
—

TO O OO OO0 O0OOOCOO

b2

FTO OO OO OO OOoOOOOO

kel

\)
TO OO OO0 OODODOOODOOOCOOCO

i~

TO O OO OO DODODOOOOOOCOOCO

|
oczoo
¥

ZOOOOOOOOOOOOOOOOOOOO
i~
N

M

[eNeNo Nl
5
OOOOOOZOOO
=
[v)

S0 o
|

i~

[}

o |
OOOOOZOE”ZOOOOOOOOOOOOOOOOOOOOO
—
g

OOOOOOOOOOOOOOOOZ
OOOOOOOOOOOOOOOZ
OOOOOOOOOOOOOOZ:
OOOOOOOOOOOOOZ

|
OOOOOOOOOOOZ =

|

OOOOOOOOOZOOOOOOOOO
OOOOOOOOZ
OOOOOOOZ
OOOOOOZOOOOOOOOOOOO
OOOCZO
OOOZOOOO

o
g

Figure 6.4: The matrix F induced by the shift polynomial set F given in Fxample 6.1.10.

Example 6.1.10
We define our shift polynomial set as

._ 2 2 2 3 2.3
F = {$09€1372y1?/2f17$0$1$291y2f2,l’oxgyzfl,x0$191f2>$09€2y13/2f1,91?13723/1?J2f2>5171$2y13/2f1,

ToT1Y1Y2 f2, Toya f2, Toy1 f1, xoxly%fla $0$2y§f27 1y1f1, Taya fo, Try1 fo, Tay2 f1, f1} -
The bound corresponding to these shift polynomials if we apply the simplified condition is

3 11
?Oé -+ 2—8n < t
This bound is valid if
3 11 17
?a+2—8n§n—o¢ & agﬁn.

3

In comparison to the original bound from the modular analysis S« < t, the new bound is

2
smaller whenever %oz + %n < %oz & %n < «. Thus, the new bound improves the old one
if %n <a< i—gn.
Compared to the asymptotic bound, however, this bound is still worse, i. e. 2a (1 — %) +% <

%a + %n for all positive values of a.

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 145

This approach is rather arbitrary. To construct the shift polynomial set, we have started
by shifting both polynomials by monomials of the form (xoy;)™ (zoys)®(x1y1)" (Tay2)72.
We fixed 6 as an upper bound on the maximum total degree of the shift monomials.
Additionally, we excluded all shifts that either introduced too many new monomials or
were linearly dependent of the others. Therefore, F is determinant preserving. Moreover,
we know from experiments that the attack works. However, there is no obvious reason why
to choose exactly these shifts. Exchanging some of the polynomials in the shift polynomial
set may even lead to the same bound. Furthermore, there is no simple generalization to
more shift polynomials. However, we need a way to generalize the method as with fixed
lattice dimension we cannot beat the asymptotic bound obtained with one equation. In any
generalization, however, we have to cope with one major problem: Whenever the degree
of the shift monomials increases, we have to take care that we do not include shifts which
are linearly dependent of the others modulo some coefficient.

As we do not see a good generalization of the previous approach, we pursue a different
one. We aim at reducing the number of variables in order to simplify the problem. In
this process, we have to ensure that the polynomials still share some variables. If not, a
combined analysis does not improve the bound compared to separate analyses. We set

91(“1, Uz, 21, 22) = y2f1(530, I, yl) = 2% Toy1 T1Y2 +No x1y2 — N1 2oy2 ,

go(u1, ug, 21, 22) = Y1 fo(To, T2, y2) = 27 2oy Tay1 +No Tays —Na Toy -

Common roots of the polynomials g; and gy are given by @y = qo(p1 — po), U2 = qo(P2 — Po),
Z1 = q1(P2 — Po) and zy = q2(p1 — Po). Hence, the upper bounds on the solutions we are
searching for are given by |u;| < 2*t"~~t = 2"t =: ;| and, analogously, |z;| < 2" " =: Z,
1 = 1,2. Note that these bounds are independent of «. Thus, by Coppersmith’s method
we are able to determine all solutions fulfilling these bounds if ¢t > 1 (n) for some function
¥ (n). Using this technique, we can obtain quite good bounds for small dimensional lattices.
For some values of o these bounds are better compared to other bounds obtained so far.
However, these explicit bounds do not beat the general asymptotic bound either.

Example 6.1.11
Let the shift polynomial set be defined as F := {usz291, u191, U292, 2192, g1, g2 ;- With an

146

CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

appropriate enumeration of the monomials in F we define a basis B of a lattice L:

2l

D -M

9t

_Nl

2tr
—N,

U1U22129
u?z
USZQ
U2

Uy
Uz
UgZ1%22
Uiz
Uz 22
2122
<1
%)

(6.28)

Here, D := Diag((UleZlZg)’l, (U12Z1)71, (U22Z2)71, (Ule)il, (Ul)il, (Ug)il). We calcu-
late conditions on the parameters on which we can determine the solution (uy,us, Z1, Z2)
using the lattice L. First, note that F is determinant preserving. This can be seen
easily when regarding the matrix. As any shift polynomial introduces a new mono-
mial with coefficient Ny, modular dependence only has to be checked modulo Ny: Let
a1U222g1 + Aou1g1 + asuags + agz1gs + asgy + agge = 0 (mod Ny). Coefficientwise compari-
son gives ag2'» = 0 (mod Ny) (as coefficient of uyzs), as(—N1) =0 (mod Ny) (as coefficient
of uy), as2' =0 (mod Ny) (as coefficient of uyz129), a12'» =0 (mod Ny) (as coefficient of
U Up2129), and a»2' = 0 (mod Ny) (as coefficient of u3z;). Thus, a1 = ay = a4 = a5 =
ag = 0 (mod Ny). Using these results and —Nyas — Noaz = 0 (mod Ny) (coefficient of
ujug), we additionally obtain a3 = 0 (mod Ny). Thus, the polynomials of F are linearly
independent modulo Nj.

Consequently, F is determinant preserving and we can directly use the determinant of L
to calculate conditions on which we can determine the solutions.

It is det(L) = U; Uy °Z 2 Z; 2 NS = 2714=D+6n - We again use the simplified condition
det(L) > 1 and obtain

1 <t
=n .
7

This condition can be fulfilled by parameter sets with ‘—;n < n— «, thus, whenever o < %n
Now we would like to compare this bound to the ones we have obtained with the lattice
constructions given in the previous examples. It is 2n < %a + ;—;n & 2p < a and

. 7 12
%n < %a & 81n < «. Thus, for a small range of larger values of «, the new construction
improves the bounds obtained in Theorem 6.1.7 and Example 6.1.10.

(6.29)

21

Like in the case of Theorem 6.1.7, we have successfully checked the validity of Assump-
tion 6.1.6 with respect to the previous examples. Apart from a few negative examples with
a parameter ¢ being tight to the bound, Assumption 6.1.6 could be verified.

A general comparison of the bounds we have obtained in the various examples is given
in Figure 6.5. The overall best results obtained non-asymptotically so far are %a < tif

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 147

1000

g
b
d
800
e

600 ¢
t

400 1 h

200

0 200 400 600 800 1000

Figure 6.5: b:t<n—a, d:t>a+7, e:t>§a+%n fit>
h:t>2a(1—g)—|—2

n

e

n, g:t>%a,

Bounds on the number t of bits to be shared in the larger factor depending on « in the case
of two equations and n = 1000.

a < %n, %a—l—%n < tif %n <a< %n, and ‘—;n < tif %n <a< %n The first result is
represented by function g, the second result by function e, and the third result by function
f. Furthermore, the bound calculated in Example 6.1.9 is given by the function d. For
comparison, the asymptotic bound ¢ > 2« (1 — %) + 2 is also given by function h. We
remark that the explicit bounds are quite good in comparison to the bounds obtained with
equally low dimensional lattices in case of one equation.

Nevertheless, we are not able to beat the asymptotic bound this way, except for small
values of a. In the following paragraphs, we will give an intuition why we cannot obtain
a good asymptotic bound with the modified polynomials g; and g.. We use a counting
argument to illustrate this.

Let F denote a shift polynomial set built using g; and g¢o, and let § denote the maximum
total degree of a monomial occurring in F. As the polynomials g; and g, have maximum
total degree 2, this implies that the maximum total degree of a shift monomial is § — 2.
First, assume that we can take all monomials of degree less or equal to § — 2 as shift
monomials for both polynomials. If F remained determinant preserving, this would be a
sensible strategy as all single variables occur as monomials in either g; or gs.

148 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

The number of all monomials m := u'u? 21" 2> € Z[uy, ug, 21, 2] with deg(m) < § — 2 is

6—2 0—2—1i1 0—2—11—19 0—2—i1—i2—J1 1 1 1 1
= 1 = —§+ =8 — —§——9.
T 2 2 2 20 TR0 T T
11=0 i2=0 j1=0 j2=0

Hence, as we can shift each polynomial by each monomial, the number of elements of F is
bounded by 2s. Let us regard the polynomials f € F as elements of the polynomial ring
L, |ur, ug, 21, z2]. We set Fy, := {f (mod Ny) | f € F}. To get a rough estimate how
many of these polynomials can be linearly independent modulo Ny, we calculate an upper
bound sy, on the number of monomials [Mon(Fy,)|. For any monomial m := u!u22]*2J* €
Mon(Fy,) one of the following conditions holds:

If deg(m) = 0, then m can only be obtained by multiplying the leading monomial of either
g1 or go with a monomial of degree § — 2. Thus, either i > 1 and j; > 1 or i > 1 and
J2 > L.

If deg(m) < 0, then either iy > 1 or iy > 1. This is because the monomials of g; (mod Ny)
are ujz; and ug, and, analogously, the monomials of g, (mod Ny) are uszy and u;. Hence,

T
L

0—j1 0—i1—j1

S = > 1 (e=0—i1—ir—j)

i1=1 i9=0

.

=
Il
—

6—2 0—1—j1

+))1 (i =0,da=06—j1— ja)
J1=1 jo=1
6—1 0—j2

Zl (j1 =003 = — iy — Ja)

io=1

<

¥
Il
—_

™

>
I
—

0—1—1i1 0—1—1i1—1o 0—1—i1—i2—71

)RS >, 1

i2=0 71=0 J2=0
6—1—1iz 6—1—ia—71

+ > 1 (i1=0)

Jj1=0 j2=0
5 23 29

SR R s .y N
24 + 12 + 24 12 +

l’
i

s
[V
Il

—

—_

In this description the first three summands correspond to monomials of degree d, whereas
the last two summands correspond to monomials of smaller degree.

For fixed values of §, a determinant preserving shift polynomial set F can contain at most
sy polynomials. Any further polynomial f will linearly depend on F modulo Ny. That is,
the additional polynomial f does not give a useful contribution to the determinant of the
sublattice. If F is of size 2s, then at least

1 1. 25. 9
2 — sy = —5toet_ 2524251
5T M 22 ~ 1% g% Ty

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 149

do not contribute to the determinant due to linear dependence modulo N,. Note that in
case that the value 2s — s;; is negative, we cannot exclude any shift polynomials with this
argument. However, for all § > 8, it is 25 — s3; > 0.

Asymptotically, we obtain 2s — s); = 2—1454 + 0(6%). This value is equal to the asymptotic
value of s. This implies that the number of shift polynomials we can use is also s, the
number of shifts we can maximally construct using only one polynomial. Consequently,
even if shifting in both polynomials, we can only use as many shifts of both polynomials
as we could construct shifts of one polynomial.

However, regarding a single polynomial, g; contains as many variables as f;, namely three.
That is, we do no longer have the advantage of having less variables which we had with
two polynomials. Moreover, the total sizes of the unknowns are smaller in f; than in g;.
Thus, better than considering only one polynomial g; is to use the original polynomial f;.

Returning to the original polynomials, the question is whether we can argue similarly as
in case of the modified polynomials g;. More precisely, can we give an argument why we
cannot improve the bounds? We answer this question in the affirmative. Now let F denote
a shift polynomial set built using f; and f5, and let § denote the maximum total degree
of a monomial occurring in F. As both polynomials have maximum total degree 3, this
implies that the maximum total degree of a shift monomial used to construct an element
of Fis 6 — 3. Let f € F be constructed as mf; or mfy, where m is a product of powers of
Xo, T1, To, ToL1Y1, ToTale, ToY1, T1Y1, ToYz and xoys. That means, the monomial m can be
described as m = :Eéoxillx?y{ly? such that 79+ +is+j1+72 < d—3 and ig+i1+is > J1+Jo.
Thus, the maximum number s of all such monomials m is given as

5—3 5—3 -
[55=) L5522 J2 J1 0—3—i1—iz—j1—J2
s = IR DD >, 1
j2=0 71=0 19=0 i1=0 10=J1—1t1+J2—1%2

1552)=d2 jo 6-3—ji—2jp 6—3—i1—io—j1—ja
+ >, > >, 1
Jj2=0 Jj1=0 12=0 t1=j1+1 10=Jj2—1%2
S2]=d2 6-3—ja—2j5 71 8—3—i1—iz—j1—j2
+ > >, 1
j2=0 71=0 ig=j2+1 11=0 10=Jj1—%1
0P =d2 §-83—ja—2j1 6—3—io—ji—jo O6—3—i1—iz—j1—jo
+ > > > >, 1
j i1=0 ig=j2+1 i1=j1+1 10=0
3 L, 1

640 192 i 1920

Hence, the number of elements of F is bounded by 2s. Again, let us regard them as
elements of Zy, [xo, T1, T2, Y1, Yo]. We set F, := {f (mod Ny) | f € F}. Then we calculate
an upper bound sy, on the number of monomials [Mon(Fy,)|. For any monomial m :=

zioal x2ylys? € Mon(Fy,) one of the following conditions holds:

150 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

If deg(m) = 0, then m is derived from the multiplication of some monomial of degree § —3
with the leading monomial of either f; or fs. Thus, either 7p,7; > 1 and j; > 1 or g, 90 > 1
and jo > 1.

If deg(m) < §, then 45 > 1. Using this, we calculate the number s,; of monomials which
occur in F. The first four sums correspond to monomials of degree smaller than or equal
to 0 — 2. Monomials of degree 6 — 1 do not occur. We get the latter eight sums from
monomials of degree 4, the first four corresponding to monomials with ig,7; and j; > 1,
the others to the remaining monomials.

ﬁ
>
||
@
e
—
=]
v |
w
e
|
<
™
<
&
|
—

ji—=1 0—2—i1—iz—j1—j2

sM:' ' ZZ Z 1

11=0 to=J1—t1+j2—i2

<
V)
Il
=)
<
-
Il
<)
o
[V]

|
=)

ﬁ
o
||
w
e
—
=]
v |
w
e
I
<.
©
<
™)
|
—

0—2—j1—2j2 0—2—i1—i2—j1—j2

15 S D SEED SR SH

10=Jj2—12

<
V]
Il
=)
<
=
Il
o
o
(V)
|
=)
-~
=
I
<
=

,i
>
||
w
i
—
=]
v
w
i
I
<
[V
5
N}
|
<
M
|
N
S
py
<
=
|
—

0—2—1i1—i2—j1—j2

55 S YU SR SED SR

J2=0 Jj1=0 i2=j2 i1=0 w0=Jj1—%

22 15582 6-8—ja—2j1 S-8—ir—ji—j2 O—2—i1—iz—j1—j2
; SR S

J2=0 J1=0 i2=J2 11=J1 io=1

1811 [3]-d2 jo—1 j1—1

]
(]

<
)
Il
o
<
=
Il
L=
~
N
|
o
<
=
|
—

,i
[SIE9)
s
|
—
—
N>
[
|
<
I
<
)
|
—_
=21
|
<
=
|
[N}
<
V)

+
]
]

I.M .

I\g

—
I
o,
|
|
|
b).
|
b).

Zl (g =0 — i1 — iy — j1 — j2)

<
o
Il
=}
<
s
Il
-
-
S
|
o
-
=
Il
<
s

ﬁ
[NIE9)
I
—
—
N[
o
|
<.
¥
7
<
I
|
[\o}
<

=
<
=
|
—

(ip =0 — i1 —i2 — J1 — J2)

N
I\
]
7

J2=0 Jj1=1 12=72 i1=1
15)-1 1§)=d2 §—jo—2j1 b—l—ir—ji—j
+ Z I (lo=0—1i1—iy—J1 — J2)
j2=0 Jji=1 i2=j2 11=J1
5] -1 6-24
+ > 1 (j1=0,ig=0— i1 —is— Jj)
ja=1 da=1 i1=0
ng 0—1—j2 6—1—io—jo
+ I (j1 =0, =0 — i1 —is — J2)

o
%)
Il
—_
o~
V]
I
.
N
~
[y
Il
(en)

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 151

,_
SIS
i
—
[S])
[
<
)

Ja—1

D1 (ih=0ig =06 — i1 — iz — j1 — ja)

+
g
(]

Je=1 j1i=1 ip=1
L%J L%J—M d—ja2—24j1
+ Y Y1 (h=0ig=0—i1—ir— ji —)
jo=1 J1=1 12=J2
3 7 29 127 601 7
= — P+ =5+ - =Pt 0+ —

640 192 192 192 1920 128°

For fixed values of 4, the shift polynomial set F can contain at most s;; polynomials
which are linearly independent modulo Ny. Any further polynomial will not give a helpful
contribution to the determinant of the sublattice. If F is of size 2s, then at least
3 T 4 31 45 127, 599 7

S 7 K T T R T R TR D
polynomials are linearly dependent of the others modulo Ny. Asymptotically, we obtain
25 — sy = %55 + 0(6%). Like in the previous case, this is equal to the asymptotic value
of s. Thus, the number of shift polynomials we can use is also s, the maximum number
of shift polynomials we can build using only one polynomial. Consequently, the absolute
number of shift polynomials in a determinant preserving shift polynomial set has to be
smaller than the maximum number of possible shifts in one polynomial.
We remark that the argumentation works similarly using all possible monomials of degree
0 — 3 to construct the shift polynomial set. The same observations can be made with
respect to other shift polynomial sets. However, for this type of polynomials we already
know a good shift polynomial set to analyze only one equation. Thus, we have used a
naturally generalized version of this set to construct F.

These results indicate that we cannot improve the asymptotic bound obtained with only
one polynomial by using additional ones. Note, however, that we do not have to use the
same shift monomials for both polynomials. A shift polynomial set consisting of s shift
polynomials including shifts of f; and of f; might still give a better bound than a shift
polynomial set containing only shifts of f;. However, a bound usually gets better if less
monomials have to be introduced. As less monomials also imply more linear dependences,
we do not see a way how to construct such shift polynomial sets based on f; and f.

A reason for this behavior is probably the structure of the polynomials we examine. Recall
that if we regard the polynomials modulo Ny, we deal with polynomials in only two mono-
mials. More precisely, we consider polynomial equations 2 xoz;y; — N;zg = 0 (mod Npy).
A solution of this equation is given by (zo, z;, v:) = (qo, i, Pi — Po)- As qo divides Ny, we
search for solutions of the modular equation 2'x;y; — N; = 0 (mod po). Regarding the
equations this way, two equations with different indices ¢ only contain independent vari-
ables. This observation supports the claim that we cannot use the shared variables in our
analyses.

Note that we do not prove that it is impossible to obtain better bounds than ¢ — ¢ >

152 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

2a (1 — %) + %, but that we give arguments to support this claim. A rigorous result is a
goal in future work.

6.2 Open Problems and Future Work

In 2007, Aurélie Bauer and Antoine Joux presented a way to use Coppersmith’s algorithm
with several integer polynomials. The shift polynomial set F they use is determinant pre-
serving by construction. However, the shift polynomials cannot directly be constructed
by multiplying the given polynomials by monomials. Instead, it has to be checked if the
ideal I induced by these polynomials is prime. If not, a prime ideal has to be constructed
by decomposition of I in prime ideals. Then a prime ideal corresponding to the original
polynomials has to be chosen. Subsequently, a Groebner basis of this prime ideal has to
be computed.

In this chapter we have analyzed how to use Coppersmith’s algorithm with a shift poly-
nomial set F directly constructed from the integer polynomials. This allows for simpler
constructions of shift polynomial sets. However, not all shift polynomial sets constructed
this way can be used. Instead, further criteria have to be checked. Namely, arbitrary shift
polynomial sets are not necessarily determinant preserving. We have given some criteria
to guarantee that a shift polynomial set is determinant preserving. These criteria do not
directly lead to a general strategy though.

Therefore, in Section 6.1 we have drawn our attention to the problem of implicit factoring
and analyzed how to apply Coppersmith’s method with regard to these specific polynomi-
als. We have stated some good bounds obtained with small dimensional lattices. However,
we could not give a general strategy to calculate a bound on basis of more polynomials.
On the contrary, we have given arguments why a better bound cannot be obtained if we
use two polynomials instead of one polynomial. It remains as an open problem to prove
or disprove the existence of an attack for a wider range of parameters. That is, a goal for
future research is either to extend the arguments to a rigorous proof or to show how to
achieve a better bound.

Moreover, it would be interesting to give a better explanation of the behavior we have
observed with respect to the problem of implicit factoring. Probably the structure of the
polynomials plays an important role. Recall that the polynomials consist of only two
monomials modulo Ny. Moreover, the integer polynomial equations imply two modular
polynomial equations in independent variables. These observations support the claim that
we cannot use the shared variables in our analyses.

Therefore, based on the results in the case of the specific example of implicit factoring, it
would be interesting to determine criteria whether an additional equation can be used to
improve the bounds or not.

On a more general scale, a main target is to develop a generic strategy how to apply

6.2. OPEN PROBLEMS AND FUTURE WORK 153

Coppersmith’s algorithm to a system of integer polynomial equations. The method should
be direct. That is, one should be able to construct a shift polynomial set directly from
the initial polynomials. Moreover, the set determined this way ought to be determinant
preserving and, thereby, allow for a simple calculation of the bounds.

Approaching this problem from the opposite direction, a major goal is to give impossi-
bility results. Counting arguments like the ones given in the previous section should be
elaborated on to give impossibility results. Then they should be generalized to work with
arbitrary sets of polynomials.

In the end, given a set of polynomial equations in Z[z1, ..., x;], one should directly be able
to determine values X1,..., X; such that solutions |Z;| < X; can be found efficiently, but
solutions |z;| > X; cannot.

154 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

Bibliography

[AMO9)]

[Bau08|

[BD99)

[Ber67|

[Ber70]

[BJO7]

[B1600]

[BMO5]

[Bon99]

[Bro06]

Divesh Aggarwal and Ueli M. Maurer. Breaking RSA Generically Is Equivalent
to Factoring. In Antoine Joux, editor, EUROCRYPT, volume 5479 of Lecture
Notes in Computer Science, pages 36-53. Springer, 2009.

Aurélie Bauer. Vers une Géneralisation Rigoureuse des Méthodes de Copper-
smath pour la Recherche de Petites Racines de Polynomes, Dissertation. 2008.

Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with Private Key d Less

than N°292. In Jacques Stern, editor, EFUROCRYPT, volume 1592 of Lecture
Notes in Computer Science, pages 1-11. Springer, 1999.

Elwyn R. Berlekamp. Factoring Polynomials Over Finite Fields. Bell System
Tech. J., 46:1849-1853, 1967.

Elwyn R. Berlekamp. Factoring Polynomials Over Large Finite Fields. Math.
of Computation, 24:713-735, 1970.

Aurélie Bauer and Antoine Joux. Toward a Rigorous Variation of Copper-
smith’s Algorithm on Three Variables. In Moni Naor, editor, FUROCRYPT,
volume 4515 of Lecture Notes in Computer Science, pages 361-378. Springer,
2007.

Johannes Blomer. Closest Vectors, Successive Minima, and Dual HKZ-Bases
of Lattices. In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors,
ICALP, volume 1853 of Lecture Notes in Computer Science, pages 248-259.
Springer, 2000.

Johannes Blomer and Alexander May. A Tool Kit for Finding Small Roots of
Bivariate Polynomials over the Integers. In Cramer [Cra05|, pages 251-267.

Dan Boneh. Twenty Years of Attacks on the RSA Cryptosystem. In Notices of
the American Mathematical Society (AMS), volume 46, No. 2, pages 203-213,
1999.

Daniel R. L. Brown. Breaking RSA May Be as Difficult as Factoring. In
Cryptology ePrint Archive, Report 2005/380, 2006.

155

156

[BS96]

[Buc65]

[Buc06]

[BVOS]

[BvHKS07]

|CFPRY6|

[CKM97]

[CLOY7]

[Cop96a|

[Cop96b]

[Cop97]

[Cop01]

[Cor04]

BIBLIOGRAPHY

Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, volume 1. The
MIT press, 1996.

Bruno Buchberger. FEin Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm
for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Di-
mensional Polynomial Ideal). PhD thesis, Mathematical Institute, University
of Innsbruck, Austria, 1965.

Bruno Buchberger. Bruno Buchberger’s PhD thesis 1965: An Algorithm for
Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional
Polynomial Ideal. J. Symb. Comput., 41(3-4):475-511, 2006.

Dan Boneh and Ramarathnam Venkatesan. Breaking RSA May Not Be Equiv-
alent to Factoring. In Nyberg [Nyb98|, pages 59-71.

Karim Belabas, Mark van Hoeij, Jiirgen Kliiners, and Allan Steel. Factoring
Polynomials over Global fields. preprint, to appear in Journal de Theorie des
Nombres de Bordeaux, 2007.

Don Coppersmith, Matthew K. Franklin, Jacques Patarin, and Michael K.
Reiter. Low-Exponent RSA with Related Messages. In Maurer [Mau96|, pages
1-9.

Stéphane Collart, Michael Kalkbrener, and Daniel Mall. Converting Bases
with the Grobner Walk. J. Symb. Comput., 24(3/4):465-469, 1997.

David Cox, John Little, and Donald O’Shea. Ideals, Varieties and Algorithms,
An Introduction to computational Algebraic Geometry and Commutative Al-
gebra, Second Edition. Springer-Verlag, 1997.

Don Coppersmith. Finding a Small Root of a Bivariate Integer Equation;
Factoring with High Bits Known. In Maurer [Mau96|, pages 178-189.

Don Coppersmith. Finding a Small Root of a Univariate Modular Equation.
In Maurer [Mau96|, pages 155-165.

Don Coppersmith. Small Solutions to Polynomial Equations, and Low Expo-
nent RSA Vulnerabilities. J. Cryptology, 10(4):233-260, 1997.

Don Coppersmith. Finding Small Solutions to Small Degree Polynomials. In
Silverman [Sil01], pages 20-31.

Jean-Sébastien Coron. Finding Small Roots of Bivariate Integer Polynomial
Equations Revisited. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT, volume 3027 of Lecture Notes in Computer Science, pages 492-505.
Springer, 2004.

BIBLIOGRAPHY 157

[Cor07|

[Cra05|

[DBLS3]

[DHT76|

IDK02|

[Fau99]

[Fau02]

[FGLMO93]|

[FMROY]

[FP83]

[FRO5]

[HassS|

[Hel85)

Jean-Sébastien Coron. Finding Small Roots of Bivariate Integer Polynomial
Equations: A Direct Approach. In Menezes [Men07]|, pages 379-394.

Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume
3494 of Lecture Notes in Computer Science. Springer, 2005.

Proceedings of the Fifteenth Annual ACM Symposium on Theory of Comput-
ing, 25-27 April 1983, Boston, Massachusetts, USA. ACM, 1983.

Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, 1T-22(6):644-654, 1976.

Ivan Damgard and Maciej Koprowski. Generic Lower Bounds for Root Extrac-
tion and Signature Schemes in General Groups. In Lars R. Knudsen, editor,
EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 256
271. Springer, 2002.

Jean-Charles Faugére. A New Efficient Algorithm for Computing Grébner
Bases (F4). Journal of Pure and Applied Algebra, 139(1-3):61-88, 1999.

Jean-Charles Faugére. A New Efficient Algorithm for Computing Grébner
Bases without Reduction to Zero (F5). In T. Mora, editor, Proceedings of
the 2002 International Symposium on Symbolic and Algebraic Computation
ISSAC, pages 75-83, 2002.

Jean-Charles Faugére, Patrizia M. Gianni, Daniel Lazard, and Teo Mora. Effi-
cient Computation of Zero-Dimensional Grébner Bases by Change of Ordering.
J. Symb. Comput., 16(4):329-344, 1993.

Jean-Charles Faugere, Raphaél Marinier, and Guénaél Renault. Implicit Fac-
toring with Shared Most Significant Bits. preprint, personal communication,
2009.

Ulrich Fincke and Michael Pohst. A Procedure for Determining Algebraic
Integers of Given Norm. In van Hulzen [vH83|, pages 194-202.

Matthew K. Franklin and Michael K. Reiter. A Linear Protocol Failure for
RSA with Exponent Three. In Presented at CRYPTO Rump Session, 1995.

Johan Hastad. Solving Simultaneous Modular Equations of Low Degree. SIAM
J. Comput., 17(2):336-341, 1988.

Bettina Helfrich. Algorithms to Construct Minkowski Reduced and Hermite
Reduced Lattice Bases. Theor. Comput. Sci., 41:125-139, 1985.

158

[HMO8]|

[HMO9]

[HSO07]

[IMO6]

[TMO7]

[INTO7]

[Jut98|

[Kan83]

[Kan87]

[KatO01]

[Laz83]

[LCO6)

[Len87]

BIBLIOGRAPHY

Mathias Herrmann and Alexander May. Solving Linear Equations Modulo Di-
visors: On Factoring Given Any Bits. In Josef Pieprzyk, editor, ASTACRYPT,
volume 5350 of Lecture Notes in Computer Science, pages 406-424. Springer,
2008.

Mathias Herrmann and Alexander May. Attacking Power Generators Using
Unravelled Linearization: When Do We Output Too Much? In Mitsuru Mat-
sui, editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer Science,
pages 487-504. Springer, 2009.

Guillaume Hanrot and Damien Stehlé. Improved Analysis of Kannan’s Short-
est Lattice Vector Algorithm. In Menezes [Men07|, pages 170-186.

Ellen Jochemsz and Alexander May. A Strategy for Finding Roots of Multi-
variate Polynomials with New Applications in Attacking RSA Variants. In Lai
and Chen |[LCO06|, pages 267-282.

Ellen Jochemsz and Alexander May. A Polynomial Time Attack on RSA with

Private CRT-Exponents Smaller Than N 0.073 " In Menezes [Men07|, pages
395-411.

Antoine Joux, David Naccache, and Emmanuel Thomé. When e-th Roots
Become Easier Than Factoring. In ASIACRYPT, pages 13-28, 2007.

Charanjit S. Jutla. On Finding Small Solutions of Modular Multivariate Poly-
nomial Equations. In Nyberg [Nyb98|, pages 158-170.

Ravi Kannan. Improved Algorithms for Integer Programming and Related
Lattice Problems. In STOC |DBL83|, pages 193-206.

Ravi Kannan. Minkowski’s Convex Body Theorem and Integer Programming.
In Math. Oper. Res. [DBL83|, pages 415-440.

Stefan Katzenbeisser. Recent Advances in RSA Cryptography. Advances in
Information Security 3. Springer US, 2001.

Daniel Lazard. Grobner-Bases, Gaussian Elimination and Resolution of Sys-
tems of Algebraic Equations. In van Hulzen [vH83|, pages 146—156.

Xuejia Lai and Kefei Chen, editors. Advances in Cryptology - ASIACRYPT
2006, 12th International Conference on the Theory and Application of Cryp-
tology and Information Security, Shanghai, China, December 3-7, 2006, Pro-
ceedings, volume 4284 of Lecture Notes in Computer Science. Springer, 2006.

Hendrik W. Lenstra. Factoring Integers with Elliptic Curves. The Annals of
Mathematics, 126(3):649-673, 1987.

BIBLIOGRAPHY 159

[LHWL93] Arjen K. Lenstra and Jr. Hendrik W. Lenstra, editors. The Development of the

[LLL82]

[LRO6]

|Liih02]

[Mau92]

[Mau96|

[May06]

[McNO7]

[Men07]

[Mey00]

[MG02]

[Min96]
[MMS2]

Number Field Sieve, volume 1554 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin, 1993.

Arjen K. Lenstra, Hendrik W. Lenstra Jr., and Laszl6 Lovasz. Factoring
Polynomials with Rational Coefficients. Mathematische Annalen, 261(4):515-
534, 1982.

Gregor Leander and Andy Rupp. On the Equivalence of RSA and Factoring
Regarding Generic Ring Algorithms. In Lai and Chen [LCO06|, pages 241-251.

Frank Liibeck. On the Computation of Elementary Divisors of Integer Matri-
ces. J. Symb. Comput., 33(1):57-65, 2002.

Ueli M. Maurer. Factoring with an Oracle. In Rainer A. Rueppel, editor,
FEUROCRYPT, volume 658 of Lecture Notes in Computer Science, pages 429—
436. Springer, 1992.

Ueli M. Maurer, editor. Advances in Cryptology - EUROCRYPT ’96, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes
i Computer Science. Springer, 1996.

Alexander May. Skript zur Vorlesung Public Key Kryptanalyse. Win-
tersemester 2005,06.

John M. McNamee. Numerical Methods for Roots of Polynomials, Part 1,
volume 14. Elsevier: Studies in Computational Mathematics, 2007.

Alfred Menezes, editor. Advances in Cryptology - CRYPTO 2007, 27th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-

23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer Science.
Springer, 2007.

Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. Cambridge Uni-
versity Press, 2000.

Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems:
a Cryptographic Perspective, volume 671 of The Kluwer International Series
in Engineering and Computer Science. Kluwer Academic Publishers, Boston,
Massachusetts, March 2002.

Hermann Minkowski. Geometrie der Zahlen. Teubner-Verlag, 1896.

Ernst W. Mayr and Albert R. Meyer. The Complexity of the Word Problems
for Commutative Semigroups and Polynomial Ideals. Advances in Mathemat-
ics, 46(3):305-329, 1982.

160

[MROS]|

[MROY]

[NSO05]

[Nybos|

[Pau07|

[Pom84|

IRSS5)

[RSA]

IRSATS]

[SBO2]

[Sho94|

[Sho05]

BIBLIOGRAPHY

Alexander May and Maike Ritzenhofen. Solving Systems of Modular Equations
in One Variable: How Many RSA-Encrypted Messages Does Eve Need to
Know? In Ronald Cramer, editor, Public Key Cryptography, volume 4939 of
Lecture Notes in Computer Science, pages 37—46. Springer, 2008.

Alexander May and Maike Ritzenhofen. Implicit Factoring: On Polynomial
Time Factoring Given Only an Implicit Hint. In Stanislaw Jarecki and Gene
Tsudik, editors, Public Key Cryptography, volume 5443 of Lecture Notes in
Computer Science, pages 1-14. Springer, 2009.

Phong Q. Nguyen and Damien Stehlé. Floating-Point LLL Revisited. In
Cramer [Cra05|, pages 215-233.

Kaisa Nyberg, editor. Advances in Cryptology - EUROCRYPT ’98, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403 of Lecture
Notes in Computer Science. Springer, 1998.

Franz Pauer. Grobner Bases with Coefficients in Rings. J. Symb. Comput.,
42(11-12):1003-1011, 2007.

Carl Pomerance. The Quadratic Sieve Factoring Algorithm. In Thomas Beth,
Norbert Cot, and Ingemar Ingemarsson, editors, FUROCRYPT, volume 209
of Lecture Notes in Computer Science, pages 169—182. Springer, 1984.

Ronald L. Rivest and Adi Shamir. Efficient Factoring Based on Partial Infor-
mation. In Franz Pichler, editor, EUROCRYPT, volume 219 of Lecture Notes
in Computer Science, pages 31-34. Springer, 1985.

RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard.

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM,
21(2):120-126, 1978.

Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis. Springer-
Verlag, New York and Berlin, 2002.

Peter W. Shor. Polynominal Time Algorithms for Discrete Logarithms and
Factoring on a Quantum Computer. In Leonard M. Adleman and Ming-Deh A.
Huang, editors, ANTS, volume 877 of Lecture Notes in Computer Science, page
289. Springer, 1994.

Victor Shoup. A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, 2005.

BIBLIOGRAPHY 161

[Sil01]

[Sim83]

ISMO9)

[SW99]

[vHS3]

[VHO1]

[VZ95]

[Wie90]

Joseph H. Silverman, editor. Cryptography and Lattices, International Confer-
ence, CaLC 2001, Providence, RI, USA, March 29-30, 2001, Revised Papers,
volume 2146 of Lecture Notes in Computer Science. Springer, 2001.

Gustave J. Simmons. A "Weak" Privacy Protocol Using the RSA Crypto
Algorithm. Cryptologia, 7(2):180-182, 1983.

Santanu Sarkar and Subhamoy Maitra. Further Results on Implicit Factoring
in Polynomial Time. Advances in Mathematics of Communication, 3(2):205-
217, 2009.

Uwe Storch and Hartmut Wiebe. Lehrbuch der Mathematik, Band II: Lineare
Algebra . Spektrum Akademischer Verlag, 1999.

J. A. van Hulzen, editor. Computer Algebra, EUROCAL 83, European Com-
puter Algebra Conference, London, England, March 28-30, 1983, Proceedings,
volume 162 of Lecture Notes in Computer Science. Springer, 1983.

Mark van Hoeij. Factoring Polynomials and 0-1 Vectors. In Silverman [Sil01],
pages 45-50.

Scott A. Vanstone and Robert J. Zuccherato. Short RSA Keys and Their
Generation. J. Cryptology, 8(2):101-114, 1995.

Michael J. Wiener. Cryptanalysis of Short RSA Secret Exponents. [EEE
Transactions on Information Theory, 36(3):553-558, 1990.

Acknowledgments

First of all, I would like to thank my supervisor Prof. Dr. Alexander May for giving me the
opportunity to write this thesis, for inviting me to accompany him when he took up a new
position in Bochum and, in particular, for the many and inspiring scientific discussions and
the constant support at all stages of the thesis. Furthermore, I would like to say thank you
to Prof. Dr. Hans Ulrich Simon for agreeing to act as co-referee. Moreover, I am grateful
to Dr. Olivier Brunat for suggesting I should have a look at elementary divisors.

I have greatly enjoyed my time working at the Technical University of Darmstadt and at
the Ruhr-University of Bochum. Thanks to the group of CDC in Darmstadt as well as the
group of CITS and the other chairs of the HGI in Bochum who contributed to this. In
particular, I would like to thank Christina Lindenberg and Roberto Samarone dos Santos
Aratjo for making me feel so welcome and for a great time sharing the office in Darmstadt.
Thank you to Mathias Herrmann for more than two years of shared office time in Bochum,
for discussing many scientific ideas or problems, but also for other discussions. Further,
thank you, Mathias, for the thorough proofreading of my thesis, the helpful advice given
on many occasions and for somehow managing to find enjoyment in tackling those little
problems which to me just seemed annoying. Furthermore, I would like to thank Alexan-
der Meurer and Enrico Thomae for proofreading a part of this thesis and for their helpful
remarks. A special thanks to Christian Stinner for a very detailed proofreading although
he had many other duties in the same period of time. Thank you, Christian, for your many
helpful comments and for your encouragement.

Moreover, I would like to say thank you to my family and friends who have encouraged,
supported and distracted me over the past years. Thank you to my parents and my brother
for their constant support at all times, for their love and understanding.

Thank you to all the friends who have been there at one time or another and who con-
tributed to so many enjoyable moments. In particular, I would like to thank Christiane
for a longlasting friendship which has overcome all the changes in our lives, and for the
opportunity to share our problems and frustrations as they arose. Although we were never
really able to understand what the exact scientific problem of the other was, this helped
me a lot. Thank you, Sarah, for all our intense discussions on nearly any topic (except
for mathematics, maybe), for always being there in spite of any physical distance. Thank
you, Tina, for so many true comments at exactly the right moments, for always joining in
when it was once again time "to drink some more tea” and for all those comforting laps of
“jogging”.

Thank you to all the people who made the past few years the way they were!

