
On Efficiently Calculating Small Solutions

of Systems of Polynomial Equations

Lattice-Based Methods and Applications to Cryptography

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

der Fakultät für Mathematik

der Ruhr-Universität Bochum

vorgelegt von

Dipl.-Math. Maike Ritzenhofen

Januar 2010

2

Reviewer:

Prof. Dr. Alexander May (Ruhr-University of Bochum)

Prof. Dr. Hans Ulrich Simon (Ruhr-University of Bochum)

Contents

1 Introduction 5

2 Mathematical Background 11
2.1 General Notation . 11
2.2 Algebraic Methods . 18
2.3 Lattices . 27

3 Solving Systems of Modular Univariate Polynomial Equations 41
3.1 Solving Systems of Modular Univariate Polynomial Equations with a Com-

mon Modulus (SMUPE1) . 42
3.2 Solving Systems of Modular Univariate Polynomial Equations with Coprime

Moduli (SMUPE2) . 45
3.2.1 Optimality of Our Bound for Solving SMUPE2 48
3.2.2 An Example . 49

4 Basic Approaches for Solving Systems of Multivariate Polynomial Equa-
tions 51
4.1 RSA with Related Messages and Implicit Relations 52
4.2 The Problem of Implicit Factoring with Shared Least Significant Bits . . . 54

4.2.1 Implicit Factoring of Two RSA Moduli 55
4.2.2 Implicit Factoring of k RSA Moduli 58
4.2.3 Implicit Factoring of Balanced RSA Moduli 59
4.2.4 A Counting Argument that Supports our Assumptions 62
4.2.5 Experiments . 62

4.3 The Problem of Implicit Factoring with Shared Most Significant Bits . . . 64
4.4 Some General Criteria for Solving Systems of Multivariate Polynomial Equa-

tions via Shortest Vector Problems . 66

5 Solving Systems of Multivariate Polynomial Equations with Copper-
smith’s Method 73
5.1 Coppersmith’s Algorithm with Systems of Equations 73
5.2 Systems of Equations with a Common Modulus 83

5.2.1 RSA with Related Messages and Implicit Relations 85

3

4 CONTENTS

5.2.2 RSA with Random Paddings . 95
5.3 Systems of Equations with Coprime Moduli 104

5.3.1 Solving SMUPE2 via Systems . 106
5.4 General Systems of Modular Equations . 114

6 Solving Systems of Multivariate Polynomial Equations over the Integers117
6.1 Analyzing the Problem of Implicit Factoring 120

6.1.1 The Case of One Equation . 122
6.1.2 The Case of More than One Equation 137

6.2 Open Problems and Future Work . 152

Bibliography 155

Chapter 1

Introduction

Cryptology is an old science, its roots reaching back to the ancient Romans and Greeks.
It can be divided into two branches, cryptography and cryptanalysis. Whereas the main
interest of cryptographers is to design new cryptosystems, cryptanalysts try to break them.
The developments of both directions of cryptology are, of course, strongly related. The
development of a new cryptosystem offers new problems to attack, and a newly developed
attack leads to the need to develop new cryptosystems.

At its inception, cryptography stood mainly for enciphering and deciphering. One assumed
a cryptosystem to be secure as long as no attack was known. In the cause of time, require-
ments concerning cryptosystems emerged. Different types of security models were defined,
and one tried to prove the security of a cryptosystem on certain assumptions.

Until 1976, there was only one type of cryptosystem known as symmetric cryptosystems.
In a symmetric cryptosystem two communication partners, say Alice and Bob, have a com-
mon secret k. We call k the key. Using k and an encryption function E, Alice encrypts
a message m as c := Ek(m) and sends c to Bob. Bob obtains the message by using a
decryption function D and computing m = Dk(c). For a symmetric encryption scheme to
work correctly, it has to verify m = Dk(Ek(m)). A third party, Eve, eavesdropping on the
communication should find it difficult to obtain the message m or even useful information
on m from c without knowing the key k.

A second type of cryptosystem known as asymmetric cryptosystems was introduced by
Whitfield Diffie and Martin Hellman in 1976 [DH76]. They proposed a method of commu-
nicating privately without having to share a secret key beforehand. That is, they developed
a way to exchange keys via an insecure channel.
The development of the Diffie-Hellman key exchange protocol encouraged the development
of asymmetric cryptosystems in the following years. The principle of an asymmetric cryp-
tosystem works as follows: In contrast to symmetric systems, only the receiver Bob has
to keep a secret sk. We call sk the secret key. Based on the secret key, Bob constructs a
public key pk. This key is published in a way that it is guaranteed that this public key
belongs to Bob. The key pk may be seen by anybody. When Alice wants to send a message

5

6 CHAPTER 1. INTRODUCTION

to Bob, she takes Bob’s public key pk, encrypts the message as c := Epk(m) and sends c
to Bob. Then Bob decrypts the message as m = Dsk(c). Thus, he needs his secret key to
recover m. As in symmetric cryptography, for an asymmetric encryption scheme to work
correctly, it has to verify m = Dsk(Epk(m)). The tuple (pk, sk) should form a pair of cor-
responding public and private keys. Furthermore, for a third party, Eve, eavesdropping on
the communication, it should be difficult to obtain the message m from c without knowing
the secret key sk.
One of the main asymmetric cryptosystems was developed by Ron Rivest, Adi Shamir and
Leonard Adleman in 1977 [RSA78]. It is still one of the most widely used asymmetric
cryptosystems today.

It works on the following principle. Bob chooses two large primes p and q of equal bit-
size and defines the value N := pq. Furthermore, he chooses e ∈ ZN such that e and
ϕ(N) = (p− 1) (q − 1) are coprime. Then he calculates d such that ed ≡ 1 (mod ϕ(N)).
Subsequently, Bob publishes (N, e) as his public key and keeps (N, d) as his private key.
The encryption function is defined as Ee(m) := me (mod N) for m ∈ ZN . The decryption
function is defined as Dd(c) := cd (mod N). As ed ≡ 1 (mod ϕ(N)) the computation
verifies Dd(Ee(m)) ≡ (me)d ≡ m (mod N). We denote the variant defined here by plain
RSA. For security reasons, it is modified for practical use, e. g. by padding the message.
The standard of RSA encryption is given in [RSA].

The security of cryptosystems is proven on the assumption that an underlying problem is
difficult. In the case of RSA the underlying number theoretic problem is the so called RSA
problem: Let N = pq be the product of two large primes p and q, and let e be a positive
integer such that gcd(e, ϕ(N)) = 1. Then given N , e and an element x, the challenge is to
determine the unique element y ∈ ZN such that ye ≡ x (mod N).

The RSA problem is assumed to be difficult to solve. That is, we assume that there is no
efficient algorithm that solves the problem. Indications for this are given by Ivan Damgård
and Maciej Koprowski [DK02]. They show that solving the RSA problem with generic
group algorithms is intractable in groups of unknown order. However, the model they use
is quite restrictive as it only allows for the use of multiplications.

The problem of factoring is closely related to the RSA problem and is defined as fol-
lows: Let N = pq be the product of two large primes p and q. Given N , the challenge is
to determine its factors p and q.

So far, we have defined the problem of factoring only with respect to moduli which are
products of two primes. We call these moduli RSA moduli. One can generalize the defini-
tion to include arbitrary composite integers.
It is easy to see that the difficulty of the RSA problem implies the difficulty of factoring.
That is to say, if we can factor an RSA modulus N , we can use p and q to compute ϕ(N)
and then d. Calculating xd then gives us the required element y. The opposite, however, is
not clear. Partial results are known in restricted models. On the one hand, Dan Boneh and
Ramarathnam Venkatesan [BV98] as well as Antoine Joux, David Naccache and Emmanuel

7

Thomé [JNT07] provide evidence against the equivalence of breaking the RSA problem and
factoring, whereas Daniel Brown [Bro06], Gregor Leander and Andy Rupp [LR06] as well
as Divesh Aggarwal and Ueli Maurer [AM09] give arguments in favor of the equivalence.
The models used in any of the works are restrictive as the proofs are given with respect
to straight line programs ([BV98, Bro06]) or generic ring algorithms ([LR06, AM09]).
In [JNT07] the attacker is given additional sub exponential access to an oracle determining
e-th roots of integers of the form x+ c. Moreover, the works of [BV98, Bro06, LR06] only
consider a special version of the RSA problem with low exponents.

There are, thus, two possible ways of attacking the RSA problem. One can either attack
the problem directly or attack the factorization problem. Hence, let us have a more detailed
look at the difficulty of the problem of factoring. On the one hand, Peter Shor’s algorithm
from 1994 [Sho94] demonstrates that the factorization problem is polynomial time solvable
on quantum Turing machines. On the other hand, it seems to be highly unclear whether
these machines can ever be realized in practice. Furthermore, on classical Turing machines
only super polynomial algorithms are known, the Quadratic Sieve [Pom84], the Elliptic
Curve Method [Len87] and eventually the Number Field Sieve [LHWL93].

A different line of research to analyze the difficulty of factoring is an oracle-based approach.
It was first studied at Eurocrypt 1985 by Ron Rivest and Adi Shamir [RS85], who showed
that N = pq can be factored given an oracle that provides an attacker with bits of one of
the prime factors. The task is to factor in polynomial time by putting as few queries as
possible to the oracle. Ron Rivest and Adi Shamir showed that 2

3
log p queries suffice in

order to factor efficiently.

At Eurocrypt 1992, Ueli Maurer [Mau92] allowed for an oracle that is able to answer any
type of questions by YES/NO answers. Using this powerful oracle, he showed that ǫ log p
oracle queries are sufficient for any ǫ > 0 in order to factor efficiently. This algorithm, how-
ever, is probabilistic. At Eurocrypt 1996, Don Coppersmith [Cop96a] in turn improved the
Rivest-Shamir oracle complexity to 1

2
log p queries. Don Coppersmith used this result to

break the Vanstone-Zuccherato ID-based cryptosystem [VZ95] that leaks half of the most
significant bits of one prime factor.
In what follows we will further pursue this goal and try to attack RSA by either attack-
ing instances of the problem itself or by attacking instances of the factorization problem.
Therefore, we transform a problem into a polynomial equation or a set of polynomial
equations. Then we calculate the solutions or conditions on which the solutions can be
determined. The main techniques we use to do so are based on lattices. A lattice is a
discrete Abelian subgroup of Zk.
We use a given set of equations to define a lattice which contains the values we are search-
ing for. If these values fulfill certain properties, e. g. correspond to a small basis vector,
we can apply methods to analyze a lattice to determine our target values. We concentrate
on a special method introduced by Don Coppersmith in 1996 to find small solutions of a
single equation [Cop96b, Cop96a] and analyze on which conditions we can generalize his
approach to systems of equations. Hence, the main goal of this thesis is twofold. On the

8 CHAPTER 1. INTRODUCTION

one hand we would like to apply lattice-based methods and attack special instances of
problems related to RSA and factoring. On the other hand, we would like to improve the
theoretical knowledge of how to solve systems of multivariate equations with lattice-based
techniques.
We will now present the organization of the thesis in more detail.

In Chapter 2 we give the mathematical background. It comprises three sections. Section 2.1
deals with the notation and basic linear algebra. In Section 2.2 multivariate polynomial
rings are introduced. Furthermore, some algebraic techniques to solve systems of multi-
variate equations are presented. In Section 2.3 we define lattices and show how they can
be used to determine solutions of a multivariate polynomial equation.

Chapter 3 deals with modular univariate systems of equations. Systems of equations with
one common modulus have already been analyzed in [CFPR96]. It is shown that in most
cases solutions of such systems can be determined efficiently with algebraic methods. Sys-
tems with mutually coprime moduli have been analyzed by Johan Håstad in [Hås88]. As a
main result we improve on the bound obtained using Johan Håstad’s approach combined
with the techniques presented by Don Coppersmith. That is, we present a method to solve
systems of modular univariate equations with coprime moduli. The result is obtained
due to special polynomial modeling. By this, we can determine larger solutions than one
could determine with the previously known methods. We obtain the following result. Let
N1, . . . , Nk be mutually coprime moduli. For i = 1, . . . , k let fi(x) ≡ 0 (mod Ni) be an
equation of degree δi. Then we can determine all solutions x0 such that |x0| ≤ X and

fi(x0) ≡ 0 (mod Ni) for all i = 1, . . . , k efficiently if X ≤ ∏
N

1
δi

i . This implies that any
solution can be determined if

∑k

i=1
1
δi
≥ 1.

Moreover, we give an argument why the new bound is optimal for general systems by giving
an example of a system for which the bound cannot be improved.
A result with respect to our second goal, namely that of attacking specific problems, is
that we can apply the general technique to an RSA broadcast scenario. A passive attacker
can determine a message m sent to k different users with coprime moduli Ni and public
keys (Ni, ei), i = 1, . . . , k if

∑k

i=1
1
ei
≥ 1.

The results presented in this chapter are joint work with Alexander May and published
in [MR08].

In the following chapters we deal with general multivariate systems of equations.
In Chapter 4 we treat modular systems of equations with a common modulus. Their solu-
tions are determined by solving a shortest vector problem in a suitable lattice. As a main
contribution we introduce and analyze the problem of implicit factoring. This problem fits
into the framework of oracle-based factoring. For a given composite number N0 = p0q0
with q0 being an α-bit prime, our target is to compute p0 and q0. During the attack we
are allowed to query an oracle which on each query answers with another RSA modulus
Ni = piqi such that qi again is an α bit prime and pi and p0 share t least significant bits.
We show that with k oracle queries we can heuristically factor all the Ni on condition that

9

t ≥ k+1
k
α. In case of only one oracle query, the method is provable on the slightly stronger

constraint that t > 2 (α+ 1).
This result is joint work with Alexander May and published in [MR09]. To our knowledge,
it is the first result which shows that only implicit information is sufficient in order to
factor efficiently. This implies that already a weak form of an oracle is in itself sufficient to
achieve a polynomial time factorization process. This gives further insight into the com-
plexity of the underlying factorization problem.

Chapter 5 divides into two parts. The contribution of Section 5.1 is of rather theoretical na-
ture. We try to generalize the algorithm of Don Coppersmith to systems of equations. We
denote this algorithm by Coppersmith’s algorithm. However, in the process of a straight-
forward generalization of Coppersmith’s algorithm problems occur. One basic step in the
original algorithm is the construction of a sublattice with the same determinant as the
original one. This step does not necessarily work with a general system. Therefore, as a
main result, we introduce the new notion of being determinant preserving and state a
necessary and sufficient condition of this. This contributes to the theoretical understanding
of Coppersmith’s algorithm.
In the following two sections we apply the theoretical results to modular systems of poly-
nomial equations and give examples of this. Section 5.2 deals with systems of equations
with one common modulus. We show how the necessary and sufficient conditions apply to
such systems of equations. Subsequently, we use these observations with respect to RSA
with related messages and implicit relations as well as with respect to RSA with random
paddings.
In RSA with related messages a set of k secret messages m1, . . . ,mk is encrypted with an
RSA public key (N, e). That is, we get k encryptions ci ≡ me

i (mod N). Furthermore, we
have some implicit polynomial relation p(m1, . . . ,mk) ≡ 0 (mod N). In this context, we
apply the generalization of Coppersmith’s algorithm to equations in independent variables.
If one considers only the condition on the size of the variables we get in this way, one could
hope to be able to determine more solutions than with a separate analysis of the equations.
This, however, is not the case. We prove the equivalence of both approaches. This result
is quite plausible. However, we do not know of any proof of this in the literature published
in this subject.
Furthermore, we develop a general strategy on how to apply the generalization of Copper-
smith’s algorithm to specific systems of independent equations with additional equations
providing relations between the unknowns. Unfortunately, the construction is not generic.
The problem of RSA with random paddings is defined as follows. For a user’s pub-
lic key (N, e) with N some n-bit number, a message m of α < n bits is encrypted
as ci ≡ (2α+τvi + 2τm+ wi)

e
(mod N) for a random τ -bit number wi and a random

(n− α− τ)-bit number vi and i = 1, . . . , k. The value k ∈ N denotes the number of
different encryptions. The message m as well as the values vi and wi are secret and not
known to any attacker. Given two encryptions with different paddings, the message can
be determined by combining techniques presented in [Jut98, Cop96b, CFPR96].
Usually, additional information obtained from additional encryptions enables us to de-

10 CHAPTER 1. INTRODUCTION

termine the solutions on weaker conditions. In this section we analyze two strategies to
improve the conditions with more equations and argue why these strategies are not suc-
cessful. This indicates that we cannot always make use of additional information and
contradicts what one might intuitively expect. Moreover, by the given arguments, we in-
dicate a way of using the property of being determinant preserving to prove impossibility
results.
In Section 5.3 we consider systems of equations with coprime moduli. One approach to
determine solutions of these systems of equations is to reduce the problem to the problem
of calculating solutions of a single multivariate equation. This is done by applying the
Chinese Remainder Theorem to the original system of equations. Then we can analyze the
resulting equation.
We compare this approach to directly analyzing the system with a generalized version of
Coppersmith’s algorithm. Interestingly, in systems of equations with coprime moduli the
necessary and sufficient conditions for the sublattice construction to work become signifi-
cantly simpler than in the general case. We use this observation to prove the equivalence
of the generalized Coppersmith’s algorithm and the method via the Chinese Remainder
Theorem for univariate equations on some rather natural additional assumptions. In the
case of multivariate equations, however, this equivalence does not hold. Any solutions de-
termined with the method based on the Chinese Remainder Theorem can also be obtained
with a generalization of Coppersmith’s algorithm. For the opposite implication, though,
we give a counterexample.

Finally, in Chapter 6 we consider systems of equations over the integers. This case is the
most complex one as even the necessary and sufficient condition for the sublattice step in
the generalization of Coppersmith’s algorithm to work cannot be checked for efficiently.
We introduce an additional precondition to obtain a more helpful necessary and sufficient
condition. Keeping these constraints in mind, we return to the problem of implicit factor-
ing. That is, we intend to factor an integer N0 = p0q0, where N0 is an n-bit composite
number and q0 an α-bit prime. In contrast to what is done in Chapter 4, we now allow
for the shared bits to be at any position in p0 as long as they are subsequent. Then we
analyze the problem over the integers. We show how to use this method to reconstruct the
bound t > k+1

k
α we have already obtained with this method using k oracle queries. The

value t corresponds to the number of shared bits.
Furthermore, with only one oracle query but a large lattice, we can improve the bound
to t > 2α

(
1 − α

n

)
+ 3

2
+ ǫ for some ǫ > 0. Using a similar approach with further oracle

queries, we can only reproduce the latter bound. Unfortunately, we cannot improve on
it. Any potential strategy for this violates the property of being determinant preserving.
When adapting the strategy such that the necessary and sufficient condition is fulfilled,
the bound we obtain as a final result gets worse. We claim that a reason for these obser-
vations is the special structure of the polynomials we consider. This claim is supported by
a counting argument. Hence, this chapter gives an introduction to the use of a generalized
variant of Coppersmith’s algorithm with equations over the integers, but also indicates
open problems and directions for future research.

Chapter 2

Mathematical Background

2.1 General Notation

We start by introducing the notation which we will use in the following chapters. Let N

be the set of positive integers, N0 := N ∪ {0} and Z be the ring of integers. For N ∈ N let
ZN denote the ring Z/NZ. If p ∈ N is prime, let Fp denote the field with p elements. A
ring is denoted by R, and we implicitly assume R to be a commutative unit ring.
Moreover, we implicitly assume all logarithms to be binary and denote them by log.

Bold upper case letters denote matrices whereas bold lower case letters denote row vectors.
Column vectors are given as the transposed of row vectors, namely, for a row vector v the
corresponding column vector is vT . The ordinary inner product of two vectors v and w is
denoted by (v,w).

A set of l vectors v1, . . . ,vl is called linearly independent in some ring R iff the only
R-linear combination of these vectors adding up to the zero vector is the zero linear com-
bination. If a set of vectors is not linearly independent, it is called linearly dependent.

For s, t ∈ N the matrix 0s×t describes the s× t zero matrix. For any positive integer n the
n× n identity matrix is given by In. The i-th unit vector is called ei.

For a vector v the value (v)i denotes the i-th entry of v. For a matrix M the value (M)ij
denotes the entry in the i-th row and in the j-th column. Note that these values are
elements of R. The value Mi,· is the i-th row vector and M·,j the j-th column vector of M.
By M−i,·, we denote the matrix constructed from M by deleting the i-th row. Analogously,
M·,−j is constructed by deleting the j-th column of M and M−i,−j by deleting the i-th row
and the j-th column.

Given a matrix M ∈ Zs×t, a row vector r ∈ Z1×(t+1) and a column vector cT ∈ Z(s+1)×1

11

12 CHAPTER 2. MATHEMATICAL BACKGROUND

and two indices i, j such that (r)j = (c)i, let M+i(r),+j(c)T be the matrix

M+i(r),+j(c) :=

(M)11 · · · (M)1(j−1) (c)1 (M)1j · · · (M)1t
...

...
...

...
...

(M)(i−1)1 · · · (M)(i−1)(j−1) (c)i−1 (M)(i−1)j · · · (M)(i−1)t

(r)1 · · · (r)j−1 (r)j (r)j+1 · · · (r)t+1

(M)i1 · · · (M)i(j−1) (c)i+1 (M)ij · · · (M)it
...

...
...

...
...

(M)s1 · · · (M)s(j−1) (c)s+1 (M)sj · · · (M)st

.

That is, we get the new matrix by inserting r as i-th row and cT as j-th column into M.
The matrices defined by inserting only a row vector r ∈ Z1×t or a column vector cT ∈ Zs×1

are denoted by M+i(r),· and M·,+j(c) respectively.
Apart from these general operations on matrices, we will need some special matrices
and their properties. Therefore, we will quote some theorems here. For more details
regard [SW99].
Let P always denote a permutation matrix, that is, in each row/column of P there is
exactly one component of value one, whereas all other components are zero.
Let A := A(x, a, b) be the matrix such that AM describes the matrix derived from M by
addition of x times row b to row a in M. The addition of x times column b to column a in
M is then done by multiplying M with A from the right. Matrices of this form are called
elementary matrices.
Let P(ij) be the permutation matrix which represents swapping the i-th and j-th row of a
matrix M when multiplied to it from the left. Remark that

P(ij) = A(1, j, i)A(−1, i, j)A(1, j, i)Dj ,

where Dj is a diagonal matrix with −1 on the j-th position and 1 on any other posi-
tion. Thus, admitting a small change in the sign any permutation can be expressed via
elementary matrices.
The matrices A, AT and P are unimodular, i. e. their determinant is of absolute value 1.
Note that the product of two unimodular matrices is a unimodular matrix as well.
Having introduced the notation necessary, we can now cite the first theorem.

Theorem 2.1.1 ([SW99], Theorem 8.C.11)
Let s, t ∈ N and M ∈ Zs×t be an s× t-matrix of rank r with coefficients in Z and let k :=
min{s, t}. Then there are elementary matrices U1, . . . ,Up ∈ Zs×s and V1, . . . ,Vq ∈ Zt×t

such that Up · · ·U1MV1 · · ·Vq is a diagonal matrix D = Diag(a1, . . . , ak) ∈ Zs×t, where
ai|ai+1 for i = 1, . . . , r − 1 and ar+1 = . . . = ak = 0.

This theorem brings up a new definition.

Definition 2.1.2
The numbers a1, . . . , ar of Theorem 2.1.1 are called elementary divisors.

2.1. GENERAL NOTATION 13

Note that the elementary divisors are uniquely determined except for the sign. For nota-
tional convenience throughout this thesis we assume all elementary divisors to be positive.
The proof of Theorem 2.1.1 in [SW99] already gives the construction of the elementary
divisors. As we are mainly interested in conditions on which all elementary divisors of a
matrix are one, we will not give a proof of the general theorem here. Instead, we will prove
a variant of this theorem which is adapted to our needs. Therefore, we will permute the
elementary divisors to the last rows.
Further, note that in case of matrices with entries from a field, we can conclude easily that
if M is of rank k = t, then the transformation works without V1, . . . ,Vq. We include a
similar observation for matrices with values in Z in our theorem. We will make use of the
following theorem in Section 5.1.

Theorem 2.1.3
Let m ∈ N0, n ∈ N and M ∈ Z(m+n)×n, rank(M) = n. Then

All elementary divisors of M are equal to 1 ⇔

There exists a unimodular matrix U ∈ Z(m+n)×(m+n) such that UM =

(
0m×n

In

)

.

In order to prove Theorem 2.1.3 we will use the two following lemmata. Recall that the
greatest common divisor of a vector is defined as the greatest common divisor of all its
components.

Lemma 2.1.4
Let r, t ∈ N, t ≤ r and vT ∈ Zr×1 with gcd(v) = 1. Then there exists a unimodular

transformation U ∈ Zr×r such that UvT = (et)
T
.

Proof: First, remark that gcd(v) = gcd((v)1, . . . , (v)r) = gcd(gcd((v)1, . . . , (v)r−1), (v)r)
= gcd(. . . gcd((v)1, (v)2), . . . , (v)r). The basic idea of the proof is to use the Euclidean
Algorithm to iteratively compute the greatest common divisors. Each step of the Euclidean
Algorithm induces a unimodular transformation which can be performed on v. In the end,
we can combine these transformations and obtain U. As the greatest common divisor is
one, UvT then denotes a unit vector.
Now let us look at the single steps in more detail. First, we compute the greatest common
divisor of (v)1 and (v)2. We assume (v)1 ≥ (v)2. If not, set U20 := P(12) and regard
(v20)T := U20v

T . In the first step of the Euclidean Algorithm, we divide (v20)1 by (v20)2

with remainder. That is, we compute s1 and r1 ∈ Z such that (v20)1 = s1(v
20)2 + r1.

The inputs to the next step are (v20)2 and r1 = (v20)1 (mod (v20)2). To transform v20

accordingly, set U21 := P(12)A(−s1, 1, 2). Then (v21)T := U21(v20)T is a column vector
with first entry (v20)2, second entry r1 and all other entries equal to the corresponding
entries in v. Iterating this process until rk1 = 0 (a situation which we reach due to the
construction of the Euclidean Algorithm), we get

U2k1 · · · . . . · U20

︸ ︷︷ ︸

=:U2

vT = (gcd((v)1, (v)2), 0, (v)3, . . . , (v)r)
T =: (v3)T .

14 CHAPTER 2. MATHEMATICAL BACKGROUND

We then iterate the process for i = 3, . . . , r performing the Euclidean Algorithm on the
first and the i-th value of vi and determining the unimodular transformations analogously.
In the end we obtain a unimodular transformation Ũ = Urkr · . . . · U20 such that ŨvT =
gcd(v) (e1)

T
. As gcd(v) = 1 with a final permutation we obtain P(1t)Ũ

︸ ︷︷ ︸

=:U

vT = (et)
T
. All

the matrices forming U are unimodular matrices. Thus, U is unimodular. This implies
the claim.

Note that in actual computations the method described in the above proof often con-
tains superfluous steps. Whenever a greatest common divisor of 1 is obtained, the value
1 can directly be used to eliminate all further entries of v. The unit vector is, thus, ob-
tained faster. This may already happen after one execution of the Euclidean algorithm if
gcd((v)1, (v)2) = 1.
Now we would like to extend our analysis from one single column to a matrix. Nevertheless,
in the following lemma we take only knowledge on the greatest common divisors of columns
into account as this is information which is easy to get from any matrix.

Lemma 2.1.5
Let n ∈ N, m ∈ N0. Let M ∈ Z(m+n)×n. If gj(M) := gcd(M·,j) > 1 for all j = 1, . . . , n,
then either M has at least one elementary divisor which is not equal to 1 or the number
of elementary divisors of M is smaller than n.

Proof: The lemma holds for all singular matrices M: If M is singular, then at least one
column is linearly dependent on the other columns. This column can be eliminated by
multiplication with a unimodular matrix Ṽ from the right. Thus, MṼ contains a zero
column. We permute this column to the last one. Then performing the elementary divisor
algorithm on MṼ ignoring the last column will result in a matrix having only entries on
the diagonal. This is due to the elementary divisor condition of Theorem 2.1.1. The last
diagonal entry of UMṼV is equal to zero. Thus, we have less than n elementary divisors.
Therefore, we now restrict ourselves to matrices of full rank. We prove the lemma for
regular matrices by induction on n.

First let n = 1: Let M ∈ Z(m+1)×1 with g1(M) = gcd(M·,1) > 1. Then, as M = M·,1,
g1(M) divides any component of M. Any entry in a matrix which can be constructed by
unimodular transformations of M is a linear combination of entries of M and, thus, is a
multiple of g1(M) as well. The same holds for the elementary divisor. This concludes the
proof in the case of n = 1.

The hypothesis of the induction is as follows: For an n ∈ N and an arbitrary m ∈ N0 let
M ∈ Z(m+n)×n be a full rank matrix such that gj(M) := gcd(M·,j) > 1 for all j = 1, . . . , n.
Then M has at least one elementary divisor which is not equal to 1.

For the inductive step we consider two cases.
First, let n ∈ N, M ∈ Z(m+n+1)×(n+1) such that gj(M) := gcd(M·,j) > 1 for all j =
1, . . . , n+1. Then if g(M) := gcd(g1(M), . . . , gn+1(M)) > 1, all entries of M are multiples

2.1. GENERAL NOTATION 15

of g(M). Thus, all linear combinations of entries of M including the elementary divisors
are multiples of g(M) and, therefore, not equal to 1 and we are done.

Thus, we only have to consider the case of g(M) := gcd(g1(M), . . . , gn+1(M)) = 1. We
start by performing the elementary divisor algorithm. That is, we apply the algorithm
which gives the construction of Theorem 2.1.1. Here it is not important how the algorithm
works exactly. We just have to know that in each step M is either multiplied from the left
with a unimodular matrix U or from the right with a unimodular matrix V.

Multiplications from the left only perform row operations on M. Consequently, all elements
in the j-th column of UM are divisible by gj(M) as they are linear combinations of elements
of M·,j which are divisible by gj(M). Therefore, the value of gj(M) cannot be decreased
by these operations.

Multiplications from the right are either column permutations or additions of multiples of
one column to another. As permutations of columns only permute the greatest com-
mon divisors, it is sufficient to consider additions of multiples of one column to an-
other. We perform only one such addition in one step. This implies that only the
greatest common divisor of one column may be changed. We continue the process of
transformations, using other transformations in between as the algorithm requires un-
til the greatest common divisor gj(M) of one column becomes 1. (This will happen as
g(M) := gcd(g1(M), . . . , gn+1(M)) = 1 and, thus, not all elements in the matrix share the
same common divisor.) We then permute the j-th column to the first position. Let U1 and
V1 be the unimodular transformations used so far. Let M1 := U1MV1. Then g1(M1) = 1
and gj(M1) > 1 for j ≥ 2. By further row operations using Lemma 2.1.4 we get a unimodu-

lar transformation U2 such that U2M1 =
(

(e1)
T

M2

)

for some M2 ∈ Z(m+n+1)×n with

gj(M2) = gj+1(M1) > 1. Now adding −(M2)1(j−1)-times the first column to the j-th only
changes the component in the first row as all other entries in the first column are equal to
zero. Let V(j) be the unimodular matrix performing this operation. Let V2 =

∏n+1
j=2 V(j).

Then

(

(e1)
T

M2

)

V2 =

1 0 · · · 0
0
... M3

0

.

As (M3)·,j = ((M2)·,j)−1,· we have gj(M2)|gj(M3) for all j = 1, . . . , n. Moreover, M3 is of
full rank n as M1 was.
This implies that M3 ∈ Z(m+n)×n fulfills the conditions of the hypothesis. Thus, there
are unimodular transformations U3 ∈ Z(m+n)×(m+n) and V3 ∈ Zn×n such that M4 :=
U3M3V3 is a diagonal matrix with at least one diagonal element not equal to 1. Let

U4 =

1 0 · · · 0
0
... U3

0

and V4 =

1 0 · · · 0
0
... V3

0

.

16 CHAPTER 2. MATHEMATICAL BACKGROUND

Then

U4U2U1MV1V2V4 = U4U2M1V2V4

=

1 0 · · · 0
0
... U3

0

1 0 · · · 0
0
... M3

0

1 0 · · · 0
0
... V3

0

=

1 0 · · · 0
0
... U3M3V3

0

=

1 0 · · · 0
0
... M4

0

is a diagonal matrix the components of which are not all equal to 1. This implies that the
elementary divisors of M do not all have the value 1 and the lemma is proven.

Now we can prove the main theorem.

Proof of Theorem 2.1.3: In a first step we prove the necessary condition.

Suppose there exists a unimodular matrix U ∈ Z(m+n)×(m+n) such that UM =

(
0m×n

In

)

.

Let V := In and P ∈ Z(m+n)×(m+n) be defined as P = P(n(m+n)) · . . . ·P(1(m+1)). Namely, P

is a permutation matrix which permutes the n last rows to the first n positions. Both U

and P are unimodular. Consequently, PU is unimodular. The matrix V is unimodular as
well. It is

(PU)MV = P

(
0m×n

In

)

In =

(
In

0m×n

)

.

This implies that the elementary divisors of M are all equal to 1.

We prove the sufficient condition by induction on n for arbitrary m ∈ N0. Suppose all
elementary divisors of M are equal to 1.
For a better understanding we start with the cases of n = 1 and n = 2.
Let n = 1: Then M = M·,1 is one column vector with g1(M) = gcd(M·,1) = 1. (If
g1(M) > 1, we directly get a contradiction by Lemma 2.1.5.)
By Lemma 2.1.4 there exists a unimodular transformation U ∈ Z(m+1)×(m+1) such that
UM = UM·,1 = (em+1)

T
. This implies that the case of n = 1 is correct.

Now let n = 2: We divide this case into further subcases.

1. Suppose there exists a column M·,j, j ∈ {1, 2}, with gj(M) = gcd(M·,j) = 1.
Analogous to the case of one column, there exists a unimodular transformation U1 ∈
Z(m+2)×(m+2) such that U1M·,j =

(
em+j

)T
. Let M1 = U1M. Then M1 consists of

two columns, the j-th column which is equal to
(
em+j

)T
and the (3 − j)-th column

with unknown components. Then M2 = (M1)−(m+j),−j is a one column matrix and
g1(M2) = gcd(M2·,1). We again distinguish two subcases.

2.1. GENERAL NOTATION 17

(a) g1(M2) = 1:
Then a unimodular transformation U2 ∈ Z(m+1)×(m+1) exists by Lemma 2.1.4
such that U2M2 = (em+1)T . We define U3 := (U2)+(m+j)(em+j),+(m+j)(em+j)T .
That is, U3 is a matrix operating like U2 on M2 but leaving the rest of M1

unchanged. Let U3M1 = U3U1M =: M3. The matrix M3 consists of two

columns
(
em+j

)T
and (em+3−j)

T + cT , where cT ∈ Z(m+2)×1 with cTm+j,1 = x for
an unknown x ∈ Z and cTk,1 = 0 for all k 6= m + j. That means, M3 is nearly
of the required shape except for an integer in the (m+ j)-th row and (3− j)-th
column. Using the newly constructed 1 in the (3 − j)-th column, which is the
only entry in its corresponding row, we can now eliminate this value x as well.
Let A := A(−x,m + j,m + 3 − j) be the matrix such that AM describes the
addition of −x times rowm+3−j to rowm+j in M. Then AU3U1M = AM3 =(

0m×2

I2

)

. Here, AU3U1 is a unimodular transformation as the consisting

matrices are unimodular. Consequently, the theorem holds in this case.

(b) g1(M2) > 1:
By Lemma 2.1.5 we get that M2 has an elementary divisor greater than 1 and,
therefore, the same holds for M. This contradicts the preconditions.

2. Suppose that g1(M), g2(M) 6= 1.
Then we directly get a contradiction by Lemma 2.1.5.

Combining both subcases concludes the proof in the case of n = 2.

The hypothesis of our induction is as follows:
For an n ∈ N, all m ∈ N0, let M ∈ Z(m+n)×n be a matrix of which all n elementary divisors
are equal to 1. Then there exists a unimodular transformation U ∈ Z(m+n)×(m+n) such
that

UM =

(
0m×n

In

)

. (2.1)

Now let n ∈ N, M ∈ Z(m+n+1)×(n+1) with n+ 1 elementary divisors of value 1. We proceed
analogously to the case of n = 2 and distinguish two cases.

1. There is j ∈ {1, . . . , n+ 1} such that gj(M) := gcd(M·,j) = 1:

Then by Lemma 2.1.4 there is a unimodular matrix U1 such that U1M·,j =
(
em+j

)T
.

Let M1 := U1M. This implies that the first elementary divisor of M equals 1. Let
M2 := (M1)−(m+j),−j. Then M2 has n elementary divisors which are the elementary
divisors of M except for the elementary divisor already computed. Consequently, all
n elementary divisors of M2 are of value 1. Then by the hypothesis of the induc-

tion (2.1) there exists a unimodular matrix U2 such that U2M2 =

(
0m×n

In

)

=: M3.

18 CHAPTER 2. MATHEMATICAL BACKGROUND

Let U3 := (U2)+(m+j)(em+j),+(m+j)(em+j)T . Then

U3U1M = U3M1

= (U2)+(m+j)(em+j),+(m+j)(em+j)T (M2)+(m+j)(c),+j(em+j)T

= (M3)+(m+j)(c),+j(em+j)T .

Here c := (M1)m+j,·. Consequently, cj = 1. In the last step, we want to eliminate
all non-zero entries in the (m+ j)-th row except for the one in the j-th column. To
do so, we subtract ci times the (m+ i)-th from the (m+ j)-th row, for i = 1, . . . , j−
1, j + 1, . . . ,m + n. Let A denote the unimodular transformation corresponding to
these operations. Then

A(M3)+(m+j)(c),+j(em+j)T =

(
0m×(n+1)

In+1

)

.

Thus, the theorem is proven.

2. For all j ∈ {1, . . . , n+ 1} it holds that gj(M) := gcd(M·,j) > 1:
Then we get a contradiction by Lemma 2.1.5.

2.2 Algebraic Methods

In this section basic notation, definitions and constructions from algebra are introduced.
This thesis deals with problems that occur in the context of cryptography. An example
is the problem of factoring: Given a composite integer N = pq, determine its factors p
and q. This as well as variants of it will be introduced in the subsequent chapters. Hence,
we need tools to describe such problems. First, we introduce polynomial rings. For more
details consider for example [CLO97].

Definition 2.2.1
A monomial in x1, . . . , xl is a product xi11 x

i2
2 · . . . · xill with i1, . . . , il ∈ N0. The value

deg(xi11 x
i2
2 · . . . · xill) = i1 + . . . + il is called the total degree of xi11 x

i2
2 · . . . · xill , whereas

degxj
(xi11 x

i2
2 · . . . ·xill) = ij is called the degree in xj. Let R be a ring. An R-linear combi-

nation of monomials f(x1, . . . , xl) =
∑

(i1,...,il)
a(i1,...,il)x

i1
1 . . . x

il
l with a(i1,...,il) ∈ R is called

a polynomial. The set of all these polynomials is the polynomial ring R[x1, . . . , xl].

Using this notation, the problem of factoring can be interpreted as the problem of finding
non-trivial solutions of the polynomial equation f(x1, x2) := N − x1x2 = 0. This way,
additional information can be added easily to the description of a problem. Instead of
describing a problem by a single polynomial equation, we describe it by a system of poly-
nomial equations. Then a solution of the problem is given by a common solution of all of
the equations.
In general, however, it is not clear if a new equation also contains new information. Two

2.2. ALGEBRAIC METHODS 19

equations f1(x1, . . . , xl) = 0 and f2(x1, . . . , xl) = 0 can either share the same set of so-
lutions, share some solutions or the set of their solutions can be completely disjoint. In
the two latter cases, we get additional information by taking two instead of one equation.
However, in the first case taking two equations does not help to find the solution. We need
a criterion to identify this case. We remark that two polynomials share exactly the same
set of solutions if one of the polynomials is an integer multiple of the other. For systems
of polynomials, this is captured by the following definition.

Definition 2.2.2
Let f1(x1, . . . , xl), . . . , fk(x1, . . . , xl) and g(x1, . . . , xl) ∈ R[x1, . . . , xl] be a set of polynomi-
als. Let F := {f1(x1, . . . , xl), . . . , fk(x1, . . . , xl)}. Then F is called linearly independent

over R iff

k∑

i=1

aifi(x1, . . . , xl) = 0 with ai ∈ R ⇒ ai = 0 for all i = 1, . . . , k . (2.2)

If condition (2.2) does not hold, then F is called linearly dependent over R.
The polynomial g(x1, . . . , xl) is called linearly independent of F over R iff

there are no ai ∈ R such that
k∑

i=1

aifi(x1, . . . , xl) = g . (2.3)

If such an R-linear combination of elements of F exists, then g(x1, . . . , xl) is called linearly

dependent of F over R.

Note that if R is a field, the two notions of linear independence given above are equivalent.
In a ring R which is not a field, however, a set of polynomials F ∪ {g} can be linearly
dependent whereas g still is linearly independent of F over R. We will make use of this
difference in Section 5.1.

Now we have found a criterion whether an additional equation gives additional information
on the solutions. That is, if the additional equation is linearly independent of the previous
ones, we obtain further information using it. Unfortunately, this does not tell anything
whether we can really determine the solutions. A major interest of this thesis is solving
such systems of equations. Special systems of equations which can be solved efficiently
are systems of dimension zero. We are going to define these systems now. Solving them
also forms an important step in the analyses in the method of Coppersmith which will be
presented in Section 2.3.

Let us regard the following system of k ∈ N equations in l ∈ N variables over a field F

f1(x1, . . . , xl) = 0
... (2.4)

fk(x1, . . . , xl) = 0 .

20 CHAPTER 2. MATHEMATICAL BACKGROUND

Definition 2.2.3
The system (2.4) is called system of dimension zero iff it has a finite number of solutions
in the algebraic closure F̄ of F.

In our analyses we will often encounter systems of multivariate polynomial equations in Z,
not in any field. For our analyses, however, we can consider them as equations over Q. If
the given system is zero dimensional when regarded as system in Q, then the number of
solutions (in Q̄) is finite. Thus, the number of solutions which are elements of Z is finite
as well. They can be determined by determining all solutions in the algebraic closure of Q

and then just taking the ones in Z which we are searching for.

In what follows we will discuss two methods how to determine the solutions of zero dimen-
sional systems, namely, Groebner bases and resultants. First of all, we need to introduce
some additional notation.
If we consider e. g. division algorithms operating on polynomials, we need to decide which
monomials to consider first. That is, we need an ordering of monomials.

Definition 2.2.4
A monomial ordering on a set of monomials xα =

∏l

i=1 x
αi

i , αi ∈ N0, is a relation ≤ on
Nl

0 satisfying:

1. ≤ is a total (or linear) ordering on Nl
0, namely, it is reflexive (α ≤ α), transitive

(α ≤ β, β ≤ γ ⇒ α ≤ γ) and antisymmetric (α ≤ β ≤ α ⇒ α = β).

2. If α ≤ β and γ ∈ Nl
0, then α+ γ ≤ β + γ.

3. ≤ is a well-ordering on Nl
0, i. e. every non-empty subset of Nl

0 has a smallest element
with regard to ≤.

We give some standard monomial orderings as well as other orderings which will come in
useful later.

Example 2.2.5
Let α = (α1, . . . , αl), β = (β1, . . . , βl) ∈ Nl

0, l ∈ N and |α| :=
∑l

i=1 αi.

1. Lexicographical ordering

It is α >lex β if the leftmost non-zero entry of α − β is positive, and α = β if α − β
denotes the zero vector. This definition implies x1 > . . . > xl. Allowing to permute
the variables, that is setting xα =

∏l

i=1 x
αi

ψ(i) with a permutation ψ, we obtain a
different lexicographical ordering. Unless stated otherwise, we assume x1 > . . . > xl.

2. Graded lexicographical ordering

It is α >grlex β if |α| > |β| or |α| = |β| and α >lex β. Further, α =grlex β if α =lex β.

3. Graded reverse lexicographical ordering

It is α >grevlex β if |α| > |β| or |α| = |β| and in α − β ∈ Zl the rightmost non-zero
entry is negative.

2.2. ALGEBRAIC METHODS 21

4. Inverse graded lexicographical ordering

It is α ≥invgl β if α ≤grlex β. Note that although we call this construction ”ordering”,
it actually is not an ordering according to our definition. We do not always have a
smallest element in any non-empty set. However, we do have a largest element in
any set as the graded lexicographical ordering fulfills the definition of a monomial
ordering. Furthermore, when using this ”ordering” we will only deal with finite sets
of monomials. In those sets, we can determine a smallest element. This suffices for
our applications.

With regard to monomial orderings one can define certain distinguished monomials and
terms in polynomials.

Definition 2.2.6
For α ∈ Nl

0 and x = (x1, . . . , xl) let xα denote
∏l

i=1 x
αi

i . Let f(x1, . . . , xl) =
∑

α cαx
α be

a non-zero polynomial in R[x1, . . . , xl]. Let ≤ be a monomial ordering. Let ᾱ denote the
maximum of all α occurring in f .
Then LM(f) := xᾱ is called the leading monomial of f , and LC(f) := cᾱ is called the
leading coefficient of f . Together, LT (f) := cᾱx

ᾱ = LC(f) ·LM(f) denotes the leading

term of f .

So far we have defined systems of equations of dimension zero. The system itself is described
by a set F of polynomials. We can add as many multiples hf , h ∈ R[x1, . . . , xl] of
polynomials f ∈ F to F as they have at least the same solutions as f and, therefore, do not
change the set of common solutions. Furthermore, we can include any linear combination of
elements of F . By this, we get a more general description of the given system of equations.
This is captured by the notion of an ideal.

Definition 2.2.7
Let I ⊆ R[x1, . . . , xl]. Then I is called an ideal if

1. 0 ∈ I,

2. If f, g ∈ I, then f − g ∈ I,

3. If f ∈ I and h ∈ R[x1, . . . , xl], then hf ∈ I.

For a given set of polynomials {g1, . . . , gk} let 〈g1, . . . gk〉 := {∑k

i=1 higi, hi ∈ R[x1, . . . , xl]}
denote the ideal defined by these polynomials.
Further, if for any f, g ∈ R[x1, . . . , xl] the fact that fg ∈ I ⊂ R[x1, . . . , xl] implies f ∈ I
or g ∈ I, then I is called a prime ideal.

Note that the set {∑f∈F hff | hf ∈ R[x1, . . . , xl]} forms an ideal. We call it the ideal
induced by F and denote it by 〈F〉. Thus, the solutions we are searching for correspond
to the set of joint solutions of all polynomials in the ideal 〈F〉.

22 CHAPTER 2. MATHEMATICAL BACKGROUND

Definition 2.2.8
Let f1, . . . , fk be polynomials in R[x1, . . . , xl]. Let I ⊆ R[x1, . . . , xl] be an ideal. Then the
set

V (f1, . . . , fk) := {(a1, . . . al) | fi(a1, . . . , al) = 0 for all 1 ≤ i ≤ k}
is called the affine variety of f1, . . . , fk. Analogously, the set

V (I) := {(a1, . . . al) | f(a1, . . . , al) = 0 for all f ∈ I}

is called the variety of the ideal I.

A variety is said to be of dimension zero if it comprises only finitely many elements. A
variety of dimension zero, thus, corresponds to a system of dimension zero.
Starting with a system of dimension zero, let us have a look at how we can determine its
solutions. One method makes use of resultants. We recall their definition and some basic
properties here to see how they can be used.

Definition 2.2.9
Let f1(x1, . . . , xl) :=

∑m

i=0 ai(x2, . . . , xl)x
i
1 and f2(x1, . . . , xl) :=

∑n

i=0 bi(x2, . . . , xl)x
i
1 be

two polynomials in R[x1, . . . , xl]. Then the resultant of f1 and f2 with respect to x1 is
defined as the determinant

Resx1(f1, f2) := det

am
am−1 am

am−1
. . .

...
. . . am

... am−1

a0

a0
...

. . .

a0
︸ ︷︷ ︸

n columns

bn
bn−1 bn

bn−1
. . .

...
. . . bn

... bn−1

b0

b0
...

. . .

b0
︸ ︷︷ ︸

m columns

.

Remark that ai = ai(x2, . . . , xl) and bj = bj(x2, . . . , xl) denote polynomials in R[x2, . . . , xl].

The resultant is a polynomial in R[x2, . . . , xl], that is, a polynomial in only l− 1 variables.
It has the following properties which we only quote from [CLO97].

Lemma 2.2.10 ([CLO97], Section 3.6)
Let f1(x1, . . . , xl) and f2(x1, . . . , xl) ∈ R[x1, . . . , xl] be two polynomials with positive degree
in x1. Then

1. Resx1(f1, f2) is in the first elimination ideal 〈f1, f2〉 ∩ R[x2, . . . , xl].

2.2. ALGEBRAIC METHODS 23

2. Resx1(f1, f2) = 0 iff f1 and f2 have a common factor in R[x1, . . . , xl] which has
positive degree in x1.

3. If (x̄1, . . . , x̄l) denotes a common zero of f1 and f2, then also

Resx1(f1, f2)(x̄2, . . . , x̄l) = 0 .

These properties already indicate how we can make use of resultants to solve a given
system of l polynomial equations in R[x1, . . . , xl]. Whenever we combine two equations
in l variables, we obtain a new equation in l − 1 variables. Therefore, if we combine all
equations with the first one, we obtain l−1 new equations in l−1 variables. We can iterate
this process until we have only one equation in one variable. If R denotes a field or the
ring of integers Z, which is the case in most of our applications, we can solve the univariate
equation. Plugging the result into a bivariate equation constructed one step before, this
equation becomes univariate. Then it can be solved as well. By successively substituting
all the values which we have obtained, we can determine the solutions of the given system
of equations. The following scheme illustrates the process of successively computing the
resultants:

f1(x1, . . . , xl)

f2(x1, . . . , xl)
...

fl(x1, . . . , xl)

Resx1(f1, f2) =: f12

...

Resx1(f1, fl) =: f1l

· · ·
}

Resxl−1
(f(l−2)(l−1), f(l−2)l) =: f(l−1)l . (2.5)

Problems during the computation might occur if one of the resultants becomes zero. This,
however, violates the precondition that our system is of dimension zero.
Remark that we have just considered systems of l equations in R[x1, . . . , xl]. We can, of
course, extend this method to systems of k ∈ N equations. Then it is k ≥ l as otherwise we
would not have a system of dimension zero. Computations can be performed analogously.
However, resultants with value zero may occur. This does not pose any problems as the
system is zero dimensional. This ensures that there will be at least l non-zero polynomials
in l variables. It might be necessary though to compute resultants using other pairs of
polynomials.

Let us have a look at the running time of computing roots of polynomials by successively
computing resultants. We again consider a zero dimensional system of l equations in l
variables. Let δ denote the maximum total degree occurring in any of the equations.
Thus, the maximum total degree of any of the coefficients of xi1 in any of the fj is also δ.
Consequently, the resultant Resx1(f1, fj) = f1j is a polynomial of total degree smaller than
or equal to δ2. Iterating this process, the total degree of Resxl−1

(f(l−2)(l−1), f(l−2)l) = f(l−1)l

is smaller than or equal to δ2l−1
. The major step in the resultant computation is the

determinant calculation which has running time cubic in its dimension. That is, in the
i-th iteration, the computation complexity is O((l − i)δ3·2i

). By some rough estimates
the general running time of determining the solutions is then O(l2δ3·2l

). This is double

24 CHAPTER 2. MATHEMATICAL BACKGROUND

exponential in l and, thus, not efficient for a non-constant number of variables.

Now we present the second method to solve systems of equations of dimension zero. This
method is not based on the system of polynomials F itself but on the ideal 〈F〉 defined
by them. The same general ideal can be described in many different ways. Here we give
a special description of an ideal. In what follows, we will see how this ”good description”
helps to determine solutions of the equations.

Definition 2.2.11
Let I be an ideal. A finite subset G = {h1, . . . , hκ} of I is called a Groebner basis if

〈LT (h1), . . . , LT (hκ)〉 = 〈LT (I)〉 .

A minimal set with this property is called minimal Groebner basis.

If not stated otherwise, we will compute Groebner bases with respect to lexicographical or-
dering. In the context of this work we often encounter systems of equations S = {g1, . . . , gλ}
which we would like to solve. When saying that we compute the Groebner basis of S, we
implicitly assume to construct the ideal I of S and then to compute its Groebner basis.
Groebner bases have several advantageous properties compared to arbitrary bases of ide-
als. Here we concentrate on those properties that help us to determine solutions of a
system of equations. By a Groebner basis G of an ideal I ⊆ R[x1, . . . , xl] computed
with respect to lexicographical ordering we directly get the Groebner bases of the ideals
Ij := I ∩R[xj+1, . . . , xl], the so called j-th elimination ideals.

Theorem 2.2.12 (Elimination Theorem)
Let I ⊆ R[x1, . . . , xl] be an ideal and let G be a Groebner basis of I computed with respect
to the lexicographical ordering such that x1 > . . . > xl. Then, for every 0 ≤ j < l, the set

Gj := G ∩R[xj+1, . . . , xl] (2.6)

is a Groebner basis of the j-th elimination ideal Ij := I ∩R[xj+1, . . . , xl].

Proof: To prove this, we have to show that for all j = 0, . . . , l − 1 it is 〈LT (Gj)〉 =
〈LT (Ij)〉.
Let j ∈ {0, . . . , l − 1} be fixed. As all polynomials in Gj are trivially also in Ij, it is
〈LT (Gj)〉 ⊆ 〈LT (Ij)〉.
For the opposite inclusion let f ∈ Ij. To show that LT (f) ∈ 〈LT (Gj)〉 we have to show
that LT (h) divides LT (f) for some h ∈ Gj. As f ∈ I and G is a Groebner basis of I, we
know that there is a polynomial g ∈ G such that LT (g) divides LT (f). As f ∈ Ij, it follows
that LT (g) is a monomial in R[xj+1, . . . , xl]. As G has been computed with respect to the
lexicographical ordering with weights x1 > . . . > xl, any monomial which contains a power
of xi with i ≤ j is greater than all monomials not involving any of these variables. Thus,
all monomials of g are elements of R[xj+1, . . . , xl]. As a consequence, g ∈ R[xj+1, . . . , xl]
and, thus, g ∈ Gj. This concludes the proof.

2.2. ALGEBRAIC METHODS 25

The Elimination Theorem thereby helps us to structure the elements of an ideal I. If
the ideal I contains a univariate polynomial in xl, a univariate polynomial will also be
contained in G. Analogously, if I contains a polynomial f in xj+1, . . . , xl, then a polynomial
in xj+1, . . . , xl is also part of G. On the assumption that for all j = 0, . . . , l − 1 the set
Gj \ Gj+1 is not empty, the Groebner basis directly gives us a sequence of polynomials
g1, . . . , gl such that gj is a polynomial in xj, . . . , xl. We can then calculate the solutions by
solving a system of equations of the following structure:

g1(x1, . . . , xl) = 0
... (2.7)

gl−1(xl−1, xl) = 0

gl(xl) = 0 .

This system of equations can be solved easily. First, we calculate the solution x̄l of
gl(xl) = 0. This is a univariate equation over the integers and can be solved efficiently by
standard techniques like Newton iteration ([SB02], Chapter 5). Then we substitute xl by
x̄l in gl−1 and obtain a univariate equation in xl−1. We iterate this process until we have
calculated all solutions as solutions of univariate equations. Hence, the problem can be
solved efficiently.
To apply this method, however, we have to ensure that Gj \ Gj+1 6= ∅ for all values of j.
This fact is implied by the zero dimensionality of V (I).

There are various algorithms to compute Groebner bases of ideals which are adapted to
different types of ideals or orderings. They differ with regard to efficiency. The original
algorithm to compute a Groebner basis was given by Bruno Buchberger [Buc65, Buc06]. If
R is Noetherian, i. e. in any ascending chain of ideals the ideals are equal from some point
on, then by Buchberger’s algorithm a Groebner basis is computed in finitely many steps.
The algorithm, however, includes several superfluous computations. In 1993, Jean-Charles
Faugère et al. developed an algorithm called FGLM to compute Groebner bases more ef-
ficiently [FGLM93]. With this algorithm it is further possible to switch between orders.
Namely, the Groebner basis can be computed with respect to any order. A transformation
is applied afterwards to get back to the lexicographical ordering we need in our application.
This is helpful as Groebner bases with respect to graded orders often perform better.
In 1999, Jean-Charles Faugère presented a different algorithm, F4 [Fau99], which is again
based on Buchberger’s algorithm but leaves out several unnecessary computations. By
this, the algorithm becomes more efficient. Some years later, Jean-Charles Faugère again
improved on his algorithm. The new algorithm F5 [Fau02] eliminates all superfluous com-
putations but imposes some additional constraints. These two algorithms are more adapted
to graded reverse lexicographical ordering. They are, thus, more efficient but do not include
the step of transforming a Groebner basis with respect to one ordering into a Groebner
basis with respect to a different one. An elementary algorithm which provides exactly this
step is the Groebner Walk by Stéphane Collart et al. [CKM97].

26 CHAPTER 2. MATHEMATICAL BACKGROUND

Unfortunately, the running time of none of the algorithms to compute a Groebner basis is
completely understood. An upper bound on the calculation of a Groebner basis of some
ideal I = 〈f1, . . . , fk〉 ⊆ F[x1, . . . , xl] with deg(fi) ≤ δ is given by δ2O(l)

. This bound is
proven to be strict in [MM82]. The worst case complexity of computing a Groebner basis
is, thus, double exponential in the number of variables. For several other ideals of more
practical interest better bounds like δO(l) have been shown [Laz83].
Note that these bounds are only given for ideals in F[x1, . . . , xl] for a field F. This, however,
does not pose any problems. Although we mainly have polynomials with coefficients in
Z, we can take any field like Q comprising Z and perform the computations there. If the
number of elements in the variety is finite, one can just choose the ones which are also
elements of Z afterwards. Note that the set of solutions of a system of dimension zero can
be described as a set of solutions of a system of the structure given in (2.7). Namely, by a
system of equations in which each equation introduces a new variable. A univariate equa-
tion of degree δ has at most δ roots in Q̄. Consequently, the number of solutions in Q̄ is
polynomial in the maximum total degree δ of polynomials in a Groebner basis. Therefore,
for a constant number of variables, the correct solutions can be found efficiently. This is
the case in all our applications.

Up to now we have considered systems of equations in R[x1, . . . , xl]. That is, all the
equations are elements of the same polynomial ring. This includes the cases R = Z and
R = ZN for some N ∈ N. Namely, we can analyze systems of modular equations. In the
context of this thesis, however, we will also encounter systems of modular equations with
different moduli, such that fi(x1, . . . , xl) ≡ 0 (mod Ni), i = 1, . . . k, and gcd(Ni, Nj) = 1 if
i 6= j. We have to apply different techniques to determine the solutions of such a system. A
possible way to combine these equations is by Chinese Remaindering which is described e. g.
in [Hås88, Sho05]. The resulting polynomial can then be analyzed as a single polynomial
in some polynomial ring.

Theorem 2.2.13 (Chinese Remainder Theorem)
Let k ∈ N. Let w ∈ N, w > 1. For i = 1, . . . , k let Ni ∈ N be pairwise relatively
prime numbers, and let fi(x1, . . . , xl) ∈ ZNi

[x1, . . . , xl] be polynomials such that at most
w different monomials occur in any of the polynomials.
Then there exists a unique polynomial f(x1, . . . , xl) modulo M :=

∏k

i=1Ni such that

f(x1, . . . , xl) ≡ fi(x1, . . . , xl) (mod Ni) . (2.8)

The polynomial f(x1, . . . , xl) can be determined in time O(w log2M).

Proof: Let M :=
∏k

i=1Ni, Mi := M
Ni

and M ′
i be the inverse of Mi modulo Ni for i =

1, . . . , k. The existence of such an inverse is guaranteed by gcd(Mi, Ni) = 1. Then

f(x1, . . . , xl) :=
k∑

i=1

MiM
′
ifi(x1, . . . , xl)

2.3. LATTICES 27

is the desired polynomial. If we look at f(x1, . . . , xl) modulo Nj for j ∈ {1, . . . , k}, all
summands with index i 6= j cancel out (as Nj divides Mi) and MjM

′
jfj(x1, . . . , xl) ≡

fj(x1, . . . , xl) (mod Nj).
Now suppose that g(x1, . . . , xl) is another polynomial fulfilling the required conditions.
Then this implies f(x1, . . . , xl) − g(x1, . . . , xl) ≡ 0 (mod Ni) for all i = 1, . . . , k, and,
therefore, also f(x1, . . . , xl) ≡ g(x1, . . . , xl) (mod M).
Multiplication modulo M and calculating the inverses by the Extended Euclidean Algo-
rithm can be performed in time O(log2M). Determining all coefficients of f then results
in a running time of O(w log2M) for the complete algorithm.

Note that in case of univariate polynomials fi(x) ∈ ZNi
[x] the maximum number of mono-

mials w corresponds to the maximum degree δ of any of the polynomials. More precisely,
we have w ≤ δ + 1.

2.3 Lattices

Problems derived from public key encryption or factoring can often be described as mul-
tivariate equations in the secret parameters, sometimes modular, sometimes over the in-
tegers. Equations of this type can be linearized by introducing new unknowns for any
unknown monomial. If the unknowns are small enough, solutions can then be determined
with methods used in the theory of lattices. Thus, we will give a brief introduction to
lattices here. For a more thorough introduction we refer the reader to [MG02].
For our purposes it is sufficient to consider only integer lattices. However, analogous
definitions can be made over the reals.

Definition 2.3.1
Let d, n ∈ N, d ≤ n. Let v1, . . . ,vd ∈ Zn be linearly independent vectors. Then the set of
all integer linear combinations of the vi spans an integer lattice L, i.e.

L :=

{
d∑

i=1

aivi | ai ∈ Z

}

.

We call B =

v1

...
vd

 a basis matrix of the lattice L, the value d denotes the dimension

or rank of the lattice. The lattice is said to have full rank if d = n. The determinant

det(L) of a lattice is the volume of the parallelepiped spanned by the basis vectors.

If L has full rank, the determinant of L can be calculated as the absolute value of the
determinant of its basis matrix B. Note that the determinant det(L) is invariant under
unimodular basis transformations of B. Equivalently, a lattice L can be defined as a
discrete additive subgroup of Zn.
Let us denote by ||v|| the Euclidean ℓ2-norm of a vector v. Hadamard’s inequality [Mey00]
relates the length of the basis vectors to the determinant.

28 CHAPTER 2. MATHEMATICAL BACKGROUND

Lemma 2.3.2 (Hadamard)

Let B =

v1

...
vn

 ∈ Zn×n, n ∈ N, be an arbitrary non-singular matrix. Then

det(B) ≤
n∏

i=1

||vi|| .

The successive minima λi(L) of the lattice L are defined as the minimal radius of a ball
containing i linearly independent lattice vectors of L. In a two-dimensional lattice L, basis
vectors b1,b2 with lengths ||b1|| = λ1(L) and ||b2|| = λ2(L) are efficiently computable via
Gaussian reduction.

Theorem 2.3.3
Let v1,v2 ∈ Zn be basis vectors of a two-dimensional lattice L. Then the Gauss-reduced

lattice basis vectors b1,b2 can be determined in time O(log2(max{||v1||, ||v2||}). Further-
more,

||b1|| = λ1(L) and ||b2|| = λ2(L) .

Information on Gaussian reduction and its running time can be found in [Mey00].

A shortest vector of a lattice satisfies the Minkowski bound, which relates the length of a
shortest vector to the determinant and dimension of the lattice.

Lemma 2.3.4 (Minkowski [Min96])
Let L be an integer lattice with basis matrix B ⊆ Zd×n. Then L contains a non-zero vector
v with

||v|| = λ1(L) ≤
√
d det(L)

1
d .

The question remains how to find these small lattice vectors.

In 1982, Arjen K. Lenstra and Henrik W. Lenstra Jr. and László Lovász [LLL82] introduced
a way to efficiently determine an approximate shortest vector. They compute a new basis
for the lattice in which several conditions are imposed on the vectors.

First, recall the Gram-Schmidt orthogonalization process. Given a set of linearly inde-
pendent vectors v1, . . . ,vd the orthogonalized vectors v∗

1, . . . ,v
∗
d are recursively defined

by

v∗
i := vi −

i−1∑

j=1

µijv
∗
j with µij =

(vi,v
∗
j)

(v∗
j ,v

∗
j)
.

The construction given by Arjen K. Lenstra and Henrik W. Lenstra Jr. and László Lovász
modifies this technique. Iteratively sets of Gram-Schmidt orthogonalized vectors are com-
puted and vectors are swapped if they do not fulfill some given conditions concerning their
length. This results in a so called LLL-reduced basis.

2.3. LATTICES 29

Theorem 2.3.5 (LLL [LLL82])
Let L be a d-dimensional lattice with basis v1, . . . ,vd ∈ Zn. Then the LLL algorithm
outputs a reduced basis b1, . . . ,bd with the following properties:

• |µij| ≤ 1
2

for 1 ≤ j < i ≤ d,

• ||b∗
i + µi(i−1)bi−1

∗||2 ≥ δ||b∗
i−1||2 for 1 < i ≤ d.

The running time of this algorithm is O(d4n(d+log bmax) log bmax), where bmax ∈ N denotes
the absolute value of the largest entry in the basis matrix. The value δ is chosen in (1

4
, 1],

in the original work it is δ = 3
4
.

The running time is the running time of the so-called L2 algorithm, an efficient LLL version
due to Phong Nguyen and Damien Stehlé [NS05].
From the basic properties further conditions on LLL-reduced bases can be derived.

Lemma 2.3.6
Let b1, . . . ,bd be a basis output by the LLL algorithm. Then it holds that

||b1|| ≤ 2
d−1
4 det(L)

1
d .

For a proof of the theorem and the lemma compare [LLL82].

Another property of an LLL-reduced basis which is especially useful in multivariate settings
is given by the following lemma stated by Charanjit S. Jutla in [Jut98]:

Lemma 2.3.7
Let b1, . . . ,bd be a basis output by the LLL algorithm. Then for i ≤ d it holds that

||bi
∗|| ≥ 2−

i−1
4

(
det(L)

bd−imax

) 1
i

.

The value bmax denotes the largest absolute value in the basis matrix.

The LLL algorithm only calculates an approximate shortest vector. There are other algo-
rithms with which we can deterministically compute a shortest vector of a lattice L. They
work on the Gram-Schmidt orthogonalization of a given lattice basis and enumerate all lat-
tice vectors shorter than some bound A ≥ λ(L). Such algorithms were introduced by Ravi
Kannan [Kan83] and Ulrich Fincke and Michael Pohst [FP83]. However, the running time
of these algorithms is exponential. Even given as input an LLL-reduced basis the running
time of Fincke and Pohst’s algorithm is 2O(d2). The worst case complexity of Kannan’s
algorithm is 2

d
2e

+o(d) [HS07]. Here, d denotes the lattice dimension. We state these results
ignoring multiplicative factors which are polynomial in the size of the lattice basis. During
this thesis, we will use the LLL algorithm as it works well enough for our purposes. This
way, we can develop algorithms with polynomial running time.

30 CHAPTER 2. MATHEMATICAL BACKGROUND

Small solutions (x̄1, . . . , x̄l) of linear modular multivariate equations

f(x1, . . . , xl) :=
l∑

i=1

aixi ≡ 0 (mod N)

can be determined by shortest vector algorithms. The idea is to embed the given infor-
mation into a lattice. That is, define a lattice as the set of solutions of f(x1, . . . , xl) ≡ 0
(mod N). Then the set L := {(x1, . . . , xl) ∈ Zl | f(x1, . . . , xl) ≡ 0 (mod N)} is indeed a
lattice. First, as a subset of Zl, it is discrete and the addition of elements is associative.
Second, as f is linear, it is f(0, . . . , 0) ≡ 0 (mod N), thus, (0, . . . , 0) ∈ L. Further, if

(x1, . . . , xl) ∈ L, then f(x1, . . . , xl) ≡ 0 (mod N) ⇔ −f(x1, . . . , xl) ≡ 0 (mod N)
f linear⇔

f(−x1, . . . ,−xl) ≡ 0 (mod N). Consequently, (−x1, . . . ,−xl) ∈ L. Moreover, L is
closed under addition because if (x1, . . . , xl), (y1, . . . , yl) ∈ L, then f(x1, . . . , xl) ≡ 0 ≡
f(y1, . . . , yl) (mod N) and, thus, f(x1+y1, . . . , xl+yl)

f linear≡ f(x1, . . . , xl)+f(y1, . . . , yl) ≡
0 (mod N). Note that we require f to be a linear polynomial as lattices are linear struc-
tures.
If the solution of f(x1, . . . , xl) ≡ 0 (mod N) we are searching for is small enough, it cor-
responds to a shortest vector in the lattice L. Without loss of generality we assume al
to be invertible modulo N . (Otherwise, we can determine a factor p of N , analyze the
two equations f(x1, . . . , xl) ≡ 0 (mod p) and f(x1, . . . , xl) ≡ 0 (mod N

p
), and combine the

results.) Let

B =

1 −a1a
−1
l

. . .
...

1 −al−1a
−1
l

N

.

Then all integer linear combinations of the row vectors of B which we denote by 〈B〉
form the lattice L. We will briefly show this. Let (x1, . . . , xl) ∈ L and t defined such
that −a−1

l f(x1, . . . , xl) = tN . Then (x1, . . . , xl) = (x1, . . . , xl−1,−t)B. Consequently,
L ⊆ 〈B〉. Now, let bi = ((bi)1, . . . , (bi)l) denote the i-th row vector of B. Then for
i = 1, . . . , l − 1 it is (bi)i = 1, (bi)l = −aia−1

l and (bi)j = 0 for all j /∈ {i, l}. It follows
that f((bi)1, . . . , (bi)l) ≡ ai − aia

−1
l al ≡ 0 (mod N). It is (bl)l = N and (bl)j = 0 for

j = 1, . . . , l−1. Then f((bl)1, . . . , (bl)l) ≡ 0 (mod N). Therefore, all bi belong to L. As f
is linear, the same holds for all linear combinations of the basis vectors bi. This results in
〈B〉 ⊆ L. Thus, 〈B〉 = L and, as the basis vectors bi are linearly independent, B is a basis
of L. Then we can determine an approximate shortest vector of L by lattice reduction of
B as described previously.

Let us consider on which conditions this method is going to work. Minkowski’s condi-
tion (2.3.4) states that the norm of a shortest vector is smaller than or equal to

√
l det(L)

1
l .

As B is an upper triangular matrix we can easily determine det(L) = N . Thus, we can

determine (x1, . . . , xl) if its norm is smaller than or equal to
√
lN

1
l . Let Xi denote an

upper bound on |x̄i|, i. e. |x̄i| ≤ Xi. We know that ||(x̄1, . . . , x̄l)|| ≤ ||(X1, . . . , Xl)|| ≤

2.3. LATTICES 31

√
lmax{Xi}. This gives the stronger condition max{Xi}l ≤ N . For unknowns of equal

size this is the same as
∏l

i=1Xi ≤ N . If the sizes of the unknowns are imbalanced, the
same result can obtained by adding weights in the lattice basis. For more details con-
sider [May06].

If f is not a modular equation but an integer one, we can proceed analogously. The basis
matrix B is then constructed as before but without the last row which corresponds to the
modular reduction. As the basis matrix B is no longer a square matrix, the calculation
of the bound becomes more complicated. An alternative is to choose a large coefficient in
the integer equation and regard it as a modular equation modulo exactly this coefficient.
Then the analysis of the modular case can be reused.

This technique can be generalized to non-linear equations f(x1, . . . , xl) = 0. For the
analysis we just insert a linearization step before defining the lattice. Then we can proceed
analogously. As an example on how linearization can be used in practice, let us have
a look at Michael Wiener’s attack from 1990 [Wie90]. Michael Wiener used continued
fractions to determine the private RSA exponent d if its absolute value is smaller than
one fourth of the public modulus, i. e. |d| < N

1
4 . The same bound can be achieved via

linearization [May06, Kat01].

Example 2.3.8
We analyze the RSA key equation ed ≡ 1 (mod ϕ(N)) for known values e and N , but
unknown factorization of N = pq and unknown d. The factors p and q are of equal bitsize
with p < q. As we do not know the modulus in this case, we first write the equation as an
integer equation

ed− k(N − p− q + 1) − 1 = 0 .

Then we take the known value N as new modulus and linearize by setting x1 := d and
x2 := k(p+ q − 1) − 1. The resulting equation is

f(x1, x2) := ex1 + x2 ≡ 0 (mod N) .

Let d < 1
3
Nα. Then k(p + q − 1) − 1 < k · 3p < 3N

1
2
+α because k = ed−1

ϕ(N)
< e

ϕ(N)
d
e<ϕ(N)
<

d < Nα, p < N
1
2 as the smaller factor and p and q of approximately equal size. We

would like to determine the solution via the presented technique, namely, by constructing
the corresponding lattice L and calculating a shortest vector in it. Thus, there are two
conditions on which we can determine the target values. First, they have to correspond
to a shortest vector in the lattice L. This is taken as a heuristic assumption. The second
condition is necessary for the first one and imposes some size constraints: 1

3
Nα ·3N 1

2
+α < N

which is equivalent to α < 1
4
.

Let x̄1 and x̄2 be the solutions we have determined. Then we directly get the private
exponent d = x̄1. To determine the factorization some additional computations are needed.
First, k is calculated as k = ex̄1+x̄2

N
, then p+ q is calculated as p+ q = x̄2+1+k

k
. Then p and

q can be determined as roots of x2 − (p+ q)x+N = 0.

32 CHAPTER 2. MATHEMATICAL BACKGROUND

When linearizing equations, however, a lot of information on the monomials gets lost. In
Example 2.3.8 the variable x1 corresponds to a single variable of the original equation, but
x2 is a function of several variables of total degree two.
As an even worse example of loosing information take the simple equation f(x) = x2+x+A
(mod N) for known values A and N . Let x̄ denote a root of f . By linearization we derive
the equation f̃(x) = x1 + x2 + Ax3 (mod N). From the above analysis we know that all
solutions (x̄1, x̄2, x̄3) with |x̄1| ≤ X1, |x̄2| ≤ X2 and |x̄3| ≤ X3 can be determined which
fulfill X1X2X3 < N . Let |x̄| ≤ Nα. Then we can set X1 = N2α, X2 = Nα and X3 = 1.

The bound in this case is |x̄| ≤ N
1
3 . However, we are only interested in solutions with

x1 = x2
2. Thus, it is likely that the given bound can be improved if we take the additional

knowledge into account.

The basis for these more elaborate analyses is an algorithm which Don Coppersmith
presented in 1996 [Cop96b, Cop97]. With the help of this algorithm and some further
ideas, Dan Boneh and Glenn Durfee improved Michael Wiener’s bound to the value of
0.292 [BD99]. We will not look at their analysis in detail. However, the algorithm in-
troduced by Don Coppersmith will be of use for the analyses we will do in the following
chapters.
Therefore, we will present it in what follows. In the algorithm, lattice reduction methods
are used to solve multivariate modular and non-modular polynomial equations. The basic
idea is to construct sufficiently many polynomials having the same root over the integers.
Then a univariate polynomial with the correct solutions over the integers can be deter-
mined by the methods presented in Section 2.2. Throughout this thesis we will refer to
this method as Coppersmith’s method or Coppersmith’s algorithm.

The modular univariate variant of Coppersmith’s method can be stated as follows:

Theorem 2.3.9 (Coppersmith [Cop97])
Let f(x) be a monic polynomial of degree δ ∈ N in one variable modulo an integer N

of unknown factorization. Let X be a bound on the desired solution x0. If X < N
1
δ ,

then we can find all integers x0 such that f(x0) ≡ 0 (mod N) and |x0| ≤ X in time
O(δ5(δ + logN) logN).

As the method introduced by Don Coppersmith will serve us as a basic tool in many
of our analyses, we will describe its major steps here. Generally, given a polynomial
f(x) =

∑δ

i=0 aix
i with ai ∈ Z, the algorithm to determine all values |x0| ≤ X such that

f(x0) = 0 (mod N) consists of three steps:

1. Building a lattice L such that a solution to the polynomial equation is induced by a
reduced basis of a sublattice LS.

2. Determining an LLL-reduced basis of the sublattice LS and orthogonalizing it.

3. Determining an equation with the same solutions valid over the integers and solving
it.

2.3. LATTICES 33

We will now describe the steps in more detail.

Building a lattice L.
Let f(x) =

∑δ

i=0 aix
i be the polynomial of which we would like to determine the roots

modulo N . Let λ ∈ N, λ ≥ 2. For i = 0, . . . , δ − 1 and j = 1, . . . , λ − 1 we define the
following set of polynomials.

fij(x) = xi · f(x)j. (2.9)

Throughout the thesis we will call the sets F of polynomials used to build the lattice shift
polynomials. The monomials m such that mf(x) is a shift polynomial are denoted by
shift monomials. The set Mon(F) is the set of monomials that occur in polynomials of
F .
Note that if f(x0) ≡ 0 (mod N), then fij(x0) ≡ 0 (mod N j). With regard to graded
lexicographical ordering, the largest monomial occurring in the set of all fij is xδλ−1. For
each polynomial fij let fij be the coefficient vector containing the respective coefficients
of the monomials (1, x, x2, . . . , xδλ−1), i. e. the monomials are ordered from smallest to
highest degree. For example, the vector f01 is defined as (a0, a1, . . . , aδ, 0, . . . , 0).
Let Fc :=

(
f01

T . . . f(δ−1)(λ−1)
T
)

and Fm := Diag(N, . . . , Nλ−1) be a diagonal matrix
with powers of N on the diagonal. The k-th value on the diagonal of Fm corresponds

to the k-th column vector fij
T of Fc and equals N j. Let D =

1
. . .

X−δλ+1

 be a

diagonal matrix with the inverses of the monomials evaluated on the upper bounds on its
diagonal.
In practice all values are multiplied by the least common multiple of all denominators so
that all calculations can be performed with integer values. This multiplication does not
influence the method. For ease of notation in the analysis, however, we work over the
rationals here.
Then we define a lattice L via a basis matrix B as follows:

B :=

(
D Fc

0 Fm

)

. (2.10)

For the desired solution x0 we have f(x0) = y0N with y0 ∈ Z. Let y be a variable denoting
this multiple of N . Further, we define the vectors

v = (1, x, x2, . . . , xδλ−1,−y,−xy, . . . ,−xδ−1y,−y2, . . . ,−xδ−1yλ−1)

and
v0 = (1, x0, x

2
0, . . . , x

δλ−1
0 ,−y0,−x0y0, . . . ,−xδ−1

0 y0,−y2
0, . . . ,−xδ−1

0 yλ−1
0) .

Then

v0B = (1,
x0

X
,
x2

0

X2
, . . . ,

xδλ−1
0

Xδλ−1
, 0, . . . , 0) =: t0 .

This implies that all vectors related to roots of the polynomials fij are part of the sublattice
LS of vectors with δ(λ− 1) zeros in the end. Thus, our aim is to determine a basis of the
sublattice LS from which we can get an equation which can be solved over the integers.

34 CHAPTER 2. MATHEMATICAL BACKGROUND

Determining a suitable basis.
In a first step, we determine a basis of the sublattice. In order to do so, we transform
the given basis B into another basis B′ of the same lattice. The basis B′ should allow
to extract a basis of the sublattice LS easily. Thus, we aim at constructing vectors with
zeros in the last components. The other basis vectors restricted to these last components
should then form a basis of the lattice corresponding only to the last components. In the
best case they also form a basis of Zδ(λ−1). Such a basis can be transformed to the basis
of unit vectors. Thus, the determinant of the lattice only depends on the basis vectors of
the sublattice.
As a new basis of the sublattice we can use the basis vectors with zeros in the end shortened
to their first components. That is, we would like to transform the original basis to the
form

B′ =

(
BS 0

∗ Iδ(λ−1)

)

, (2.11)

where BS is a basis matrix of the sublattice we are looking for, and ∗ is some matrix with
entries which are not important for our purposes.
A lattice basis can be transformed to another basis of the same lattice by permutation of
basis vectors or adding multiples of one basis vector to another basis vector. This is, the
transformations we are allowed to make are unimodular transformations. For conditions
on which a basis can be transformed accordingly, compare Section 2.1. From now on we
only consider the basis BS of the sublattice. We perform LLL-reduction on BS to get a
new LLL-reduced basis BR.

Calculating the solution.
Having a basis BR of the sublattice LS, we still need a further step in order to get another
equation which we can use to determine the solution. Therefore, we quote the following
lemma.

Lemma 2.3.10 (Coppersmith [Cop97])

Let L be a lattice and B =

b1

...
bn

 be an LLL-reduced basis matrix of L. Further, let

D = det(L) be its determinant. Then the following holds:

(a) Any lattice element t with ||t|| < D
1
n 2−

(n−1)
4 is an element of the hyperplane spanned

by b1, . . . ,bn−1.

(b) Any lattice element t with ||t|| < ||bj
∗|| for all j = k + 1, . . . , n is an element of the

space spanned by b1, . . . ,bk.

2.3. LATTICES 35

Proof:

(a) First, note that by combining the conditions of an LLL-reduced basis B given in

Theorem 2.3.5, we get
∣
∣
∣
∣bi

∗ + µi(i−1)bi−1
∗∣∣
∣
∣
2 ≥ 3

4
||bi−1

∗||2 ⇒ ||bi
∗||2 + 1

4
||bi−1

∗||2 ≥
3
4
||bi−1

∗||2 ⇔ 2 ||bi
∗||2 ≥ ||bi−1||2. As b1

∗, . . . ,bn
∗ form an orthogonal basis, it is

D = det(B) =
∏n

i=1 ||bi
∗||. Combining these two results, we obtain

D ≤
n∏

i=1

(√
2
)n−i

||bn
∗|| = 2

n(n−1)
4 ||bn

∗||n

⇒ ||bn
∗|| ≥ D

1
n 2−

n−1
4 . (2.12)

Hence, the precondition implies that ||t|| < ||bn
∗||.

Now let us have a closer look at the vector t. As t ∈ L we can write t =
∑n

i=1 aibi

with ai ∈ Z. As the vectors b1, . . . ,bn and b1
∗, . . . ,bn

∗ span the same vector space,
we can also write t =

∑n

i=1 cibi
∗ with coefficients ci ∈ R. Note, however, that

cn = an because bn
∗ = bn −∑n−1

i=1 µnibi
∗. Consequently, it is ||t|| ≥ |an| ||bn

∗||. The
inequality is only valid if an = 0 as ||t|| < ||bn

∗|| as well. This concludes the proof.

(b) From the preconditions we have ||t|| < ||bn
∗||. By the proof of part (a) this implies

that t =
∑n−1

i=1 aibi. That is, t is contained in the sublattice spanned by the first
n−1 basis vectors. Iteratively repeating the argumentation of part (a), we can prove
that ai = 0 for all i = n− 1, . . . , k + 1. This results in the claim.

To be able to apply Lemma 2.3.10 we orthogonalize BR. Let B∗
R denote the orthogonalized

basis.
Now, let tS be the vector t0 reduced to its first δλ components. Let n correspond to the
dimension of the sublattice, namely n := δλ. If the vector is small enough, namely, ||t0|| ≤
det(L)

1
n 2−

(n−1)
4 , then t0 will be part of the hyperplane spanned by all but the last basis

vector bn. Consequently, t0 is orthogonal to bn
∗, i. e. 0 = (bn

∗, t0) =
∑δλ−1

i=0 (bn
∗)i+1

xi
0

Xi .
Substituting x0 by the variable x in this equation and multiplying with Xδλ−1, we get
∑δλ−1

i=0 (bn
∗)i+1x

iXδλ−1−i = 0. This is a univariate equation valid over the integers. It can
be solved by standard techniques like Newton iteration (e. g. [SB02], Chapter 5) or Sturm
sequences ([McN07], Chapter 2).

Conditions on the existence of a solution.

As seen in the previous paragraphs a solution of the modular equation can be determined
on condition that the constructed target vector t0 is small enough. Here we will determine
which are the conditions thereof.
By construction we have ||t0|| ≤

√
δλ as |x0| ≤ X and, consequently,

(
x0

X

)i ≤ 1 for any i.
Therefore, applying the above lemma we get the condition

√
δλ < det(L)

1
n 2−

(n−1)
4 . (2.13)

36 CHAPTER 2. MATHEMATICAL BACKGROUND

Calculating det(L) using the basis B, we derive det(L) = X− δλ(δλ−1)
2 N

δλ(λ−1)
2 . Using this

and n = δλ, we get the condition

√
δλ < X− δλ−1

2 N
λ−1

2 · 2− (δλ−1)
4

⇔ X < N
λ−1
δλ−1 · 2− 1

2 (δλ)−
1

δλ−1 .

To see what this condition implies, we can either plug in a specific value for λ or compute the
limit with respect to λ. In the first case, we obtain an exact bound and the corresponding
lattice to compute it. In the latter case, the bound we obtain is asymptotic. Here the
condition asymptotically becomes X < N

1
δ . This bound is also obtained by directly

requiring

det(L) > 1 . (2.14)

In the following, we will refer to this condition as simplified condition.
Performing exact calculations, for a given value of ǫ > 0 we can determine a corresponding
value λ(ǫ) such that we can calculate all solutions x0 ifX < N

1
δ
−ǫ using a lattice constructed

with respect to λ > λ(ǫ).
In the case of the example f(x) = x2 + x + A (mod N), the asymptotic condition is

|x̄| < N
1
2 . This is significantly better than the old bound of |x̄| < N

1
3 we have obtained

via linearization.

Coppersmith’s method can be generalized to multivariate equations f(x1, . . . , xl) ≡ 0
(mod N) easily. To define the coefficient vectors, an ordering of the occurring mono-
mials has to be defined. Apart from that, decisions have to be made on which polynomials
to take as shift polynomials.

Shift polynomials in the multivariate case.
A general strategy on how to choose shift polynomials to build a lattice is described by Ellen
Jochemsz and Alexander May in [JM06]. The basic idea of this strategy is to determine
all monomials occurring in powers of the original polynomial f . These monomials should
form the set of all monomials which occur in the lattice construction. The shift monomials
are then defined to ensure this.
We will describe the approach in more detail. The polynomial f is assumed to be monic
and to have a non-zero constant term. Depending on a small value ǫ > 0, a positive integer
λ is fixed. Then for k ∈ {0, . . . , λ+ 1} and a value j the sets

Mk :=
⋃

0≤β≤t

{
l∏

i=1

xαi

i x
β
j |

l∏

i=1

xαi

i is a monomial of fλ

and

∏l

i=1 x
αi

i

LM(f)k
is a monomial of fλ−k

}

are defined. The values of t and β are chosen with respect to the specific equation and
sizes of the unknowns. The shifts derived from monomials with β > 0 are called extra

2.3. LATTICES 37

shifts. Such extra shifts can also be applied to several variables.
Then the shift polynomials are defined as

fα1,...,αl
(x1, . . . , xl) :=

∏l

i=1 x
αi

i

LM(f)k
fk(x1, . . . , xl) for k = 0, . . . , λ, and

l∏

i=1

xαi

i ∈Mk \Mk+1 .

Geometrically, this can be interpreted as follows. To any monomial
∏l

i=1 x
αi

i we can as-
sociate a point (α1, . . . , αl) ∈ Zl. Applying this correspondence, we can associate a set of
points to any polynomial f . We just take the points corresponding to the monomials of
f . The convex hull of this set is defined as the Newton polytope of f . We denote the
Newton polytope by N(f). Then an enlarged and maybe shifted version of the Newton
polytope gives rise to the definition of the shift monomials. The shift polynomials are
defined such that the set Mon(F) corresponds to the enlarged and shifted version of N(f).

Having defined the shift polynomial set, we can proceed as in the univariate case. How-
ever, it is no longer sufficient to construct only one polynomial fn(x1, . . . , xl) ∈ Z[x1, . . . , xl]
which is valid over the integers. We need to be able to determine the solution efficiently.
A sufficient conditions of this is a zero dimensional system of at least l equations. Given
such a system, we can determine the solutions by the techniques presented in Section 2.2.
Note, however, that the system of equations we obtain is not necessarily of dimension zero.
Therefore, the general method is heuristic. Sometimes even fewer equations suffice. This
can be seen in the practical experiments in Chapter 6.
The bound obtained this way is

l∏

i=1

Xsi

i < N sN , for

{

sj =
∑

∏l
i=1 x

αi
i ∈M0

αj

sN =
∑λ

k=0 k (|Mk| − |Mk+1|) .
(2.15)

Coppersmith’s method over the integers.

In a similar manner Coppersmith’s method can be applied to multivariate polynomials over
the integers. Roots of univariate integer polynomials can be easily determined using e. g.
Newton iteration. However, as soon as we have more than one unknown we need further
equations to be able to determine the solutions efficiently. The system formed by the
original and the new equations should then be zero dimensional or have other properties
that allow to determine its solutions efficiently. In order to get further equations we can
again use Coppersmith’s algorithm [Cop96a, Cop97]. He described a provable method to
solve bivariate equations over the integers.

Theorem 2.3.11 (Coppersmith [Cop97])
Let f(x1, x2) be an irreducible polynomial over Z. Further, let X1, X2 be bounds on the
desired solution (x̄1, x̄2). The value W denotes the absolute value of the largest coefficient
of f(x1X1, x2X2).

38 CHAPTER 2. MATHEMATICAL BACKGROUND

1. Assume f(x1, x2) to be of degree δ ∈ N in each variable separately. If X1X2 ≤ W
2
3δ ,

then we can find all integer pairs (x̄1, x̄2) such that f(x̄1, x̄2) = 0 and |x̄i| ≤ Xi,
i = 1, 2, in time polynomial in logW, 2δ.

2. Suppose f(x1, x2) to be of total degree δ ∈ N. If X1X2 ≤ W
1
δ , then we can find

all integer pairs (x̄1, x̄2) such that f(x̄1, x̄2) = 0 and |x̄i| ≤ Xi, i = 1, 2, in time
polynomial in logW, 2δ.

The proof of this theorem is similar to the proof of Theorem 2.3.9 in the univariate modular
case. However, the construction of a suitable basis matrix has to be slightly adopted.

Before building a basis matrix, the set of shift polynomials has to be chosen. In the
first case, the set of shift polynomials is defined as pij(x1, x2) := xi1x

j
2f(x1, x2) with i, j =

0, . . . , λ for a suitable λ ∈ N. In the second case, it is defined as pij(x1, x2) := xi1x
j
2f(x1, x2)

such that i+ j ≤ λ for a suitable λ ∈ N.
Note that in the modular case the right side of the basis matrix B given in (2.10) consists
of two parts, one part corresponding to the polynomials by containing their coefficients,
the second part corresponding to the moduli. In the integer case, however, there are no
moduli. Thus, we have to build the matrix using only the coefficient vectors of the poly-
nomials.
We present here one method to build a basis matrix in the integer case similar to the one
in [BM05]. This is basically the method we will use for analyses in more complex cases in
the following chapters as well.
Let F denote the set of all shift polynomials and Mon(F) the set of all monomials occurring
in F . Let m be the monomial corresponding to the largest coefficient of f(x1X1, x2X2), |F|
denote the number of shift monomials and m1, . . . ,m|F| be an ordering of all shift mono-
mials such that the monomial mim does not occur in the set of monomials of mjf(x1, x2)
for any j < i. Let w := |Mon(F)| be the number of monomials occurring in F and let
m|F|+1, . . . ,mw be an ordering of the monomials of Mon(F) \ {m1m, . . . ,m|F|m}. Further-
more, let Mi denote the evaluation of mi in the values (X1, X2) with i = |F| + 1, . . . , w.
We set x := (m|F|+1, . . . ,mw,m1m, . . . ,m|F|m). Let D := Diag(M−1

|F|+1, . . . ,M
−1
w). For any

polynomial pij(x1, x2) let pij denote the coefficient vector of the monomials in pij ordered
such that pijx

T = pij(x1, x2). Let F be the matrix consisting of the coefficient vectors
(pij)

T for all pij ∈ F . Using these definitions, we define the lattice L via a basis matrix

B :=

D

F

0

m|F|+1
...
mw

m1m
...

m|F|m

.

Like in the modular case the basis matrix B is an upper triangular matrix. The diagonal
values due to F, however, are no longer derived from any moduli but correspond to a

2.3. LATTICES 39

(preferably) large coefficient of a shift polynomial. Furthermore, we can no longer take
advantage of powers of the initial polynomial f , but only multiply f with monomials to
obtain shift polynomials.

From this point on we can proceed in the same manner as in the modular case. We perform
lattice reduction on B. If the size conditions are fulfilled, we provably get a second equation
g(x1, x2) in the two unknowns such that f and g form a system of dimension zero. Then
techniques like Groebner basis computations or calculation of a resultant presented in
Section 2.2 can be used to determine the solution.

In [BM05], Johannes Blömer and Alexander May generalize this approach. They give
further constructions of shift polynomial sets and show that solving a modular univariate
polynomial equation with a composite modulus of unknown factorization can be reduced
to solving a bivariate integer equation. The shift polynomial sets they use, however, are
required to have a certain property. This property ensures that the newly determined
polynomial is coprime to the initial one.
In contrast to their construction, the monomial sets {m1m, . . . ,m|F|m} and Mon(F) we
use may have any structure. This allows to compute better bounds. On the negative side,
however, it might happen that a newly constructed polynomial is a multiple of the first one
or that both polynomials have a non-trivial common divisor. Then we do not get any new
information from the new polynomial. This implies that the solution cannot be recovered
efficiently. However, in practice, the method usually works even without being provable so
that this can be used as a heuristic. In more general cases of more variables or systems
of equations a heuristic is usually needed anyway. Hence, in our analyses, we would have
to include a heuristic even in the bivariate case. We will use this technique to analyze the
problem of implicit factoring in Chapter 6. For the description of this problem, however,
we need at least three variables.

Other variants to build a basis matrix and their analyses can be found in [Cop97, Cor04,
Cor07].

An application of this method to the problem of factorization with partially known factors
is given by Don Coppersmith.

Theorem 2.3.12 ([Cop97] Theorem 5)
Let N be an n-bit composite number. Then we can find the factorization of N = pq in
polynomial time if we know the low order n

4
bits of p.

Like in the modular case Coppersmith’s method can be generalized to multivariate equa-
tions over the integers in k > 2 unknowns as well. However, to solve equations over the
integers in more than k > 2 variables we need to determine more than one additional equa-
tion. One sufficient condition to be able to determine the roots is that we can determine
k − 1 new equations such that they, together with the original equation, form a system of
dimension zero. Then we can determine the solutions by successive resultant computation
or the use of Groebner bases described in Section 2.2.

40 CHAPTER 2. MATHEMATICAL BACKGROUND

In his work, Don Coppersmith includes the condition that suitable equations are generated
as a heuristic.

In 2007, Aurélie Bauer and Antoine Joux [BJ07] showed how this condition can be provably
achieved in the case of three variables. The drawbacks of their method, however, are an
increased running time and smaller bounds on the size of the solutions which can be
determined. A short description of their method is given in Chapter 6.
Due to the worse bounds and the fact that the heuristic approach usually works well in
practice, we will stick to the heuristic methods in the subsequent chapters.
Some examples of different attacks with Coppersmith’s method for which the heuristic is
practically verified are given in [BD99, JM06, JM07, HM08].
However, different heuristics may be used as well. For example, Santanu Sarkar and Sub-
hamoy Maitra do not get a system of dimension zero [SM09] when analyzing the problem of
implicit factoring of two integers. Nevertheless, a Groebner basis of the set of polynomial
equations reveals the solution. Additional information on this will be given in Section 6.1.

Chapter 3

Solving Systems of Modular Univariate

Polynomial Equations

In this chapter we deal with the problem of solving univariate equations or systems of
univariate equations. Assume f(x) is an arbitrary univariate polynomial. Our aim is
to determine all values x0 such that f(x0) = 0. If f(x) ∈ Z[x] is a polynomial over the
integers (or rationals or reals), its roots can efficiently be found by Newton iteration [SB02]
or binary search.
Let us now consider modular polynomials f(x) ∈ ZN [x], N ∈ N. If N is prime or a prime
power, then again the equation f(x) ≡ 0 (mod N) can be solved using e. g. Berlekamp’s
algorithm [Ber67, Ber70, BS96]. In its basic form, however, the algorithm has a complexity
exponential in n, the number of factors of f(x). Mark van Hoeij improved the complexity
to a polynomial time complexity in n by using lattice reduction [vH01]. The polynomial
complexity bound for this algorithm is given in [BvHKS07]. Note that n is not necessarily
polynomial in the bitsize of N . In the sequel of this chapter we will without loss of
generality assume all given moduli to be composite.
For arbitrary moduli the best result known so far was given by Don Coppersmith (The-
orem 2.3.9). We briefly recall the result here. Let δ := deg(f) be the degree of f . Then

all |x0| < N
1
δ such that f(x0) ≡ 0 (mod N) can be determined in polynomial time in

log(N) and δ. In [Cop01], Don Coppersmith further argues that by this method the
bound cannot be improved for general polynomials. Let N = q3 for a prime q and set
f(x) := x3 +Dqx2 + Eq2x with D,E ∈ Z. Any x0 which is a multiple of q clearly solves

f(x0) ≡ 0 (mod N). For ǫ > 0 the number of x0 such that |x0| < N
1
3
+ǫ = qN ǫ and

f(x0) ≡ 0 (mod N) is about 2N ǫ. That is, we have exponentially many such values x0

and cannot hope to find them with Coppersmith’s algorithm as the number of small roots
is bounded by the lattice dimension. Furthermore, the running time of the algorithm is
polynomial in the lattice dimension as well. That is, we cannot even output exponentially
many solutions in polynomial time.
Sometimes, however, we get additional equations with the same solution. The question
arises what happens then. Does this information help to determine larger solutions as
well? Instead of one equation, let us now consider the following system of k ∈ N equations

41

42 CHAPTER 3. SOLVING SMUPE

with a shared solution x0. We define the problem of solving systems of modular univariate
polynomial equations (SMUPE-problem).

Definition 3.0.13 (SMUPE-problem)
Let k ∈ N, δ1, . . . , δk ∈ N, and N1, . . . , Nk ∈ N. Suppose N1 ≤ N2 ≤ . . . ≤ Nk. Assume
f1(x), . . . , fk(x) to be polynomials of degree δ1, . . . , δk in ZN1 [x], . . . ,ZNk

[x], respectively.
Let

f1(x) ≡ 0 (mod N1)

f2(x) ≡ 0 (mod N2)
... (3.1)

fk(x) ≡ 0 (mod Nk)

be a system of univariate polynomial equations.

Let X < N1, X ∈ R. Find all common roots x0 of (3.1) with size |x0| ≤ X.

We would like to analyze up to which size of the unknown the solutions can be found in
polynomial time. This depends on the structure of the given set of equations. Without loss
of generality we assume that for all Ni and Nj, i, j = 1, . . . , k, it is either Ni = Nj, or Ni

and Nj are relatively prime. In any other case we can determine factors of Ni and Nj by
calculating their greatest common divisor gcd(Ni, Nj) = Nij. Then we can transform the
given equation into equations modulo these factors by the Chinese Remainder Theorem
(Theorem 2.2.13). More precisely, the equation fi(x) ≡ 0 (mod Ni) is equivalent to a
system fi1(x) ≡ 0 (mod Nij) and fi2(x) ≡ 0 (mod Ni

Nij
). Analogously, fj(x) ≡ 0 (mod Nj)

is equivalent to a system fj1(x) ≡ 0 (mod Nij) and fj2(x) ≡ 0 (mod
Nj

Nij
). Putting the

equations fi1(x) ≡ 0 (mod Nij), fi2(x) ≡ 0 (mod Ni

Nij
), fj1(x) ≡ 0 (mod Nij), fj2(x) ≡ 0

(mod
Nj

Nij
) into the system instead of fi(x) ≡ 0 (mod Ni) and fj(x) ≡ 0 (mod Nj), we

obtain a system with equal or coprime moduli. If this system contains a prime modulus
p, we can determine x0 by regarding only the equation with this modulus. Therefore, we
still assume all moduli to be composite.
To better analyze the system, we distinguish the following two cases: The subsequent
section deals with systems of equations of which at least two share the same modulus. The
case of mutually coprime moduli is analyzed in Section 3.2.

3.1 Solving Systems of Modular Univariate Polynomial

Equations with a Common Modulus (SMUPE1)

Often two equations f1(x) ≡ 0 (mod N) and f2(x) ≡ 0 (mod N) are sufficient to determine
all common solutions. Let us start with two examples where this is easy to see as the given
systems of two equations have a special structure. Both examples are derived from the

3.1. SOLVING SMUPE1 43

context of RSA encryption. An unknown message m is encrypted by exponentiation by a
public exponent e to a known ciphertext c ≡ me (mod N). Determining m corresponds to
finding the solutions of the equation f(x) := xe − c ≡ 0 (mod N). Combining more than
one of these equations with the same root can lead to easy algorithms to calculate m.

Example 3.1.1 (G. Simmons [Sim83])
Let e1, e2 ∈ N with gcd(e1, e2) = 1 and N ∈ N be composite. Let f1(x) := xe1 −me1 and
f2(x) := xe2 −me2 be two polynomials in ZN [x]. Our aim is to find the common root m
of f1(x) and f2(x). To achieve this, we compute integers u1, u2 such that u1e1 + u2e2 = 1
with the help of the Extended Euclidean Algorithm. This gives us m ≡ (me1)u1(me2)u2

(mod N). The running time of this attack is polynomial in the bitlength of (e1, e2) as the
Extended Euclidean Algorithm and exponentiation are.

In practice such equations occur in a plain RSA scenario in which the same message m
is sent to two users with coprime public exponents e1 and e2 and common public moduli
N1 = N2 = N .

In a different scenario, instead of sending the same message twice to different users, similar
messages can be sent to the same user.
At the Crypto’95 rump session Matthew K. Franklin and Michael K. Reiter presented an
algorithm to recover linearly related messages, both encrypted with the RSA public key
e = 3 and N .

Example 3.1.2 (Franklin, Reiter [FR95])
Let m1 and m2 = m1 + 1 be two unknown messages. And let c1 ≡ m3

1 (mod N) and
c2 ≡ m3

2 (mod N) be their known RSA encryptions under the RSA public key (N, 3).
Then the messages can be recovered by calculating

c2 + 2c1 − 1

c2 − c1 + 2
≡ (m1 + 1)3 + 2m3

1 − 1

(m1 + 1)3 −m3
1 + 2

≡ 3m3
1 + 3m2

1 + 3m1

3m2
1 + 3m1 + 3

≡ m1 (mod N)

and m2 ≡ m1 + 1 (mod N) .

For any other affinely related messages m1 and m2 = αm1 + β, α ∈ Z∗
N , β ∈ ZN encrypted

under the RSA public key (N, 3), the messages can be recovered in a similar way:

β(c2 + 2α3c1 − β3)

α(c2 − α3c1 + 2β3)
≡ β((αm1 + β)3 + 2α3m3

1 − β3)

α((αm1 + β)3 − α3m3
1 + 2β3)

≡ 3α3βm3
1 + 3α2β2m2

1 + 3αβ3m1

3α3βm2
1 + 3α2β2m1 + 3αβ3

≡ m1 (mod N)

and m2 ≡ αm1 + β (mod N) .

This approach was generalized to other public exponents, more equations and relations of
different degrees by Don Coppersmith, Matthew K. Franklin, Jacques Patarin and Michael
K. Reiter in [CFPR96].

44 CHAPTER 3. SOLVING SMUPE

In a first step, they relax the restriction on e and regard any two equations me
1 ≡ c1

(mod N) and me
2 ≡ c2 (mod N). Following the approach described in Example 3.1.2, one

can construct two equations P (m1) and Q(m1) such that Q(m1) ≡ m1P (m1) (mod N) us-
ing only the publicly known parameters. This computation, however, is quite complicated.

For larger exponents e, Don Coppersmith et al. pursue a different approach. Let again
me

1 ≡ c1 (mod N) and me
2 ≡ c2 (mod N) be encryptions of two unknown messages m1

and m2 related by a polynomial p(x) of degree deg(p) = δ such that m2 = p(m1). We
transform these equations to me

1 − c1 ≡ 0 (mod N) and pe(m1) − c2 ≡ 0 (mod N). Then
m1 is a common solution of the two equations f1(x) := xe− c1 ≡ 0 (mod N) and f2(x) :=
pe(x)−c2 ≡ 0 (mod N). Consequently, f1(x) and f2(x) share a factor (x−m1). Computing
the greatest common divisor gcd (f1(x), f2(x)) (mod N) reveals this factor if it is the only
common factor and the computation does not fail. We will comment on both problems in
the subsequent paragraph with respect to more general equations. The running time of
this method is O(eδ log2(eδ) log2(N)).

Further extending the problem, one might have an implicit relation p(m1,m2) = 0 between
m1 and m2 instead of the explicit one m2 = p(m1). The given equations are then multi-
variate and the analysis becomes more complicated. We will refer to this in Section 4.1.

Another interesting generalization will be the topic of the rest of this section. It is a
generalization from RSA polynomials to arbitrary univariate polynomials. Let f1(x) and
f2(x) ∈ ZN [x] be polynomials of degree δ1 and δ2, respectively. The goal is again to find
all solutions x0 such that f1(x0) ≡ 0 ≡ f2(x0) (mod N). This system can be solved in the
same manner as the RSA equations given before. Just compute gcd(f1(x), f2(x)) (mod N).
If both polynomials share exactly one common root (with multiplicity one), a linear factor
f(x) := αx+ β is revealed. Thus, x0 ≡ −βα−1 (mod N).
However, two problems may occur during the computation of a greatest common divisor.
First, the computation might be impossible. This happens whenever the leading coefficient
c of a polynomial which is computed by the Euclidean Algorithm is not invertible in ZN .
Then gcd(c,N) > 1, and we have found a divisor of N . Thus, we can split up the equations
modulo N into two equations modulo gcd(c,N) and N

gcd(c,N)
by the Chinese Remainder

Theorem. If the new moduli are prime, we can determine x0 easily. Otherwise we can
restart the algorithm with smaller moduli. In the following we, therefore, assume that the
greatest common divisor computation always succeeds.
Even if successful, the result of the greatest common divisor computation might be a
polynomial g of degree δg greater than 1. In this case we cannot compute all possible

solutions of the system under consideration but only all solutions x0 such that |x0| < N
1

δg .
These solutions x0 can be determined by applying Coppersmith’s method to the greatest
common divisor polynomial g. Then further equations with the same solution might help
to reveal a factor of smaller degree.

3.2. SOLVING SMUPE2 45

3.2 Solving Systems of Modular Univariate Polynomial

Equations with Coprime Moduli (SMUPE2)

In Section 3.1 we have seen that given a system of modular equations a common solution
can usually be determined from any two equations with equal moduli. Therefore, we now
assume that no pair of such equations occurs in our system, i. e. we focus on the analysis
of univariate systems of equations with pairwise coprime moduli. Let us formally state
the problem of solving systems of modular univariate polynomial equations with mutually
coprime moduli (SMUPE2-problem). It is a special case of Definition 3.0.13.

Definition 3.2.1 (SMUPE2-problem)
Let k ∈ N, δ1, . . . , δk ∈ N, and let N1, . . . , Nk ∈ N be mutually coprime composite numbers
of unknown factorization. Suppose N1 < N2 < . . . < Nk. Assume f1(x), . . . , fk(x) to be
polynomials of degree δ1, . . . , δk in ZN1 [x], . . . ,ZNk

[x], respectively. Let

f1(x) ≡ 0 (mod N1)

f2(x) ≡ 0 (mod N2)
... (3.2)

fk(x) ≡ 0 (mod Nk)

be a system of univariate polynomial equations.

Let X < N1, X ∈ R. Find all common roots x0 of (3.2) with size |x0| ≤ X.

Solving SMUPE2 is, thus, equivalent to determining all common solutions up to a certain
bound of a given system of modular univariate equations.
Johan Håstad [Hås88] gave the following algorithm for solving the SMUPE2-problem.
Let δ ∈ N be the maximum degree of all polynomials occurring in the system, i. e.
δ := maxi=1,...,k{δi}. One first multiplies the given polynomials with xδ−δi to adjust their
degrees. Then one combines the resulting polynomials using the Chinese Remainder Theo-
rem to a univariate polynomial f(x) with the same roots modulo

∏k

i=1Ni. Applying lattice

reduction methods, Johan Håstad derived k > δ(δ+1)
2

as a lower bound on the number of
polynomials for efficiently finding all roots x0 with |x0| < N1. As f(x) is a polynomial of
degree δ, this bound can be easily improved to k ≥ δ by directly applying Coppersmith’s
lattice-based techniques [Cop97] to f(x) (see e.g. [Bon99]).

An Approach with Better Polynomial Modeling

We give a different construction to combine all k polynomial equations into a single equation
f(x) ≡ 0 (mod

∏k

i=1Ni) in [MR08]. Instead of multiplying the polynomials by powers of x
like in Håstad’s approach, we take powers of the polynomials fi(x) themselves. This results
in the condition

∑k

i=1
1
δi

≥ 1 for solving the SMUPE2-problem for all x0 with |x0| < N1.
In case all polynomials share the same degree δ, this corresponds to the condition k ≥ δ.

46 CHAPTER 3. SOLVING SMUPE

For polynomials of different degrees, however, our new condition is superior. In particular,
a few polynomials of low degree suffice to calculate all joint solutions.

As an introductory example let us consider Coppersmith’s method (Theorem 2.3.9) for the

first equation f1(x) ≡ 0 (mod N1) in (3.2). This way, only small roots x0 with |x0| < N
1
δ1
1

can be found in polynomial time. By regarding further equations, this bound can be
improved until all solutions can be found eventually.
By Håstad’s algorithm in combination with Theorem 2.3.9 the condition k ≥ δ with δ :=
maxi=1,...,k{δi} is sufficient to solve a system of equations efficiently. However, this condition
is clearly not optimal as the following trivial example shows. Let N1 < . . . < N4 and take
the following equations:

x3 ≡ c1 (mod N1)

x3 ≡ c2 (mod N2)

x3 ≡ c3 (mod N3)

x5 ≡ c4 (mod N4) .

Then k = 4 < 5 = δ, i.e. Håstad’s condition is not fulfilled. However, if we just take the
first three equations, we are able to compute all common solutions smaller than N1. This
indicates that we should take the proportion of higher and lower degrees of the polynomials
into account. Let us now change the given example a little bit into a non-trivial one so
that no subsystem of the equations fulfills the sufficient condition:

x3 ≡ c1 (mod N1)

x3 ≡ c2 (mod N2)

x5 ≡ c3 (mod N3)

x5 ≡ c4 (mod N4) .

The parameters k and δ as well as the Ni remain the same. Can we still determine all
solutions? We notice that we can transform the first equation by squaring into

x6 ≡ 2c1x
3 − c21 (mod N2

1) .

Applying Theorem 2.3.9 to this equation, we can find all solutions x0 for which |x0| <
(N2

1)
1
6 = N

1
3
1 holds. This is the same bound which we get for the solutions of the original

equation x3 ≡ c1 (mod N1). We proceed with the second equation in the same way, then
multiply the two other equations by x and finally combine all the equations by the Chinese
Remainder Theorem (Theorem 2.2.13). By this we obtain

x6 ≡ a1(2c1x
3 − c21) + a2(2c2x

3 − c22) + a3xc3 + a4xc4 (mod N2
1N

2
2N3N4),

where the ai are the coefficients from the Chinese Remainder Theorem, i. e. ai ≡ 1
(mod Ni), ai ≡ 0 (mod Nj), j 6= i. The above equation can be solved applying Cop-

persmith’s algorithm for x0 with |x0| < (N2
1N

2
2N3N4)

1
6 . This condition is fulfilled for any

3.2. SOLVING SMUPE2 47

x0 with |x0| < N1 = (N6
1)

1
6 ≤ (N2

1N
2
2N3N4)

1
6 . Therefore, we can determine all solutions of

the above system of equations, although the condition k ≥ δ is not fulfilled.
In order to generalize our approach, we make the following crucial observation. Let f(x)
be a polynomial of degree δ. Let f(x) ≡ 0 (mod N) for N ∈ N, and let m ∈ N. Then
g(x) := fm(x) ≡ 0 (mod Nm). The solutions x0 with |x0| < N of the two equations remain
unchanged. Moreover, with Coppersmith’s Theorem 2.3.9 we can determine those solu-
tions x0 for which the condition |x0| < N

1
δ ⇔ |x0| < (Nm)

1
mδ holds. Thus, Coppersmith’s

bound is invariant under taking powers of the polynomial f(x).
As opposed to our approach, in Håstad’s algorithm one does not take powers of the poly-
nomials but multiplications of polynomials with powers of x. This increases the degree of
the polynomial but leaves the modulus unchanged. Let f(x) be a polynomial of degree δ
with f(x) ≡ 0 (mod N) for N ∈ N. Then with γ > δ the equation g(x) := xγ−δf(x) ≡ 0
(mod N) contains all the solutions x0 of f(x) ≡ 0 (mod N) with |x0| < N . However,
applying Coppersmith’s method to determine roots of g(x) we only get roots x0 with

|x0| < N
1
γ < N

1
δ . So obviously, Coppersmith’s bound is not invariant under multiplication

with powers of x. This explains why we obtain a superior bound on the size of the roots.
In the following analysis we will restrict ourselves to monic polynomials. If one of the given
polynomials fi(x) is not monic, either the coefficient of the leading monomial is invertible,
or we can find a factor of the modulus. In the first case, we transform the polynomial to a
monic one by multiplication with the inverse of the leading coefficient. In the latter case,
we can replace the modular equation fi(x) ≡ 0 (mod N) by two equations modulo the two
factors. For RSA moduli we even obtain the complete factorization, which in turn allows
for efficiently solving this polynomial equation modulo the prime factors provided that the
degree δi is polynomial in log(N).

Theorem 3.2.2
Let (fi, δi, Ni), i = 1, . . . , k, be an instance of the SMUPE2-problem with monic fi. Define

M :=
∏k

i=1N
δ
δi

i with δ := lcm{δi, i = 1, . . . , k}. Then the SMUPE2-problem can be solved
for all x0 with

|x0| < M
1
δ

in time O(δ6 log2M).

Proof: Let x0 be a solution of the system of polynomial equations (3.2). Then x0 is a
solution of

f
δ
δi

i (x) ≡ 0 (mod N
δ
δi

i) for all i = 1, . . . , k .

All these equations have common degree δ and are monic. Combining them by Chinese
Remaindering yields a polynomial f(x) of degree δ such that x0 is a solution of f(x) ≡ 0

(mod M) with M :=
∏k

i=1N
δ
δi

i . Moreover, this polynomial is still monic. For the coeffi-

cient aδ of the monomial xδ in f(x) it holds that aδ ≡ 1 (mod N
δ
δi

i) for all i = 1, . . . , k
and, therefore, aδ ≡ 1 (mod M).

48 CHAPTER 3. SOLVING SMUPE

The above step can be performed in time O(δ log2M) by Theorem 2.2.13. With Theo-

rem 2.3.9 all solutions x0 of the above equation which fulfill |x0| ≤M
1
δ = (

∏k

i=1N
δ
δi

i)
1
δ can

be found in time O(δ5(δ + logM) logM). Therefore, the result can be obtained in time
O(δ6 log2M).

Theorem 3.2.2 immediately gives us a sufficient condition on k and the δi for solving the
SMUPE2-problem for all x0 ∈ ZN1 .

Corollary 3.2.3
The SMUPE2-problem can be solved for all x0 ∈ ZN1 in time O(δ6 log2M) provided that

k∑

i=1

1

δi
≥ 1. (3.3)

Proof: Let x0 be a common solution to all the equations. An application of Theorem 3.2.2

gives us |x0| < M
1
δ := (

∏k

i=1N
δ
δi

i)
1
δ as an upper bound for all roots that can be computed

in time O(δ6 log2M). As (
∏k

i=1N
δ
δi

i)
1
δ ≥∏k

i=1N
1
δi

1 = N

∑k
i=1

1
δi

1 ≥ N1 all solutions x0 ∈ ZN1

can be found.

By this we get an algorithm to solve the SMUPE2-problem with running time polynomial
in the bitsize of the Ni, i = 1, . . . , k, if δ is polynomial in the bitsize of the Ni.

Remark 3.2.4
The same result is obtained by applying Coppersmith’s method [Cop97] directly to the
polynomials f1(x), . . . , fk(x) instead of f(x). The polynomial modeling is then revealed in
the choice of shift polynomials. To do so, however, we need some further information on
applying Coppersmith’s algorithm to systems of equations. Therefore, the corresponding
proof will be given in Section 5.3.1.

Comparing this to the result due to Håstad and Coppersmith, we observe that in the case
δ := δ1 = . . . = δk the sufficient condition is k ≥ δ with both methods. For different δi
however, our method is always superior. Taking e.g. the illustrating example with public
exponents (3, 3, 5, 5) from the beginning of this section, we see that our new condition
1
3

+ 1
3

+ 1
5

+ 1
5

= 16
15

≥ 1 is fulfilled.
Moreover, our formula captures the intuition that equations of low degree δi comprise more
information since they contribute to the sum in (3.3) with a larger term 1

δi
than equations

with higher degree.

3.2.1 Optimality of Our Bound for Solving SMUPE2

In this section, we will see that the condition |x0| < M
1
δ for efficiently solving the SMUPE2-

problem given in Theorem 3.2.2 is optimal if the moduli Ni are prime powers. This implies
that the condition cannot be improved in general, unless we make use of the structure of

3.2. SOLVING SMUPE2 49

the moduli or of the specific polynomials occurring in the system. Thus, our argument
does not exclude the existence of superior conditions for special moduli, e.g. square-free
Ni.
The counting argument that we use is a generalization of the argument in [Cop01] to
systems of polynomial equations instead of a single equation.
Let k ∈ N. Let p1, . . . , pk be different prime numbers and δ1, . . . , δk ∈ N. We define
N1 := pδ11 , . . . , Nk := pδkk . Suppose N1 < . . . < Nk. Let us look at the following system of
polynomial equations:

f1(x) := xδ1 ≡ 0 (mod N1)

f2(x) := xδ2 ≡ 0 (mod N2)
... (3.4)

fk(x) := xδk ≡ 0 (mod Nk) .

We would like to determine all solutions x0 of this system with |x0| < N1 = pδ11 . An
application of Theorem 2.3.9 to a single equation fi(x) ≡ 0 (mod Ni) efficiently yields all

solutions x0 with |x0| < (Ni)
1
δi = pi. Furthermore, each multiple of pi is a solution of

fi(x) ≡ 0 (mod Ni). Thus, if x0 is a multiple of
∏k

i=1 pi, then x0 is a common zero of all
the polynomials.
Let δ := lcm{δi, i = 1, . . . , k}. We apply the same method as in the proof of Theorem 3.2.2
to the polynomial equations in system (3.4). Namely, we take their δ

δi
-th powers and

combine them by Chinese Remaindering (Theorem 2.2.13). This gives us an equation

f(x) ≡ xδ (mod M) with M :=
∏k

i=1N
δ
δi

i =
∏k

i=1 p
δ
i with the same roots as in (3.4).

We assume thatM
1
δ < N1. OtherwiseM

1
δ ≥ N1 > |x0|, i. e. the condition of Theorem 3.2.2

is fulfilled and there is nothing to be shown. Therefore, let ǫ > 0 such that M
1
δ
+ǫ < N1.

Suppose now we could calculate all simultaneous solutions x0 of the system such that
|x0| < M

1
δ
+ǫ = (

∏k

i=1 pi)
1+δǫ. Since we know that every integer multiple of

∏k

i=1 pi is

a solution of (3.4), the number of roots is roughly 2(
∏k

i=1 pi)
δǫ. This implies that we

have exponentially many roots x0 with |x0| < M
1
δ
+ǫ, which we cannot even output in

polynomial time. Consequently, there is no polynomial time algorithm that improves upon
the exponent in the condition |x0| < M

1
δ of Theorem 3.2.2.

3.2.2 An Example

A typical example in which polynomially related messages occur is an RSA broadcast
scenario. Assume a user wants to broadcast a message m to k different users using an
RSA encryption scheme with public exponents e1, . . . , ek and coprime public moduli N1 <
. . . < Nk. From the ciphertexts c1 (mod N1), . . . , ck (mod Nk) an attacker can compute
the message m if m is smaller than the upper bound given in Theorem 3.2.2. He sets
fi(x) := xei − ci (mod Ni) and applies Theorem 3.2.2.
In order to avoid sending various encryptions of the same message, a user might add
some randomness ri and then encrypt the linearly related messages (m+ ri), i = 1, . . . , k,

50 CHAPTER 3. SOLVING SMUPE

instead of m. However, if the attacker gets to know the randomness, he can calculate
Fi(x) := fi(x + ri) (mod Ni) and analyze the system of equations Fi(x) ≡ 0 (mod Ni),
i = 1, . . . , k. As degree, modulus and leading coefficient are the same for Fi(x) and fi(x),
the upper bound on m up to which m can be recovered efficiently also remains unchanged.
More generally, taking polynomially related messages instead of linearly related ones, the
degree of Fi(x), i = 1, . . . , k, changes from ei to eiγi, where γi is the degree of the known
polynomial relation.

Corollary 3.2.5
Let k ∈ N, (Ni, ei), i = 1, . . . , k, be RSA public keys with N1 < N2 < . . . < Nk and
coprime Ni. Furthermore, let m ∈ ZN1 and let gi(x) ∈ Z[x] be polynomials of degree
γi ∈ N with aiγi

being the coefficient of xγi for i = 1, . . . , k. Let c1, . . . , ck be the RSA-

encryptions of gi(m) under the public key (Ni, ei). Define δi := eiγi and M :=
∏k

i=1N
δ
δi

i

with δ := lcm{δi, i = 1, . . . , k}.
Then an adversary can recover the message m in time O(δ6 log2M) provided that

k∑

i=1

1

δi
≥ 1 .

Proof: Without loss of generality we assume that all aiγi
are invertible modulo Ni. (Oth-

erwise gcd(aiγi
, Ni) and Ni

gcd(aiγi
,Ni)

will give us the factorization of Ni for at least one

i ∈ {1, . . . , k}. We can then compute m modulo the prime factors. This can be done
efficiently if δi is polynomial in log(Ni) as explained in the introduction of this chapter.)
We are looking for a solutionm of fi(x) := gi(x)

ei−ci ≡ 0 (mod Ni), i = 1, . . . , k. However,
the polynomials fi(x) are not necessarily monic. Therefore, we modify them slightly to
be able to apply Corollary 3.2.3. Let Fi(x) := a−ei

iγi

(
gi(x)

ei − ci
)

(mod Ni), i = 1, . . . , k.
Hence, Fi(x) is a monic polynomial of degree δi = eiγi. The corollary then directly follows
as an application of Corollary 3.2.3.

Chapter 4

Basic Approaches for Solving Systems

of Multivariate Polynomial Equations

Many problems occurring in the context of cryptography cannot be described as polynomial
equations in one unknown but comprise several unknowns. Take, for example, the problem
of factoring, i. e. given N ∈ N which is the product of two large primes p and q, determine
p and q. We can easily transfer the problem of finding p and q into the problem of finding
the non-trivial roots of a multivariate polynomial f : Define f(x, y) := N − xy ∈ Z[x, y].
Then f(p, q) = 0.
In a more general setting, we are not only given one equation but several ones. The
following three chapters deal with the problem of solving systems of multivariate polyno-
mial equations (SMPE-problem), either over the integers (SIMPE-problem) or as modular
systems (SMMPE-problem). The case of systems of modular equations can be divided
up further into systems with a common modulus (SMMPE1) and systems with mutually
coprime moduli (SMMPE2). That is, we consider the following problems:

Definition 4.0.6 (SIMPE-problem)
Assume k ∈ N and f1(x1, . . . , xl), . . . , fk(x1, . . . , xl) to be polynomials of degree δ1, . . . , δk
in Z[x1, . . . , xl], respectively. Let

f1(x1, . . . , xl) = 0

f2(x1, . . . , xl) = 0
... (4.1)

fk(x1, . . . , xl) = 0

be a system of multivariate polynomial equations.

Let Xi ∈ R, i = 1, . . . , l. Find all common roots (x̄1, . . . , x̄l) of (4.1) with size |x̄i| ≤ Xi.

and

51

52 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

Definition 4.0.7 (SMMPE-problem)
Assume k ∈ N, δ1, . . . , δk ∈ N, and letN1, . . . , Nk ∈ N. Let f1(x1, . . . , xl), . . . , fk(x1, . . . , xl)
be polynomials of degree δ1, . . . , δk in ZN1 [x1, . . . , xl], . . . ,ZNk

[x1, . . . , xl], respectively. Let

f1(x1, . . . , xl) ≡ 0 (mod N1)

f2(x1, . . . , xl) ≡ 0 (mod N2)
... (4.2)

fk(x1, . . . , xl) ≡ 0 (mod Nk)

be a system of multivariate polynomial equations.

Let Xi < Ni, Xi ∈ R, i = 1, . . . , l. Find all common roots (x̄1, . . . , x̄l) of (4.2) with size
|x̄i| ≤ Xi.
If N1 = . . . = Nk, then we denote the problem by SMMPE1; if the Ni are mutually coprime,
we assume N1 < N2 < . . . < Nk and refer to the problem as SMMPE2.

Our goal is to analyze up to which size of the upper bounds X1, . . . , Xl we can determine
the solutions x̄1, . . . , x̄l of either system of equations efficiently. In contrast to the univari-
ate case (comp. Chapter 3), there are no algorithms working in general for multivariate
equations over the integers either. That is why we are interested in analyzing the integer
as well as the modular case. The analysis will be divided into three parts.

In the following two chapters we adapt Coppersmith’s algorithm to be used to analyze
systems of equations in the modular (Chapter 5) and in the integer case (Chapter 6). The
rest of the current chapter deals with simpler approaches to solve systems of multivariate
equations. Depending on the structure of the equations, a system can be modeled as a
lattice such that a short vector in this lattice directly reveals the solution. The result
is, thus, obtained by a simple lattice reduction. Before generally stating some criteria on
which this analysis is useful, we treat the examples of related messages RSA [CFPR96]
and implicit factoring [MR09].

4.1 RSA with Related Messages and Implicit Relations

We reconsider the problem of RSA with related messages. Assume two messages m1 and
m2 are encrypted with respect to the same modulus N . The corresponding equations with
solutions (m1,m2) are f1(x1) := xe1 − c1 ≡ 0 (mod N) and f2(x2) := xe2 − c2 ≡ 0 (mod N).
In Example 3.1.2 the relation between m1 and m2 was explicit, namely, m2 ≡ p(m1)
(mod N). Thus, the system could be transformed into a system of two univariate equa-
tions f1(x1) ≡ 0 (mod N) and f2(p(x1)) ≡ 0 (mod N).
In [CFPR96] implicit polynomial relations p(m1,m2) ≡ 0 (mod N) are considered as well.
With such relations it is no longer possible to just substitute x2 by a polynomial in x1.
Therefore, Don Coppersmith et al. add a further step in the method described in Exam-
ple 3.1.2. As m2 can no longer be directly substituted in me

2 − c2 ≡ 0 (mod N), we regard

4.1. RSA WITH RELATED MESSAGES AND IMPLICIT RELATIONS 53

a system of three polynomial equations in two unknowns x1 and x2 corresponding to the
solutions m1 and m2:

f1(x1) ≡ xe1 − c1 (mod N)

f2(x2) ≡ xe2 − c2 (mod N)

p(x1, x2) ≡ 0 (mod N) .

To get two polynomials in the same unknown, the resultant (compare Definition 2.2.9) of
f1(x1) and p(x1, x2) with regard to x1 is computed. This results in a polynomial r(x2) in
the unknown x2. We now have two polynomials in one unknown like in case of explicit
relations, and (in most cases) we can compute gcd(r(x2), f2(x2)) ≡ x2 − m2 (mod N),
which gives us m2. Plugging this value into p(x1, x2), we get two polynomials p(x1,m2)
and f1(x1) in the unknown x1 and can proceed as before to determine m1.
An alternative way to achieve this result is to compute a Groebner basis (compare Defini-
tion 2.2.11) of F = {f1(x1), f2(x2), p(x1, x2)}. In most cases the Groebner basis contains
the polynomials x1 −m1 and x2 −m2. From these polynomials we can immediately derive
our solutions m1 and m2. Both variants of the attack can theoretically be performed with
equations of any degree. However, the complexity of the attack is polynomial in the degree
of the equations. Therefore, it is only efficient for equations of small degree. Commonly
used moduli like e = 3 or e = 216 + 1 fit into the framework of the attack.
Resultant or Groebner basis computations can be applied to solve nearly any two equations
with the same modulus. This implies that it is usually sufficient to have two equations
f1(x) ≡ 0 (mod N) and f2(x) ≡ 0 (mod N) in order to recover the common solutions as
explained in Section 3.1.
The problem of RSA with related messages can be generalized to an arbitrary number
of k messages. If the relations between these messages can be expressed explicitly such
that mi only depends on m1, . . . ,mi−1, we can restrict our considerations to the first two
equations and their common relation. Then we can perform the same analysis as described
above. This gives us m1 and m2. Iteratively, any further message mi, i = 3, . . . , k, can be
calculated from m1, . . . ,mi−1 by its explicit description.
A natural generalization, thus, includes only one implicit relation between the messages.
Suppose we have the following system of k + 1 ∈ N equations

f1(x1) := xe1 − c1 ≡ 0 (mod N)
...

fk(xk) := xek − ck ≡ 0 (mod N)

p(x1, . . . , xk) ≡ 0 (mod N) .

As before, in most cases we can either compute the Groebner basis of all polynomials and
obtain the answer [x1 −m1, . . . , xk −mk]. Or, we set

g0(x1, . . . , xk) := p(x1, . . . , xk)

54 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

and iteratively compute

gi(xi+1, . . . , xk) := resxi
(gi−1(xi, . . . , xk), fi(xi)) .

After k iterations one gets gk−1(xk). Computing the greatest common divisor of gk−1(xk)
and fk(xk) in most cases leads to gcd(gk−1(xk), fk(xk)) = xk − mk. Recursively, for i =
k − 1, . . . , 1, we can substitute xi+1, . . . , xk by mi+1, . . . ,mk, and calculate

gcd(gi−1(xi,mi+1, . . . ,mk), fi(xi)) = xi −mi

to get mi until we have m1.

The techniques used to analyze this problem are basically the same techniques described in
Section 2.2. The only difference is that the coefficients here are elements of ZN . Therefore,
we have to use a definition and computation of Groebner bases adapted to coefficients
in any ring (compare [Pau07]). Then we can determine all solutions via Groebner basis
computations if the Groebner basis contains univariate linear polynomials in the different
variables. There are no constraints concerning the solutions we can determine. This is an
advantage of this method in contrast to the methods we will present in the following. In
those methods, lattice reduction techniques are used. This leads to size constraints on the
solutions which we can determine this way.
Practical problems, however, rarely correspond to systems of equations such that a Groeb-
ner basis directly reveals the solution. Instead, a Groebner basis computation leads to a
different, usually simpler system which is still too complicated to derive solutions from.
Note further that the complexity of Groebner basis computations is exponential in the
number of variables. Hence, this approach is not efficient in general (compare Section 2.2).
This is a drawback compared to the lattice-based methods we will use.
We will analyze the problem of RSA with related messages with the help of Coppersmith’s
method in Chapter 5.2. Now, we will continue with an example of a non zero dimensional
system of which we can determine solutions of a certain size.

4.2 The Problem of Implicit Factoring with Shared Least

Significant Bits

In this section we again regard the problem of factoring, that is, given a composite integer
N0 = p0q0, compute p0 and q0. As this problem seems to be difficult to solve in general,
we use an additional oracle. In contrast to previous works like [RS85, Mau96, Cop96a], we
highly restrict the power of the oracle. Namely, we allow for an oracle that on input an
RSA modulus N0 = p0q0 outputs another different RSA modulus N1 = p1q1 such that p0

and p1 share their t least significant bits. Moreover, we assume for notational simplicity
that the bitsize of p1 is equal to the bitsize of p0 and the bitsize of q1 is equal to the bitsize
of q0.
Thus, as opposed to an oracle that explicitly outputs bits of the prime factor p0, we only
have an oracle that implicitly gives information about the bits of p0. Intuitively, since

4.2. THE PROBLEM OF IMPLICIT FACTORING 55

N1 is a hard to factor RSA modulus, it should not be possible to extract this implicit
information. We show that this intuition is false. Namely, we show that the link of the
factorization problems N0 and N1 gives rise to an efficient factorization algorithm provided
that t is large enough.
More precisely, let q0 and q1 be α-bit numbers. Then our lattice-based algorithm provably
factors N0, N1 with N0 6= N1 in quadratic time whenever t > 2(α + 1). In order to give a
numerical example: Let N0, N1 have 750-bit p0, p1 and 250-bit q0, q1. Then the factorization
of N0, N1 can be efficiently found provided that p0, p1 share more than 502 least significant
bits. The bound t > 2(α+ 1) implies that our first result works only for imbalanced RSA
moduli. Namely, the prime factors pi have to have bitsizes larger than twice the bitsizes of
the qi.
Using more than one oracle query, we can further improve upon the bound on t. In case
of k queries, we obtain N1, . . . , Nk different RSA moduli such that all pi share the t least
significant bits. This gives rise to a lattice attack with a (k + 1)-dimensional lattice L
having a short vector q = (q0, q1, . . . , qk) that immediately yields the factorization of all
N0, N1, . . . , Nk. For constant k, our algorithm runs in time polynomial in the bitsize of
the RSA moduli. As opposed to our first result, in the general case we are not able to
prove that our target vector q is a shortest vector in the lattice L. Thus, we leave this
as a heuristic assumption. This heuristic is supported by a counting argument and by
experimental results that demonstrate that we are almost always able to efficiently find
the factorization.
Moreover, when putting k queries for RSA moduli with α-bit qi that share t least significant
bits of the pi, we improve our bound to t ≥ k+1

k
α. Hence, for a larger number k of queries

our bound converges to t ≥ α, which means that the pi should at least coincide on α bits,
where α is the bitsize of the qi. In case the two prime factors have the same bitsize, this
result tells us that N0 = p0q0, . . . , Nk = p0qk with the same p0 can efficiently be factored,
which is trivially true by greatest common divisor computations. On the other hand, our
result is non-trivial whenever the bitsizes are not balanced.
If we do not restrict ourselves to polynomial running time, then we can easily adapt our
method to factor balanced RSA moduli as well. All that we have to do is to determine
a small quantity of the bits of qi by brute force search. Using these bits, we can apply
the previous method in order to determine at least half of the bits of all qi. The complete
factorization of all RSA moduli Ni is then retrieved by the aforementioned lattice-based
algorithm of Coppersmith [Cop96a].

4.2.1 Implicit Factoring of Two RSA Moduli

Let us start with the analysis of implicit factoring with only one oracle query. Assume that
we are given two different RSA moduli N0 = p0q0, N1 = p1q1, where p0, p1 coincide on the
t least significant bits. That is, p0 = p+ 2tp̃0 and p1 = p+ 2tp̃1 for a common value p that
is unknown to us. Can we use the information that the prime factors of N0 and N1 share
their t least significant bits without knowing these bits explicitly? That is, can we factor
N0, N1 given only implicit information about one of the factors?

56 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

N0 q0p̃0 p

N1 q1p̃1 p

t bits α bits

Figure 4.1: Illustration of N0 and N1 for implicit factoring in terms of bits.

In this section, we will answer this question in the affirmative. We will show that there is
an algorithm that recovers the factorization of N0 and N1 in quadratic time provided that
t is sufficiently large.
We start with

(p+ 2tp̃0)q0 = N0

(p+ 2tp̃1)q1 = N1 .

These two equations contain five unknowns p, p̃0, p̃1, q0 and q1. By reducing both equations
modulo 2t, we can eliminate the two unknowns p̃0, p̃1 and obtain

pq0 ≡ N0 (mod 2t)

pq1 ≡ N1 (mod 2t) .

Since q0, q1 are odd, we can solve both equations for p. This leaves us with N0

q0
≡ N1

q1

(mod 2t), which we write in form of the linear equation

(N−1
0 N1)q0 − q1 ≡ 0 (mod 2t) . (4.3)

The set of solutions

L = {(x0, x1) ∈ Z2 | (N−1
0 N1)x0 − x1 ≡ 0 (mod 2t)}

forms an additive, discrete subgroup of Z2. Thus, L is a 2-dimensional integer lattice. L
is spanned by the row vectors of the basis matrix

BL :=

(
1 N−1

0 N1

0 2t

)

.

This equivalence has been proven in Section 2.3. Notice that by equation (4.3), we have
(q0, q1) ∈ L. If we were able to find this vector in L, then we could factor N0, N1 easily.
Let us first provide some intuition on which condition the vector q = (q0, q1) is a short
vector in L. We know that an upper bound on the length of a shortest vector is given by
the Minkowski bound

√
2 det(L)

1
2 =

√
2 · 2 t

2 .
Since we assumed that q0, q1 are α-bit primes, we have q0, q1 ≤ 2α. If α is sufficiently small,

4.2. THE PROBLEM OF IMPLICIT FACTORING 57

then ||q|| is smaller than the Minkowski bound and, therefore, we can expect that q is
among the shortest vectors in L. This happens if

||q|| ≤
√

2 · 2α ≤
√

2 · 2 t
2 .

So if t ≥ 2α we expect that q is a short vector in L. We can find a shortest vector in L using
Gaussian reduction on the lattice basis BL in time O(log2(2t)) = O(log2(min{N0, N1})).
Hence, on the heuristic assumption that q = (q0, q1) is a shortest vector in L, we can factor
N0, N1 in quadratic time. On a slightly more restrictive condition, we can completely
remove the heuristic assumption.

Theorem 4.2.1
Let N0 = p0q0, N1 = p1q1 be two different RSA moduli with α-bit qi. Suppose that p0, p1

share at least t > 2(α+ 1) bits. Then N0 and N1 can be factored in quadratic time.

Proof: Let

BL =

(
1 N−1

0 N1

0 2t

)

be the lattice basis defined as before.
The basis matrix BL spans a lattice L with a shortest vector v that satisfies

||v|| ≤
√

2 det(L)
1
2 = 2

t+1
2 .

Performing Gaussian reduction on BL, we get an equivalent basis B =

(
b1

b2

)

such that

||b1|| = λ1(L) and ||b2|| = λ2(L) .

Our goal is to show that b1 = ±q = ±(q0, q1) which is sufficient for factoring N0 and N1.
As L is of full rank, by Hadamard’s inequality we have

||b1|| ||b2|| ≥ det(L) .

This implies

||b2|| ≥
det(L)

||b1||
=

det(L)

λ1(L)
.

Substituting det(L) = 2t and using λ1(L) ≤ 2
t+1
2 leads to

||b2|| ≥
2t

2
t+1
2

= 2
t−1
2 .

This implies for any lattice vector 0 6= v = a1b1 + a2b2 with ||v|| < 2
t−1
2 that a2 = 0, as

otherwise λ2(L) ≤ ||v|| < ||b2||, which contradicts the optimality of b2 from Theorem 2.3.3.

Thus, every v 6= 0 with ||v|| < 2
t−1
2 is a multiple of b1. Notice that q = (q0, q1) ∈ L fulfills

||q|| =
√

2 · 2α = 2
2α+1

2 . Consequently, we have ||q|| < ||b2|| if

2
2α+1

2 < 2
t−1
2 ⇔ 2(α+ 1) < t .

58 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

Therefore, we get q = ab1 with a ∈ Z \ {0}. Let b1 = (b11, b12), then gcd(q0, q1) =
gcd(ab11, ab12) ≥ a. But q0, q1 are primes and, without loss of generality, q0 6= q1, since
otherwise we can factor N0, N1 by computing gcd(N0, N1). Therefore, by the minimality
of b1, |a| = 1 and we obtain q = ±b1, which completes the factorization.
The running time of the factorization is determined by the running time of the Gaussian
reduction, which can be performed in O(t2) = O(log2(min{N0, N1})) steps.

4.2.2 Implicit Factoring of k RSA Moduli

The approach from the previous section can be generalized to an arbitrary fixed number k
of oracle queries. This gives us k + 1 different RSA moduli

N0 = (p+ 2tp̃0)q0
... (4.4)

Nk = (p+ 2tp̃k)qk

with α-bit qi.
We transform the system of equations into a system of k + 1 equations modulo 2t

pq0 −N0 ≡ 0 (mod 2t)
...

pqk −Nk ≡ 0 (mod 2t)

in k + 2 variables.
Analogous to the case of two equations, we solve each equation for p. This can be done
because all the qi are odd. Thus, we get N0

q0
= Ni

qi
(mod 2t) for i = 1, . . . , k. Writing this

as k linear equations gives us:

N−1
0 N1q0 − q1 ≡ 0 (mod 2t)

...

N−1
0 Nkq0 − qk ≡ 0 (mod 2t) .

With the same arguments as in the preceding section, the set

L = {(x0, x1, . . . , xk) ∈ Zk+1 | N−1
0 Nix0 − xi ≡ 0 (mod 2t) for all i = 1, . . . , k}

forms a lattice. This lattice L is spanned by the row vectors of the following basis matrix

BL =

1 N−1
0 N1 · · · N−1

0 Nk

0 2t 0 · · · 0

0 0
.

...
...

. 0
0 0 · · · 0 2t

.

4.2. THE PROBLEM OF IMPLICIT FACTORING 59

Note that q = (q0, q1, . . . , qk) ∈ L has norm ||q|| ≤
√
k + 1 · 2α. We would like to have

||q|| = λ1(L) as in Section 4.2.1. The length λ1(L) of a shortest vector in L is bounded by

λ1(L) ≤
√
k + 1 · (det(L))

1
k+1 =

√
k + 1 · (2tk) 1

k+1 .

Thus, if q is indeed a shortest vector, then

||q|| =
√
k + 1 · 2α <

√
k + 1 · 2t k

k+1 . (4.5)

This implies the condition t > k+1
k
α. We make the following heuristic assumption.

Assumption 4.2.2
Let N0, N1, . . . , Nk be as defined in equation (4.4) with t > k+1

k
α. Further, let b1 be a

shortest vector in L. Then b1 = ±(q0, q1, . . . , qk).

Theorem 4.2.3
Let N0, . . . , Nk be as defined in the system of equations (4.4) with t > k+1

k
α. Under

Assumption 4.2.2, we can find the factorization of all N0, N1, . . . , Nk in time polynomial in
((k + 1)

k+1
2 ,maxi{logNi}).

We show the validity of Assumption 4.2.2 experimentally in Section 4.2.5.
The running time is determined by the time to compute a shortest vector in L [Kan87,
Hel85]. This implies that for any lattice L of rank k + 1 we can compute the factorization

of all Ni in time polynomial in their bitsize if (k + 1)
k+1
2 = poly(maxi{logNi}), that is,

especially, if the lattice has fixed rank k + 1.
For large k, our bound converges to t ≥ α. This means that the amount t of common
least significant bits has to be at least as large as the bitsize of the qi. In turn, this implies
that our result only applies to RSA moduli with different bitsizes of pi and qi. On the
other hand, this is the best result that we could hope for in our algorithm. Notice that we
construct the values of the qi by solving equations modulo 2t. Thus, we can fully recover
the qi only if their bitsize α is smaller than t. In the subsequent section, we will overcome
this problem by avoiding the full recovery of all qi, which in turn leads to an algorithm for
balanced RSA moduli.

Remark: All of our results still hold if 2t is replaced by an arbitrary modulus M ≥ 2t. We
used a power of two only to illustrate our results in terms of bits.

4.2.3 Implicit Factoring of Balanced RSA Moduli

We slightly adapt the method from Section 4.2.2 in order to factor balanced n-bit integers,
i. e. Ni = piqi such that pi and qi have bitsize n

2
each. The modification mainly incorporates

a small brute force search on the most significant bits of the qi.
Assume that we are given k + 1 RSA moduli as in (4.4). From these moduli we derive k

60 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

N0 x0p̃0 p q̃0

qipi

N1 x1p̃1 p q̃1

t bits β bits

n
4

bits

Figure 4.2: Illustration of balanced N0 and N1 for implicit factoring in terms of bits.

linear equations in k + 1 variables:

N−1
0 N1q0 − q1 ≡ 0 (mod 2t)

...

N−1
0 Nkq0 − qk ≡ 0 (mod 2t) .

The bitsize of the qi is now fixed to α = n
2
, which is equal to the bitsize of the pi, i. e. now

the number t of bits on which the pi coincide has to satisfy t ≤ α. In the trivial case of
t = α = n

2
we can directly factor the Ni via greatest common divisor computations as then

pi = p for i = 0, . . . , k.
Thus, we only consider t < n

2
. With a slight modification of the method in Section 4.2.2,

we compute all qi (mod 2t). Since t < n
2
, this does not give us the qi directly, but only

their t least significant bits. But if t ≥ n
4
, we can use Theorem 2.3.12 for finding the full

factorization of each Ni in polynomial time. In order to minimize the time complexity, we
assume t = n

4
throughout this section.

To apply Theorem 4.2.3 of Section 4.2.2 the bitsize of the unknown part of the qi has to be
smaller than k

k+1
t. Thus, we have to guess roughly 1

k+1
· t = n

4(k+1)
bits for each qi. Since

we consider k + 1 moduli, we have to guess a total number of n
4

bits. Notice that this is
the same amount of bits as for guessing one half of the bits of one qj, which in turn allows
to efficiently find this qj using Theorem 2.3.12. With a total amount of n

4
bits, however,

our algorithm will allow us to efficiently find all qi, i = 0, . . . , k.
Let us describe our modification more precisely. We split qi (mod 2

n
4) into 2β q̃i + xi

(mod 2
n
4). The number β depends on the number of oracle calls k such that the condition

β < k
k+1

· n
4

holds. Therefore, we choose β to be the largest integer smaller than kn
4(k+1)

. This

implies that the xi ≤ 2β are small enough to be determined analogously as in Section 4.2.2,
provided that the q̃i are known. In practice we can guess an amount of n

4(k+1)
bits for

determining each q̃i, or we can find these bits by other means, e.g. by side-channel attacks.

Suppose now that the q̃i are given for each i. We obtain the following set of equations

4.2. THE PROBLEM OF IMPLICIT FACTORING 61

N−1
0 N1x0 − x1 ≡ 2β(q̃1 −N−1

0 N1q̃0) (mod 2
n
4)

... (4.6)

N−1
0 Nkx0 − xk ≡ 2β(q̃k −N−1

0 Nkq̃0) (mod 2
n
4) .

Let ci = 2β(q̃i − N−1
0 Niq̃0), i = 1, . . . , k, denote the known right-hand terms. In contrast

to Section 4.2.2, the equations (4.6) that we have to solve are inhomogeneous. Let us first
consider the lattice L that consists of the homogeneous solutions

L = {(x0, x1, . . . , xk) ∈ Zk+1 | N−1
0 Nix0 − xi ≡ 0 (mod 2

n
4), i = 1, . . . , k} .

L is spanned by the rows of the following basis matrix

BL =

1 N−1
0 N1 · · · N−1

0 Nk

0 2
n
4 0 · · · 0

0 0
.

...
...

. 0
0 0 · · · 0 2

n
4

.

Let li ∈ Z such that N−1
0 Nix0 + li2

n
4 = xi + ci. Then we let

q′ := (x0, l1, . . . , lk)BL = (x0, x1 + c1, . . . , xk + ck) ∈ L.

Moreover, if we define the target vector c := (0, c1, . . . , ck), then the distance between q′

and c is
||q′ − c|| = ||(x0, x1, . . . , xk)|| ≤

√
k + 1 · 2β ≤

√
k + 1 · 2 kn

4(k+1) .

This is the same bound that we achieved in Section 4.2.2 for the length of a shortest vector
in equation (4.5) in the case of t = n

4
. So instead of solving a shortest vector problem, we

have to solve a closest vector problem in L with target vector c. Closest vectors can be
found in polynomial time for fixed lattice dimension k + 1 (see Blömer [Blö00]). We make
the heuristic assumption that q′ is indeed a closest vector to c in L.

Assumption 4.2.4
Let N0, N1, . . . , Nk be as defined in equation (4.6) with β < kn

4(k+1)
. Further, let b1 be a

closest vector to c in L. Then b1 = ±q′.

Theorem 4.2.5
Let N0, N1, . . . , Nk be as defined in equation (4.6) with β < kn

4(k+1)
. On Assumption 4.2.4,

we can find the factorization of all N0, N1, . . . , Nk in time 2
n
4 ·poly((k+1)!,maxi{logNi}).

The running time is determined by the time for guessing each q̃i and the time for finding
a closest vector in L.
In the following section we have a closer look at the two heuristics from the previous
sections, Assumption 4.2.2 and Assumption 4.2.4. We first give a counting argument that
supports our heuristics and then demonstrate experimentally that our constructions work
well in practice.

62 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

4.2.4 A Counting Argument that Supports our Assumptions

Recall that in Section 4.2.2, the lattice L consists of all solutions q = (q0, q1, . . . , qk) of the
system of equations

N−1
0 N1q0 ≡ q1 (mod 2t) (4.7)

...

N−1
0 Nkq0 ≡ qk (mod 2t) .

As gcd(N−1
0 Ni, 2

t) = 1 for any i, the mapping fi : x 7→ N−1
0 Nix (mod 2t) is bijective.

Therefore, the value of q0 uniquely determines the values of qi, i = 1, . . . , k.
In total, the system of equations has as many solutions as there are values to choose q0
from, which is 2t. Now suppose q0 ≤ 2

kt
k+1 . How many vectors q do we have such that

qi ≤ 2
kt

k+1 for all i = 0, . . . , k and, thus, ||q|| ≤
√
k + 1 · 2 kt

k+1 ?
Assume for each i = 1, ..., k that the value qi is uniformly distributed in {0, . . . , 2t − 1}
and that the distributions of qi and qj are independent if i 6= j. Then the probability that

qi ≤ 2
kt

k+1 is

Pr
(

qi ≤ 2
kt

k+1

)

=
2

kt
k+1

2t
= 2−

t
k+1 .

Furthermore, the probability that qi ≤ 2
kt

k+1 for all i = 1, . . . , k is

Pr
(

q1 ≤ 2
kt

k+1 , . . . , qk ≤ 2
kt

k+1

)

=
(

2−
t

k+1

)k

= 2−
kt

k+1 .

Consequently, the expected number of vectors q such that qi ≤ 2
kt

k+1 for all i = 0, . . . , k

is 2
kt

k+1 · 2− kt
k+1 = 1. Therefore, we expect that only one lattice vector, namely q, is short

enough to satisfy the Minkowski bound. Hence, we expect that ±q is a unique shortest

vector in L if its length is significantly below the bound
√
k + 1 · 2

kt
k+1 . This counting

argument strongly supports our Assumption 4.2.2.

Remark: In order to analyze Assumption 4.2.4 we can argue in a completely analogous
manner. The inhomogeneous character of the equations does not influence the fact that
the qi are uniquely determined by q0.

4.2.5 Experiments

We verified our assumptions in practice by running experiments on a Core2 Duo 1.66GHz
notebook. The attacks were implemented using Magma1 Version 2.11. Instead of taking a
lattice reduction algorithm which provably returns a basis with a shortest vector as first
basis vector, we have used the LLL algorithm [LLL82], more precisely its L2 version of
Phong Nguyen and Damien Stehlé [NS05], which is implemented in Magma. Although by

1http://magma.maths.usyd.edu.au/magma/

4.2. THE PROBLEM OF IMPLICIT FACTORING 63

LLL-reduction the first basis vector only approximates a shortest vector in a lattice, for
our lattice bases with dimensions up to 100 LLL-reduction was sufficient. In nearly all
cases the first basis vector was equal to the vector ±q = ±(q0, q1, . . . , qk), provided that
we chose suitable attack parameters.
First, we considered the case of imbalanced RSA moduli from Theorem 4.2.3. We chose
Ni = (p + 2tp̃i)qi, i = 0, . . . , k, of bitsize n = 1000 with varying bitsizes of qi. For a fixed
bitsize α of qi and a fixed number k of moduli, we slightly played with the parameter t of
common bits close to the bound t ≥ k+1

k
α in order to determine the minimal t for which

our heuristic is valid.

bitsize α number of bound number of success
of the qi moduli k + 1 k+1

k
α shared bits t rate

250 3 375 377 0%
250 3 375 378 97%
350 10 389 390 0%
350 10 389 391 100%
400 100 405 409 0%
400 100 405 410 100%
440 50 449 452 16%
440 50 449 453 97%
480 100 485 491 38%
480 100 485 492 98%

Table 4.1: Attack for imbalanced RSA moduli

The running time of all experiments was below 10 seconds.
In Table 4.1, we called an experiment successful if the first basis vector b1 in our LLL-
reduced basis was of the form b1 = ±q = ±(q0, q1, . . . , qk), i.e. it satisfied Assump-
tion 4.2.2. There were some cases where other basis vectors were of the form ±q, but we
did not consider these cases as successful.
As one can see by the experimental results, Assumption 4.2.2 only works smoothly when
our instances were a few extra bits beyond the bound of Theorem 4.2.3. This is not sur-
prising since the counting argument from Section 4.2.4 tells us that we loose uniqueness
of the shortest vector as we approach the theoretical bound. In practice, one could either
slightly increase the number t of shared bits or the number k of oracle calls for making the
attack work. Alternatively, one could also perform a small brute force search in a few bits.

Analogously, we made experiments with balanced RSA moduli to verify Assumption 4.2.4.
Instead of computing closest vectors directly, we used the well-known standard embedding
of a d-dimensional closest vector problem into an (d+1)-dimensional shortest vector prob-
lem ([MG02], Chapter 4.1), where the shortest vector is of the form b1 = (q′ − c, c′), c′

constant. Since c and c′ are known, this directly yields q′ and, therefore, the factorization
of all RSA moduli. For solving the shortest vector problem, we again used the LLL algo-

64 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

rithm.
As before we called an experiment successful if b1 was of the desired form, i.e. if Assump-
tion 4.2.4 held. In our experiments we used 1000-bit Ni with a common share p of t = 250
bits.

number of bound bits known success
moduli k + 1 ⌈ n

4(k+1)
⌉ from qi rate

3 84 85 74%
3 84 86 99%
10 25 26 20%
10 25 27 100%
50 5 8 46%
50 5 9 100%

Table 4.2: Attack for balanced 1000-bit Ni with 250 bits shared

All of our experiments ran in less than 10 seconds. Here we assumed that we know the
required bits of each qi, i.e. the running time does not include the factor for a brute-force
search.
Similar to the experimental results in the imbalanced RSA case, our heuristic Assump-
tion 4.2.4 works well in the balanced case, provided that we spend a few extra bits to the
theoretical bound in order to enforce uniqueness of the closest vector.

4.3 The Problem of Implicit Factoring with Shared Most

Significant Bits

In [MR09] we have introduced the problem of implicit factoring with respect to shared least
significant bits. Jean-Charles Faugère, Raphaël Marinier and Guénaël Renault extended
the analysis to the problem of implicit factoring with shared most significant bits [FMR09].
This extension is not straightforward as the non-shared bits of the larger factor can no
longer be ignored. To see this, let us consider both variants of the factors in the case of
two composite numbers N0 and N1.
Recall that in the case of shared least significant bits we regard the equations

(
2tp̃0 + p

)
q0 = N0 (4.8)

(
2tp̃1 + p

)
q1 = N1 .

Solving them for p and combining them, we obtain the equation

N0q1 −N1q0 − 2t (p̃0 − p̃1) q0q1 = 0 . (4.9)

4.3. IMPLICIT FACTORING WITH SHARED MOST SIGNIFICANT BITS 65

Then we take the equation modulo 2t. By this, we can remove the unknowns p̃0 and p̃1.
The remaining equation is equivalent to

N−1
0 N1q0 ≡ q1 (mod 2t) .

This linear equation can then be embedded into a lattice. If q0 and q1 are small enough
(which is the case if t > 2(α+1) as we have seen in the previous section), we can determine
them as solutions of a shortest vector problem.
In the case of shared most significant bits the situation changes. We are no longer able to
just remove p̃0 and p̃1 by a modulo operation. In the case of shared most significant bits
the equations have the following shape:

(
p̃0 + 2n−t−αp

)
q0 = N0 (4.10)

(
p̃1 + 2n−t−αp

)
q1 = N1 .

Analogously to the previous case, they can be solved for 2n−t−αp and combined:

N1q0 −N0q1 − (p̃1 − p̃0) q0q1 = 0 (4.11)

⇔ N1q0 −N0q1 = (p̃1 − p̃0) q0q1 .

The variables p̃0 and p̃1 are still contained in the integer equation. However, they corre-
spond to a monomial of size bounded by 2n+α−t+1. If this is still small enough, we can
embed the integer equation into a lattice L and determine it by calculating a shortest
vector. We define the lattice L via a basis matrix

BL :=

(
b1

b2

)

=

(
2n−t+

1
2 0 N1

0 2n−t+
1
2 −N0

)

. (4.12)

The vector q := (2n−t+
1
2 q0, 2

n−t+ 1
2 q1, (p̃1− p̃0)q0q1) = q0b1 + q1b2 is contained in the lattice

L. If it is a shortest vector, it can be determined via lattice reduction. Jean-Charles
Faugère et al. show that q indeed is a shortest vector in L if t > 2(α + 1). This matches
the bound we have obtained in the least significant bit case. The method can be extended
to more than two composite integers Ni in a straightforward way. In order to obtain a
result, t ≥ k+1

k
α+ 6 is required. Then the norm of the vector q fulfills the condition given

by the Gaussian heuristic, that is, ||q|| ≤
√

d
2πe

det(L)
1
d , where d denotes the dimension of

the lattice. We get the additive constant of 6 as the lattice dimension is smaller than the
number of entries in the vector. Under the heuristic that a vector fulfilling this bound is
indeed a shortest vector, q can be determined by lattice reduction. Jean-Charles Faugère
et al. verify the heuristic experimentally.
Hence, the results obtained in the case of shared most significant bits are about the same

as in the case of shared least significant bits. The lattices used are sublattices of Z
(k+2)(k+1)

2

instead of Zk+1. This is due to the use of more combinations of the original equations. For
an illustration compare Figure 4.3. Each combination of two composite numbers Ni and

66 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

1 N−1
0 N1 N−1

0 N2

0 2t 0
0 0 2t

BL in [MR09]

2n−t+
1
2 0 0 N1 N2 0

0 2n−t+
1
2 0 −N0 0 N2

0 0 2n−t+
1
2 0 −N0 −N1

BL in [FMR09]

Figure 4.3: Comparison of the basis matrices BL used in the constructions of [MR09] and
[FMR09] in case of k = 2.

Nj can be used as it introduces a new monomial (p̃i − p̃j)qiqj. All the monomials can be
described as linear combinations of qi and qj. In contrast to that, we introduce the new
monomials q1, . . . , qk as (modular) linear functions of q0. Hence, we only combine all Ni,
i = 1, . . . , k, with N0. That is, we cannot add further equations. In the case of the lattice
used by Jean-Charles Faugère et al., however, the additional combinations increase the size
of the determinant of the lattice and the sublattice they use.

Note that the analysis of the determinant gets more complicated due to the rectangular
shape of the basis matrix in the most significant bit case. For further details on the
calculation of the bounds and the cases of more than two equations we refer the reader to
the original work [FMR09].

4.4 Some General Criteria for Solving Systems of Mul-

tivariate Polynomial Equations via Shortest Vector

Problems

In the previous sections some specific problems and their analyses via systems of equations
have been presented. The problem of RSA with related messages can often be solved for
any size of the unknowns by Groebner basis techniques (compare Section 4.1, for Groebner
basis techniques consult Section 2.2). There is no need for lattice-based techniques in the
analysis.
In what follows, we will only consider systems in which Groebner basis computations do not
help to find the solutions. Two examples of such systems related to the problem of implicit
factoring were given in Sections 4.2 and 4.3. They were solved by embedding the solutions
into a lattice. Then the solutions were determined by solving a shortest vector problem.
Based on these examples we derive criteria on which we can apply similar techniques to
solve a system of equations by solving a shortest vector problem.

The analysis will be divided into two parts, the analysis of modular systems of equations
and the analysis of systems of equations over the integers. Let us start with the modular
case. Here the analyses of common and coprime moduli coincide so that we do not have to
distinguish these two subcases. Thus, let us recall the general SMMPE problem presented

4.4. SOLVING SMPE VIA SHORTEST VECTOR PROBLEMS 67

in Definition 4.0.7. For given k ∈ N, δ1, . . . , δk ∈ N, and N1, . . . , Nk ∈ N the following
system of multivariate polynomial equations shall be solved for its solutions (x̄1, . . . , x̄l)
such that |x̄i| ≤ Xi ∈ R:

f1(x1, . . . , xl) ≡ 0 (mod N1)

f2(x1, . . . , xl) ≡ 0 (mod N2)
... (4.13)

fk(x1, . . . , xl) ≡ 0 (mod Nk) .

The polynomials f1(x1, . . . , xl) ∈ ZN1 [x1, . . . , xl], . . . , fk(x1, . . . , xl) ∈ ZNk
[x1, . . . , xl] are of

total degree δ1, . . . , δk, respectively.
In order to solve the system of equations, we follow the approaches used in the previous
sections. Thus, we would like to transform the system of equations into a system of the
following structure:

f̃1(x1, . . . , xl) := −c−1
1 (f1(x1, . . . , xl) − c1m1) ≡ m1 (mod N1)

f̃2(x1, . . . , xl) := −c−1
2 (f2(x1, . . . , xl) − c2m2) ≡ m2 (mod N2)

... (4.14)

f̃k(x1, . . . , xl) := −c−1
k (fk(x1, . . . , xl) − ckmk) ≡ mk (mod Nk) .

The parameter mi := mi(x1, . . . , xl) denotes a specific monomial which occurs in the poly-
nomial fi(x1, . . . , xl), the value ci the corresponding coefficient. Without loss of generality
we assume the coefficients ci to be invertible modulo Ni. If they are not, we can determine
divisors of the moduli Ni. Then by the Chinese Remainder Theorem 2.2.13 we get two new
equations fi1 ≡ 0 (mod Ni1) and fi2 ≡ 0 (mod Ni2) equivalent to the old one. Then we
modify the system by adding the system of the two new equations instead of the original
equation. The new system is equivalent to the previous one.
In order to proceed analogously to the analysis in the examples, the monomials m1, . . . ,mk

should not correspond to any row in the lattice, but only be introduced by linear combina-
tions of these rows. For this property to hold, we require the set of monomials {m1, . . . ,mk}
to be disjoint to the set of monomials M := Mon({f̃1, . . . , f̃k}) which occur in the modi-
fied polynomials f̃i. We enumerate the monomials of M as mk+1, . . . ,m|M|+k. Using this
notation, we rewrite the equations of system (4.14) as

|M|
∑

j=1

(̃fi)jmk+j ≡ mi (mod Ni) , i = 1, . . . , k .

The vector f̃i is the coefficient vector of f̃i with respect to mk+1, . . . ,m|M|+k. We define

L := {(mk+1, . . . ,m|M|+k,m1, . . . ,mk) |
|M|
∑

j=1

(̃fi)jmk+j ≡ mi (mod Ni), i = 1, . . . , k} .

68 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

The set L forms a discrete additive subgroup of Z|M|+k. Thus, it defines a lattice. Note
that in the examples of the previous sections we could just take the set L = {(x1, . . . , xl) |
fi(x1, . . . , xl) ≡ 0 (mod Ni), i = 1, . . . , k} as a lattice. This was possible as the equations
were linear. In this more general case we have to include a linearization step by taking the
monomials instead of the variables as components of the vectors. The lattice L is spanned
by the row vectors of the basis matrix

BL :=

1
. . . f̃T1 . . . f̃Tk

1
N1

. . .

Nk

.

To prove this, we proceed in the same manner as in Section 2.3. Let BL =

b1

...
b|M|+k

.

Then we have bj ∈ L with j = 1, . . . , |M| because (̃fi)j ·1 ≡ (̃fi)j (mod Ni) for i = 1, . . . , k,
and bj ∈ L with j = |M| + 1, . . . , |M| + k because 0 ≡ Ni (mod Ni) and 0 ≡ 0
(mod Nl), l 6= i. Hence, 〈BL〉 ⊆ L.

Now let (mk+1, . . . ,m|M|+k,m1, . . . ,mk) ∈ L. Then the equation
∑|M|

j=1(̃fi)jmk+j ≡ mi

(mod Ni) holds for i = 1, . . . , k. Consequently, there exists an integer ni ∈ Z such that
∑|M|

j=1(̃fi)jmk+j+niNi = mi. Then (mk+1, . . . ,m|M|+k, n1, . . . , nk)BL = (mk+1, . . . ,m|M|+k,
m1, . . . ,mk) ∈ 〈BL〉. Combining the two inclusions results in the claim L = 〈BL〉.

By construction we have x̄ := (mk+1(x̄1, . . . , x̄l), . . . ,m|M|+k(x̄1, . . . , x̄l),m1(x̄1, . . . , x̄l), . . . ,
mk(x̄1, . . . , x̄l)) ∈ L. If x̄ was a shortest vector in L, we would be able to find it by
lattice reduction. If, further, the solutions x̄i could be written as rational functions of
the monomials m1(x̄1, . . . , x̄l), . . . ,m|M|+k(x̄1, . . . , x̄l), then we would be able to deter-
mine the variables x̄i. A necessary condition for x̄ to be a shortest vector in L is that

||x̄|| ≤
√

|M| + k · det(L)
1

|M|+k , i. e. x̄ has to be smaller than Minkowski’s bound given in
Definition 2.3.4.

Note that the vector x̄ is not balanced. Thus, its size is determined by its largest en-
try and it is rather unlikely to be a shortest vector in L. Hence, we change the vector
to balance the sizes of its components. Therefore, we multiply its entries by suitable
factors. Let K := lcm{m1(X1, . . . , Xl), . . . ,m|M|+k(X1, . . . , Xl)}, Ki := K

mi(X1,...,Xl)
and

m̄i := mi(x̄1, . . . , x̄l). We set

ȳ := (Kk+1m̄k+1, . . . , K|M|+km̄|M|+k, K1m̄1, . . . , Kkm̄k) .

Then every component of ȳ is approximately of size K. If we were able to determine the
solutions using x̄, we would still be able to do so using ȳ as the Ki are known. However,

4.4. SOLVING SMPE VIA SHORTEST VECTOR PROBLEMS 69

ȳ /∈ L. Thus, we define a modified lattice Ly via a basis matrix BLy
:

BLy
:=

Kk+1

. . . K1f̃
T
1 . . . Kk f̃

T
k

K|M|+k
K1N1

. . .

KkNk

.

Let li ∈ Z, i = 1, . . . , k, denote the integers such that
∑|M|

j=1(̃fi)jKimk+j+liNi = Kimi. That
is, li = Kini. Then ȳ = (mk+1(x̄1, . . . , x̄l), . . . ,m|M|+k(x̄1, . . . , x̄l), l1, . . . , lk)BLy

∈ Ly. The

vector ȳ has norm ||ȳ|| ≤
√

|M| + k · K. As we would like ȳ to be a shortest vector in

Ly, we get the necessary condition ||ȳ|| ≤
√

|M| + k ·det(Ly)
1

|M|+k by Minkowski’s bound.
Remark that due to the adaptation of the matrix det(Ly) ≥ det(L). It is det(Ly) =
∏|M|+k

j=1 Kj

∏k

i=1Ni. Thus, we have the condition:

√

|M| + k

|M|+k
∏

j=1

Kj

k∏

i=1

Ni

1
|M|+k

≥
√

|M| + k ·K

⇔
k∏

i=1

Ni ≥
|M|+k
∏

j=1

K

Kj

.

︸︷︷︸

=mj(X1,...,Xl)

Based on this, we make the following heuristic assumption.

Assumption 4.4.1
Let Ni, i = 1, . . . , k, and mj, j = 1, . . . , |M| + k, be defined as in the system of equa-
tions (4.14). Further, let b1 be a shortest vector in Ly. Then b1 = ±ȳ.

For a complete analysis we add another assumption.

Assumption 4.4.2
Let m1, . . . ,m|M|+k be defined with respect to the system of equations (4.14). Then the
values x̄1, . . . , x̄l can be uniquely determined using m1(x̄1, . . . , x̄l), . . . ,m|M|+k(x̄1, . . . , x̄l).

The results of the method described above can be summarized in the following theorem.

Theorem 4.4.3
Let the system of equations (4.13) be given. Further, let mj, j = 1, . . . , |M|+k, be defined
as in the system of equations (4.14).
Then on Assumptions 4.4.1 and 4.4.2 we can determine all solutions |x̄i| ≤ Xi, i = 1, . . . , k,

of system (4.13) in time polynomial in ((|M| + k)
|M|+k

2 ,maxi{log(KNi)}) if

k∏

i=1

Ni ≥
|M|+k
∏

j=1

mj(X1, . . . , Xl) .

70 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

The running time is dominated by the computation of a shortest vector [Kan87, Hel85].
Remark that the different equations which are used as input of the theorem have to be
independent of one another. If, for example, the same equation is added twice in the
lattice, the heuristic fails.

The SIMPE-problem can be analyzed in an analogous manner. However, some additional
problems may occur. We give a sketch of the method to point out the problems and
additional conditions we require such that this approach still works. First, the system of
equations

f1(x1, . . . , xl) = 0

f2(x1, . . . , xl) = 0
... (4.15)

fk(x1, . . . , xl) = 0

is transformed into a system of equations

f̃1(x1, . . . , xl) := − (f1(x1, . . . , xl) − c1m1) = c1m1

f̃2(x1, . . . , xl) := − (f2(x1, . . . , xl) − c2m2) = c2m2

... (4.16)

f̃k(x1, . . . , xl) := − (fk(x1, . . . , xl) − ckmk) = ckmk .

As all calculations are performed over the integers, we can no longer assume that the
coefficients ci are invertible. Hence, a natural adaptation would be to directly construct
a lattice LI using the equations of system (4.16). Analogously to the modular case, the
solutions of system (4.16) (taking cimi instead of mi) form a lattice LI for which we can
give a basis BLI

:

BLI
:=

Kk+1

. . . K1f̃
T
1 . . . Kk f̃

T
k

K|M|+k

 .

Remark that in this construction the values c1m1, . . . , ckmk correspond to entries of our
target vector. As we intend to determine the target vector by calculating a shortest vector
in the lattice LI , we need these values to be small. Thus, for the method to work, we have
to make an additional claim: The coefficients ci have to be of small constant size.
Furthermore, note that the lattice LI is not of full dimension. Any basis of this lattice
is, thus, given by a rectangular matrix. For rectangular matrices determinant calculations
are more complicated than for square upper triangular matrices. Consequently, it is more
difficult to calculate bounds on the solutions in the integer case. Therefore, we can no
longer give a general bound here. It has to be calculated individually with respect to the
specific system of equations.

4.4. SOLVING SMPE VIA SHORTEST VECTOR PROBLEMS 71

In general, the method presented in this chapter works as follows. First, we have to
transform the given system of equations into a lattice in which our solution corresponds to
a shortest vector v. Then we can determine the vector v by lattice reduction. The basic
condition on which the target vector v is a shortest vector is given by Assumption 4.4.1.
This, however, is a rather strong requirement. Therefore, only very small solutions, if any,
can be found. It would be advantageous if we could relax this condition. A method in
which the target vector no longer has to be a shortest vector, but only smaller than some
basis vector has been given by Don Coppersmith in 1996 [Cop96b, Cop96a]. For some
problems this method allows to find larger solutions than the method presented in this
chapter. We will use variants of it to solve systems of equations in the following chapters.

72 CHAPTER 4. BASIC APPROACHES FOR SOLVING SMPE

Chapter 5

Solving Systems of Multivariate

Polynomial Equations with

Coppersmith’s Method

In 1996, Don Coppersmith presented a lattice-based technique to solve multivariate poly-
nomial equations over the integers as well as modular ones. A description of the technique,
which we call Coppersmith’s method, is given in Section 2.3. The original work mainly
refers to bivariate equations. Ellen Jochemsz and Alexander May show how to construct
shift polynomial sets for multivariate equations in more variables in [JM06]. Directly ap-
plying Coppersmith’s method with those shift polynomial sets, we can give upper bounds
on the unknowns in case of one equation. In the following sections we will make some
progress in generalizing these techniques to systems of multivariate equations.

5.1 Coppersmith’s Algorithm with Systems of Equations

Let us briefly recall how Coppersmith’s method to find small solutions of multivariate
equations works in case of one equation: First, a set of shift polynomials is chosen and a
lattice is defined using these shift polynomials. In a second step, a sublattice of vectors
having zeros in the last components is determined. This sublattice is constructed to have
the same determinant as the original lattice. In order for this to hold, there has to exist a

unimodular transformation U such that UF =

(
0

I

)

, where the matrix F is induced by

a given set F of shift polynomials. By Theorem 2.1.3 such a transformation U exists if the
elementary divisors of F are all equal to one. In case of k = 1 (i. e. the system consists of
a single equation), which is described in the original work of Don Coppersmith [Cop96b],
the condition can be verified easily. Let f be the polynomial the roots of which are to be
determined. As f is monic, the vector corresponding to this polynomial contains an entry
equal to 1. Consequently, each shift polynomial is monic as well as it is constructed by
multiplying f with some monomial. In the shift set, the shifts can be ordered by graded

73

74 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

lexicographic ordering so that each polynomial introduces at least one new monomial,
namely its leading monomial. It is at a position in which all previous vectors were of value
zero. Thus, the matrix F corresponding to the set of shift polynomials contains an upper
triangular submatrix with a diagonal of value one. Consequently, all elementary divisors
of F are equal to one and the required unimodular transformation U exists.
The same holds for the analysis of a single multivariate polynomial equation using the shift
polynomial set F as defined in [JM06]. There the polynomial to be analyzed is transformed
into a monic one in a first step. Then the shift polynomial set is calculated to consist of
shifted powers of the original polynomial. These polynomials are ordered in a way that
each shift polynomial introduces its leading monomial. Thus, the matrix F again contains
an upper triangular submatrix having only ones on its diagonal. This implies that all
elementary divisors of F are equal to one and a suitable unimodular transformation U

exists.

For a general set of shift polynomials, however, this is not that easy to see.
In what follows we will relate the condition of Theorem 2.1.3 to conditions on the set of
shift polynomials. Therefore, we introduce some additional notation.
When constructing sets of shift polynomials, the goal is to include additional information
with every additional polynomial. If a polynomial is an integer linear combination of the
polynomials already included, we do not gain anything by adding it to the shift polynomial
set. Hence, the polynomials are constructed to be linearly independent. This is a necessary
condition on the existence of a suitable transformation of the lattice. To see why, assume
F to be the matrix induced by a linearly dependent set of shift polynomials F . Then
there is a non-trivial linear combination of polynomials f ∈ F which adds up to the zero
polynomial. The same non-trivial linear combination of the corresponding vectors fT adds
up to the zero vector. Thus, at least one elementary divisor of F is equal to 0 and the
required unimodular transformation of F does not exist.
One might assume that linear independence immediately implies that the construction of
the sublattice with the same determinant works. However, this is not the case as can be
seen in the following example.

Example 5.1.1
Let N ∈ Z\{−1, 0, 1} and f(x1, x2) = x1x2+Nx1 and g(x1, x2) = x1x2+Nx2 ∈ Z[x1, x2] be
two bivariate polynomials over the integers. Both polynomials contain different monomials.
Thus, they are linearly independent over the integers. Building a Coppersmith type basis
matrix with the shift polynomial set F := {f, g}, we get

B :=

(X1X2)
−1 1 1

0 N 0
0 0 N

x1x2

x1

x2

.

In order to check whether we can determine a sublattice with the same determinant, we
only regard the submatrix F corresponding to the shift polynomial set. That is, we regard
the matrix consisting of the last two columns. First, we apply unimodular transformations

5.1. COPPERSMITH’S ALGORITHM WITH SYSTEMS OF EQUATIONS 75

in order to transform the first column. We permute the first and second row and then
eliminate the entry N in the first column. By this we obtain

ŨF :=

0 −N
1 1
0 N

 .

Having a look at the matrix ŨF, we can directly see that the elementary divisors are 1 and
N . By Theorem 2.1.3, this implies that we do not get a unimodular transformation U such

that UF =

(
0

I

)

. Instead of a second elementary divisor of value 1, we obtained one of

value N . Looking at f(x1, x2) and g(x1, x2) modulo N , we observe that f(x1, x2) ≡ x1x2 ≡
g(x1, x2) (mod N), i. e. the two polynomials are linearly dependent, here even equal, in
ZN [x1, x2].

The observation made in the above example can be generalized easily. Instead of using
polynomials which are linearly independent over the integers, we only use polynomials
which are linearly independent over the integers as well as in any ring Za with 1 6= a ∈ N.
In contrast to the previously used condition, this one is not only an intuition, but provably
equivalent to the existence of a sublattice with the same determinant containing our target
vector. In the subsequent of this section, we will give conditions on which we can restrict
the number of potential moduli. At the moment, however, we use the general statement.
Note that modularly dependent polynomials could still be used in the lattice construction.
They do not cause the construction to fail, but do no longer allow for a direct computation
of the determinant. That is, a priori computations give too large upper bounds. In
practice, the determinant of the sublattice then is significantly smaller. In many examples,
this implies that we do not obtain interesting bounds on possible solutions any more.
Let l ∈ N and F be a set of polynomials in Z[x1, . . . , xl]. Without loss of generality we
assume F to be ordered and denote the i-th polynomial in F by fi. Let w := |Mon(F)|
and m1, . . . ,mw be an ordering of all monomials of Mon(F). Let f be the vector of the
coefficients of f such that (f)i is the coefficient of the monomial mi. Let F be the matrix
whose column vectors are fT for all f ∈ F .

Definition 5.1.2
The set of polynomials F ⊂ Z[x1, . . . , xl] is called a determinant preserving set if and
only if there exists a unimodular transformation U such that

UF =

(
0(w−|F|)×|F|

I|F|

)

.

Note that any shift polynomial set G giving a good bound although it is not determinant
preserving corresponds to a smaller determinant preserving set F with the same bound.
The set F can be constructed by appropriately removing polynomials from G. Therefore,
we can restrict the analysis directly to determinant preserving shift polynomial sets.

76 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

Remark 5.1.3
In the introduction of this section we have already shown that the shift polynomial sets
Don Coppersmith [Cop96b] and Ellen Jochemsz and Alexander May [JM06] derive for one
(multivariate) polynomial are determinant preserving.

In Example 5.1.1 the elementary divisors of F are 1 and N . Therefore, we know that no
appropriate unimodular transformation exists. The set {f, g} is, thus, not determinant
preserving.
However, changing the example slightly by setting f2(x1, x2) = x1x2+Nx1 and g2(x1, x2) =
x1x2 +Mx2 with gcd(M,N) = 1, the situation changes. The last two columns of the basis
matrix become

F2 :=

1 1
N 0
0 M

x1x2

x1

x2

.

Applying the same unimodular transformations, we get

ŨF2 :=

0 −N
1 1
0 M

 .

As the greatest common divisor of M and N is 1, this can easily be transformed to

UŨF2 :=

0 0
1 0
0 1

 .

Consequently, the set {f2, g2} is determinant preserving. Compared to f and g, the new
polynomials are not linearly dependent modulo N or M or any other integer greater than
one either.
We generalize this observation to obtain a criterion for determinant preserving sets.

Theorem 5.1.4
Let F be a determinant preserving set and F ∪ {g} ⊂ Z[x1, . . . , xl] linearly independent
over the integers.
Then G := F ∪ {g} is a determinant preserving set if and only if for all 1 6= a ∈ N the
polynomial g is linearly independent of F in Za.

Proof: Let F = {f1, . . . , f|F|} be an enumeration of the shift polynomials.
We prove this theorem by proving the contraposition:
”The set G = F ∪ {g} is not determinant preserving if and only if there is an 1 6= a ∈ N

such that g ≡∑|F|
j=1 cjfj (mod a) with cj ∈ Z.”

First, let us introduce some additional values. Let wF := |Mon(F)|, wg := |Mon(g) \
Mon(F)|, and mwF+1, . . . ,mwF+wg

be an enumeration of the monomials occurring in g,
but not in F . Then let w := wF + wg denote the number of all monomials occurring in
G. Note that the case of wg = 0 is also included in the following proof although the proof
could be simplified in this special case.

5.1. COPPERSMITH’S ALGORITHM WITH SYSTEMS OF EQUATIONS 77

We start by proving "If there is 1 6= a ∈ N such that g ≡∑|F|
j=1 cjfj (mod a) with cj ∈ Z,

then G = F ∪ {g} is not determinant preserving".

Suppose there are 1 6= a ∈ N and cj ∈ Za such that g ≡∑|F|
j=1 cjfj (mod a). Then it holds

that gT ≡ ∑|F|
j=1 cjfj

T (mod a). Here we define the vectors with respect to the ordering
m1, . . . ,mw. This means, the last wg components of vectors corresponding to elements of
F are zero modulo a.

From the preconditions we know that there exists V such that VF =

(
0(wF−|F|)×|F|

I|F|

)

.

Here, the columns of F are only taken with regard to the monomials m1, . . . ,mwF
. We

extend this with regard to m1, . . . ,mw by adding wg zero rows to F and extending V as

U :=

(
V 0wF×wg

0wg×wF Iwg

)

.

For the ease of notation, we denote the extended version of F as well by F. Let G denote the
matrix constructed by taking the matrix F and adding the vector gT as last column. If not
stated otherwise, we are referring to vectors with regard to all the monomials m1, . . . ,mw.
Then UgT ≡ ∑|F|

j=1 cjUfj
T (mod a) ≡ ∑|F|

j=1 cj(e
wF−|F|+j)T (mod a) with (ewF−|F|+j)T

being the (wF − |F| + j)-th unit vector of length w. Consequently,

UgT =

0
...
0
c1
...
c|F|
0
...
0

(mod a)

and with appropriate zi ∈ Z

UG =

az1

0(wF−|F|)×|F| ...
az(wF−|F|)

c1 + az(wF−|F|+1)

I|F|
...

c|F| + azwF

az(wF+1)

0wg×|F| ...
azw

.

78 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

Eliminating the entries c1 to c|F| by column operations one can directly see that a divides all
remaining values in the last column and, thus, the last elementary divisor of G. Applying
Theorem 2.1.3, we derive that G is not determinant preserving.

Now we prove "If the set G = F ∪ {g} is not determinant preserving, then there is an

1 6= a ∈ Z such that g ≡∑|F|
j=1 cjfj (mod a) with cj ∈ Z".

Suppose G = F ∪ {g} is not determinant preserving, that is, by Theorem 2.1.3, we either
have that the last elementary divisor of G is not equal to 1 or the number of elementary
divisors of G is smaller than |G|.
First, we assume that at least one elementary divisor is equal to a 6= 1. Our goal is to show
that there exist coefficients c1, . . . , c|F| ∈ Za such that g ≡∑|F|

j=1 cjfj (mod a). Therefore,

we start by setting g ≡ ∑|F|
j=1 c̃jfj + r̃ (mod a) (such a representation always exists, take

for example r̃ = g and c̃j = 0). The aim is to change the coefficients c̃j until we have r̃ ≡ 0
(mod a).

Let U again be the unimodular transformation such that UF =

0(wF−|F|)×|F|

I|F|
0wg×|F|

.

Then

UgT ≡
|F|
∑

j=1

c̃jUfj
T + Ur̃T (mod a)

≡
|F|
∑

j=1

c̃j(e
wF−|F|+j)T + Ur̃T (mod a)

≡

(Ur̃T)1
...

(Ur̃T)wF−|F|
c̃1 + (Ur̃T)wF−|F|+1

...
c̃|F| + (Ur̃T)wF

(Ur̃T)wF+1
...

(Ur̃T)w

(mod a) .

By this we get gcd((Ur̃T)1, . . . , (Ur̃T)wF−|F|, (Ur̃T)wF+1, . . . , (Ur̃T)w) = a > 1.
If gcd((Ur̃T)1, . . . , (Ur̃T)wF−|F|, (Ur̃T)wF+1, . . . , (Ur̃T)w) = b 6= a held, we could perform
the elementary divisor algorithm on UG, eliminate the j-th entries for j = wF − |F| +
1, . . . , wF by column operations, then set the next diagonal entry to b and eliminate all
further entries in this column by row operations. This implies that the last elementary
divisor is equal to b which contradicts the preconditions. Thus, (Ur̃T)j ≡ 0 (mod a) for
j = 1, . . . , wF − |F|, wF + 1, . . . , w.

5.1. COPPERSMITH’S ALGORITHM WITH SYSTEMS OF EQUATIONS 79

Further, we need that (Ur̃T)j ≡ 0 (mod a) for j = wF − |F| + 1, . . . , wF . Assume that
this does not hold, i. e. we have (Ur̃T)wF−|F|+l ≡ d (mod a) for an index l ∈ {1, . . . , |F|}.
Then define cl := c̃l + d and r := r̃ − dfl and cj := c̃j for all j 6= l.

This implies
∑|F|

j=1 cjfj + r (mod a) ≡∑|F|
j=1,j 6=l c̃jfj + c̃lfl + dfl + r̃ − dfl ≡ g (mod a).

Following the same line of argumentation used before, we have

UgT ≡
|F|
∑

j=1

cjUfj
T + UrT (mod a)

≡
|F|
∑

j=1

cj(e
w−|F|+j)T + UrT (mod a)

≡

(UrT)1
...

(UrT)wF−|F|
c1 + (UrT)wF−|F|+1

...
c|F| + (UrT)wF

(UrT)wF+1
...

(UrT)w

(mod a)

with (UrT)j ≡ 0 (mod a) for j = 1, . . . , wF − |F|, wF + 1, . . . , w. Moreover, we have
(UrT)wF−|F|+l ≡ (Ur̃T)wF−|F|+l−U(dfl

T)wF−|F|+l ≡ d−(d(ew−|F|+l)T)wF−|F|+l ≡ d−d ≡ 0
(mod a). Performing this translation of cl for all l ∈ {1, . . . , |F|} such that (Ur)TwF−|F|+l 6≡
0 (mod a), we get UrT ≡ 0w×1 (mod a) and, as U is unimodular and, thus, invertible, we

get rT ≡ 0w×1 (mod a). Therefore, g ≡∑|F|
j=1 cjfj (mod a), which concludes the proof.

In case of G having only |F| elementary divisors, we know that there exist unimodular ma-
trices U and V such that UGV = Diag(a1, . . . , a|F|, 0). Thus, rank(G) = rank(UGV) <
|G| = |F| + 1. This implies that the columns of G are linearly dependent over Z,

that is, there exist c1, . . . , c|F|, c|F|+1 ∈ Z such that
∑|F|+1

i=1 ciG·,i = 0w×1. This implies
∑|F|

i=1 cifi + c|F|+1g = 0, i. e. G is linearly dependent. This contradicts the preconditions.
Thus, the theorem is proven.

As an extension of the theorem we get the following result.

Theorem 5.1.5
Let F ⊂ Z[x1, . . . , xl] be a set of polynomials.
Then F is determinant preserving if and only if for all f ∈ F and all 1 6= a ∈ N the
polynomial f is linearly independent of F \ {f} in Za[x1, . . . , xl].

Proof: As a direct application of Theorem 5.1.4 setting g = f we have "If there is a
polynomial f ∈ F and a parameter 1 6= a ∈ N such that f is linearly dependent of

80 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

F \{f}, then F is not determinant preserving". This is equivalent to "If F is determinant
preserving, then for all f ∈ F and all 1 6= a ∈ N the polynomial f is linearly independent
of F \ {f} in Za[x1, . . . , xl]".

We show the opposite direction of the equivalence "If for all f ∈ F and all 1 6= a ∈ N the
polynomial f is linearly independent of F \ {f} in Za[x1, . . . , xl], then F is determinant
preserving" by induction on the size of F using Theorem 5.1.4 in the inductive step.

First assume |F| = 1. Then F = {f} for a non-zero polynomial f . Furthermore, the
positive greatest common divisor of the coefficients of f is equal to 1. In any other case,
if gcd(f) = a > 1, then f ≡ 0 (mod a), i. e. we have linear dependence in Za which
contradicts the precondition. The claim then follows by Lemma 2.1.4, i. e. we have that
{f} is determinant preserving.

The hypothesis we use is as follows:

For an n ∈ N and any set of polynomials F such that |F| = n it holds that if for all f ∈ F
and all 1 6= a ∈ N the polynomial f is linearly independent of F \ {f} in Za, then F is
determinant preserving.

We continue with the inductive step. Let F be a set of polynomials fulfilling the precon-
dition with |F| = n + 1. Choose an arbitrary g ∈ F . Then |F \ {g}| = n, and by the
precondition it holds for all f ∈ F \ {g} and all 1 6= a ∈ N that the polynomial f is
linearly independent of F \ {f, g} in Za. Therefore, F \ {g} is determinant preserving by
the hypothesis.

From the preconditions we further get that for all 1 6= a ∈ N the polynomial g is linearly
independent of F \{g} in Za[x1, . . . , xl]. In order to apply Theorem 5.1.4 we have to verify
the second precondition that the set F is linearly independent over the integers. Assume
on the contrary that there exist integers cj ∈ Z such that

∑n+1
j=1 cjfj = 0. Without loss

of generality let g = fn+1. Then cn+1 /∈ {−1, 0, 1}. If cn+1 = 0, then F \ {g} is not
determinant preserving. If cn+1 = ±1, then it is g =

∑n

j=1(±cj)fj over the integers and,
consequently also modulo a for any a ∈ N. Both implications contradict the preconditions.
Thus, it is

∑n

j=1 cjfj ≡ 0 (mod cn+1). Without loss of generality we have ī ∈ {1, . . . , n}
such that fī ∈ F \ {g} and gcd(cī, cn+1) = 1. (If not, either all cj share a common divisor
or different cj have different common divisors with cn+1. In the first case we can divide the
whole equation by this divisor, in the second case we can just take gcd(cj, cn+1) for some
arbitrary j as new modulus.)
Therefore, we can rewrite the equation as fī ≡

∑n

j=1,j 6=ī(−c−1
ī

)cjfj (mod cn+1), i. e. fī is
not linearly independent of F \ {g, fī} in Zcn+1 [x1, . . . , xl]. This is a contradiction to the
preconditions. Consequently, F is linearly independent over the integers.
A direct application of Theorem 5.1.4 thus gives that F is determinant preserving. This
concludes the proof.

Remark 5.1.6
Note that a determinant preserving set only contains polynomials f ∈ Z[x1, . . . , xl] with
relatively prime coefficients. Any polynomial with a > 1 as greatest common divisor of
the coefficients is the zero polynomial in Za[x1, . . . , xl] and, therefore, linearly dependent

5.1. COPPERSMITH’S ALGORITHM WITH SYSTEMS OF EQUATIONS 81

modulo a.

The above theorem gives us a condition on which sets of polynomials can be used. However,
to use this condition we have to check linear independence for any a ∈ N \ {1} which, of
course, cannot be done efficiently. Therefore, we would like to have only a selection of
integers which we have to check. However, there is no such selection in general as the
following example shows.

Example 5.1.7
Let

B :=

−2 −3
3 2
4 1

 .

By a unimodular transformation U the matrix B can be transformed into

UB :=

1 0
0 5
0 0

 .

Thus, the elementary divisors of B are 1 and 5. Regarding the column vectors, we see that

−3
2
1

 = 4

−2
3
4

 (mod 5) .

That is, we do have a modular relation modulo 5 between the two column vectors. The
modulus 5, however, does not have any obvious relation to the matrix and its entries.

Nevertheless, we do not have to check for all moduli 1 6= a ∈ N. An upper bound on the

number of potential moduli is given by
(√

|F| · |cmax|
)|F|

, where F ⊂ Z[x1, . . . , xl] is the

shift polynomial set we consider, and cmax is the largest coefficient which occurs in F .
This can be seen as follows. Let again F be the matrix induced by F . Combining the
proofs of Theorem 5.1.4 and Theorem 2.1.3, we know that any potential modulus is an
elementary divisor of F. Therefore, to calculate an upper bound on the size of the potential
moduli, we determine an upper bound on the size of the largest elementary divisor. Let
U denote the unimodular transformation such that UF is the matrix with the elementary
divisors on its diagonal and all other entries being equal to zero. Let ŨF denote the matrix
UF without its zero rows. Then ŨF is an |F|× |F| submatrix of UF. Moreover, det(ŨF)
is the product of the elementary divisors. Let F̃ denote an |F| × |F| submatrix of F with
linearly independent rows. Then det(ŨF) ≤ det(F̃). Furthermore,

det(F̃) ≤
|F|
∏

i=1

∣
∣
∣

∣
∣
∣(F̃)i,·

∣
∣
∣

∣
∣
∣ ≤

(√

|F| · |cmax|
)|F|

.

82 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

Thus, we obtain an upper bound on the largest elementary divisor and, consequently, on

the largest potential modulus by
(√

|F| · |cmax|
)|F|

.

Unfortunately, all these moduli still cannot be tested efficiently. Whereas we require the
algorithms to have running time polynomial in the bitsize of cmax, the upper bound on the
number of moduli we have to check is only polynomial in cmax. That is, it is exponential
in log(cmax).

In contrast to the matrix B given in the above example, the matrices we construct using
Coppersmith’s method have some special properties. While constructing the shift polyno-
mial set, the polynomials are built in a way that every new polynomial introduces at least
one new monomial. The part of the basis matrix corresponding to the shift polynomials
is, thus, a matrix comprised of an upper triangular matrix and additional rows. Luckily,
this property enables us to further restrict the number of moduli we have to check.

Lemma 5.1.8
Let F := {f1, . . . , f|F|} ⊂ Z[x1, . . . , xl] be an ordered set of polynomials constructed such

that Mon(fj) \
(
∪j−1
i=1Mon(fi)

)
6= ∅ which is not determinant preserving. Let F be the

matrix induced by this set as before. Then there are 1 6= a ∈ C, f̄ ∈ F and cf ∈ Z such
that f̄ ≡ ∑

f∈F\{f̄} cff (mod a). Here, C denotes the set of all coefficients of monomials

in Mon(F) and divisors of them.

Proof: From the precondition using Theorem 5.1.5 it follows that there are f̄ ∈ F ,
cf ∈ Z for all f ∈ F \ {f̄}, and 1 6= a ∈ N such that

∑

f∈F\{f̄} cff ≡ f̄ (mod a). Let

w := |Mon(F)| and let m1, . . . ,m|Mon(F)| be an enumeration of the monomials of Mon(F)
corresponding to the construction of F. Let h be the largest index such that the monomial
mh occurs in the equation with non-zero coefficient. Due to the upper triangular structure,
this monomial only occurs in one of the polynomials in the equation. (Otherwise, assume it
occurs in two polynomials fi and fj with j > i. Then fj must introduce another monomial
m2 corresponding to a row index greater than h, which contradicts the choice of h.) Let
c(mh) be the coefficient of mh. Then for the equation to hold we require a|c(mh). Thus,
a ∈ C which implies the claim.

This lemma will be quite helpful in the following analyses as the polynomials we deal
with have coefficients which are mostly products of only two primes. This can be seen in
Section 6.1.
But, of course, we then have to construct a shift polynomial set in a way that it has the
required structure.

Before we turn to the analysis of various systems of equations, we will extend the defi-
nition of being determinant preserving. So far we have dealt with polynomial sets F ⊂
Z[x1, . . . , xl] to which the definition can be applied. In practice, we also have polynomial
equations f̃(x1, . . . , xl) ≡ 0 (mod N). That is, we would like to determine solutions mod-
ulo an integer N . That is, the polynomial f̃(x1, . . . , xl) is a polynomial in ZN [x1, . . . , xl].

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 83

To include various modular equations with equal or different moduli into our set, let F̃
denote the set of all shift polynomials and their corresponding moduli. Elements of F̃ are
denoted by tuples (f̃(x1, . . . , xl), N). Each polynomial f̃(x1, . . . , xl) ∈ ZN [x1, . . . , xl] can be
written as a polynomial in a polynomial ring over the integers with one more unknown. The
corresponding integer polynomial is f(x1, . . . , xl, t) := f̃(x1, . . . , xl)− tN ∈ Z[x1, . . . , xl, t].
We call the polynomial f the integer polynomial induced by f̃ . Accordingly, we define the
set F to consist of all integer polynomials f induced by polynomials f̃ ∈ F̃ . The set F
is then called the polynomial set induced by F̃ . Note that for each polynomial in F̃ one
new variable is adjoint to the polynomial ring. Thus, F ⊂ Z[x1, . . . , xl, t1, . . . , t|F̃ |]. With
this notation we can now extend the definition of determinant preserving sets to modular
polynomials.

Definition 5.1.9
Let the set of polynomials F̃ consist of tuples of polynomials and their corresponding

moduli. Then the set F̃ is called a determinant preserving set if and only if the set
F ⊂ Z[x1, . . . , xl, t1, . . . , t|F̃ |] induced by F̃ is determinant preserving.

With this definition we can derive similar conditions like the one of Lemma 5.1.8 for systems
of modular polynomial equations. As these conditions differ depending on the relation of
the moduli to each other, they will be presented in the corresponding sections.

5.2 Systems of Equations with a Common Modulus

In this section we analyze systems of modular multivariate polynomial equations with a
common modulus N , namely, we refer to a special case of the SMMPE problem. In analogy
to the univariate case, we define the problem of solving systems of modular multivariate
polynomial equations with a common modulus (SMMPE1-problem).

Definition 5.2.1 (SMMPE1-problem)
Let k ∈ N, δ1, . . . , δk ∈ N, and N ∈ N. Assume f1(x1, . . . , xl), . . . , fk(x1, . . . , xl) to be
polynomials of degree δ1, . . . , δk in ZN [x1, . . . , xl], respectively. Let

f1(x1, . . . , xl) ≡ 0 (mod N)

f2(x1, . . . , xl) ≡ 0 (mod N)
... (5.1)

fk(x1, . . . , xl) ≡ 0 (mod N)

be a system of multivariate polynomial equations.

Let Xi < N , Xi ∈ R, i = 1, . . . , l. Find all common roots (x̄1, . . . , x̄l) of (5.1) with size
|x̄i| ≤ Xi.

The analysis of modular systems is simpler than in the integer case. Let F̃ be a set of
shift polynomials and their respective moduli used to apply Coppersmith’s method 2.3.9.

84 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

Then all f ∈ F̃ are polynomials of the form mfi(x1, . . . , xl)
λ with m ∈ ZN [x1, . . . , xl] being

some monomial and λ ∈ N. Thus, the solution we are searching for is a solution of f ≡ 0
(mod Nλ) for all f ∈ F̃ .

Let F be the set of integer polynomials induced by F̃ . From these polynomials a basis
matrix is constructed. The last columns of this basis matrix correspond to the shift poly-
nomials. Let us again denote this matrix by F as it is done in Section 2.3. It consists of
an upper part Fc corresponding to the coefficients of the polynomials and a lower part Fm

corresponding to the moduli. The matrix Fm, thus, forms a diagonal matrix with entries
which are powers of N .

In the analysis in Section 5.1 we have seen additional conditions which allow for a simpler
verification if F is determinant preserving. Namely, if F consists of some upper triangular
matrix and some arbitrary matrix, the check becomes easier. In this example the upper
triangular part of F is given by Fm. The matrix Fm is not only upper triangular, but even
a diagonal matrix with the moduli as values on the diagonal. The moduli are always powers
Nλ for a value of λ ∈ N. Therefore, the only way to have linear dependence of vectors of
F is to have dependence modulo N or a divisor of N . Note that linear dependence modulo
Nλ with λ > 1 implies linear dependence modulo N . Hence, it is sufficient to test for
modular dependence with regard to N and its divisors.

Lemma 5.2.2
Let F̃ ⊂ Z[x1, . . . , xl] × N be an ordered set of polynomials and corresponding moduli

which is not determinant preserving. All moduli occurring in F̃ are powers of N . Let F
be the integer polynomial set induced by F̃ , and F be the matrix induced by F as before.
Then there are f̄ ∈ F and cf ∈ Z such that f̄ ≡ ∑

f∈F\{f̄} cff (mod a), where a|N and
a > 1.

Proof: We regard the polynomials f ∈ F ⊂ Z[x1, . . . , xl, t1, . . . , t|F|] induced by polyno-

mials f̃ ∈ F̃ . From the precondition using Theorem 5.1.5 it follows that there are f̄ ∈ F ,
cf ∈ Z for all f ∈ F \ {f̄}, and 1 6= a ∈ N such that

∑

f∈F\{f̄} cff ≡ f̄ (mod a). By

construction there is a monomial tj which occurs only in f̄ . Its coefficient is Nλ for some
λ ∈ N as it corresponds to the modulus. Then for the equation to hold we require a|Nλ

which implies the claim.

In many practical examples we take moduli N which are products of two unknown primes
p and q. Consequently, we can only test for linear dependence modulo N , but not modulo
its divisors. Nevertheless, this does not pose any problems. Linear dependence modulo p
or q implies that we get p or q as elementary divisor of the matrix. Thus, a way to break
the system would be to take some set of polynomials which is not determinant preserving,
to build up the corresponding matrix, and to calculate its elementary divisors. This can
be done quite efficiently (compare [Lüb02]). Then, given p or q, the system from which we
derived the equations is broken anyway.

In the following examples we, therefore, assume that we do not get any factors of the
moduli as elementary divisors. This assumption was valid in all our examples.

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 85

5.2.1 RSA with Related Messages and Implicit Relations

We recall the problem of RSA with related messages and implicit relations presented in
Section 4.1. A set of k secret messages m1, . . . ,mk is encrypted with an RSA public key
(N, e). Each encryption corresponds to an equation fi(xi) := xei − ci ≡ 0 (mod N) with a
solution mi. Furthermore, the messages are related by some implicit polynomial relation
p(x1, . . . , xk) such that p(m1, . . . ,mk) ≡ 0 (mod N). We have already seen how we can
determine all solutions of the system (Section 4.1) by computing a Groebner basis. Now we
will show a method to determine certain roots if Groebner basis computations do not help.
For ease of analysis we start with the case of k = 2 and a simple lattice basis. The cases
k > 2 or more complex lattice bases can be treated analogously. Moreover, we assume to
get a relation p to be valid over the integers. That is, we regard the following problem:

f1(x1) ≡ 0 (mod N)

f2(x2) ≡ 0 (mod N) (5.2)

p(x1, x2) = 0 .

Let Xi < N , Xi ∈ R, i = 1, 2. Find all common roots (m1,m2) such that |mi| ≤ Xi.

Thus, we look at the SMMPE1-problem with a simple system of multivariate equations.
For i ∈ {1, 2} let us first regard fi(xi) ≡ 0 (mod N) separately. We deal with a modular

univariate equation. We can determine its solutions |mi| ≤ Xi if Xi < N
1
e in polynomial

time according to Theorem 2.3.9. The initial lattice basis used is

Bi =

(
Di Fc

i

0 Fm
i

)

=

1 0 −ci
0 1

Xe
i

1

0 0 N

 . (5.3)

As the polynomials fi(xi) only consist of the monomials xei and 1, we just put fi into
the shift polynomial set. Then the bound can directly be computed using the simplified
condition det(Bi) > 1 given in equation (2.14).
In a first step to combine the analyses, we combine the basis matrices. That is, at the
moment we ignore the additional information we get by the additional polynomial p, but
only consider the original problem. We set

B =

1 0 0 −c1 −c2
0 1

Xe
1

0 1 0

0 0 1
Xe

2
0 1

0 0 0 N 0
0 0 0 0 N

(5.4)

as initial basis matrix for a lattice L to determine solutions of both equations fi(xi) ≡ 0
(mod N) in one analysis. We apply the simplified condition to this and obtain

det(B) > 1 ⇔ det(B1) det(B2) > 1 .

86 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

This condition is, of course, fulfilled if the basic conditions

det(B1) > 1 and det(B2) > 1 (5.5)

hold. Thus, a sufficient condition that we can determine the solutions (m1,m2) using
the lattice basis B given in (5.4) in Coppersmith’s method is that we can determine it
separately using the lattice bases B1 and B2 described in (5.3), i. e. condition (5.5) holds.
As the equations f1(x1) ≡ 0 (mod N) and f2(x2) ≡ 0 (mod N) do not share any variables,
condition (5.5) ought to be necessary as well. However, just regarding the determinant,
this is obviously not the case. If e. g. | det(B1)| ≫ 1, then | det(B2)| could be smaller
than one without violating condition (5.5) anyway. To see why Coppersmith’s method
fails under these preconditions, we look at it in more detail. By failure in this case we
mean that we do not get any further equations containing the variable x2. Thus, we
are only able to determine m1, but not m2. Note, however, that we can calculate m2

by substituting x1 by m1 in p(x1, x2) and then determining the roots of the univariate
polynomial p(m1, x2) ∈ Z[x2] over the integers. This works in this case as only one message
is missing. In case of k > 2, however, we could fail to determine more than one message. In
order to develop a general strategy which can be applied to those cases as well, we continue
with our example without taking p into account.
Let us now assume | det(B)| > 1 but | det(B2)| ≤ 1. The latter implies Xe

2 ≥ N . We start
with the basis B as basis of our lattice. In order to get a basis of the sublattice, the basis
matrix B is transformed into

UB =

1 c1
Xe

1

c2
Xe

2
0 0

0 − N
Xe

1
0 0 0

0 0 − N
Xe

2
0 0

0 1
Xe

1
0 1 0

0 0 1
Xe

2
0 1

(5.6)

by a unimodular transformation U. Let LS denote the sublattice of vectors with zeros in
their last two components. Then a basis BS of LS is given by the first three rows of B.
When considering vectors in LS, we regard them as vectors with only three components as
the other components are zero anyway. Recall that LS contains the vector tS := (1,

me
1

Xe
1
,
me

2

Xe
2
)

with norm ||tS|| ≤
√

3 ∈ O(1).
Subsequently, we perform LLL-reduction on BS and orthogonalize it. We denote the re-
sulting matrix by BR

∗. Let b1
∗,b2

∗,b3
∗ be the rows of BR

∗. Due to the lower bound on
the absolute value of the determinant, the vector tS is at least orthogonal to b3

∗. That
is, by construction we have ||tS|| < ||bi

∗|| for at least i = 3. It might also hold for further
basis vectors. Each such vector bi

∗ is orthogonal to tS. Using this condition, we get a new
non-modular equation (bi

∗)1 + (bi
∗)2 · m

e
1

Xe
1

+ (bi
∗)3 · m

e
2

Xe
2

= 0. The solutions m1 and m2 are,

thus, integer solutions of the equation (bi
∗)1 + (bi

∗)2 · xe
1

Xe
1

+ (bi
∗)3 · xe

2

Xe
2

= 0.

We will show in the following paragraph that (bi
∗)3 = 0 for all bi

∗ orthogonal to tS. This

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 87

implies that we only get additional information in x1 and still cannot determine a solution
of f2(x2). Looking at the basis matrix, we can easily see that the vector v := (0, 0,− N

Xe
2
)

also is a vector in LS. From the condition Xe
2 ≥ N we derive | − N

Xe
2
| ≤ 1 and, thus,

||v|| ≤ 1. We even have ||v|| ≤ ||ts||. Therefore, v is a vector in the same hyperplane as
tS is. Consequently, any vector bi

∗ orthogonal to that hyperplane is also orthogonal to v.
Hence, we get the condition (bi

∗)1 · 0 + (bi
∗)2 · 0− (bi

∗)3 · N
Xe

2
= 0. This implies (bi

∗)3 = 0.

We generalize this observation to an arbitrary number of k equations and show that com-
bining shift monomial sets does not improve the bound.

Theorem 5.2.3
Let k ∈ N and fi(xi) ≡ 0 (mod N), i = 1, . . . , k, be polynomials of degree δi. Let x̄i
denote a root of fi, i. e. fi(x̄i) ≡ 0 (mod N). Let Xi ∈ R be a bound on the solution
x̄i, namely |x̄i| ≤ Xi. Then the following holds: If all solutions (x̄1, . . . , x̄k) ∈ Zk

N can be
determined applying Coppersmith’s method to one lattice built with regard to a combined
shift polynomial set F = ∪ki=1Fi, where Fi ⊂ ZN [xi] denotes a shift polynomial set with
respect to fi, then we can determine the solutions using separate lattices with regard to

Fi as well. Furthermore, Xi < N
1
δi for all i.

Proof: First recall that Theorem 2.3.9 states that for any i the equation fi(x̄i) ≡ 0

(mod N) can be solved if |x̄i| ≤ Xi < N
1
δi . The shift polynomial set used for the analysis is

Fi ⊆ ZN [xi]. Let F := ∪ki=1Fi. The set Mon(F) denotes the set of all monomials occurring
in F . We denote by wi := |Mon(Fi)| and by w := |Mon(F)| the number of monomials
occurring in Fi and F , respectively. We will show that if all solutions (x̄1, . . . , x̄k) ∈ Zk

N

can be determined applying Coppersmith’s method with shift polynomial set F , then they
can be determined applying Coppersmith’s method to each polynomial fi separately using
Fi. This results in the claim.

Without loss of generality we assume all f ∈ F to be monic. If they are not, we can either
invert the leading coefficient modulo N or compute a divisor of N . By Theorem 2.3.9 it is
fi ∈ Fi. Let

Bi =

(
Di Fc

i

0 Fm
i

)

=

1 0 . . . 0 fi0 ∗ . . . ∗
0 D̃i F̃c

i

0 Fm
i

 (5.7)

denote a basis matrix of the lattice Li constructed with regard to Fi to obtain this bound.
In the second representation of the initial basis matrix Bi, the row corresponding to the
monomial 1 is explicitly named so that the matrix D̃i equals Di without its first row and

column. The matrix F̃c

i
equals Fc

i without its first row. The value fi0 ∈ ZN denotes
the constant term of fi. The values ∗ correspond to the constant terms of the other shift
polynomials. They might also be equal to zero. A basis of the lattice L constructed with

88 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

regard to F is given by

B =

1 0 . . . 0 f10 ∗ . . . ∗ . . . fk0 ∗ . . . ∗
D̃1 F̃c

1

.

D̃k F̃c

k

Fm
1

. . .

Fm
k

. (5.8)

Non-included values are equal to zero.

We use this notation to prove the claim by contraposition. We show ”If Xi > N
1
δi for some

i ∈ {1, . . . , k} (that is, if we cannot determine x̄i via Coppersmith’s algorithm using the
lattice Li), then we cannot determine x̄i using Coppersmith’s algorithm with basis matrix
B either”.
Without loss of generality we assume X1 > N

1
δ1 . (In any other case we simply permute

the polynomials in the shift polynomial set.)
The sets Fi are determinant preserving by construction. As each set contains a different
variable xi, their union F is determinant preserving as well. For a proof let us assume
the contrary. Then there is a subset S ⊆ F with S ∩ Fi 6= ∅ for at least two indices
i ∈ {1, . . . , k} such that

∑

f∈S cff ≡ 0 (mod N) and cf 6= 0. For i ∈ {1, . . . , k} with

Fi ∩ S 6= ∅ let f̄i denote the polynomial of maximal degree in xi. Let x∆i

i denote the
monomial of maximum degree. The polynomial f̄i is unique as any polynomial in Fi (if
the polynomials are ordered appropriately) introduces a new monomial. Therefore, no
other polynomial in Fi ∩ S contains the monomial x∆i

i . Furthermore, polynomials in Fj

with j 6= i do not contain monomials in xi. Consequently, f̄i ∈ S is the only polynomial
in which the monomial x∆i

i occurs. For the linear dependence relation to hold, we need
to have cf̄i

≡ 0 (mod N). This contradicts the assumption that f̄i ∈ S. Thus, F is
determinant preserving. This implies that there exists a unimodular transformation of B

to (
BS 0

∗ I|F|

)

. (5.9)

The matrix ∗ is a matrix with arbitrary values which are not important for our analysis.
We denote by LS the lattice spanned by the basis vectors of BS. Let us look at BS in more
detail. Recall that large vectors of the LLL-reduced and orthogonalized version of BS are
orthogonal to some target vector t. This gives rise to additional equations in the unknowns.
Our goal is to show that these vectors have a special structure so that the induced equations
do not contain monomials in x1. Then we cannot get further information on x̄1 and are,
therefore, unable to determine it this way. Due to the structure of B we can look at the
matrix

B̃1 =

(

D̃1 F̃c

1

0 Fm
1

)

(5.10)

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 89

separately. What we do here is taking the second until (w1)-th and the (w + 1)-th until
(w + |F1|)-th basis vector. These basis vectors only have non-zero entries in the second
until (w1)-th and the (w + 1)-th until (w + |F1|)-th columns. Therefore, it suffices to
regard those. Operations on the rows of B̃1 do not influence any other columns. As the
polynomials in F1 are monic and each new polynomial introduces a new monomial with

coefficient one, F̃c

1
contains a diagonal with values one. The values below this diagonal

are equal to zero. The rows corresponding to the ones can be permuted with the rows of
Fm

1. Then, we have transformed B̃1 to

D̃1
u F̃c

1

u

0 Fm
1

D̃1
l F̃c

1

l

 . (5.11)

Here, D̃1
l denotes the lower |F1| rows of D̃1 and D̃1

u its upper part. Analogously, F̃c

1

l

denotes the lower |F1| rows of F̃c

1
and F̃c

1

u its upper part. The last |F1| columns form a
rectangular matrix. Its last |F1| rows form an upper triangular matrix with value one on
the diagonal. To conclude, we use these last rows to eliminate all further values. Thus, by
further transformations, we get (

BS
1 0

∗ I|F1|

)

. (5.12)

Note that each row vector is (w1 − 1 + |F1|)-dimensional as the first column, which corre-
sponds to constant terms, is not included. We are interested in the values in BS

1 because
they correspond to row vectors in BS as it is

BS =

∗ ∗

0

BS
1

. . .

BS
k

. (5.13)

A row of
(

BS
1 0

)
is constructed in one of two ways. Either it originates from a row of

(

D̃1
u F̃c

1

u

)

or it originates from a row of
(

0 Fm
1
)
. For d = 1, . . . , δ1 − 1 let ũd :=

(0, . . . , 0, 1
Xd

1
, 0, . . . , 0, c1, . . . , c|F1|) = 1

Xd
1
ed +

∑|F1|
i=1 cie

w1−1+i denote a row in the first case.

In this case all non-zero values ci have to be eliminated. Let ud := (0, . . . , 0, N, 0, . . . , 0) =
New1−1+d, d = 1, . . . , |F1|, denote a row vector in the second case. Here only the value N
has to be eliminated.
The question is what happens in the elimination step. The rows used for elimination are
of type ṽw1−1+d := (0, . . . , 0, 1

X
δ1−1+d

1

, 0, . . . , 0, 1, a
(d)
w1+d, . . . , a

(d)
w1+|F1|) = 1

X
δ1−1+d

1

eδ1−1+d +

ew1−1+d +
∑|F1|−1

j=d a
(d)
w1+je

w1+j for d = 1, . . . , |F1| with a
(d)
w1+j ∈ Z. In a first step, we

transform these vectors by eliminating the a
(d)
w1+j. We set vw1−1+|F1| := ṽw1−1+|F1| and

iteratively define vw1−1+d := ṽw1−1+d − a
(d)
w1+dvw1−1+(d+1) for d = |F1| − 1, . . . , 1. Thus,

90 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

vw1−1+d :=
∑|F1|

j=d

(−1)j−d
∏j

s=d+1 a
(s−1)
w1+s−1

X
δ1−1+j

1

eδ1−1+j + ew1−1+d.

We start by modifying the vectors ud. To eliminate N , one has to compute b̃δ1−1+d :=
ud − Nvw1−1+d, d = 1, . . . , |F1|, and gets a vector with zeros as last |F1| values because
it is w1 − 1 ≥ |F1| + δ1 − 1. The first values, thus, give a row vector in BS

1, namely
∑|F1|

j=d

(−1)j−d+1N
∏j

s=d+1 a
(s−1)
w1+s−1

X
δ1−1+j

1

eδ1−1+j. Note that the (δ1−1+d)-th component of b̃δ1−1+d is

−N
X

δ1−1+d

1

. It has absolute value smaller than one because due to the preconditions we have

Xd
1 ≥ Xδ1

1 > N if d ≥ δ1. Successively substracting appropriate multiples of b̃δ1−1+j, j =

d + 1, . . . , |F1|, from b̃δ1−1+d, we get a vector bδ1−1+d such that alle entries are smaller
than one. Consequently, an upper bound on the norm of bδ1−1+d is given by

√

|F1| + 1.
To eliminate the last entries of ũd, we subtract cj-times vw1−1+j from ũd. This results

in b̃d := 1
Xd

1
ed +

∑|F1|
j=1 −cj

(
∑|F1|

j=d

(−1)j−d
∏j

s=d+1 a
(s−1)
w1+s−1

X
δ1−1+j

1

)

eδ1−1+j with d = 1, . . . , δ1 − 1. As

w1−1 ≥ |F1|+δ1−1, the last |F1| values in this vector are zero. Its first entries, thus, give
a row vector in BS

1. We use the vectors bδ1−1+d for further reducing the other entries and
denote the result by bd. As before all non-zero values in the reduced vector bd are smaller
than one. There are at most |F1| + 1 non-zero values in bd. Hence, ||bd|| ≤

√

|F1| + 1.
Overall,

(
BS

1 0
)

=

b1

...
bδ1−1+|F1|

 . (5.14)

Recall that when applying Coppersmith’s technique with regard to the lattice L using

the basis B, the target vector is defined as t := (1, x1

X1
, . . . ,

x
δ1+|F1|−1
1

X
δ1+|F1|−1
1

, x2

X2
, . . . ,

x
δk+|Fk|−1

k

X
δk+|Fk|−1

k

).

The target vector is of size ||t|| ≤ √
w. As each polynomial introduces at least one new

monomial, we have w = |Mon(F)| ≥ |F| ≥ |F1| + 1. Let B∗ denote an LLL-reduced
and orthogonalized basis of the sublattice LS. If ||b∗

i || > ||t|| for an index i, then also
||b∗

i || > ||bd|| for all bd. The vectors bd are δ1 − 1 + |F1| vectors in a vector subspace of

dimension δ1 − 1 + |F1|. As the determinant of B̃1 is not equal to zero, the vectors are
linearly independent and form a basis of this vector subspace. Another basis of this vector
subspace is given by the set {e2, . . . , eδ1+|F1|}. Thus, if bi

∗ is orthogonal to all bd, it is also
orthogonal to ei for i = 2, . . . , δ1 + |F1|. Consequently, (bi

∗)d = 0 with d = 2, . . . , δ1 + |F1|.
The values (bi

∗)d correspond to the second until w1-th component of a vector in the original
lattice LS. Therefore, any equation we get by applying Coppersmith’s method will not
contain any monomial in x1. This implies that we cannot determine x̄1 which concludes
the proof.

In the analysis of a system of independent equations, i. e. equations not sharing any
variables, it is useless to construct a lattice like the lattice L to combine the analyses of the
equations. This matches the results we have expected beforehand. Another option would
be to shift the single polynomials by monomials in other variables. Advantage could then

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 91

be taken of shared monomials. The shared monomial of smallest degree when shifting f1

and f2 is the monomial xe1x
e
2. We obtain this monomial by the shift polynomials xe1f2 and

xe2f1. However, it is xe1f2 − c1f2 − xe2f1 + c2f1 ≡ f1f2 − f1f2 ≡ 0 (mod N). Hence, a shift
polynomial set including the shifts {xe1f2, f2, x

e
2f1, f1} is not determinant preserving. At

least one of the polynomials has to be excluded from the shift polynomial set. Then the
contribution of the shift polynomial set to the determinant is X−2e

1 X−2e
2 N3. Without the

”mixed” shifts the bound is X−e
1 X−e

2 N2 > 1. As X−2e
1 X−2e

2 N3 > 1 implies X−e
1 X−e

2 N2 > 1
all solutions that can be calculated with the former approach can also be calculated with
the latter. Hence, it is better only to include the shifts polynomials f1 and f2 in the shift
polynomial set.
Same results hold for higher degree shift monomials leading to the same dependencies.
Thus, multiplication by monomials in other variables does not help to obtain a better
bound. This again meets our expectations as the polynomials are independent.

So why did we consider these shared lattices at all? Adding a single equation in both
variables to the lattice can significantly improve the bound. To see this, let us return to
the system of equations (5.2). We assume that x̄1 ≤ x̄2 and, thus, X1 ≤ X2. Suppose
p(x1, x2) contains the monomial xe2 and only one monomial xi11 x

i2
2 not occurring in f1 or

f2. Further, let i2 < e. The idea is to substitute xe2 by the new monomial and build up
the corresponding lattice L. Then more powers of X−1

1 but less powers of X−1
2 appear

in the determinant. To see if this helps to improve our analysis, we apply the simplified
condition (2.14) to our construction. That is, we require | det(L)| > 1 and, as X−1

1 > X−1
2 ,

the bound is improved. It is then better adapted to the different sizes of the unknowns.
As substitution becomes more difficult when monomials reappear due to shifts, we do not
explicitly perform the substitution but add further columns in the lattice. Let us continue
with the example to see how the technique is used. Let p(x1, x2) = xe2 + p1x

e−2
1 x2 + p0 with

p1, p0 ∈ Z. We define a new lattice Lp by a basis matrix which includes p:

Bp =

1 0 0 p0 −c1 −c2
0 1

Xe
1

0 0 1 0

0 0 1
Xe−2

1 X2
p1 0 0

0 0 0 1 0 1
0 0 0 0 N 0
0 0 0 0 0 N

. (5.15)

Remark that the structure of Bp is different to what we have seen so far. It combines
column vectors used in the modular and in the integer case. If one compares it to B, the
column corresponding to the diagonal entry 1

Xe
2

is replaced by the column corresponding to

the new equation p(x1, x2) = 0. We no longer have to introduce the monomial explicitly in
the diagonal matrix but get it ”for free” with the help of p. However, as p includes another
new monomial, this has to be added on the diagonal.

92 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

With unimodular transformations Bp can be transformed to

1 c1
Xe

1
0 0 0 −c2 − p0

0 − N
Xe

1
0 0 0 0

0 0 1
Xe−2

1 X2
0 0 −p1

0 0 0 1 0 1
0 1

Xe
1

0 0 1 0

0 0 0 0 0 N

. (5.16)

Without loss of generality we can assume N and p1 to be coprime. (Otherwise we can
compute a divisor of N which compromises the RSA public key (N, e).) Therefore, there
is a unimodular transformation of Bp into

(
(Bp)S 0

∗ I3

)

. (5.17)

Further applying Coppersmith’s method, we get an additional equation in the unknowns
if the condition | det(Lp)| > 1 is fulfilled. (For a better understanding we again use the
simplified condition.) It is det(Lp) = X−2e+2

1 X−1
2 N2 > 1 ⇔ X2e−2

1 X2 < N2.

Note that the target vector here is (tp)S = (1,
xe
1

Xe
1
,
xe−2
1 x2

Xe−2
1 X2

). Furthermore, remark that

plugging a solution m1 into p(x1, x2) gives an equation in only one unknown x2 over the
integers. The solution of the second unknown m2 can, thus, be of any size if m1 is small
enough. This is exactly what the determinant condition gives. Assume for example that

m2 is of full size, i. e. X2 = N . The condition then becomes X1 < N
1

2e−2 .
With respect to our initial problem, we have not improved the bounds this way. If we

regard f1 separately, the upper bound on X1 is N
1
e , which is better than N

1
2e−2 . Using

p(m1, x2), any solutionsm2 ∈ ZN can then be determined. However, using additional shifts,
the condition can be improved further. We will show this with regard to a more general
setting. The above example should only illustrate the general method. For instance, if
k > 2, and if we have only one additional polynomial p denoting an implicit relation
of the messages m1, . . . ,mk, the technique might be useful. Namely, we can use p only
to determine one message of arbitrary size provided that the other messages are given
beforehand. This implies that all other messages have to fulfill the condition Xi < N

1
e .

Building a lattice with the original equations and the implicit relation, however, might
allow to calculate different solutions. That is, more than one message may be of size larger
than N

1
e if there are other messages which are significantly smaller.

In what follows we will give an algorithm to change a lattice basis and apply Coppersmith’s
algorithm when given a set of k independent equations fi(xi) ≡ 0 (mod N) of degree δi,
i = 1, . . . , k, and a set of κ < k implicit relations pi(x1, . . . , xk) = 0, i = 1, . . . , κ. The
major steps of the algorithm are as follows:

1. For each pi determine the most costly monomial not yet introduced and denote it by
mi.

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 93

2. Determine a determinant preserving shift polynomial set F with shifts of f1, . . . , fk
that uses many mi and powers of them.

3. Construct a standard lattice basis B with regard to the shift polynomial set F .

4. Substitute columns of D by columns corresponding to shifts of pi.

5. Perform Coppersmith’s method with the given basis matrix.

We elaborate on the steps of the algorithm.

Determine costly monomials
Recall from the example that the implicit relations are used to eliminate monomials and,
if necessary, replace them by others. For each polynomial pi(x1, . . . , xk) we have to decide
which monomial it shall introduce in the lattice. Further, we have to distinguish useful
from non-useful replacements.
The contribution of a monomial m(x1, . . . , xk) to D and, thereby, to the determinant of
the lattice is M−1, where M := m(X1, . . . , Xk) denotes the evaluation of m on the upper
bounds of the unknowns. For the rest of this paragraph when talking about ”larger” or
”smaller” monomials we think of larger or smaller with respect to the absolute values of
the monomials if evaluated at (X1, . . . , Xk). Given a single polynomial p1, it is, therefore,
best to choose m1 as the largest monomial of p1. When regarding more than one polyno-
mial, we have to take into account that different polynomials might share monomials. For
example, the same monomial should not be introduced by more than one polynomial. A
useful replacement can then be performed in the following way:
Let P := {p1, . . . , pκ} and M := Mon(P) denote the set of all monomials in P . For
i = 1, . . . , κ perform the following steps:
Define mi to be the largest monomial in M and set p̃i to be the corresponding polyno-
mial. If there is more than one polynomial in which mi occurs, then we look at the other
monomials in both polynomials. Let p and q denote these two polynomials. Further, let
Mp := Mon(p) \ Mon(q) and Mq := Mon(q) \ Mon(p). Suppose the largest monomial in
Mp is greater than the largest monomial in Mq. Then choose p̃i to be the polynomial q.
If there are more than two polynomials, compare them successively. This leads to a unique
choice of p̃i as this comparison is transitive.
Redefine P := P \ {p̃i} and M := Mon(P) \ {m1, . . . ,mi}.
In the end, we have defined a sequence m1, . . . ,mκ to be introduced, and ordered the poly-
nomials p̃1, . . . , p̃κ to correspond to this.

Determine a basic shift polynomial set
Unfortunately, there is no good generic method to determine a shift polynomial set given
any set of polynomial equations fi(x1, . . . , xk) ≡ 0 (mod N), i = 1, . . . , k. Most times,
better bounds can be achieved if the choice of shift polynomials is adapted to the specific
set of polynomial equations and additional relations pi(x1, . . . , xk) = 0, i = 1, . . . , κ. Nev-
ertheless, we will give two basic approaches here. Note that we define the shift polynomial
set only with respect to the polynomial equations fi(x1, . . . , xk) ≡ 0 (mod N), the implicit

94 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

relations are only included after the lattice basis has been constructed. Then they are used
to increase the value of the determinant and, hence, improve the bound.
We distinguish two cases with respect to the monomials which occur in the polynomials
fi. Case 1 denotes that the polynomials fi share most of the variables and many monomi-
als, whereas case 2 denotes that only a few monomials occur in two different polynomials.
Furthermore, there are variables only occurring in some of the polynomials. The example
of RSA with related messages falls into this category.
In the first case, we define the shift polynomial set as follows. For λ ∈ N let M :=

Mon
(

(
∑k

i=1 fi)
λ
)

. The general idea is to follow the construction by Ellen Jochemsz and

Alexander May [JM06]. Like them, we assume without loss of generality all polynomials
fi to be monic. Furthermore, we assume that all monomials which occur in f j1i also occur
in f j2i provided that j2 ≥ j1.
For any monomial which shall occur, a polynomial by which it is introduced is defined.
When doing so, a polynomial power as large as possible is used. This is because any poly-
nomial power f li in the shift polynomial set contributes a power N l to the determinant.
Recall that the intention is to have a large determinant as a large determinant implies a
better bound. For each monomial m we search for a power as large as possible of a leading
monomial LM(fi) which divides m. In contrast to the approach in the case of one poly-
nomial, we have to take into account which of the polynomials fi to take. For i = 1, . . . , k
and l = 0, . . . , λ+ 1 we define the set of monomials

Mil := {m | m ∈ M and
m

LM(fi)l
is monomial of fλ−li } .

The union of Mil for equal values of l is denoted by Ml := ∪ki=1Mil. Thus, a monomial
m in Ml \Ml+1 can be introduced by a shift polynomial of the form m

LM(fi)lf
l
i . Now, we

define the polynomials

gm(x1, . . . , xk) :=
m

LM(fi)l
f li , l = 0, . . . , λ, i = 1, . . . , k and

m ∈ Mil \
(
Ml+1 ∪

(
∪i−1
j=0Mjl

))
.

We set F to be the set of all polynomials gm.

In the second case, the joint shift polynomial set F is defined by joining the shift poly-
nomial sets Fi of the polynomials fi shifted individually, exactly following the standard
approach by Ellen Jochemsz and Alexander May [JM06]. For a general system of equa-
tions, both approaches can be combined in an appropriate manner.

Construct a lattice basis
Given a shift polynomial set, the construction of a lattice basis is straightforward and can
be performed as in Section 2.3.

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 95

Substitute columns of the basis
For eachmλi

i , i ∈ {1, . . . , κ}, and for all entriesm in D, check ifmi divides the monomialm.
If yes, check if { m

m
λi
i

pi(x1, . . . , xk)}∪F is still determinant preserving. If yes, then substitute

the column of D by the coefficient vector of m

m
λi
i

pi(x1, . . . , xk). If necessary, introduce

further monomials occurring in m

m
λi
i

pi(x1, . . . , xk) on the diagonal. That is, add another

row and column for each new monomial. As the monomials mi are ordered such that their
size decreases, substitutions in monomials occurring only due to other substitutions are
covered by this approach.

Perform Coppersmith’s method
Having constructed a lattice basis B, we can now proceed as described in Section 2.3. The
upper bounds on the sizes of the unknowns can be determined with the folklore analysis
and depend on the determinant of B.

The algorithm described here gives a method to analyze any modular multivariate system
of equations with the same modulus and additional integer relations. The method used
to introduce new columns is a variant of the unraveled linearization technique presented
by Mathias Herrmann and Alexander May in [HM09] to analyze pseudo random number
generators. In unraveled linearization new monomials are directly substituted, whereas
we introduce new polynomials in the lattice. For integer relations, however, this does not
make a difference. In case of modular relations all sharing the same modulus, unraveled
linearization can be performed analogously, whereas there is no obvious way to include the
modular relations in the lattice without introducing a new monomial. However, if powers
of modular polynomials occur in the shift polynomial set, direct substitutions are no longer
possible with unraveled linearization either. The method of unraveled linearization, too, is
adapted to the special shape of the polynomials and the implicit relations. Unfortunately,
this implies that the algorithm in this form cannot be automated. In practical analyses
human interaction is required.

5.2.2 RSA with Random Paddings

Another example of a system of equations with a common modulus can be derived from
RSA with random paddings. Let (N, 3) be a user’s public key, where N is an n-bit number.
A message m of α < n bits is then encrypted as c ≡ (2α+τv + 2τm+ w)

3
(mod N) for

a random τ -bit number w and a random (n− α− τ)-bit number v. The message m as
well as the values v and w are secret and not known to any attacker. At first sight this
problem seems to be easier than the example given in the previous subsection as the
relations between two different RSA encrypted messages are explicit, linear and monic.
The relations, however, are no longer completely known but include further (relatively
small) unknowns.
The case of two such encryptions of the same message with different paddings is described

96 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

and analyzed in [Jut98]. Let

f1(m) :=
(
2α+τv1 + 2τm+ w1

)3 − c1 ≡ 0 (mod N)

and f2(m) :=
(
2α+τv2 + 2τm+ w2

)3 − c2 ≡ 0 (mod N)

be the polynomial equations derived from two different encryptions of the same message
m with paddings (v1, w1) and (v2, w2). Set

m1 = 2α+τv1 + 2τm+ w1

and m2 = 2α+τv2 + 2τm+ w2 .

Charanjit S. Jutla aims at using the technique applied by Don Coppersmith et al. [CFPR96]
described in Section 3.1 to solve RSA with affinely related messages and known relations.
In contrast to the example given there, however, in this case we have further unknowns
from the unknown paddings. Therefore, in order to determine these unknowns, set v12 :=
v2 − v1, w12 := w2 − w1 and ∆12 := 2α+τv12 + w12. With this notation it follows that
m2 ≡ m1 + ∆12 (mod N). To define a system of equations, we replace the values by
variables. Let x represent m1, ti represent vi, ui represent wi and ρ12 := 2α+τ t12 + u12 =
2α+τ (t2 − t1) + (u2 − u1) correspond to ∆12.
Thus, we regard the following system of equations

g1(x) := x3 − c1 ≡ 0 (mod N)

and g12(x, ρ12) := (x+ ρ12)
3 − c2 ≡ 0 (mod N) .

To eliminate the unknown x, Charanjit S. Jutla computes the resultant of the two polyno-
mials with respect to x in ZN , namely res12(ρ12) := Resx(g1(x), g12(x, ρ12)). Resubstituting
ρ12, one gets a bivariate polynomial r12 in (t12, u12) with small roots v2 − v1 and w2 − w1

modulo N . Applying Coppersmith’s method to r12(t12, u12), the roots can be found as long
as the unknowns are small enough. The product of the unknowns ought to be bounded by
N

1
9 , i. e. the total padding must be smaller than one ninth of the bitsize of N . This result

can be obtained by applying a generalization of Coppersmith’s original method and using
a generalized lower triangle to build up the shift polynomial set [JM06]. Subsequently, we
can substitute ρ12 by the solution ∆12 := 2α+τ (v2 − v1) + (w2 −w1) in g12. Then g1(x) ≡ 0
(mod N) and g12(x,∆12) ≡ 0 (mod N) denote two equations derived from RSA encryption
with known relation. Such a system can be solved by the method of Don Coppersmith,
Matthew Franklin, Jacques Patarin and Michael Reiter [CFPR96] presented in Section 3.1.
Now let us consider what happens if we get another encryption of the same message with
a different padding. Intuitively, an additional equation implies additional information and
the bound should improve. This is trivially the case as we no longer have to require that
|(v2 − v1)(w2 − w1)| is smaller than N

1
9 . Let

f3(m) :=
(
2α+τv3 + 2τm+ w3

)3 − c3 ≡ 0 (mod N)

denote the equation derived from new encryption of the message m. Then, analogously to
the combination of f1 and f2 presented above, we can also combine f3 with either f1 or f2.

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 97

We obtain the analogue conditions |(v3 − vi)(w3 −wi)| < N
1
9 , i = 1, 2. Thus, if any of the

products of the unknowns is smaller than N
1
9 , the message m can be determined. That is,

we require the following condition:

min{|(v2 − v1)(w2 − w1)|, |(v3 − v1
︸ ︷︷ ︸

=:v13

)(w3 − w1
︸ ︷︷ ︸

=:w13

)|, |(v3 − v2
︸ ︷︷ ︸

=:v23

)(w3 − w2
︸ ︷︷ ︸

=:w23

)|} < N
1
9 .

The question now is if we can improve on this result using lattice-based techniques like
Coppersmith’s method. Unfortunately, there are strong arguments that this is not the case.
First of all, we combine f1 and f3 in the same manner as we have combined f1 and f2 to get
a polynomial g13(x) := (x+ρ13)

3 − c3. Here ρ13 := 2α+τ (t3 − t1
︸ ︷︷ ︸

=:t13

)+ (u3 − u1
︸ ︷︷ ︸

=:u13

). The variables

ti and ui again correspond to the target values vi and wi, respectively. We would like to
eliminate the variable x as it corresponds to a large value and compute the resultant of
g1 and g13 to get a polynomial res13(ρ13) := Resx(g1(x), g13(x, ρ13)). By resubstituting ρ13,
we get the bivariate polynomial r13(t13, u13) of maximum total degree nine. Note that the
variables t12 and t13 as well as the variables u12 and u13 are pairwise independent as they
are derived from independent variables. Consequently, the bounds we obtain for a joint
shift polynomial set will not improve on the bound we obtain for separate shift polynomial
sets. Explanations for this have been given in Subsection 5.2.1 for a system of univariate
equations in independent variables. The argumentation given in the proof of Theorem 5.2.3
analogously works in case of more than one variable. Thus, we get the condition

|(v2 − v1)(w2 − w1)(v3 − v1)(w3 − w1)| < N
2
9 .

This implies

min{|(v2 − v1)(w2 − w1)|, |(v3 − v1)(w3 − w1)|} < N
1
9 ,

the condition we have already obtained using the trivial analysis.

So far we have combined g1 and g12 as well as g1 and g13. A third alternative is to combine
g12 and g13. Note that Resx(g12(x, ρ12), g13(x, ρ13)) is a polynomial in ρ13−ρ12 of maximum
degree nine. Resubstituting both variables results in the polynomial r23((t3 − t2

︸ ︷︷ ︸

=:t23

), (u3 − u2
︸ ︷︷ ︸

=:u23

))

likewise of maximum total degree nine. If t23 and u23 were independent of t12, t13, u12 and
u13, we could again follow the argumentation given for two equations and the bound would
not improve. The variables t23 and u23, however, depend on t12, t13, u12 and u13 in a trivial
way: It is t23 = t3− t2 = t3− t1 + t1− t2 = t13− t12 and, analogously u23 = u13−u12. Thus,
ρ23 = ρ13−ρ12. These are integer relations we might again use to eliminate variables in the
construction of the lattice basis . We define the polynomial r(ρ12, ρ13, ρ23) := −ρ23+ρ13−ρ12

corresponding to the relation −ρ23 + ρ13 − ρ12 = 0.

The question is if this relation helps to improve the bound. Unfortunately, we can give
strong arguments that it does not. To see why this is the case, we look at possible lattice

98 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

constructions. We pursue two different approaches to choose a shift polynomial set. Then
we argue why these shift polynomial sets do not help to improve the bound. As the
lattice constructions we consider are relatively general, we can exclude many at first sight
promising shift polynomial sets. Note however, that we do not prove that no better lattice
construction exists.

The first shift polynomial set is based on shifts of r12(ρ12), r13(ρ13) and r23(ρ23). Then, like
in the previous section, we use the known relation r between the unknowns to introduce
some of the monomials which occur in the shift polynomial set. As usual, let D denote
the left part of the basis matrix we use in Coppersmith’s algorithm. Adding a multiple of
the relation r in the shift polynomial set only influences the determinant of the lattice by
changing the set of monomials which have to be introduced. That is, the elements on the
diagonal of D are changed. This implies that the bound can only be improved if more or
larger monomials can be eliminated from D than have to be introduced. However, this is
not the case as we show by a counting argument.
The second shift polynomial set is constructed with respect to the polynomials r12(ρ12),
r13(ρ13) and r23(ρ12, ρ13). That is, we use the known relation to describe r23 directly as a
polynomial in the unknowns ρ12 and ρ13.
We determine the maximum total degree of a monomial in the shift polynomial set. We
assume all monomials with degree l = 3λ, λ ∈ N, of small enough degree to occur in the
shift polynomial set. This is a sensible assumption due to the structure of r23.
Then we calculate the maximum number maxr of shifts of each polynomial that can be
included in the shift polynomial set. By this, we maximize the number of factors N l we
can obtain in the determinant of our lattice.
On the other hand, we determine the maximum number maxd of polynomials that form a
determinant preserving set. An upper bound for this is given by the number of monomials
that occur in F . Then we compare the number of potential shift polynomials to the
upper bound on the size of a determinant preserving shift polynomial set. With growing
maximum total degree, we observe that maxd and maxr are of approximately the same size.
More precisely, maxd−maxr = o(l2), whereas maxd = Ω(l2) and maxr = Ω(l2). Thus, if
we take all possible shifts of one of the polynomials, we cannot add any further shifts to
our shift polynomial set. Otherwise, the set would not remain determinant preserving.
Consequently, we may assume that adding shifts of a second polynomial does not help to
improve the bound. Shifts of a second polynomial can only be included if shifts of the first
polynomial are left out.
We will now describe the two variants in detail.

Approach 1
The first variant is to build up the lattice as before. Then we can add shifts of the
integer polynomial r(ρ12, ρ13, ρ23) := −ρ23 + ρ13 − ρ12. By this additional relation we can
eliminate monomials as in the previous section. During the elimination process, however,
we introduce more new monomials than we can eliminate old ones without getting further
positive factors in the determinant. Let us have a look at a simple basis matrix constructed

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 99

with the shift polynomial set {r12, r13, r23}. Furthermore, let us assume vi = 0 for i = 1, 2, 3.
Then we can omit the variables tij. Instead, we can work with ρij = uij. We set

r12 r13 r23
1 (c1 − c2)

3 (c1 − c3)
3 (c2 − c3)

3

ρ3
12 3c21 + 21c1c2 + 3c22
ρ6

12 3(c1 − c2)
ρ9

12 1
ρ3

13 3c21 + 21c1c3 + 3c23
ρ6

13 D 3(c1 − c3)
ρ9

13 1
ρ3

23 3c22 + 21c2c3 + 3c23
ρ6

23 3(c2 − c3)
ρ9

23 1
N

N
N

=: B . (5.18)

Let Rij denote an upper bound on the absolute value of ρij. The matrix

D := Diag(1, R−3
12 , R

−6
12 , R

−9
12 , R

−3
13 , R

−6
13 , R

−9
13 , R

−3
23 , R

−6
23 , R

−9
23)

is the diagonal matrix corresponding to the monomials that occur in the shift polynomial
set. Now we would like to use the relation r to reduce the number of entries on the
diagonal of D. We choose to eliminate ρ23. As the problem is symmetric in ρ12, ρ13 and ρ23

(disrespecting signs) the argumentation is the same for any other variable. The relation r
is linear, the monomials which occur in the shift polynomial set are of degrees 3, 6 and 9.
Hence, in order to eliminate powers of ρ23, we have to multiply r by further monomials. To
eliminate ρ3

23, we use the shift polynomial ρ2
23r(ρ12, ρ13, ρ23) = −ρ3

23 + ρ13ρ
2
23 − ρ12ρ

2
23. This

shift polynomial introduces two new monomials ρ13ρ
2
23 and ρ12ρ

2
23. Recall that a useful

new set of shift polynomials should enlarge the size of the determinant. The contribution
of each monomial to the determinant is the inverse of the monomial evaluated at the
upper bounds of the unknowns. This implies that the factor R−3

23 in the determinant is
replaced by a factor of R−1

12 R
−1
13 R

−4
23 . As a single replacement this cannot be useful as

R−1
12 R

−1
13 R

−4
23 < R−3

23 . We can do better by using further shifts of the polynomial r. That
is, we add the set {ρ2

23r, ρ23ρ13r, ρ23ρ12r, ρ
2
13r, ρ13ρ12r, ρ

2
12r} to the shift polynomial set. By

adequately ordering the six polynomials, we can use them to introduce six monomials.
Note that the monomials ρ3

12 and ρ3
13 already exist in the lattice. However, there are ten

monomials of degree 3 in ρ12, ρ13 and ρ23, namely, ρi1212 ρ
i13
13 ρ

i23
23 such that i12 = 0, . . . , 3 , i13 =

0, . . . , 3 − i12 and i23 = 3 − i12 − i13. Thus, we obtain two new monomials.

In the case of higher degree monomials, similar substitutions can be made. However, the
difference between the number of monomials which can be introduced by a polynomial in
the shift polynomial set and the total number of monomials of this degree which we get

100 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

increases with the degree. Thus, we have to introduce even more new monomials. Suppose
that we would like to substitute ρl23 for an integer l which is divisible by 3. Only introducing
the monomial by the shift ρl−1

23 r results in two new monomials ρl−1
23 ρ13 and ρl−1

23 ρ12. Hence,

for the determinant to become larger, we need R
−2(l−1)
23 R−1

12 R
−1
13 > R−l

23 ⇔ 1 > Rl−2
23 R12R13,

which is never fulfilled. Successively adding more shifts leads to a similar condition. Each
shift polynomial used to introduce one already existing monomial also contains another
monomial not yet contained in the set of monomials. Thus, when eliminating one value
from the determinant, we have to introduce a different one.

Alternatively, we can introduce all possible monomials by shifts of r. Altogether, there are
∑l

i=0

∑l−i
j=0 1 = 1

2
l2 + 3

2
l+1 monomials of total degree l in ρ12, ρ13 and ρ23. The monomials

ρl12 and ρl13 have already been introduced by shifts of r12 and r13, respectively. Any other
monomial has to be introduced by a shift of r. The number of shifts of r to give monomials
of total degree l is limited by the number 1

2
l2 + 1

2
l of monomials of total degree l − 1

with which we can shift r. Consequently, in total
(

1
2
l2 + 3

2
l + 1

)
−
(

1
2
l2 + 1

2
l
)
− 2 = l − 1

monomials of degree l have to be introduced anew. A basis matrix corresponding to this
is given by

r12 r13 r23
1 (c1 − c2)

3 (c1 − c3)
3 (c2 − c3)

3

ρ3
12 3c21 + 21c1c2 + 3c22
ρ6

12 3(c1 − c2)
ρ9

12 1
ρ2

12ρ13
... 0

ρ12ρ
8
13

ρ3
13 3c21 + 21c1c3 + 3c23
ρ6

13 D̃ R 3(c1 − c3)
ρ9

13 1
ρ2

12ρ23
... 0

ρ13ρ
8
23

ρ3
23 3c22 + 21c2c3 + 3c23
ρ6

23 3(c2 − c3)
ρ9

23 1
N

N
N

=: B̃ .

The matrix

D̃ := Diag(1, R−3
12 , R

−6
12 , R

−9
12 , R

−2
12 R

−1
13 , R

−1
12 R

−2
13 , R

−5
12 R13, . . . , R

−1
12 R

−8
13 , R

−3
13 , R

−6
13 , R

−9
13)

is the diagonal matrix corresponding to the monomials that occur in the new shift polyno-
mial set. The matrix R is the matrix induced by the coefficient vectors of the polynomials

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 101

ρ2
12r, ρ12ρ13r, . . . , ρ

2
23r, ρ

5
12r, . . . , ρ

5
23r, ρ

8
12r, . . . , ρ

8
23r. Note that R =

(
Ru

Rl

)

, where Rl is

an upper triangular matrix with value one on its diagonal. That is because the diagonal
entries correspond to monomials introduced by the shifts of r. Due to this structure, it is
det(Rl) = 1. Thus, det(B̃) = det(D̃) det(Rl)N

3 = det(D̃)N3.
In order for the substitution to give a better bound, the new determinant ought to be
larger than the previous one. The condition for this is det(D̃) > det(D). This is equiva-
lent to R18

23 > R54
12R

54
13 ⇔ R23 > R3

12R
3
13. Asymptotically, the number of monomials which

have to be introduced increases and the condition gets even worse. The reason for this
can be seen easily. Let ρl23 for some l ∈ N denote the monomial that shall be substituted.
Then, as argued above, l − 1 monomials of degree l have to be newly introduced. Mul-
tiplying these monomials gives a monomial of total degree l2 − l. Thus, the determinant
gets larger provided that R−l

23 < R−l12
12 R−l13

13 R−l23
23 with l12 + l13 + l23 = l2 − l. If l23 ≥ l,

this condition cannot be fulfilled. Hence, l23 < l. Then the condition is equivalent to

Rl−l23
23 > Rl12

12R
l13
13 . It is l12 + l13 = l2 − l − l23

l>2

≥ 2l − l23 > 2(l − l23). Further, l12 and
l13 are greater than l − l23 each. This can be seen as follows. Assume the contrary, i. e.
l13 ≤ l− l23. (The case of l12 ≤ l− l23 can be treated analogously.) Then, on the one hand,
l12 = l2 − l − l23 − l13 ≥ l2 − 2l. On the other hand, it is l2 − l − l23 = l(l − 2) + l − l23.
Consequently, the product we consider consists of at least l− 2 monomials not comprising
any power of ρ23. If we take the highest powers of ρ12 possible in these monomials, they
sum up to

∑l

i=3 i = 1
2
l2 + 1

2
l − 3. To get the highest power in ρ12 we assume the last two

monomials to be ρl−1
12 ρ23 and ρl−2

12 ρ13ρ23. This implies l12 <
1
2
l2 + 5

2
l − 6. Combining the

two conditions, we get l2 − 2l ≤ l12 <
1
2
l2 + 5

2
l − 6. This can only be fulfilled if l < 8.

Hence, if the value of l increases, the influence of monomials of degree 3 and 6 on the size
of the determinant will be compensated for by higher degree monomials. That is to say,
the substitution does not help to improve the bound we can obtain asymptotically.
Consequently, any of these conditions can only be fulfilled provided that the weaker con-
dition R23 > R12R13 holds as well. Note, however, that |ρ23| = |ρ12 − ρ13| ≤ |ρ12| + |ρ13| ≤
2 max{|ρ12|, |ρ13|}

log(N)≥512

≤ |ρ12ρ13|. Thus, an upper bound R23 such that R23 > R12R13

would not fit to the problem. Consequently, this approach should not be pursued.

Approach 2
As a second variant, we can directly substitute ρ23 = ρ13 − ρ12 in r23. For notational
convenience, we denote by r23 the original polynomial in t23 and u23, whereas we denote by
r̃23 the polynomial r23(t13 − t12, u13 − u12) as polynomial in t13, t12, u13 and u12. Then we
construct a lattice with respect to r12, r13 and r̃23. Remark that all monomials which occur
in r̃l23 for an l ∈ N already include all monomials which occur in rl12 or rl13. Hence, to get a
good bound, we can take the folklore shifts of r̃23 and add as many shifts of the two other
polynomials as possible. These additional shifts only help to increase the bound without
any additional costs. However, we can only take shifts such that the shift polynomial set
remains determinant preserving.
Note that as long as we take all possible shifts of r̃23 and the same shifts of r1ι for a fixed

102 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

ι ∈ {1, 2}, we will obtain the original condition R1ιR23 ≤ N
2
9 . Thus, for this approach to

work, we have to be able to add most of the shifts of r1ι and a number of shifts of r1(3−ι)
which does not disappear asymptotically. Unfortunately, there is no such determinant
preserving shift polynomial set. This can be seen as follows. Of a fixed degree δ, there
are exactly δ + 1 monomials in the variables ρ12 and ρ13. Thus, the number of different
monomials which occur if we include r̃23 up to the power of l ∈ N (and shifts of lower
powers of r̃23) in our shift polynomial set is

∑3l
k=0 (3k + 1) = 27

2
l2 + 15

2
l+1. The analogous

shifts of r12 and r13 do not introduce further monomials. The coefficient vectors of the
shift polynomials are, thus, vectors in Z

27
2
l2+ 15

2
l+1 (if we ignore the moduli).

We look at how many shift polynomials we can maximally include in our shift monomial
set. To start, we determine the number of shift polynomials of r̃23. The polynomial r̃l−1

23 is
shifted by all monomials of degree 0, 3, 6 and all but one of degree 9. Any other polynomial
r̃i23 with i = 1, . . . , l − 2 is also shifted by these monomials. Further, it is shifted by all
monomials of degree 12, 15, . . . , 9(l − i) which are not divisible by the leading monomial
(e. g. ρ9

12 if using graded lexicographical ordering with ρ12 > ρ13). There are nine such
monomials of each degree. The number of the polynomials in the shift set is, thus,

l−1∑

i=1

(21 + (i− 1)27) =
27

2
l2 − 39

2
l + 6 .

Let us assume we could add the same shifts of r12, r13. Then the number of shift polyno-
mials is 3

(
27
2
l2 − 39

2
l + 6

)
. The coefficient vectors of these shift polynomials form a set of

3
(

27
2
l2 − 39

2
l + 6

)
vectors in Z

27
2
l2+ 15

2
l+1 (again ignoring the moduli). Hence, at least

nd := 3

(
27

2
l2 − 39

2
l + 6

)

−
(

27

2
l2 +

15

2
l + 1

)

= 27l2 − 66l + 17

vectors linearly depend on the others provided that this value is positive. Returning to
the polynomials, nd polynomials are linearly dependent of the set of the other polynomials
modulo N and cannot be included in our lattice construction.
On condition that l > 5 it is

27l2 − 66l + 17 >
27

2
l2 +

15

2
l + 1 .

This implies that we cannot include any of the shifts of e. g. r13 in the shift polynomial set.
Hence, the bound cannot get better than the original one. Note that this condition does
not state anything about which shifts we can take. It might be that we can include shifts
of r12 as well as of r13. Their total number, however, may not be larger than the total
number of shifts which could be taken of one of the polynomials. Thus, the contribution
of powers of N on the determinant will not increase. Then the only way to improve the
bound is by using significantly less monomials.
In case of l = 3 we cannot exclude 69 but only 62 shift polynomials by these rough
estimations. In case of l = 2 we cannot even exclude any of the shift polynomials this way.

5.2. SYSTEMS OF EQUATIONS WITH A COMMON MODULUS 103

Actual computations, however, give 5 polynomials which have to be excluded. The bounds
obtained with the lattices constructed in the case of l = 2, however, are worse than the
bound of N

1
9 .

Thus, we return to the former approach. That is, we use the polynomials r12, r13 and r23
with their basic shifts to construct a lattice basis to use with Coppersmith’s method. This
way, we can determine ∆ij and, thereby, also m, if |(vj − vi)(wj − wi)| < N

1
9 for any pair

i,j.

The analysis can be generalized to an arbitrary number of equations in a straightforward
manner. The condition we obtain is the same. That is, the difference of two paddings has
to be smaller than N

1
9 for at least one pair of paddings.

In the case of RSA encryption with a different public exponent e, the value N
1
9 has to be

substituted by N
1

e2 in all steps of the analysis. The bounds get worse. The running time
of the algorithm depends on the running time of Coppersmith’s method and the number
of possible choices of pairs. Both running times are polynomial in e. Thus, for constant

values of e the attack is feasible if |(vi − vj)(wi − wj)| < N
1

e2 .

We have seen in our example that combining equations does not help to improve the bound.
The reason for this is the independence of the variables ρij we can include in one lattice.
The main variable occurring in all of the equations is the variable x. It corresponds to the
unknown message m. In our analysis, we have eliminated x in the first step by computing
resultants with respect to x. If we do not do this, but directly perform Coppersmith’s
algorithm on one of the original equations, we obtain rather small upper bounds M such
that we can determine all m such that |m| < M . In this approach taking more than one
of the original polynomials and shifting them to obtain shared monomials would allow for
a larger value of M . However, the bounds we obtain by any of those analyses are still
too small as in practice m has nearly full size. Thus, the above approach in which m is
eliminated beforehand is better suited to the problem.
Recapitulating the examples of systems of modular equations with the same modulus, we
observe the following: Additional equations in the same variables help to improve certain
bounds in case of small lattices provided that the additional equations help to reduce the
number of unknown monomials. By additional integer equations the bounds can also be
improved. In asymptotically large systems, however, care has to be taken not to introduce
too many shifts and, thus, destroy the property that the given system is determinant pre-
serving. Unfortunately, the choice of shift polynomials strongly depends on the original
system of equations. Thus, we cannot give a general strategy and bound working for an
arbitrary system.
For some specific systems of equations like the ones derived from RSA with random
paddings, there are even indications that the known bounds cannot be improved. A reason
for this may be the fact that we try to reuse additional information twice. Recall that in a
first step, we have computed the resultant of two polynomials. That is, we have included
additional information in the new polynomial. In a second step, we aim at getting ad-
vantage by combining two such polynomials. However, we have given arguments that this

104 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

does not help further. Unfortunately, these arguments can only be given with respect to
specific systems of equations. Thus, human interaction is required in these analyses.

5.3 Systems of Equations with Coprime Moduli

Let us again deal with systems of modular multivariate equations. However, in contrast to
the previous section we now assume the moduli to be coprime, that is, we analyze Systems
of Modular Multivariate Polynomial Equations with Mutually Coprime Moduli (SMMPE2-
problem).

Definition 5.3.1 (SMMPE2-problem)
Let k ∈ N, δ1, . . . , δk ∈ N, and N1, . . . , Nk ∈ N mutually coprime with N1 < . . . < Nk.
Suppose that fi(x1, . . . , xl) are polynomials of degree δi in ZNi

[x1, . . . , xl], i = 1, . . . , k,
respectively. Let

f1(x1, . . . , xl) ≡ 0 (mod N1)

f2(x1, . . . , xl) ≡ 0 (mod N2)
... (5.19)

fk(x1, . . . , xl) ≡ 0 (mod Nk)

be a system of multivariate polynomial equations.

Let Xi < Ni, Xi ∈ R, i = 1, . . . , l. Find all common roots (x̄1, . . . , x̄l) of (5.19) with size
|x̄i| ≤ Xi.

The analysis of system (5.19) is similar to the analysis of system (5.1) with one shared
modulus. When considering linear independence, however, we have to take the different
moduli into account.
Let F̃ be the set of shift polynomials used to apply Coppersmith’s method (Theorem 2.3.9).
Then all (f,N) ∈ F̃ consist of a polynomial f of the form m

∏k

i=1 f
λi

i (x1, . . . , xl) with a

monomial m ∈ ZN [x1, . . . , xl], λi ∈ N0, and a modulus N =
∏k

i=1N
λi

i ∈ N. The solution
we are searching for is a solution of f(x1, . . . , xl) ≡ 0 (mod N) for all (f,N) ∈ F̃ .
Using these polynomials, a basis matrix is constructed. We again use the notation as with
systems with the same modulus. The last columns of the basis matrix corresponding to
the shift polynomials are denoted by F. It consists of an upper part Fc corresponding to
the coefficients in the polynomials and a lower part Fm corresponding to the moduli. The
matrix Fm again forms a diagonal matrix. The values on its diagonal are of type

∏k

i=1N
λi

i

with λi ∈ N0. We call them diagonal values.
To obtain linear dependence of column vectors of F modulo an integer a > 1, we again
have to eliminate the values occurring in Fm as they only occur in one column. Thus, they
cannot be eliminated by linear combination of columns but have to be eliminated by the
modular operation.
In contrast to the system in the previous section, however, the diagonal values do not

5.3. SYSTEMS OF EQUATIONS WITH COPRIME MODULI 105

necessarily share a common divisor. Therefore, we have to check for linear independence
modulo a for all a 6= 1 dividing more than one of the diagonal values. Namely, we have to
check for linear independence modulo the Ni and their divisors. As the Ni are coprime by
definition this implies that for a fixed value of j we only have to check the set of columns
corresponding to polynomials with λj > 0 for linear independence modulo Nj and its
divisors.

Lemma 5.3.2
Let F̃ ⊂ Z[x1, . . . , xl] × N be an ordered set of polynomials and corresponding moduli

which is not determinant preserving. Let F be the integer polynomial set induced by F̃ .
Let F be the matrix induced by F as before. Then there are f̄ ∈ F and cf ∈ Z such that
f̄ ≡∑f∈F\{f̄} cff (mod a) where a|N for some modulus N occurring in F̃ and a > 1.

Proof: We regard the polynomials f ∈ F , the set induced by F̃ , as polynomials in
Z[x1, . . . , xl, t1, . . . , t|F|]. From the precondition using Theorem 5.1.5 it follows that there
are f̄ ∈ F , cf ∈ Z for all f ∈ F \{f̄} and 1 6= a ∈ N such that

∑

f∈F\{f̄} cff ≡ f̄ (mod a).

By construction there is a monomial tj which occurs only in f̄ . Its coefficient corresponds
to the modulus N of the respective polynomial equation. Then for the linear dependency
relation to hold we require a|N which implies the claim.

In many practical examples we take moduli N which are products of two unknown primes
p and q. Thus, we can only test for modular dependence modulo N . Like in Section 5.2
we, therefore, assume that we do not get the factors of the moduli as elementary divisors.
Otherwise, this would be a way to determine the factorization of N . This assumption was
true in all our examples.

Note that the analysis of systems of equations with mutually coprime moduli is thus easier
than the analysis of systems of equations with the same modulus. From Lemma 5.3.2
we have that modular dependence only has to be checked with respect to the different
moduli Ni and their divisors. A set of polynomials P ⊆ F modularly dependent modulo a
divisor a of Ni will only include shift polynomials which are multiples of fi. This is because
any other shift polynomial f ∈ F will include a term Nt such that t only occurs in this
polynomial (as it is constructed by transforming f̃ to f) and gcd(N, a) = 1. Consequently,
the coefficient of t would not be 0 (mod a). This observation simplifies the analysis as we
can take arbitrary shifts of fλi

i (x1, . . . , xl), i = 1, . . . , k, λi ∈ N, without taking care of
shared monomials. Only if we consider products of the polynomials as well, we have to be
more careful.
We start the analysis of systems with mutually coprime moduli by returning to the case
of univariate equations.

106 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

5.3.1 Directly Applying Coppersmith’s Lattice-Based Techniques

to a System of Equations to Solve SMUPE2

Let us recall the SMUPE2-problem which has been presented in Chapter 3: Let

f1(x) ≡ 0 (mod N1)

f2(x) ≡ 0 (mod N2)
...

fk(x) ≡ 0 (mod Nk)

be a system of univariate polynomial equations. Here, N1 < N2 < . . . < Nk are pairwise
coprime composite numbers of unknown factorization and f1(x), . . . , fk(x) are polynomials
of degree δ1, . . . , δk in ZN1 [x], . . . ,ZNk

[x], respectively.

Let X < N1, X ∈ R. The aim is to find all common roots x0 of these equations with size
|x0| ≤ X. In order to be able to calculate all roots, we would like to have X = 1

2
N1.

This problem is a special case of the general problem of solving systems of equations with
mutually coprime moduli as we are restricted to one variable.
In Chapter 3, Corollary 3.2.3, we have shown that if

∑k

i=1
1
δi
≥ 1, then we can determine

all x0 ∈ ZN1 which are solutions of the system. To obtain this result, we have combined the
polynomials f1, . . . , fk to one polynomial f with the same solutions modulo some product
N of powers of the original moduli. The equation f(x) ≡ 0 (mod N) could then be solved
provably by a direct application of Coppersmith’s algorithm.
Now we will analyze the problem differently. We will directly apply Coppersmith’s algo-
rithm to the system of equations. This implies that we first have to define a suitable set
of shift polynomials. This choice also gives a general insight into applying Coppersmith’s
algorithm to systems of modular equations with pairwise coprime moduli.

We will give a different proof of the bound given in Corollary 3.2.3.

Proof of Corollary 3.2.3: In a first step, we define a set of shift polynomials and cor-
responding moduli F̃ to use with Coppersmith’s algorithm. Then we show that it is
determinant preserving and prove that we get a new equation with zero x0, which is valid
over the integers, if |x0| ≤ X = 1

2
N1−ǫ

1 for an ǫ > 0. Then we will extend the result to
x0 ∈ ZN1 .
Let ǫ > 0, δ := lcm(δ1, . . . , δk) and λ ∈ N such that λ ≥ max

{
k−1+ǫ
ǫδ

, 7
δ

}
.

Recall that in order to achieve a large bound on the unknown we essentially need many
powers of Ni and few powers of X−1 in the determinant of our lattice. As the lattice basis
is constructed such that it is described by an upper triangular basis matrix, we require
many powers of Ni and few powers of X−1 on the diagonal of the lattice basis.
Recall further that a monomial X−l occurs on the diagonal if xl is a monomial in any
polynomial in F . To obtain a good ratio of powers of X−1 and Ni, we simply reuse the
parameter λ given by Coppersmith. This leads to the bound given above. We limit the
degree of X−i to λδ. Additionally, we would like to have as many powers of Ni as possible

5.3. SYSTEMS OF EQUATIONS WITH COPRIME MODULI 107

contributing to the determinant. For any polynomial fi(x) we have fi(x) ≡ 0 (mod Ni).
Thus, f ji (x) ≡ 0 (mod N j

i) for any j ∈ N. Therefore, whenever introducing a new mono-
mial we take the largest power of fi(x) with which it is possible to do so. We define

F̃ := {(xhfi(x)j, N j
i) | i = 1, . . . , k; 0 ≤ h < δi and 1 ≤ j < λ

δ

δi
} .

This set is determinant preserving. To prove this, let F denote the set of integer poly-
nomials induced by F̃ and assume the contrary. Then, by Lemma 5.3.2 there are f̄ ∈ F
and coefficients cf ∈ Z not all equal to zero and 1 6= a ∈ N such that

∑

f∈F\{f̄} cff ≡ f̄

(mod a). Furthermore, a divides one of the moduli, i. e. a|Ni for some index i. Due to
our construction the moduli are either powers of the same value Ni or coprime to it. Con-
sequently, linear dependence may only occur in a set of polynomials constructed with the
same index i. Without loss of generality we assume this index to be 1. For any other index,
we can argue analogously. Let F̃1 := {(xhf1(x)

j, N j
1) | 0 ≤ h < δ1 and 1 ≤ j < λ δ

δ1
} and

let F1 be induced by this set. Thus,
∑

f∈F1\{f̄} cff − f̄ ≡ 0 (mod a) with a|N1. Ordering
the polynomials in F1 by their degree in x, however, one can see that each polynomial
introduces a new monomial. Thus, it cannot be dependent on the other polynomials. This
contradicts the assumption. Hence, F̃ is determinant preserving.
To determine a solution, we apply Coppersmith’s method with shift polynomial set F̃ .
We denote the lattice constructed with respect to F̃ by L. In order to calculate the
upper bound X up to which size we can determine the unknown x0, we calculate the
determinant of our lattice L. Its basic structure is det(L) = X−sx

∏k

i=1N
si

i . This is
because the part induced by the shift polynomials set contributes with powers of the mod-
uli, whereas from the part corresponding to the monomials we get powers of X−1. It is
D = Diag(1, X−1, . . . , X−(δλ−1)). Thus,

sx =
δλ−1∑

i=0

i =
(δλ)(δλ− 1)

2
.

For 1 ≤ i ≤ k we have

si = δi

λ δ
δi
−1

∑

i=1

i =
λδ
(

λ δ
δi
− 1
)

2
.

Consequently,

det(L) = X−((δλ)(δλ−1)
2)

k∏

i=1

N

(
λδ(λ δ

δi
−1)

2

)

i .

Note that
√
δλ denotes an upper bound on the size of the target vector. Using equa-

tion (2.13), we, therefore, get the following condition:

√
δλ ≤

X

−((δλ)(δλ−1)
2)

k∏

i=1

N

(
λδ(λ δ

δi
−1)

2

)

i

1
δλ

2−
δλ−1

4 .

108 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

This is equivalent to the condition

X ≤ 2−
1
2 (δλ)−

1
δλ−1

k∏

i=1

N

λ δ
δi

−1

δλ−1

i .

As δλ ≥ 7 we can conclude (δλ)−
1

δλ−1 ≥ 7−
1
6 ≥ 8−

1
6 = 2−

1
2 .

Further, as λ ≥ k−1+ǫ
ǫδ

⇔ ǫ ≥ k−1
δλ−1

and
∑k

i=1
1
δi
≥ 1, it holds that

k∑

i=1

λ δ
δi
− 1

δλ− 1
=

k∑

i=1

(

1

δi
−

1 − 1
δi

δλ− 1

)

=
k∑

i=1

1

δi
− 1

δλ− 1

k∑

i=1

(

1 − 1

δi

)

=
k∑

i=1

1

δi
−
k −∑k

i=1
1
δi

δλ− 1

≥
k∑

i=1

1

δi
− k − 1

δλ− 1

≥
k∑

i=1

1

δi
− ǫ .

Consequently,

2−
1
2 (δλ)−

1
δλ−1

k∏

i=1

N

λ δ
δi

−1

δλ−1

i ≥ 1

2
N

∑k
i=1

1
δi
−ǫ

1

≥ 1

2
N1−ǫ

1 .

For X = 1
2
N1−ǫ

1 we can, thus, determine f(x) with Coppersmith’s algorithm such that
f(x) = 0 over the integers. This requires time polynomial in δ,max{log(Ni)} and 1

ǫ
.

In order to determine all solutions x0 ∈ ZN1 , we have to redo the algorithm. Setting
e. g. ǫ = 1

logN1
we can recover all x0 in the interval [−1

4
N1,

1
4
N1]. To cover a complete set

of representatives (mod N1), we additionally need to cover e. g. the interval [1
4
N1,

3
4
N1].

Therefore, we repeat the above algorithm with a set of polynomial equations f̃i(x+ x̄) ≡ 0
(mod Ni), i = 1, . . . , k centered at x̄ := ⌊1

2
N1⌋. The computation of the new polynomials

is polynomial in δi ≤ δ. Thus, we can determine any solution x0 of our given system in
time polynomial in k, δ and max{log(Ni)}.

The construction described here shows an easy way to construct a shift polynomial set
based on a set of univariate modular equations. This set seems to be a good choice as
we recalculate the same bounds we have obtained in the proof of Corollary 3.2.3 by using

5.3. SYSTEMS OF EQUATIONS WITH COPRIME MODULI 109

the Chinese Remainder Theorem 2.2.13. Moreover, we have argued in Section 3.2.1 that
this bound is optimal for general problems. With the Chinese Remainder Theorem the
optimality is quite intuitive. First, the polynomials are taken to powers. The bound on
the zero we can obtain when analyzing a single polynomial is not influenced by this. Then
the Chinese Remainder Theorem is applied. It gives a good construction to obtain one
polynomial of common degree. Thus, the degree remains, as modulus we get the product
of the single moduli. Coppersmith’s algorithm, which is then applied to this polynomial,
is believed to be optimal as we have explained in the introduction of Section 3.
Using the method presented above, however, the optimality is not obvious as the choice of
a ”good” set of shifts for systems of equations is not that clear. Let us consider possible
changes of the shift polynomial set F̃ . As the value of λ is optimized afterwards, we do not
need to think about including shifts of higher powers of fi(x). Another idea to increase the
determinant is to add further shift polynomials, e. g. products of polynomials fi(x)fl(x) of
small enough degree. They do not introduce new monomials on the diagonal but contribute
with powers of the Ni. Adding such products to F̃ and thereby to F , however, smashes
the property of being determinant preserving of F (and thus F̃) as can be seen in the
following lemma.

Lemma 5.3.3
Let F̃ := {(xhfi(x)j, N j

i) | i = 1, . . . , k; 0 ≤ h < δi and 1 ≤ j < λ δ
δi
} and f̃ :=

xh
∏k

i=1 f
λi

i (x) with λi ∈ N for at least two indices i and λi = 0 for all other indices.

Furthermore, let deg f̃ < δλ. Then the set F̃n := F̃ ∪ {(f̃ ,∏k

i=1N
λi

i)} is not determinant
preserving.

Before proving this, we give an auxiliary lemma.

Lemma 5.3.4
Let λ1, N1 ∈ N. Let f(x), f1(x) ∈ ZN1 [x] be polynomials such that

f(x) ≡ fλ1
1 (x) · g(x) (mod N1) ,

where g(x) ∈ ZN1 [x] is a polynomial of degree δg := deg(g) = deg(f)−λ1 deg(f1) ≥ 1. Let
δf := deg(f) and deg(f1) =: δ1. Furthermore, let cf be the leading coefficient of f(x).

Then h(x) := f(x)−cfxδf−⌊ δf
δ1

⌋δ1f
⌊ δf

δ1
⌋

1 (x) ∈ ZN1 [x] is a polynomial of degree δh := deg(h) <
δf . Moreover, either h(x) ≡ fλ1

1 (x) · gh(x) (mod N1) for a non-zero polynomial gh(x) or
h(x) ≡ 0 (mod N1).

Proof: The proof of this lemma is straightforward. It is f(x) ≡ cfx
δf + fr(x) (mod N1)

with deg(fr) < δf as cfx
δf denotes the leading term of f . Similarly, x

δf−⌊ δf
δ1

⌋δ1f
⌊ δf

δ1
⌋

1 (x) ≡

xδf + fr1(x) (mod N1) with deg(fr1) < δf . Thus, h(x) := f(x) − cfx
δf−⌊ δf

δ1
⌋δ1f

⌊ δf
δ1

⌋
1 (x) ≡

fr(x) − cffr1(x) (mod N1). By this we have δh < δf .

By construction, we have fλ1
1 (x)|f(x). Further, it is δf > λ1δ1 ⇔ δf

δ1
> λ1. As λ1

110 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

is an integer, even ⌊ δf
δ1
⌋ ≥ λ1 holds. Therefore, fλ1

1 (x)|xδf−⌊ δf
δ1

⌋δ1f
⌊ δf

δ1
⌋

1 (x). Consequently,

fλ1
1 (x)|h(x), i. e. h(x) ≡ fλ1

1 (x) ·gh(x) (mod N1) for a non-zero polynomial gh(x) or h(x) ≡
0 (mod N1).

Now we can give the proof of Lemma 5.3.3:
Proof: Let Fn be the integer polynomial set induced by F̃n. To show that F̃n is not
determinant preserving, we will show that Fn is not determinant preserving. Let f :=
f̃ − t

∏k

i=1N
λi

i be the integer polynomial induced by f̃ . Without loss of generality we
assume λ1 > 0. (If not, enumerate the (fi, Ni) differently. This can be done as this proof
does not depend on the fact that the Ni are ordered according to their size.) We will
show that f is linearly dependent on F modulo N1. Then, by Theorem 5.1.5, Fn is not
determinant preserving.
Let δ1 := deg(f1) and δf := deg(f). By construction we have f(x) ≡ f̃(x) ≡ fλ1

1 (x) · g(x)
(mod N1) with δg := deg(g) = δf − λ1δ1 > 0.
By iteratively applying Lemma 5.3.4 on f , we get a sequence f = h1, h2, . . . , hν ∈ ZN1 [x]
of polynomials of decreasing degree. It is finite as the degree decreases in each step.
Let ν be defined such that hν ≡ 0, but hν−1 6≡ 0. Further, for i = 1, . . . , ν − 1, it is

hi(x) ≡ hi+1(x) + chi
x

deg(hi)−⌊deg(hi)

δ1
⌋δ1f

⌊deg(hi)

δ1
⌋

1 (x) (mod N1). Successively substituting the
hi(x), we get

f(x) ≡
ν−1∑

i=1

chi
x

deg(hi)−⌊deg(hi)

δ1
⌋δ1f

⌊deg(hi)

δ1
⌋

1 (x) (mod N1) .

This shows that Fn is not determinant preserving.

Remark that in the above proof the representation of f as a linear combination of poly-
nomials in F only includes polynomials of the form xhf j1 (x) with j ≥ λ1. Thus, with the
same proof we get a more specific version of Lemma 5.3.3.

Lemma 5.3.5
Let F̃1,λ1 := {(xhf1(x)

j, N j
1) | 0 ≤ h < δi and λ1 ≤ j < λ δ

δi
} and f̃ := xh

∏k

i=1 f
λi

i (x) with

λ1, λι ∈ N with ι 6= 1 and λi ∈ N0 for all other indices. Furthermore, let deg f̃ < δλ. Then
the set F̃n := F̃1,λ1 ∪ {(f̃ ,∏k

i=1N
λi

i)} is not determinant preserving.

We have seen that we cannot include any further polynomial in the shift polynomial set

F̃ = {(xhfi(x)j, N j
i) | i = 1, . . . , k; 0 ≤ h < δi and 1 ≤ j < λ

δ

δi
}

in order to improve the bound. Nevertheless, a completely different choice of F̃ , not includ-
ing all the polynomials we have used so far, might lead to an improved bound. Therefore,
we have to check which bounds can be obtained if we use different shift polynomial sets.
Let us assume that any shift polynomial set under consideration contains all monomials
xi with i ≤ δ, where δ is the maximum degree of a polynomial in F̃ . This is a sensible

5.3. SYSTEMS OF EQUATIONS WITH COPRIME MODULI 111

assumption as the bound obtained with Coppersmith’s method for univariate polynomials
only depends on the degree of the original polynomial and not on its sparseness. The lack
of monomials does not influence the asymptotic behavior.
A direct analysis shows that any arbitrary determinant preserving shift polynomial set can
be substituted by a shift polynomial set which is a subset of our original set F̃ .

Lemma 5.3.6
Let λ, δ ∈ N. Let

G̃1 ⊆ {(xh
k∏

i=1

fλi

i (x),
k∏

i=1

Nλi

i) | i = 1, . . . , k;h, λi ∈ N0 such that
k∑

i=1

λiδi + h < δλ}

be a determinant preserving shift polynomial set. Let Mon(G̃1) include all monomials up
to the maximum degree of a polynomial in F̃ . Then there exists another determinant
preserving shift polynomial set

G̃2 ⊆ F̃ := {(xhfi(x)j, N j
i) | i = 1, . . . , k; 0 ≤ h < δi and 1 ≤ j < λ

δ

δi
}

with which we obtain at least the same upper bound X on the size of the solution we can
determine.

Proof: Let G1 be the integer polynomial set induced by G̃1.Let (g̃, N) ∈ G̃1 such that g̃ is
the polynomial of smallest degree which is a product of at least two different polynomials
fi(x), 1 ≤ i ≤ k. Then g̃ can be written as g̃(x) = xh

∏k

i=1 f
λi

i (x) and Ng :=
∏k

i=1N
λi

i with
λi ∈ N for at least two indices i and λi = 0 for all other indices. Furthermore, deg(g̃) < δλ.
Without loss of generality we assume λ1 > 0. (If not, enumerate the fi differently.) Let
g(x) be the integer polynomial induced by g̃(x), that is g(x, t) := g̃(x) − tNg.
We would like to substitute g̃ by a polynomial or a set of polynomials belonging to F̃ . In
order to do so, we proceed in two major steps: First, we show that there exist polynomials
which we can take for the substitution, i. e. polynomials which are not yet in G1. Then
we show that these polynomials either keep or improve the bound, but do not worsen
it. The proof of this consists of two steps. On the one hand, we show that the positive
contribution, i. e. the contribution of powers of Ni to the determinant, is equal to the
contribution when using g. On the other hand, we need to have that the negative contri-
bution, i. e. the contribution of powers of X−1 to the determinant, is smaller than or equal
to the contribution when using g. This is already given by the assumption that Mon(G̃1)
contains all monomials. Hence, no further monomials can be introduced by substituting
the polynomial. Thus, the value of the determinant can only increase and, consequently,
the same holds for the bound.
We now prove the first claim. Let F̃1,λ1 denote the set of all polynomials in F which are
divisible by fλ1

1 (x) as in Lemma 5.3.5. By Lemma 5.3.5 we have that F̃1,λ1 ∪ {g̃} is not
determinant preserving. Consequently, as (g̃, Ng) ∈ G̃1 there exists (g̃1, Ng1) ∈ F̃1,λ1 \ G̃1

with g̃1(x) ≡ fλ1
1 (x)gr1(x) (mod Nλ1

1). Analogously, for all other i such that λi > 0 there

112 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

exist polynomials g̃i(x) ≡ fλi

i (x)gri(x) (mod Nλi

i) which are not contained in G̃1. We then
substitute (g̃, Ng) by the set {(g̃i, Nλi

i) | λi > 0}.
Now we consider the influence of this substitution on the determinant of the lattice. The
contribution of Ni to the determinant using g̃ is Ng :=

∏k

i=1N
λi

i . That is, for each λi > 0,
we get a factor of Nλi

i in the determinant. For each of the g̃i, the contribution to the
determinant is Nλi

i . The product of these contributions is, thus,
∏k

i=1N
λi

i . Hence, the
substitution does not change the power of Ni occurring in the determinant.
Moreover, as F̃ is determinant preserving, G̃2 ⊆ F̃ is determinant preserving as well.

We have seen that a shift polynomial set which is a subset of F̃ can be used to analyze
systems of modular univariate equations with coprime moduli. As we have assumed the
sets to contain all monomials up to a certain degree anyway, it is best to take as many
polynomials as possible. This implies that the bound using F̃ is better than the bound
taking a subset. Therefore, on the assumption that any useful shift polynomial set includes
all monomials up to a certain degree, we conclude in the univariate case:

Theorem 5.3.7
The following two analyses of the SMUPE2 problem give the same bounds:

1. Combining the equations by the Chinese Remainder Theorem to a polynomial f(x)
and applying Coppersmith’s algorithm to f(x).

2. Defining a good shift polynomial set like F̃ for the system of equations and applying
Coppersmith’s algorithm to this.

Both analyses can be performed in time polynomial in δ, k and max{log(Ni)}.
Proof: By the proof of Corollary 3.2.3 given in this section we get that any bound obtained
with method (1) can also be obtained directly using a suitable shift polynomial set. For
the converse, assume we are given a shift polynomial set F̃1 which gives a good bound. By
Lemma 5.3.6 we get a second shift polynomial set F̃2 ⊂ F̃ which gives the same (or even a
better) bound. As the polynomials in F̃ contain all monomials, the shift polynomial set F̃
gives a better bound than any of its subsets. Taking these shifts, however, is equivalent to
combining the original polynomials by the Chinese Remainder Theorem and shifting the
resulting polynomial f up to a power fλ.
The running time of method (1) is polynomial in δ and logM by Theorem 3.2.2. The

value M is defined as M :=
∏k

i=1N
δ
δi

i . Hence, the running time is polynomial in δ, k
and max{log(Ni)}. Regarding the second method, we directly get the running time by the
proof of Corollary 3.2.3 given in this section. This concludes the proof.

We are interested in generalizing the observations made during the analysis of the SMUPE2-
problem to systems of multivariate equations. The analysis gets more complicated as we
can no longer assume the shift polynomial set to contain all monomials. It would be a
vast overload to assume that a polynomial contains all monomials up to a certain degree.
There may even be variables which do not occur in all of the equations. Nevertheless, as

5.3. SYSTEMS OF EQUATIONS WITH COPRIME MODULI 113

a first approach we return to the method used in Section 3.2. We combine the given set
of equations by the Chinese Remainder Theorem and obtain a polynomial f . Then we
pursue the standard analysis of a single multivariate modular equation f(x1, . . . , xl) ≡ 0
(mod N) given in [JM06]. That is, we take the monomials of the Newton polytope to shift
the powers of f .
The same result can again be obtained by an analysis using a corresponding shift polyno-
mial set. The proof in this case is analogous to the proof of Corollary 3.2.3 in Section 5.3.1.
Unfortunately, an analogue to Lemma 5.3.6 would no longer be interesting as the under-
lying assumption is too strong in the multivariate case.
The following example shows that the bounds we obtain by analyzing the polynomial f
instead of the system of equations are far from optimal.

0 1 2 3
0

1

2

N(f2)

N(f̃1)

N(f1)

x1

x2

Figure 5.1: Newton polytopes of f1, f2 and f̃1 of Example 5.3.8.

Example 5.3.8
Let

f1(x1, x2) := x2
1 + x1 + 1 ≡ 0 (mod N1)

f2(x1, x2) := x2
1x2 + x2 + 1 ≡ 0 (mod N2)

be a system of equations with the solution (x̄1, x̄2). As f1(x1, x2) is a univariate equa-
tion in ZN1 [x1], we know from Theorem 2.3.9 that we can determine all solutions x̄1 such

that |x̄1| < N
1
2
1 . Substituting the value x1 by x̄1 in f2, we get the equation f2(x̄1, x2) =

(x̄2
1 + 1)x2 + 1 ≡ 0 (mod N2), which is linear in x2. Thus, we can determine all solutions

x̄2 ∈ ZN2 such that f2(x̄1, x̄2) ≡ 0 (mod N2).
Consequently, in a combined analysis via Coppersmith’s method we would expect to obtain

the condition X1X2 < N
1
2
1 N2, where Xi denotes an upper bound on the size of |x̄i|, i = 1, 2.

We apply the Chinese Remainder Theorem to combine f1 and f2. Let f(x1, x2) = (N−1
2

(mod N1))N2f1(x1, x2) + (N−1
1 (mod N2))N1f2(x1, x2) ≡ 0 (mod N1N2) denote the re-

sulting polynomial equation. The bound we obtain if we analyze the polynomial f with
standard shift polynomial sets using Coppersmith’s method, however, is worse than the
trivial bound. The Newton polytope of the polynomial f is a rectangle. Thus, applying
the basic strategy of [JM06] for generalized rectangles we obtain the bound

X3
1X

3
2
2 < N1N2 .

114 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

Hence, directly applying the Chinese Remainder Theorem to a system of multivariate
equations will not generally lead to good bounds. Having a look at the Newton poly-
topes of f1 and f2, this is not really surprising. The Newton polytope of f1 forms a
line on the x-axis whereas the Newton polytope of f2 is a triangle which leaves out
the x-axis. The only monomial which is shared by both polynomials is, thus, the con-
stant term. Consequently, by combining the two polynomials via Chinese Remaindering,
we get several superfluous monomials. To overcome these difficulties, we aim at con-
structing polynomials which share many monomials. Let us consider the polynomial
f̃1(x1, x2) := x2f1(x1, x2) = x2

1x2 + x1x2 − x2. Its Newton polytope is contained in the
Newton polytope of f2. By the Chinese Remainder Theorem we combine f̃1 and f2 and
get g(x1, x2) ≡ (N−1

2 (mod N1))N2f̃1(x1, x2)+(N−1
1 (mod N2))N1f2(x1, x2). To determine

the roots of g (mod N1N2) we can again use Coppersmith’s method with the basic strategy
of [JM06]. The Newton polytope is a generalized triangle. Therefore, we obtain the bound

X2
1X2 < N1N2 . (5.20)

This bound corresponds to the one we have expected beforehand. More precisely, X1 < N
1
2
1

and X2 < N2 imply X2
1X2 < N1N2. The opposite implication, however, does not hold.

This is quite natural as f2 comprises both unknowns. A separate analysis using this poly-
nomial would, thus, allow to solve for any value |x̄1| ≤ X1 as long as X2

1X2 < N2. This is
the result we also obtain by the analysis of f2(x1, x2) ≡ 0 (mod N2).

A general approach to solve systems of multivariate equations with coprime moduli, conse-
quently, has to be adapted to the specific system of equations. The following basic strategy
will be quite helpful. First, transform the original polynomials (by powering or multipli-
cations) such that the new polynomials have a shared Newton polytope. Then combine
the equations by the Chinese Remainder Theorem to a polynomial g and determine its
solutions with standard Coppersmith techniques.

5.4 General Systems of Modular Equations

In the previous sections of this chapter systems of modular equations either all sharing the
same modulus or all having mutually coprime moduli were analyzed. These techniques can
be combined to solve any system of modular equations. For arbitrary N1 ≤ . . . ≤ Nk ∈ N

we are given the following system of equations:

f1(x1, . . . , xl) ≡ 0 (mod N1)

f2(x1, . . . , xl) ≡ 0 (mod N2)
... (5.21)

fk(x1, . . . , xl) ≡ 0 (mod Nk) .

Without loss of generality we assume that all moduli are indeed equal or coprime. If not,
we can compute their greatest common divisor. Then we can apply the Chinese Remainder

5.4. GENERAL SYSTEMS OF MODULAR EQUATIONS 115

Theorem and substitute equations by a system of isomorphic ones. This can be performed
iteratively until we have a system of equations which fulfills the requirement.
Then we can arrange the equations by common or mutually coprime moduli. For any
group of equations which share the same modulus, we test by Groebner basis computation
if the resulting system contains a linear univariate polynomial. If yes, we determine the
corresponding solutions x̄i of xi and substitute them in all equations. By this, we get a
system of equations in less variables.
As a next step, we choose possibly helpful sets of equations with mutually coprime moduli
and apply the techniques from the previous section.
An alternative way to analyze the given system is to directly define a combined shift
polynomial set F̃ and then apply Coppersmith’s method with this shift polynomial set.
Note however, that the choice of shift polynomials has to be made extremely carefully.
Whereas any shifts of polynomials with coprime moduli can be taken and the set remains
determinant preserving, shifts of polynomials with common moduli have to be taken very
carefully. A possible choice is to let them introduce different monomials.
The bounds we obtain this way strongly depend on the specific system of equations and
the choice of the special subsystems we choose to analyze. Therefore, we cannot state any
general bounds here.

116 CHAPTER 5. SYSTEMS OF MULTIVARIATE POLYNOMIAL EQUATIONS

Chapter 6

Solving Systems of Multivariate

Polynomial Equations over the Integers

In the previous chapter we have seen how to adapt Coppersmith’s method to analyze
systems of modular multivariate equations. The equations to describe specific problems,
however, can also be integer equations. One possible way to analyze them is to regard
them as modular equations. An integer equation can be transformed into a modular one
by taking one of its coefficients as modulus. However, information gets lost this way. In
case of a single equation we may loose information on the relation of the unknowns. In case
of a system of equations even more problems may occur. In the worst case, by the modular
operation, we could eliminate the only variable which occurs in more than one equation.
Therefore, we should adapt our analyses to systems of non-modular equations. To do so,
we analyze Systems of Integer Multivariate Polynomial Equations (SIMPE-problem) in
this chapter.

Definition 6.0.1 (SIMPE-problem)
Let k ∈ N, δ1, . . . , δk ∈ N. Assume f1(x1, . . . , xl), . . . , fk(x1, . . . , xl) to be polynomials of
degree δ1, . . . , δk in Z[x1, . . . , xl], respectively. Let

f1(x1, . . . , xl) = 0

f2(x1, . . . , xl) = 0
... (6.1)

fk(x1, . . . , xl) = 0

be a system of multivariate polynomial equations.

Let Xi ∈ R, i = 1, . . . , l. Find all common roots (x̄1, . . . , x̄l) of (6.1) with size |x̄i| ≤ Xi.

All the systems of polynomial equations we have considered in the previous chapters can
be interpreted as special cases of this system. Any modular equation f(x1, . . . , xl) ≡ 0
(mod N) can be written as an equation f(x1, . . . , xl) − tfN = 0 valid over the integers.
Thus, any system of modular equations can be transformed into a system of equations

117

118 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

valid over the integers. The SIMPE-problem, however, includes further problems which
are directly given as systems of integer polynomial equations. Our final goal is to determine
bounds Xi such that we can compute all solutions smaller than these bounds.
We would like to calculate the solutions using Coppersmith’s method. As the SIMPE-
problem is the most general instance of a system of equations we would like to solve, its
analysis is the most difficult one. Let F denote a shift polynomial set constructed using
the polynomial equations given in (6.1), and let F be the matrix the columns of which
correspond to the polynomials in F . Recall that in the modular case the matrix F consists
of an upper part Fc corresponding to the coefficients of the polynomials and a lower part
Fm corresponding to the moduli. The matrix Fm is a diagonal matrix. Thus, F is an
upper triangular matrix in the modular case.
However, as the polynomials we are considering now are valid over the integers, the matrix
F can be of any shape. Given an arbitrary shift polynomial set, we do no longer have a
triangular structure. To see this, let

f1(x1, x2) := −2x1x2 + 3x3
1 + 4x2

2 = 0 (6.2)

f2(x1, x2) := −3x1x2 + 2x3
1 + x2

2 = 0

be a system of equations with the solution (x̄1, x̄2) = (−2, 2). Let F := {f1, f2} denote the
shift polynomial set used to analyze the system of equations. The matrix F corresponding
to this shift polynomial set is

F :=

−2 −3
3 2
4 1

 . (6.3)

As F does not have a triangular structure, determinant calculations, and, consequently,
calculations of bounds get complicated. Even if we manage to calculate the determinant
of the lattice, we will have to check if it is also the determinant of the sublattice.
We have already analyzed the matrix F in Example 5.1.7. From that analysis we know that
F is not determinant preserving as f1 and f2 are modularly dependent modulo 5. Recall
that in order to check if an arbitrary shift polynomial set F is determinant preserving, we
have to check if the polynomials in F are linear independent modulo N for any positive

integer 1 < N <
(√

|F| · |cmax|
)|F|

, where cmax denotes the largest coefficient which occurs

in F . This is not efficiently possible.
Recall further that, in case of modular systems of equations, the number of potential
moduli for linear dependence is restricted by the number of moduli (and their divisors)
occurring in the system itself. These conditions were described in Lemma 5.2.2 with
respect to common moduli and in Lemma 5.3.2 with respect to coprime moduli. For a
general integer polynomial set, though, we only have the general condition of a determinant
preserving set given in Theorem 5.1.5. This condition, however, is impossible to check for.
Hence, we have to consider this problem beforehand. Namely, while constructing a shift
polynomial set, we construct a shift polynomial set that allows for simpler checks if the
set is determinant preserving and for easier calculations of the bounds. One possibility is

119

to construct the shift polynomial set in a way that a new monomial is introduced with
each new polynomial. Then we obtain a simpler condition (Lemma 5.1.8). That is, while
building a shift polynomial set with respect to a system of integer polynomial equations,
we have to concentrate on two aspects: On the one hand, we always have to check if the
set we define really is determinant preserving. On the other hand, we have to construct
the shift polynomial set in a way that gives us a good bound.

Before we develop new strategies, let us present an existing method which comprises an
analysis of a special system of equations over the integers. Aurélie Bauer and Antoine Joux
have shown how to provably determine small solutions of a trivariate integer polynomial
equation p1(x1, x2, x3) = 0 [BJ07, Bau08]. Their analysis consists of two basic steps.
First, they determine a polynomial p2(x1, x2, x3) by Coppersmith’s basic method. By
construction, the polynomial p2(x1, x2, x3) is coprime to p1(x1, x2, x3). In the second step
of their analysis they determine a third polynomial p3(x1, x2, x3) using p1 and p2 such that
the system

pi(x1, x2, x3) = 0, i = 1, 2, 3 , (6.4)

is zero dimensional. In order to determine p3, they apply Coppersmith’s method using a
shift polynomial set F which they derive from p1 and p2. Let us briefly summarize the
construction of p3.
To prove the zero dimensionality of system (6.4), the polynomial p3 is constructed such that
p3 /∈ I = 〈p1, p2〉. If p1 and p2 are coprime and I is prime, this condition is sufficient. To
construct p3, a minimal Groebner basisG = {q1, . . . , qr} of I is calculated. The polynomials
q1, . . . , qr are then shifted by monomials from sets S1, . . . , Sr, respectively. Let F :=
{miqi | mi ∈ Si and miLM(qi) 6= mjLM(qj) for some j < i} denote the shift polynomial
set determined this way, and let M denote the set of monomials which occur in F . We
would like to describe any polynomial p ∈ I of bounded degree as a linear combination of
polynomials of F . We know p = f1q1 + . . . frqr with polynomials fi. Thus, we require the
set Si to be a generating set of monomials to generate the polynomials fi. This is captured
by the notion of admissibility.

Definition 6.0.2
Let (S1, . . . , Sr,M) denote non-empty sets of monomials in Z[x1, x2, x3]. Then the tuple
(S1, . . . , Sr,M) is called admissible for an ideal I with the Groebner basis {q1, . . . , qr} if:

1. For all (m1, . . . ,mr) ∈ S1 × . . .× Sr the polynomial m1q1 + . . .+mrqr only contains
monomials of M .

2. For any polynomial g containing only monomials of M which can be written as
g = f1q1 + . . .+ frqr it holds that fi only consists of monomials of Si for all i.

Aurélie Bauer and Antoine Joux impose admissibility as a condition on (S1, . . . , Sr,M)
in their construction and build the sets accordingly. This, however, is not yet enough to
prove the zero dimensionality of system (6.4). In order to be able to construct the sets
Si by polynomial division no new monomials may be introduced by the division process.
This property is ensured by using a set M and an order < which are compatible.

120 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

Definition 6.0.3
The tuple (M,<) is called compatible if m1 ∈ M implies m2 ∈ M for any monomial
m2 < m1.

On the aforementioned constraints, a polynomial p3 constructed by Coppersmith’s method
is coprime to p1 and p2. Due to construction, p1 and p2 are coprime as well. Thus, sys-
tem (6.4) is zero dimensional as required.
Furthermore, the preconditions given in [BJ07] already imply that the shift polynomial
set F is determinant preserving. To see this, assume the contrary. Then there exists a
linear combination of polynomials of F which is zero modulo some integer N , that is,
∑

f∈F cff ≡ 0 (mod N). Thus, over the integers, it is
∑

f∈F cff = NfN , where fN is a
polynomial comprising only monomials of M . Moreover, fN /∈ F . (If it was, the polyno-
mials in F would be linearly dependent over the integers. This is impossible due to the
construction of F . Namely, the polynomials can be enumerated in such a way that each
polynomial introduces a new monomial.) As I is a prime ideal and N /∈ I by construc-
tion, it is fN ∈ I. That is, fN =

∑r

i=1 fiqi with polynomials fi ∈ Z[x1, x2, x3]. This,
combined with the facts that fN only contains monomials of M and fN /∈ F , implies that
(S1, . . . , Sr,M) used to define F is not admissible, a contradiction to the preconditions.
Consequently, no modular linear combination of polynomials of F equal to zero exists.
Hence, F is determinant preserving.
Moreover, the shift polynomial set F corresponds to an upper triangular matrix. Conse-
quently, bounds can be calculated directly.
The drawback of this method is, however, that the ideal I is not necessarily prime. If it is
not, a prime ideal has to be constructed from I by decomposition and taking the radical.
For details, compare [Bau08].
Altogether, Aurélie Bauer and Antoine Joux construct shift polynomial sets in a way to
provably determine small solutions. They do not consider, however, if they could get a
better bound with a less restrictive choice of shift polynomials. In case of some specific
systems of polynomials a heuristic approach might work better. Then we can construct
shifts in a way that a lot of monomials reappear. Such methods are, of course, specialized
with respect to the system of polynomial equations under consideration and cannot be used
for general analyses. If searching for a general method to be applicable to any system, we
refer the reader to the approach pursued by A. Bauer and A. Joux [BJ07, Bau08].
Here we restrict our analysis to a special case. In the following section we will return to
the example of implicit factoring introduced in Section 4.2 and analyze it over the integers.

6.1 Analyzing the Problem of Implicit Factoring

The problem of implicit factoring can be analyzed in various manners. Before elaborating
on its analyses, let us briefly recall the problem. The goal is to factor an n-bit RSA modulus
N0 = p0q0, where p0 and q0 denote prime numbers. As this problem is difficult in general,
we make use of an restricted oracle that on the i-th query, i = 1, . . . , k, outputs another
different RSA modulus Ni = piqi such that p0 and pi share t bits. The non-shared bits of

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 121

p0 and pi are subsequent. Moreover, we assume q0 and qi to be α-bit numbers.
In Section 4.2 we have shown that we can determine the vector q = (q0, q1, . . . , qk) by a
heuristic lattice attack using a (k+1)-dimensional lattice L in polynomial time if t > k+1

k
α.

The condition there is, however, that the factors p0 and pi share their least significant bits.
The case of shared most significant bits has been treated in Section 4.3. In that heuristic
lattice attack a lattice of size quadratic in the number of oracle queries k is used. The bound
obtained is (disregarding a small constant) the same as in the case of shared least significant
bits. Both analyses use lattices in which we can extract the factors q = (q0, q1, . . . , qk) from
a short vector.
Using the more advanced technique by Coppersmith and regarding integer equations, we
can partly obtain better bounds. Furthermore, Coppersmith’s method allows for a more
general analysis, independent of the position of the subsequent non-shared bits. We start
with a system of equations we get by putting k oracle queries. This gives us k+1 different
RSA moduli

N0 =
(
pl + 2tp p̃0 + 2n−α−t+tppm

)
q0

... (6.5)

Nk =
(
pl + 2tp p̃k + 2n−α−t+tppm

)
qk

with α-bit qi.
This is equivalent to

2tp p̃0q0 −N0 = −
(
pl + 2n−α−t+tppm

)
q0

...

2tp p̃kqk −Nk = −
(
pl + 2n−α−t+tppm

)
qk .

We transform the system of equations into a system of k integer equations. For i = 1, . . . , k
we multiply the i-th equation with q0, the 0-th equation with qi and combine these two
equations. Then we obtain

2tp p̃0q0q1 −N0q1 = 2tp p̃1q0q1 −N1q0
...

2tp p̃0q0qk −N0qk = 2tp p̃kq0qk −Nkq0 .

Hence, we derive the following system of equations:

2tp (p̃1 − p̃0)
︸ ︷︷ ︸

y1

q0q1 +N0 q1
︸︷︷︸

x1

−N1 q0
︸︷︷︸

x0

= 0

...

2tp (p̃k − p̃0)
︸ ︷︷ ︸

yk

q0qk +N0 qk
︸︷︷︸

xk

−Nk q0
︸︷︷︸

x0

= 0 .

122 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

Replacing the values q0, . . . , qk, p̃1 − p̃0, . . . , p̃k − p̃0 by unknowns x0, . . . , xk, y1, . . . , yk, we
define the system of polynomial equations

f1(x0, . . . , xk, y1, . . . , yk) := 2tpx0x1y1 −N1x0 +N0x1 = 0
... (6.6)

fk(x0, . . . , xk, y1, . . . , yk) := 2tpx0xkyk −Nkx0 +N0xk = 0 .

Our goal is to solve system (6.6) and determine its solutions applying Coppersmith’s
method. Thus, if the values q0, . . . , qk, p̃1 − p̃0, . . . , p̃k − p̃0 are small enough, we obtain
them by this method. This implies that we can factor all Ni for any position of the bits p̃i
in pi. In what follows we will write fi(x0, xi, yi) instead of fi(x0, . . . , xk, y1, . . . , yk) as the
polynomial only depends on the variables x0, xi, yi.

6.1.1 The Case of One Equation

First, let us have a look at the equation f1(x0, x1, y1) := 2tpx0x1y1 + N0x1 − N1x0 = 0,
which has been determined using the two moduli N0 and N1. By construction of f1, we
know that f1(q0, q1, p̃1 − p̃0) = 0.
Let again Xi = 2α and Yi = 2n−α−t denote the upper bounds on |qi| and |p̃i − p̃0|, respec-
tively. Let us recall Coppersmith’s method presented in Section 2.3. We apply it to find
sufficiently small solutions of f1(x0, x1, y1) = 0. For simplicity we only use the polynomial
f1 itself to construct a lattice basis. We do not define any larger shift polynomial sets F
yet. We set

B :=

(X0X1Y1)
−1 0 2tp

0 (X0)
−1 −N1

0 0 N0

x0x1y1

x0

x1

The matrix B is a basis matrix of a lattice L containing the vector (q0q1(p̃1− p̃0), q0, q1)B =

(q0q1(p̃1−p̃0)
X0X1Y1

, q0
X0
, 0) =: t.

There are two properties of the vector t which we will use. First, the norm of the vector

is particularly small, i. e. it holds that ||t|| ≤
√
(
q0q1(p̃1−p̃0)
X0X1Y1

)2

+
(
q0
X0

)2

+ 0 ≤
√

2.

Second, the last entry is 0. This implies that t is also a vector in a sublattice LS of L of
vectors having 0 in their last component. We can determine a basis BS of this sublattice
via unimodular transformations on B. Furthermore, as the greatest common divisor of the
coefficients of f1 equals one, there is a unimodular matrix T such that

TB =

BS

0
0

∗ ∗ 1

 .

Thus, it is det(B) = det(BS). We will apply lattice basis reduction to BS and then

orthogonalize the reduced basis. Let us denote the result by

(
b∗

1

b∗
2

)

. By Lemma 2.3.10

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 123

we get that t is a multiple of b∗
1 if

||t|| < det(LS)
1
2 2−

1
4 . (6.7)

The determinant of the sublattice is det(LS) = det(L) = det(B) = X−2
0 X−1

1 Y −1
1 N0.

Condition (6.7) is fulfilled if

2
1
2 < 2

1
2
(−3α−(n−α−t)+n)− 1

4

⇔ 2α+
6

4
< t .

As α and t are integers as they describe numbers of bits, we require

2α+ 1 < t .

This is essentially the bound we got via the modular analysis (Theorem 4.2.1). A result
like this was to be expected. Both during the modular analysis as well as in this simple
lattice construction the problem was linearized. Thus, algebraic relations between different
monomials were not taken into account.
Hence, we conclude, if 2α + 1 < t, the vector t is orthogonal to b∗

2 and we get another
equation in the unknowns, namely,

fn(x0, x1, y1) :=
x0x1y1

X0X1Y1

(b∗
2)1 +

x0

X0

(b∗
2)2 = 0 .

However, we are not yet finished. We have two equations in three unknowns which does
not necessarily imply that we can solve the system of equations. As the greatest common
divisor of both equations is one, we can eliminate one of the variables. That is, we get one
equation in two unknowns.
Let us consider an example of two 256-bit RSA-moduli with 140 shared bits of the larger
196-bit factor.

Example 6.1.1
Let

N0 = (256 · 812673540453457095612765286246825237797002 + 66763130916719055)

·55353788004451507

= 3241479081396338383767602816098777307849166574844502255653955136311902508989 ,

N1 = (256 · 812673540453457095612765286246825237797002 + 71789524880268405)

·224075567809535399

= 13121708412226537409254487715048399315004981583420160875601531613923194589523 .

124 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

The polynomial to be analyzed is then f1(x0, x1, y1) := x0x1y1 +N0x1 −N1x0 with root

(q0, q1, p̃1 − p̃0) =

(55353788004451507, 224075567809535399, 71789524880268405 − 66763130916719055) .

Applying Coppersmith’s method as described above, we get as second polynomial the
polynomial:

g1(x0, x1, y1) = 55353788004451507 · x0x1y1

− 7263362657066157365749274678904517222670829244020837805874074835

11268708781079485733814225762 · x0

+ 1794281458924771256925238976402448764669769224379604307770771596

79479524226168234746077644916 · x1 .

The polynomial g1 is by construction not a multiple of f1(x0, x1, y1), but shares the same
roots. In order to recover a solution, we compute a Groebner basis of {f1, g1} with respect
to lexicographic ordering. The Groebner basis is

{h1, h2, h3} := {x0x1y1 − 278229945885165475351297676370450x1,

224075567809535399x0 − 55353788004451507x1,

55353788004451507x2
1y1 − 62344533105834761034062392288028515403475112559550x1} .

Having a look at the second polynomial of the Groebner basis, namely, h2(x0, x1, y1) =
224075567809535399x0−55353788004451507x1, we remark that h2(x0, x1, y1) = q1x0−q0x1.
Thus, we get both factorizations by using the coefficients of h2(x0, x1, y1).
Remark that in this example we do not even need to compute a Groebner basis as the
value q0 is also a coefficient of the polynomial g1.

Note that the variety V (h1, h2, h3) is not zero dimensional. Therefore, we cannot apply the
folklore heuristic from [JM06]. Nevertheless, we have seen in Example 6.1.1 that we can
determine the solution (q0, q1, p̃1 − p̃0).
Our experiments showed that similar observations generally hold in this setting. A descrip-
tion of the experiments will be given at the end of this section. Based on these observations,
we introduce the following heuristic.

Assumption 6.1.2
Let F denote a shift polynomial set which is constructed with respect to a polynomial
f ∈ Z[x0, x1, y1]. Assume {f, g1, . . . , gλ} is the set of polynomials in Z[x0, x1, y1] we get by
applying Coppersmith’s method with the shift polynomial set F . Let GB := {h1, . . . , hκ}
be a Groebner basis of {f, g1, . . . , gλ}. Then GB contains a polynomial h(x0, x1, y1) such
that the factors q0 and q1 can be determined as gcd(c,Ni), i = 0, 1, for appropriate coeffi-
cients c of h.

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 125

A similar heuristic is also used by Santanu Sarkar and Subhamoy Maitra in [SM09] who
did related analyses independently. We will elaborate on this in what follows.

Now, let us consider which shifts to use to define F . The polynomial f1(x0, x1, y1) =
2tpx0x1y1 + N0x1 − N1x0 we regard here does not have any constant term. To apply the
folklore techniques of analysis presented in [JM06] we would have to substitute e. g. x0 by
x0 − 1 to introduce a constant term. This is the approach Santanu Sarkar and Subhamoy
Maitra followed. We will not directly define a standard shift polynomial set, but use a
different approach.
For l ∈ N we denote by Ml(f1) the set of monomials occurring in f l1. For any monomial
m ∈ Ml(f1) multiples mf1(x0, x1, y1) do not contain monomials occurring in any power
fλ1 for λ ≤ l. This is because x0 and x1 are of the same total degree, namely one, and
x0x1y1 contains another variable y1, i. e. has degree one in this variable. Therefore, we can
regard the shift polynomial sets separately as there are no monomials which occur in two
shift polynomial sets with different indices l. Furthermore, by increasing the number of
shifts, we get higher powers of N0 in the determinant but also higher powers of X−1

0 , X−1
1

and Y −1
1 . Their ratio, however, remains constant. Thus, we suppose that using such

polynomials mf1(x0, x1, y1), with m ∈ Ml(f1), as shift polynomials to build a lattice and
to apply Coppersmith’s method results in the same bound for any l. This intuition proves
correct as can be seen in the proof of the following theorem. That is, the condition is the
same using the simplest lattice construction as well as sets of standard shifts. The reason
to look at this shift polynomial set anyway is that it can be used for extensions. This is
also the motivation to give the proof with respect to any l ∈ N, otherwise a fixed value of
l would be sufficient.

Theorem 6.1.3
Suppose Assumption 6.1.2 holds. Let N0, N1 ∈ N be of size 2n and f1(x0, x1, y1) =
2tpx0x1y1 +N0x1 −N1x0 ∈ Z[x0, x1, y1]. Let Xi = 2α, i = 0, 1, Y1 = 2n−t−α be bounds on
the absolute value of the solutions q0 and q1, p̃1 − p̃0, respectively. Then in time polyno-
mial in n we can determine all integer solutions (q0, q1, p̃1 − p̃0) such that |qi| ≤ Xi and
|p̃1 − p̃0| ≤ Y1 if

2α+ 1 < t .

Proof: Let l ∈ N. Let Ml(f1) = {xi0xj1yk1 | k = 0, . . . , l; i = k, . . . , l and j = l + k − i}
be the set of all shift monomials. We take all polynomials mf1(x0, x1, y1) for m ∈ Ml(f1)
to construct the lattice. That is, we set F := {mf1(x0, x1, y1) | m ∈ Ml(f1)}. Let
nl := |Ml(f1)| be the number of monomials used as shifts. Then

nl =
l∑

k=0

l∑

i=k

1 =
l∑

k=0

(l − k + 1) =
1

2
l2 +

3

2
l + 1 .

Let Ml(f1) = {m1, . . . ,mnl
} be an enumeration of the monomials of Ml(f1) such that

mi >grlex mj if i < j, and let g1i(x0, x1, y1) := mif1(x0, x1, y1). Then for every polynomial
g1i the monomial x1mi is not contained in the set of monomials of all g1j with j < i.

126 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

B =

(X0X1Y1)
−2 0 0 2tp 0 0

0 (X0)
−2(X1Y1)

−1 0 −N1 2tp 0
0 0 (X0)

−2 0 −N1 0
0 0 0 N0 0 2tp

0 0 0 0 N0 −N1

0 0 0 0 0 N0

x2
0x

2
1y

2
1

x2
0x1y1

x2
0

x0x
2
1y1

x0x1

x2
1

.

Figure 6.1: A lattice basis matrix in the case of l = 1.

This can be proven by contradiction. Assume that there exists j < i such that x1mi is a
monomial of g1j. Then x1mi ∈ {x1mj, x0mj, x0x1y1mj}. If x1mi = x1mj, then mi = mj

and, consequently, i = j, which is a contradiction. If x1mi = x0mj, then the degree of
x0 in mi is positive and mj = mix1x

−1
0 . This implies that deg(mi) = deg(mj) and due to

the ordering mi >grlex mj. Therefore, i < j, a contradiction. If x1mi = x0x1y1mj, then
deg(mi) > deg(mj) and, thus, we again get the contradiction i < j.
This observation can be used to build an upper triangular basis matrix B of a lattice L.
Such a lattice can then be analyzed easier as e. g. the determinant computation is simply
the multiplication of the diagonal elements of B.
The idea of the construction of B is to let the last rows correspond to the monomials
x1mi, i = 1, . . . , nl, and the first rows correspond to all other monomials in any order. An
example of a basis matrix B in the case of l = 1 is given in Figure 6.1.
Now we describe the construction more formally. Let rl be the number of monomials
occurring in the set of shift polynomials and mnl+1, . . . ,mrl be an enumeration of all the
monomials which are not contained in x1m1, . . . , x1mnl

. The monomials mnl+1, . . . ,mrl

can be ordered in any way. For consistency we assume that they are ordered such that
mi >grlex mj if i < j. We set x := (mnl+1, . . . ,mrl , x1m1, . . . , x1mnl

).
Furthermore, let Mi denote the evaluation of mi in the values (X0, X1, Y1). Let D :=
Diag(M−1

nl+1, . . . ,M
−1
rl

). Let f denote the coefficient vector of f(x0, x1, y1) ordered such
that fxT = f(x0, x1, y1). Let F be the matrix consisting of the coefficient vectors (g1i)

T

for i = 1, . . . , nl. That is, F denotes the matrix induced by F . Using these definitions, we
define a lattice L via the basis matrix

B =

D

F

0

mnl+1
...
mrl

x1m1
...

x1mnl

.

We apply Coppersmith’s algorithm to this lattice. Then we get a second polynomial,

coprime to f1, on condition that det(L)
1

rl−nl 2−
rl−nl−1

4 >
√
rl − nl.

We calculate the determinant of our lattice L. Recall that B is an upper triangular matrix

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 127

by construction. Thus, the matrix F can be divided into an (rl − nl) × nl matrix F1

and an upper triangular nl × nl matrix F2. More precisely, F =

(
F1

F2

)

. It holds that

det(L) = P1 ·P2, where P1 denotes the product of the diagonal entries of D and P2 denotes
the product of the diagonal entries of F2. The elements on the diagonal of F2 correspond
to monomials of type x1mi, i = 1, . . . , nl. Hence, all values on the diagonal of F are equal

to N0. Their number is nl = 1
2
l2 + 3

2
l + 1. Consequently, we have P2 = N

1
2
l2+ 3

2
l+1

0 ≈
2n(

1
2
l2+ 3

2
l+1).

In order to evaluate P1, we need to describe the monomials mnl+1, . . . ,mrl explicitly. The
set of all monomials occurring in the shift polynomials is exactly

Ml+1(f1) = {xi0xj1yk1 | k = 0, . . . , l + 1; i = k, . . . , l + 1 and j = l + 1 + k − i}.

The set M := {x1m1, . . . , x1mnl
} can be described as

M = {xi0xj1yk1 | k = 0, . . . , l; i = k, . . . , l and j = l + 1 + k − i} .

The powers of any of X−1
0 , X−1

1 and Y −1
1 occurring on the diagonal of D correspond to

the powers of the variables x0, x1, y1 occurring in monomials in the set Ml+1(f1) \M . Let
s0 and s1 denote the powers of X−1

0 and X−1
1 , respectively, and let u denote the power of

Y −1
1 . Then we have

s0 =
l+1∑

k=0

l+1∑

i=k

i−
l∑

k=0

l∑

i=k

i (6.8)

= l2 + 3l + 2 ,

s1 =
l+1∑

k=0

l+1∑

i=k

(l + 1 + k − i) −
l∑

k=0

l∑

i=k

(l + k − i+ 1) (6.9)

=
1

2
l2 +

3

2
l + 1 ,

u =
l+1∑

k=0

l+1∑

i=k

k −
l∑

k=0

l∑

i=k

k (6.10)

=
1

2
l2 +

3

2
l + 1 .

This gives

P1 = X
−(l2+3l+2)
0 X

−(1
2
l2+ 3

2
l+1)

1 Y
−(1

2
l2+ 3

2
l+1)

1 .

Using the calculations of P1, P2 and X0 = X1 = 2α, Y1 = 2n−α−t as well as N0 ≥ 2n−1, we
obtain

det(L) ≥ 2−α(
3
2
l2+ 9

2
l+3)−(n−α−t)(1

2
l2+ 3

2
l+1)+n(1

2
l2+ 3

2
l+1)−(1

2
l2+ 3

2
l+1)

128 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

= 2t(
1
2
l2+ 3

2
l+1)−α(l2+3l+2)−(1

2
l2+ 3

2
l+1) .

In order to apply the condition given in Lemma 2.3.10, we have to determine the dimension
r of the sublattice LS in Coppersmith’s method. As the last nl entries of the target vector
are zeros, it is r = rl − nl. We have rl = |Ml+1(f1)| =

∑l+1
k=0

∑l+1
i=k 1 = 1

2
l2 + 5

2
l + 3.

Consequently,

r =

(
1

2
l2 +

5

2
l + 3

)

−
(

1

2
l2 +

3

2
l + 1

)

= l + 2 .

All components of the target vector t are smaller than 1 so that ||t|| ≤
√
l + 2. Therefore,

we get the following condition on the existence of a second equation:

√
l + 2 <

(

2t(
1
2
l2+ 3

2
l+1)−α(l2+3l+2)−(1

2
l2+ 3

2
l+1)
) 1

l+2 · 2− l+1
4

⇔ l + 2

2
log (l + 2) +

(l + 1)(l + 2)

4
+

(
1

2
l2 +

3

2
l + 1

)

< t

(
1

2
l2 +

3

2
l + 1

)

−α
(
l2 + 3l + 2

)

⇔ 2α+
3

2
+

log (l + 2)

l + 1
< t .

If l = 0, . . . , 4, our condition is 2α + 2 < t, for any l > 4, it is 2α+ 1 < t.

On the heuristic Assumption 6.1.2 this implies that we are able to determine the solution
(q0, q1, p̃1 − p̃0). As we can use the construction with l = 5, we have a fixed number of
components in the basis vectors and a fixed lattice dimension so that the running time
of the LLL algorithm 2.3.5 only depends on the size of the largest values in the lattice,
which is determined by n. Thus, the attack works in time polynomial in n. This proves
the theorem.

Remark that we get essentially the same lower bound on t with this method as we have
obtained with the modular approach (Theorem 4.2.1). Ignoring the bit which has to be
added, this bound is illustrated by the function g(α) = 2α in Figure 6.2 in comparison to
further bounds. This way, it corresponds to the result of the modular analysis.

Sometimes better bounds can be achieved via so called extra shifts, i. e. instead of regarding
polynomials mf1 such that m ∈Ml(f1), we take different monomials m. The question now
is how to choose the monomials m appropriately. As we would like to have a large deter-
minant, a ”good” polynomial in the shift polynomial set is a polynomial which introduces
a large term on the determinant. Thus, we would like to have a polynomial with a new
monomial with a large coefficient, and as few other new monomials as possible. Therefore,
we take shifts which transform monomials of one polynomial into other monomials which
already exist. Take a look at the monomials of f1(x0, x1, y1). They are x0, x1 and x0x1y1.
Multiplying x0 by x1y1 results in x0x1y1, and, analogously, x1 · (x0y1) = x0x1y1. Thus, a
promising approach seems to be to choose m ∈ {(x0y1)

a(x1y1)
b, a, b = 0, . . . , l} =: El(f1)

as the following example shows.

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 129

Example 6.1.4
Let l = 1 and use mf1(x0, x1, y1) with m ∈ E1(f1) as set of shift polynomials. That is,
F := {x0x1y

2
1f1, x0y1f1, x1y1f1, f1}. Then we define B as follows:

B :=

(X2
0X2

1Y 3
1)−1 0 0 0 2tp 0 0 0

0 (X2
0X1Y

2
1)−1 0 0 −N1 2tp 0 0

0 0 (X2
0Y1)

−1 0 0 −N1 0 0
0 0 0 (X0)

−1 0 0 0 −N1

0 0 0 0 N0 0 2tp 0
0 0 0 0 0 N0 −N1 2tp

0 0 0 0 0 0 N0 0
0 0 0 0 0 0 0 N0

x2
0x

2
1y

3
1

x2
0x1y

2
1

x2
0y1

x0

x0x
2
1y

2
1

x0x1y1

x2
1y1

x1

The matrix B is a basis matrix of a lattice L with determinant det(L) = X−7
0 X−3

1 Y −6
1 N4

0 ≥
2−10α2−6(n−α−t)24(n−1) for X0 = X1 = 2α, Y1 = 2(n−α−t) and N0, N1 ≥ 2n−1.

Let again t := sB = (
q20q

2
1(p̃1−p̃0)3
X2

0X
2
1Y

3
1

,
q20q1(p̃1−p̃0)2

X2
0X1Y

2
1

,
q20(p̃1−p̃0)

X2
0Y1

, q0
X0
, 0, 0, 0, 0) with s := (q2

0q
2
1(p̃1 −

p̃0)
3, q2

0q1(p̃1 − p̃0)
2, q2

0(p̃1 − p̃0), q0, q0q
2
1(p̃1 − p̃0)

2, q0q1(p̃1 − p̃0), q
2
1(p̃1 − p̃0), q1) denote our

target vector. It is ||t|| ≤
√

4 = 2. Thus, by Lemma 2.3.10, we get another equation in the
unknowns not being a multiple of the original one if

||t|| ≤ 2 <
(
2−10α2−6(n−α−t)24(n−1)

) 1
4 2−

3
4

⇔ 10α + 6(n− α− t) + 7 < 4(n− 1)

⇔ 4α+ 2n+ 11

6
< t .

A natural upper bound on t is given by the fact that the number of shared bits of one
factor has to be smaller than the total number of bits of this factor, which implies that we
have

t ≤ n− α ⇒ 4α + 2n+ 11

6
≤ n− α

⇔ α ≤ 2n

5
− 11

10
.

Consequently, the attack described in this example can only be applied to imbalanced
moduli with α ≤ 2n

5
− 11

10
. We again have a lattice of constant size. Thus, the running time

is only influenced by the size n of the largest value in the matrix. Hence, the attack can
be performed in time polynomial in n.

Comparing the lower bound 4α+2n+11
6

< t of Example 6.1.4 to the lower bound 2α + 1 < t
of Theorem 6.1.3, we have

4α + 2n+ 11

6
< 2α+ 1

⇔ n

4
+

5

8
< α .

130 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

That is, for factors qi of bitsize α in the range from approximately n
4

to 2n
5

we obtain better
results using this simple set of new shift polynomials. The result is illustrated in Figure 6.2
as function e.
Analogously, we can apply Coppersmith’s method with the shift polynomial set F :=
{mf1(x0, x1, y1) | m ∈ El(f1)} for any l ∈ N. The analysis is straightforward. We obtain
better results by combining the basic approach of Theorem 6.1.3 with further shifts by
monomials m ∈ El(f1). Therefore, we do not give the analysis with respect to this shift
polynomial set F here. We only remark that the bound we obtain regarding the limit
l → ∞ only depends on n. Namely, it is f(α) := n

2
< t. This bound is illustrated in

Figure 6.2.
In the following theorem we will give the bound obtained by a combined analysis. That is,
we will use shifts in monomials ofMl(f1) and in monomials of El(f1) as well as combinations
of those shifts. Shifts in monomials m ∈ El(f1) are called extra shifts. Note that in contrast
to what is usually done, we do not use extra shifts in single variables here but extra shifts
in special monomials.

Theorem 6.1.5
Suppose Assumption 6.1.2 holds. Let N0, N1 ∈ N be n-bit numbers and f1(x0, x1, y1) =
2tpx0x1y1 +N0x1 −N1x0 ∈ Z[x0, x1, y1]. Let Xi = 2α, i = 0, 1, Y1 = 2n−t−α be bounds on
the solutions q0 and q1, p̃1 − p̃0, respectively. Then for all ǫ > 0 there is l(ǫ) such that we
can determine all integer solutions (q0, q1, p̃1 − p̃0) with |qi| ≤ Xi and |p̃1 − p̃0| ≤ Y1 in time
polynomial in n, l(ǫ) if

2α
(

1 − α

n

)

+
3

2
< t− ǫ .

Proof: Let l ∈ N, τ ∈ R such that τ l ∈ N. Let Sl,τ l(f1) := {xi+a0 xj+b1 ya+b+k1 | k =
0, . . . , l; i = k, . . . , l; j = l + k − i; a = 0, . . . , τ l and b = 0, . . . , τ l} be the set of all shift
monomials. We take all polynomials mf1(x0, x1, y1) for m ∈ Sl,τ l(f1) to construct the
lattice. That is, we set F := {mf1(x0, x1, y1) | m ∈ Sl,τ l(f1)}. Let nl := |Sl,τ l(f1)| be
the number of monomials used as shifts. For ease of the analysis we now write Sl,τ l(f1) =
{xi0xj1yk1 | k = 0, . . . , l + 2τ l; i = max{0, k − τ l}, . . . ,min{l + τ l, l + k} and j = l + k − i}.
Then

nl =
τl∑

k=0

k+l∑

i=0

1 +
2τl+l∑

k=τl+1

l+τl∑

i=k−τl
1 = τ 2l2 + 2τ l +

3

2
l + 1 +

1

2
l2 + 2τ l2 .

Let Sl,τ l(f1) = {m1, . . . ,mnl
} be an enumeration of the monomials of Sl,τ l(f1) such that

mi >grlex mj if i < j, and let g1i(x0, x1, y1) := mif1(x0, x1, y1). Then, as in the proof of
Theorem 6.1.3, for every polynomial g1i the monomial x1mi is not contained in the set of
monomials of all g1j with j < i. We now proceed analogously to that proof and construct
an upper triangular basis matrix B of a lattice L to which we can apply Coppersmith’s
method.
Recall the notation used: Let rl be the number of monomials occurring in the set of
shift polynomials and mnl+1, . . . ,mrl be an enumeration of all these monomials which
are not contained in {x1m1, . . . , x1mnl

}. Let the monomials mnl+1, . . . ,mrl be ordered

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 131

such that mi >grlex mj if i < j. We set x := (mnl+1, . . . ,mrl , x1m1, . . . , x1mnl
). Fur-

thermore, let Mi denote the evaluation of mi in the values (X0, X1, Y1). Let D :=
Diag(M−1

nl+1, . . . ,M
−1
rl

). Again, let f denote the coefficient vector of f(x0, x1, y1) ordered
such that fxT = f(x0, x1, y1). Let F be the matrix consisting of the coefficient vectors
(g1i)

T = (mif1)
T for i = 1, . . . , nl.

Then we define the lattice L via a basis matrix

B =

D

F

0

mnl+1
...
mrl

x1m1
...

x1mnl

We apply Coppersmith’s algorithm to this lattice. By this method we get a coprime second

polynomial provided that det(L)
1

rl−nl · 2− rl−nl−1

4 >
√
rl − nl.

Therefore, we determine the determinant of our lattice like in Theorem 6.1.3. It holds
that det(L) = P1 · P2, where P1 denotes the product of the diagonal entries of D, and P2

denotes the product of the diagonal entries of F2. Again F2 is the upper triangular nl×nl

matrix such that F =

(
F1

F2

)

. All contributions we derive from diagonal entries of F2 are

equal to N0. Their number is nl = τ 2l2 + 2τ l+ 3
2
l+ 1 + 1

2
l2 + 2τ l2. Consequently, we have

P2 = N
τ2l2+2τl+ 3

2
l+1+ 1

2
l2+2τl2

0 .

In order to evaluate P1, we need to describe the monomials mnl+1, . . . ,mrl explicitly. The
set of all monomials occurring in the shift polynomials is exactly

Sl+1,τ l(f1) := {xi0xj1yk1 | k = 0, . . . , l+1+2τ l; i = max{0, k−τ l}, . . . ,min{l+1+τ l, l+1+k}

and j = l + 1 + k − i} .

The set M := {x1m1, . . . , x1mnl
} can be described as

M = {xi0xj1yk1 | k = 0, . . . , l + 2τ l; i = max{0, k − τ l}, . . . ,min{l + τ l, l + k}

and j = l + 1 + k − i} .

The number of powers of any of X−1
0 , X−1

1 and Y −1
1 occurring on the diagonal of D equals

the number of powers of the variables x0, x1, y1 occurring in monomials in Sl+1,τ l(f1) \M ,
respectively. Let s0 and s1 denote the powers of X−1

0 and X−1
1 , respectively, and u denote

132 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

the power of Y −1
1 . Then we have

s0 =
τl∑

k=0

l+1+k∑

i=0

i+
2τl+l+1∑

k=τl+1

l+1+τl∑

i=k−τl
i (6.11)

−
(

τl∑

k=0

l+k∑

i=0

i+
2τl+l∑

k=τl+1

l+τl∑

i=k−τl
i

)

= 2 + 3l + l2 +
7

2
τ l + 3τ l2 +

3

2
τ 2l2 ,

s1 =
τl∑

k=0

l+1+k∑

i=0

(l + 1 + k − i) +
2τl+l+1∑

k=τl+1

l+1+τl∑

i=k−τl
(l + 1 + k − i) (6.12)

−
(

τl∑

k=0

l+k∑

i=0

(l + 1 + k − i) +
2τl+l∑

k=τl+1

l+τl∑

i=k−τl
(l + 1 + k − i)

)

= 1 +
3

2
l +

1

2
l2 +

3

2
τ l + τ l2 +

1

2
τ 2l2 ,

u =
τl∑

k=0

l+1+k∑

i=0

k +
2τl+l+1∑

k=τl+1

l+1+τl∑

i=k−τl
k (6.13)

−
(

τl∑

k=0

l+k∑

i=0

k +
2τl+l∑

k=τl+1

l+τl∑

i=k−τl
k

)

= 1 +
3

2
l +

1

2
l2 + 3τ l + 2τ l2 + 2τ 2l2 .

This gives

P2 = X
−(2+3l+l2+ 7

2
τl+3τl2+ 3

2
τ2l2)

0 X
−(1+ 3

2
l+ 1

2
l2+ 3

2
τl+τl2+ 1

2
τ2l2)

1 Y
−(1+ 3

2
l+ 1

2
l2+3τl+2τl2+2τ2l2)

1 .

Substituting P1, P2 and X0 = X1 = 2α, Y1 = 2n−α−t as well as N0 ≥ 2n−1 in det(L), we get

det(L) ≥

2−α(3+ 9
2
l+ 3

2
l2+5τl+4τl2+2τ2l2)−(n−α−t)(1+ 3

2
l+ 1

2
l2+3τl+2τl2+2τ2l2)+(n−1)(τ2l2+2τl+ 3

2
l+1+ 1

2
l2+2τl2)

= 2t(1+ 3
2
l+ 1

2
l2+3τl+2τl2+2τ2l2)−α(2τl2+2τl+l2+3l+2)−n(τ2l2+τl)−(τ2l2+2τl+ 3

2
l+1+ 1

2
l2+2τl2) .

In order to apply the condition given in Lemma 2.3.10, we have to determine the dimension
r of the sublattice LS in Coppersmith’s method. It is rl = |Sl+1,τ l(f1)| =

∑τl

k=0

∑l+1+k
i=0 1 +

∑2τl+l+1
k=τl+1

∑l+1+τl
i=k−τl 1 = 4τ l + 3 + τ 2l2 + 2τ l2 + 1

2
l2 + 5

2
l. Consequently,

r = rl − nl

=

(

4τ l + 3 + τ 2l2 + 2τ l2 +
1

2
l2 +

5

2
l

)

−
(

τ 2l2 + 2τ l +
3

2
l + 1 +

1

2
l2 + 2τ l2

)

= 2τ l + l + 2 .

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 133

All components of the target vector t are smaller than or equal to 1 so that ||t|| ≤√
2τ l + l + 2. Therefore, we get the following condition on the existence of a second equa-

tion: √
2τ l + l + 2 < 2−

2τl+l+1
4

·
(

2t(1+ 3
2
l+ 1

2
l2+3τl+2τl2+2τ2l2)−α(2τl2+2τl+l2+3l+2)−n(τ2l2+τl)−(τ2l2+2τl+ 3

2
l+1+ 1

2
l2+2τl2)

) 1
2τl+l+2

⇔ 2τ l + l + 2

2
log (2τ l + l + 2) +

(2τ l + l + 1)(2τ l + l + 2)

4

+

(

τ 2l2 + 2τ l +
3

2
l + 1 +

1

2
l2 + 2τ l2

)

< t
(2τ l + l + 2) (2τ l + l + 1)

2
− α (2τ l + l + 2) (l + 1) − n

(
τ 2l2 + τ l

)
.

As
2
(
τ 2l2 + 2τ l + 3

2
l + 1 + 1

2
l2 + 2τ l2

)

4τ 2l2 + 4τ l2 + 6τ l + l2 + 3l + 2
= 1 − 2τ 2l2 + 2τ l

4τ 2l2 + 4τ l2 + 6τ l + l2 + 3l + 2

we use the slightly stronger constraint

⇐ 2(l + 1)

2τ l + l + 1
α+

2τ l (τ l + 1)

(2τ l + l + 2) (2τ l + l + 1)
n+

3

2
+

log (2τ l + l + 2)

2τ l + l + 1
︸ ︷︷ ︸

=:h(α,n,l,τ)

< t . (6.14)

This implies that for fixed l and τ we can factor the integers Ni if t is greater than
h(α, n, l, τ). Remark that the result of Theorem 6.1.3 is exactly this result in the case of
τ = 0.
It is

h̄(α, n, τ) := lim
l→∞

h(α, n, l, τ) =
12τ 2 + 3 + 8τα + 12τ + 4α+ 4τ 2n

8τ 2 + 8τ + 2
.

Let ǫ > 0. Then there is l(ǫ) such that for l > l(ǫ) condition (6.14) simplifies to

12τ 2 + 3 + 8τα + 12τ + 4α + 4τ 2n

8τ 2 + 8τ + 2
< t− ǫ . (6.15)

The optimal value τopt of τ , such that the lower bound on the number of shared bits
h̄(α, n, τopt) is as small as possible, is τopt = α

n−2α
for α 6= n

2
. Substituting this value in the

function, we can determine the lower bound on t as

h̄(α, n, τopt) =
4αn+ 3n− 4α2

2n
< t− ǫ .

This is equivalent to

2α
(

1 − α

n

)

+
3

2
< t− ǫ . (6.16)

134 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

b

h

f

g

e

0

200

400

600

800

1000

t

200 400 600 800 1000

α

Figure 6.2: b : t < n − α, e : t > 4α+2n+11
6

, f : t > n
2
, g : t > 2α, h : t >

2α
(
1 − α

n

)
+ 3

2

Bounds on the number t of shared bits, dependent on the bitsize α of the smaller factor
with n = 1000.

On the heuristic Assumption 6.1.2 this implies that we are able to determine the solution
and proves the bound. The running time of the algorithm is dominated by the running
time of the LLL-reduction, which is polynomial in the lattice dimension and the size of
the largest values in the lattice. The former is polynomial in l(ǫ), the latter in n. This
concludes the proof.

Remark that the condition 4αn+3n−4α2

2n
< t−ǫ implies 4αn+3n−4α2

2n
≤ n−α, α 6= n

2
as t ≤ n−α

by definition. Thus, α < 3
4
n −

√
n2+12n

4
. This condition implies that α < 1

2
n. Therefore,

Theorem 6.1.5 can only be applied to composite numbers with imbalanced factors.

In order to obtain better bounds, we have used monomials of f l1 as shift monomials. In
contrast to our first analysis, they are useful here as further monomials reoccur in shifted
polynomials if the shifts we use are a combination of those shifts and extra shifts.

Furthermore, note that the motivating Example 6.1.4 is not included in our analysis.
However, this does not pose any problems as the bound for valid values of α gets better
already in the case of l = τ = 1.

In Figure 6.2, a comparison of the various bounds is given.

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 135

theoretical experimental theoretical theoretical experimental asymptotic
α result result result of bound with result with bound of

of [SM09] of [SM09] modular l = 4, τ = 1

2
in l = 4, τ = 1

2
in integer

approach integer approach integer approach approach

230 505 434 460 391 390 356
240 521 446 480 402 401 367
250 525 454 500 413 413 377
260 530 472 520 425 423 387
270 534 479 540 436 434 396

Table 6.1: Lower bounds on t for special values of α with n = 1000

To verify our heuristic assumptions in practice, we have run experiments on a Core2 Duo
1.66GHz notebook. The attacks were implemented using Magma1 Version 2.11. As in
Section 4.2, we have used the implementation of L2 by Phong Nguyen and Damien Stehlé
[NS05], which is implemented in Magma. We performed experiments using 1000-bit moduli
Ni with various bitsizes of the qi and several values of tp. We set l = 4 and τ = 1

2
. Then

the heuristic was valid for all t > h(α, n, l, τ) in our experiments. Sometimes an attack was
also successful although t was a few bits smaller than the theoretical bound. The bounds
obtained for some values of α are given in columns five and six of Table 6.1.

Santanu Sarkar and Subhamoy Maitra independently used an integer approach to analyze
the problem of implicit factoring with one oracle call [SM09]. They regard the same
polynomial f1(x0, x1, y1) = 2tpx0x1y1 − N1x0 + N0x1. However, instead of adapting the
shifts to a polynomial without a constant term, they substitute x0 by x0 − 1 and use the
folklore analysis given in [JM06] to determine the roots of f̂1(x0, x1, y1) = 2tpx0x1y1 −
2tpx1y1 −N1x0 +N1 +N0x1. By this, they get the following result: The factorization of N0

and N1 can be efficiently determined if the heuristic given in Assumption 6.1.2 holds and

−4
α2

n2
− 2

α(n− α− t)

n2
− (n− α− t)2

4n2
+ 4

α

n
+

5(n− α− t)

3n
− 1 < 0 (6.17)

as well as

1 − 3(n− α− t)

2n
− 2

α

n
≥ 0. (6.18)

In order to compare it to our result, we transform the above inequalities into conditions
on t: Then the first inequality (6.17) becomes

3α− 7n

3
− 4

√
−6αn+ 4n2

3
< t < 3α− 7n

3
+

4
√
−6αn+ 4n2

3
, (6.19)

inequality (6.18) can be transformed into

1

3
n+

1

3
α ≤ t. (6.20)

1http://magma.maths.usyd.edu.au/magma/

136 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

f

h

b

g

S

s

0

200

400

600

800

1000

t

200 400 600 800 1000

α

Figure 6.3: b : t < n− α, f : t > n
2
, g : t > 2α, h : t > 2α

(
1 − α

n

)
+ 3

2

Upper bound S and lower bound s on t given in equations (6.19) and (6.20), com-
pare [SM09].

Comparison of the results of [SM09] with our modular and integer ones for k = 1 with
n = 1000.

A comparison of these results to ours is given in Table 6.1. We give lower bounds on t for
some values of α. The values of α which are considered were also analyzed in the work of
Santanu Sarkar and Subhamoy Maitra.

A general comparison between the different conditions on t can be seen in Figure 6.3.

It is

1

3
n+

1

3
α <

4αn+ 3n− 4α2

2n

⇔ 5n−
√
n2 + 108n

12
< α <

5n+
√
n2 + 108n

12
.

This implies that our bound is better in case of α ≤ 5n−
√
n2+108n
12

. This includes most of
the possible values of α. The bound obtained in [SM09] is better in the remaining cases.
However, the advantage is only slight. Moreover, this is exactly the region in which the
experiments in [SM09] do not correspond to their theoretical result but give worse bounds.

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 137

6.1.2 The Case of More than One Equation

Having analyzed the problem of implicit factoring with one oracle call, we extend the anal-
ysis to more oracle calls. In the modular case the bounds we have obtained improved the
more oracle calls were made. We hope to obtain a similar result here as more informa-
tion is given by more oracle calls. As in the previous section we start with the equation
f1(x0, x1, y1) := 2tpx0x1y1 + N0x1 − N1x0 = 0, which we derived from the two moduli N0

and N1. By construction of f1, we know that f1(q0, q1, p̃1 − p̃0) = 0. By any further oracle
call we obtain another equation fi(x0, xi, yi) := 2tpx0xiyi +N0xi−Nix0 = 0 with solutions
(q0, qi, p̃i − p̃0), i = 2, . . . , k, where k is the number of oracle calls.

Our goal is as follows. Given the polynomial equations f1(x0, x1, y1) := 2tpx0x1y1 +N0x1−
N1x0 = 0, . . . , fk(x0, xk, yk) := 2tpx0xkyk + N0xk − Nkx0 = 0, determine conditions such
that we can find (q0, q1, . . . , qk, p̃1 − p̃0, . . . , p̃k − p̃0) efficiently by Coppersmith’s method.

Let again Xi = 2α and Yi = 2n−α−t denote the upper bounds on the absolute values of the
solutions qi and p̃i − p̃0, respectively. Like in the case of one equation we introduce the
following heuristic.

Assumption 6.1.6
Let F denote a shift polynomial set which is constructed with respect to some polyno-
mials f1, . . . , fk ∈ Z[x0, . . . , xk, y1, . . . , yk]. Assume that the set {f1, . . . , fk, g1, . . . , gλ} ⊂
Z[x0, . . . , xk, y1, . . . , yk] is the set of polynomials we get by applying Coppersmith’s method
with the shift polynomial set F . Let GB := {h1, . . . , hκ} be a Groebner basis of {f1, . . . , fk,
g1, . . . , gλ}. Then the factors q0, q1, . . . , qk can be efficiently determined from GB.

Using this heuristic and the simplest shift polynomial set possible, we can again recalculate
the bound k+1

k
α < t by applying Coppersmith’s method. This is the bound we have

obtained by the modular analysis (Theorem 4.2.3).

Theorem 6.1.7
Assume k ∈ N to be fixed. As before let fi(x0, xi, yi) := 2tpx0xiyi + N0xi − Nix0 with
i = 1, . . . , k. Furthermore, suppose F := {fi(x0, xi, yi) | i ∈ {1, . . . , k}}. Then, by Copper-
smith’s method with shift polynomial set F , all common roots (x0, x1, . . . , xk, y1, . . . , yk) =
(q0, q1, . . . , qk, p̃1 − p̃0, . . . , p̃k − p̃0) with |qi| ≤ 2α and |p̃i− p̃0| ≤ 2n−α−t can be determined
efficiently if

k + 1

k
α+ δk < t

for a small integer δk and if Assumption 6.1.6 holds.

Proof: The proof is analogous to the proof in the case of only one equation f1(x0, x1, y1) =
0. The only difference is that we extend our lattice basis. That is, we add the information

138 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

we get by the further equations fi(x0, xi, yi) = 0, i = 2, . . . , k. Thus, we set

B :=

(X0X1Y1)
−1 0 0 2tp 0

0
. . . 0 0 0

. . . 0
0 (X0XkYk)

−1 0 0 2tp

0 0 (X0)
−1 −N1 . . . −Nk

0 0 0 N0 0

0 0 0 0
. . . 0

0 0 0 0 N0

x0x1y1
...

x0xkyk
x0

x1
...
xk

.

The matrix B is a basis matrix of a lattice L containing the vector

t = (q0q1(p̃1 − p̃0), . . . , q0qk(p̃k − p̃0), q0, q1, . . . , qk)B

= (
q0q1(p̃1 − p̃0)

X0X1Y1

, . . . ,
q0qk(p̃k − p̃0)

X0XkYk
,
q0
X0

, 0, . . . , 0) ,

which is our target vector. The vector t is part of a sublattice LS of L such that the last k
entries in vectors of LS are zero. Let BS be a basis matrix of the lattice LS. According to
Lemma 2.3.10, we get a new equation fn(x0, . . . , xk, y1, . . . , yk) = 0 with the same solutions
if

||t|| < det(LS)
1

k+1 2−
k
4 . (6.21)

The determinant of the sublattice is

det(LS) = det(L) = det(B) = X
−(k+1)
0

k∏

i=1

(
X−1
i Y −1

i

)
Nk

0 .

Therefore, using Ni ≥ 2n−1, condition (6.21) becomes

(k + 1)
1
2 < 2

1
k+1

(−(2k+1)α−k(n−α−t)+k(n−1))− k
4

⇔ k + 1

k
α+

(k + 1) log (k + 1)

2k
+
k + 1

4
+ 1 < t ,

As α and t are integers as they describe numbers of bits, we require

k + 1

k
α+ δk < t ,

where δk is the first integer larger than (k+1) log(k+1)
2k

+ k+1
4

+ 1.
The computation complexity is dominated by the complexity of the LLL-reduction. As the
lattice under consideration is of constant dimension, the running time is polynomial in the
bitsize of the values in B. That is, it is polynomial in n. Let GB denote a Groebner basis
of {fn, f1, . . . , fk}. It can be computed efficiently for fixed values of k as we are dealing
with polynomials of maximum degree 3 in 2k+1 variables. If Assumption 6.1.6 holds, then
we can efficiently determine the values q0, q1, . . . , qk from GB and the claim follows.

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 139

The above result is rather obvious. When we analyzed the problem of implicit factoring
with a modular approach in Section 4.2, the equations were linearized in order to use them
in the description of a lattice. Here, using Coppersmith’s method with {f1, . . . , fk} as shift
polynomial set, we do essentially the same. Instead of eliminating the non-linear monomial
by the modular operation, we use it as a separate element. As we do not take its structure
and relation to other monomials into account, we treat it like an additional variable. That
is, we implicitly linearize the given problem. Thus, we obtain essentially the same bound
as before.

bitsize α number of bound number of success
of the qi moduli k + 1 k+1

k
α shared bits t rate

250 3 375 377 33%
250 3 375 378 75%
350 10 389 390 0%
350 10 389 391 100%
400 100 405 409 0%
400 100 405 410 95%
440 50 449 452 0%
440 50 449 453 80%
480 100 485 491 33%
480 100 485 492 90%

Table 6.2: Attack for imbalanced RSA moduli using Coppersmith’s method

Again, we have verified the heuristic given in Assumption 6.1.6 in practice by running
experiments on a Core2 Duo 1.66GHz notebook. The attacks were implemented using
Magma2 Version 2.11 using the implementation of L2 by Nguyen and Stehlé [NS05]. We
performed experiments for 1000-bit moduli Ni with various bitsizes of the qi. We have
tested for the same parameter sets as in Section 4.2. The results are presented in Table 6.2.

In the previous section we have seen that we could easily improve the first bound by using
special shift polynomials in Coppersmith’s method. We would like to do this with respect
to systems of equations as well. However, we have to choose the shift polynomial sets
carefully. Otherwise we do not have a determinant preserving set and, therefore, cannot
calculate the correct bounds. Then the real bounds are worse than predicted. Sufficient
criteria of being determinant preserving have been described in Section 5.1.

As we do not have any general strategy to apply Coppersmith’s method in case of more
than one equation, we now restrict to the case of k = 2. By this, we can better see what
happens if more equations are used. Further, we can observe how the criteria on systems
of equations we determined in Section 5 influence the analysis.

2http://magma.maths.usyd.edu.au/magma/

140 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

As a first approach, we just shift both polynomials separately with the same shifts we
have used to obtain the bound of Theorem 6.1.5. This is possible as a set of this kind
remains determinant preserving. Each new shift gives new monomials. The only monomials
occurring in shifts of f1 as well as in shifts of fi, i = 2, . . . , k, are powers of x0. The number
of these monomials, however, does not influence the bound asymptotically. The bounds
we get are essentially the same we had in the case of only one equation as the following
lemma shows. The only difference is a small additional constant.

Lemma 6.1.8
Let k = 2 and suppose Assumption 6.1.6 holds. Let N0, N1, N2 ∈ N be of size 2n. Further-
more, for ι = 1, 2 let fι(x0, xι, yι) = 2tpx0xιyι +N0xι −Nιx0 ∈ Z[x0, x1, x2, y1, y2]. Assume
Xi = 2α, i = 0, 1, 2, Yi = 2n−t−α, i = 1, 2, are bounds on the absolute values of the solutions
q0, q1 and q2, p̃1 − p̃0 and p̃2 − p̃0, respectively. Then for all ǫ > 0 there exists l(ǫ) such that
we can determine all integer solutions (q0, q1, q2, p̃1 − p̃0, p̃2 − p̃0) such that |qi| ≤ Xi and
|p̃i − p̃0| ≤ Yi in time polynomial in n, l(ǫ) if

2α
(

1 − α

n

)

+ 2 < t− ǫ .

Proof: The proof proceeds analogously to the proof of Theorem 6.1.5. We consider the
polynomials f1 and f2 separately and take optimized shift sets for each of the polynomials.
For a better understanding we repeat some important steps of the proof of Theorem 6.1.5
and point out the differences which occur due to the use of two polynomials. Let l ∈
N, τ ∈ R such that τ l ∈ N. We again construct the lattice by shifting fι, ι := 1, 2,
with all monomials in the set Sl,τ l(fι) = {xi0xjιykι | k = 0, . . . , l + 2τ l; i = max{0, k −
2τ l}, . . . ,min{l + τ l, l + k} and j = l + k − i}. Let nl(fι) := |Sl,τ l(fι)| be the number of
monomials used as shifts of fι. Then the total number of shift polynomials is

nl := nl(f1)+nl(f2) = 2

(

τ 2l2 + 2τ l +
3

2
l + 1 +

1

2
l2 + 2τ l2

)

= 2τ 2l2+4τ l+3l+2+l2+4τ l2 .

We enumerate the monomials like in the proof of Theorem 6.1.5 and build a lattice basis
B such that we can determine the determinant of the lattice easily. Then we use Copper-
smith’s algorithm with this lattice basis and, by this, obtain conditions on the sizes of the
unknowns.
Here we just present the basic steps of the determinant calculation. This will give us the
bound. We reuse results of the proof of Theorem 6.1.5.
The powers of any of X−1

0 , X−1
1 , X−1

2 , Y −1
1 and Y −1

2 occurring on the diagonal of B are the
powers of the variables occurring in (Sl+1,τ l(f1) \M(f1))∪ (Sl+1,τ l(f2) \M(f2)). Here, the
set M(fι) := {xi0xjιykι | k = 0, . . . , l+2τ l; i = max{0, k− τ l}, . . . ,min{l+ τ l, k+ l} and j =
l + 1 + k − i} denotes the set of all monomials introduced by the shift polynomials with
respect to fι. However, the two sets (Sl+1,τ l(f1) \M(f1)) and (Sl+1,τ l(f2) \M(f2)) are not
disjoint. Monomials which occur in both sets may only contain the shared variable x0.
Therefore, the only monomial in both sets is xl+1

0 .
Let s0, s1 and s2 denote the powers of X−1

0 , X−1
1 and X−1

2 , respectively, and u1 and u2

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 141

denote the powers of Y −1
1 and Y −1

2 . As the polynomials have been regarded separately, the
total number of powers of X−1

1 is exactly the total number of powers of X−1
1 in the proof

of Theorem 6.1.5. The value of s2 equals s1. The same observations hold for u1 and u2.
Thus,

s1 = s2 = 1 +
3

2
l +

1

2
l2 +

3

2
τ l + τ l2 +

1

2
τ 2l2 , (6.22)

u1 = u2 = 1 +
3

2
l +

1

2
l2 + 3τ l + 2τ l2 + 2τ 2l2 . (6.23)

In contrast to the other variables, we have to double the number of powers of X−1
0 deter-

mined in Theorem 6.1.5 as this variable occurs in both equations. To calculate s0, we then
have to subtract l + 1, which is the power of X−1

0 in the shared monomial. This implies

s0 = 2

(

2 + 3l + l2 +
7

2
τ l + 3τ l2 +

3

2
τ 2l2

)

− (l + 1)

= 3 + 5l + 2l2 + 7τ l + 6τ l2 + 3τ 2l2 . (6.24)

Using these values and substituting X0 = X1 = X2 = 2α, Y1 = Y2 = 2n−α−t as well as
N0 ≥ 2n−1, we obtain

det(L) ≥

2t(2+3l+l2+6τl+4τl2+4τ2l2)−α(4τl2+4τl+2l2+5l+3)−n(2τ2l2+2τl)−(2τ2l2+4τl+3l+2+l2+4τl2) .

The dimension of the lattice in this case is rl = |Sl+1,τ l(f1) ∪ Sl+1,τ l(f2)| = |Sl+1,τ l(f1)| +
|Sl+1,τ l(f2)| − 1 = 2

(
4τ l + 3 + τ 2l2 + 2τ l2 + 1

2
l2 + 5

2
l
)
− 1 = 8τ l+5+2τ 2l2 +4τ l2 + l2 +5l.

Consequently, the size of the sublattice is

r = rl − nl

=
(
8τ l + 5 + 2τ 2l2 + 4τ l2 + l2 + 5l

)
−
(
2τ 2l2 + 4τ l + 3l + 2 + l2 + 4τ l2

)

= 4τ l + 2l + 3 .

All components of the target vector t are smaller than 1 so that ||t|| ≤
√

4τ l + 2l + 3.
Therefore, we get the following condition on the existence of a third equation:

√
4τ l + 2l + 3 < 2−

4τl+2l+2
4

·
(

2t(2+3l+l2+6τl+4τl2+4τ2l2)−α(4τl2+4τl+2l2+5l+3)−n(2τ2l2+2τl)−(2τ2l2+4τl+3l+2+l2+4τl2)
) 1

4τl+2l+3

⇔ 4τ l + 2l + 3

2
log (4τ l + 2l + 3) +

(4τ l + 2l + 3)(4τ l + 2l + 2)

4

+
(
2τ 2l2 + 4τ l + 3l + 2 + l2 + 4τ l2

)

< t (2τ l + l + 2) (2τ l + l + 1) − α (4τ l + 2l + 3) (l + 1) − n
(
2τ 2l2 + 2τ l

)
.

142 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

As
(4τl+2l+3)(4τl+2l+2)

4
+ (2τ 2l2 + 4τ l + 3l + 2 + l2 + 4τ l2)

(2τ l + l + 2) (2τ l + l + 1)
≤ 1 + 1 = 2 ,

we use the slightly stronger constraint

(4τ l + 2l + 3) (l + 1)

(2τ l + l + 2) (2τ l + l + 1)
α +

(
2τ2l2 + 2τ l

)

(2τ l + l + 2) (2τ l + l + 1)
n + 2 +

4τl+2l+3
2 log (4τ l + 2l + 3)

(2τ l + l + 2) (2τ l + l + 1)
︸ ︷︷ ︸

=:h(α,n,l,τ)

< t .

This implies that for fixed l and τ we can factor the Ni if t is greater than h(α, n, l, τ).
It is

h̄(α, n, τ) := lim
l→∞

h(α, n, l, τ) =
8τ 2 + 8τ + 2 + 4τα + 2α + 2τ 2n

4τ 2 + 4τ + 1
.

Let ǫ > 0. For l > l(ǫ) the condition h(α, n, l, τ) < t simplifies to

8τ 2 + 8τ + 2 + 4τα + 2α+ 2τ 2n

4τ 2 + 4τ + 1
< t− ǫ . (6.25)

The optimal value τopt of τ , such that the lower bound on the number of shared bits
h̄(α, n, τopt) is as small as possible, is τopt = α

n−2α
for α 6= n

2
. Using this value in the

function, we can determine the lower bound on t as

h̄(α, n, τopt) =
2n+ 2αn− 2α2

n
< t− ǫ .

This is equivalent to

h̄(α, n, τopt) = 2α
(

1 − α

n

)

+ 2 < t− ǫ . (6.26)

On the heuristic Assumption 6.1.6, this implies that we are able to determine the solution
and proves the lemma. The running time is dominated by the running time of the LLL-
reduction, which is polynomial in n and l(ǫ).

Defining the shift polynomial sets of fi and fj, i 6= j, independently, we have seen that
it does not make a difference if we take one or two polynomials. The bound we obtain
is asymptotically the same, except for a small constant. The same property holds if we
use more equations. That is, a result analogue to that of Theorem 6.1.5 can be obtained
with k oracle calls as well. Theorem and proof can be given completely analogously to
Lemma 6.1.8 using k instead of 2 equations. However, as this phenomenon could already
be seen with two equations we have only presented that proof. For practical analyses,
combining equations this way does not help. Therefore, one would only combine two
moduli Ni, and analyze the equation derived from these moduli. By combining equations,
only the lattice dimension increases without any improvement with respect to the bound.

Consequently, we need to pursue different approaches in order to take advantage of having
more than one equation. We again restrict our considerations to two equations to get

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 143

a better insight into this approach. Intuitively, we ought to construct shift polynomial
sets comprising more common monomials. The key idea is to use x2 and y2 in the shift
monomials applied to f1 and x1 and y1 in the shift monomials applied to f2. By this, more
monomials occur several times in various of the shift polynomials. These monomials have
to occur on the diagonal only once. Then we can reuse them for other shift polynomials. By
this, the value of the determinant should increase. Thus, the bound should be improved.
The choice of such a set of shift polynomials, however, has to be made extremely carefully
in order to keep the set determinant preserving.
Let us consider an at first sight tempting approach. We shift f1 by x2y2 and f2 by x1y1

such that the monomial of highest degree is the same monomial x0x1x2y1y2 in both new
polynomials. Furthermore, the new polynomials already contain the leading monomials
x0x1y1 of f1 and x0x2y2 of f2. Thus, setting F := {x2y2f1, x1y1f2, f1, f2} we hope to obtain
a good bound.

Example 6.1.9
Let F := {x2y2f1(x0, x1, y1), x1y1f2(x0, x2, y2), f2(x0, x2, y2), f1(x0, x1, y1)} denote a set of
shift polynomials. Let us enumerate the monomials which occur in F as x0x1x2y1y2,
x0x2y2, x0x1y1, x0, x1x2y2, x1x2y1, x2, x1. Let B denote a lattice basis constructed to apply
Coppersmith’s method. In the construction, the column vectors fT to build F are defined
with respect to the above enumeration of monomials. Then the value N0 occurs four times
on the diagonal of F. The product of the diagonal elements of D is (X4

0X
2
1X

2
2Y

2
1 Y

2
2)

−1
.

Applying the simplified condition det(B) > 1, this leads to the bound α < t. This result
is achieved only with infinitely many moduli using the modular analysis (Theorem 4.2.5).
Unfortunately, the bound is not correct as the set F is not determinant preserving: We
have that 2tpx1y1f2 − 2tpx2y2f1 + N2f1 − N1f2 ≡ 0 (mod N0). Thus, the determinant of
the sublattice differs by a factor of N0 from the one we expected.
If we take only three of the polynomials, e. g. if we define the shift polynomial set F ′ :=
{x2y2f1(x0, x1, y1), f1(x0, x1, y1), f2(x0, x2, y2)}, then we obtain the following bound:

α+
n

4
< t .

Here we again used the simplified condition. This bound does not change if we choose
another subset of F with cardinality 3.

Let us compare the bound α+ n
4
< t to the one obtained in the modular case as well as in

Theorem 6.1.7 with k = 2. On the one hand, α+ n
4
≤ 3

2
α⇔ n

2
≤ α. That is, the new lower

bound on t is smaller for α having more than half the bitsize of n. On the other hand, α
denotes the size of the smaller factor. Moreover, due to t ≤ n− α, we have the condition
α + n

4
≤ n− α ⇔ α ≤ 3

8
n. Consequently, the bound given in Example 6.1.9 is worse than

the bound 3
2
α < t for any possible value of α and large enough values of n. We have to

search for other, more useful sets of shift polynomials instead.
Let us consider a different example.

144 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

0 0 0 0 0 0 0 0 0 −N1 0 0 0 0 0 0 0
0 −N2 0 0 0 0 0 2tp 0 0 0 0 0 0 0 0 0

2tp 0 0 2tp 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −N1

0 0 0 0 0 0 0 0 −N2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2tp −N1 0 0 0 0 0 0
0 0 −N1 0 0 0 0 0 0 0 0 2tp 0 0 0 0 0
0 0 0 0 −N1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −N2 0 0 0 0 0 0 2tp 0 0 0 0 0 0
0 2tp 2tp 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2tp 0 0 −N2 0 0 0 0 0

−N1 0 0 0 2tp 0 0 0 0 0 0 0 0 0 0 0 0
N0 0 0 0 0 0 2tp 0 0 0 0 0 0 0 0 0 0
0 N0 0 0 0 2tp 0 0 0 0 0 0 0 0 0 0 0
0 0 N0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 N0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 N0 −N2 −N1 N0 0 0 0 0 0 0 2tp 2tp 0
0 0 0 0 0 N0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 N0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −N2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 N0 0 0 0 0 −N2 0 −N1 0
0 0 0 0 0 0 0 0 0 N0 0 0 −N1 0 −N2 0 2tp

0 0 0 0 0 0 0 0 0 0 N0 0 2tp 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 N0 0 2tp 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 N0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 N0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 N0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N0

Figure 6.4: The matrix F induced by the shift polynomial set F given in Example 6.1.10.

Example 6.1.10
We define our shift polynomial set as

F := {x0x1x2y
2
1y2f1, x0x1x2y1y

2
2f2, x0x

2
2y

3
2f1, x0x

2
1y

3
1f2, x0x2y1y2f1, x1x2y1y2f2, x1x2y1y2f1,

x0x1y1y2f2, x0y2f2, x0y1f1, x0x1y
2
1f1, x0x2y

2
2f2, x1y1f1, x2y2f2, x1y1f2, x2y2f1, f1} .

The bound corresponding to these shift polynomials if we apply the simplified condition is

3

7
α+

11

28
n < t .

This bound is valid if

3

7
α+

11

28
n ≤ n− α ⇔ α ≤ 17

40
n .

In comparison to the original bound from the modular analysis 3
2
α < t, the new bound is

smaller whenever 3
7
α + 11

28
n < 3

2
α ⇔ 11

30
n ≤ α. Thus, the new bound improves the old one

if 11
30
n < α < 17

40
n.

Compared to the asymptotic bound, however, this bound is still worse, i. e. 2α
(
1 − α

n

)
+3

2
<

3
7
α+ 11

28
n for all positive values of α.

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 145

This approach is rather arbitrary. To construct the shift polynomial set, we have started
by shifting both polynomials by monomials of the form (x0y1)

i1(x0y2)
i2(x1y1)

j1(x2y2)
j2 .

We fixed 6 as an upper bound on the maximum total degree of the shift monomials.
Additionally, we excluded all shifts that either introduced too many new monomials or
were linearly dependent of the others. Therefore, F is determinant preserving. Moreover,
we know from experiments that the attack works. However, there is no obvious reason why
to choose exactly these shifts. Exchanging some of the polynomials in the shift polynomial
set may even lead to the same bound. Furthermore, there is no simple generalization to
more shift polynomials. However, we need a way to generalize the method as with fixed
lattice dimension we cannot beat the asymptotic bound obtained with one equation. In any
generalization, however, we have to cope with one major problem: Whenever the degree
of the shift monomials increases, we have to take care that we do not include shifts which
are linearly dependent of the others modulo some coefficient.

As we do not see a good generalization of the previous approach, we pursue a different
one. We aim at reducing the number of variables in order to simplify the problem. In
this process, we have to ensure that the polynomials still share some variables. If not, a
combined analysis does not improve the bound compared to separate analyses. We set

g1(u1, u2, z1, z2) := y2f1(x0, x1, y1) = 2tp x0y1
︸︷︷︸

=:u1

x1y2
︸︷︷︸

=:z1

+N0 x1y2
︸︷︷︸

=:z1

−N1 x0y2
︸︷︷︸

=:u2

,

(6.27)

g2(u1, u2, z1, z2) := y1f2(x0, x2, y2) = 2tp x0y2
︸︷︷︸

=:u2

x2y1
︸︷︷︸

=:z2

+N0 x2y1
︸︷︷︸

=:z2

−N2 x0y1
︸︷︷︸

=:u1

.

Common roots of the polynomials g1 and g2 are given by ū1 = q0(p̃1− p̃0), ū2 = q0(p̃2− p̃0),
z̄1 = q1(p̃2 − p̃0) and z̄2 = q2(p̃1 − p̃0). Hence, the upper bounds on the solutions we are
searching for are given by |ūi| ≤ 2α+n−α−t = 2n−t =: Ui, and, analogously, |z̄i| ≤ 2n−t =: Zi,
i = 1, 2. Note that these bounds are independent of α. Thus, by Coppersmith’s method
we are able to determine all solutions fulfilling these bounds if t > ψ(n) for some function
ψ(n). Using this technique, we can obtain quite good bounds for small dimensional lattices.
For some values of α these bounds are better compared to other bounds obtained so far.
However, these explicit bounds do not beat the general asymptotic bound either.

Example 6.1.11
Let the shift polynomial set be defined as F := {u2z2g1, u1g1, u2g2, z1g2, g1, g2}. With an

146 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

appropriate enumeration of the monomials in F we define a basis B of a lattice L:

2tp

2tp

D −N1 2tp

−N1 −N2

−N2

−N1

N0 2tp

N0 −N2 2tp

N0 2tp

N0

N0

N0

u1u2z1z2

u2
1z1

u2
2z2

u1u2

u1

u2

u2z1z2

u1z1

u2z2

z1z2

z1

z2

(6.28)

Here, D := Diag((U1U2Z1Z2)
−1, (U2

1Z1)
−1, (U2

2Z2)
−1, (U1U2)

−1, (U1)
−1, (U2)

−1). We calcu-
late conditions on the parameters on which we can determine the solution (ū1, ū2, z̄1, z̄2)
using the lattice L. First, note that F is determinant preserving. This can be seen
easily when regarding the matrix. As any shift polynomial introduces a new mono-
mial with coefficient N0, modular dependence only has to be checked modulo N0: Let
a1u2z2g1 + a2u1g1 + a3u2g2 + a4z1g2 + a5g1 + a6g2 ≡ 0 (mod N0). Coefficientwise compari-
son gives a62

tp ≡ 0 (mod N0) (as coefficient of u2z2), a5(−N1) ≡ 0 (mod N0) (as coefficient
of u2), a42

tp ≡ 0 (mod N0) (as coefficient of u2z1z2), a12
tp ≡ 0 (mod N0) (as coefficient of

u1u2z1z2), and a22
tp ≡ 0 (mod N0) (as coefficient of u2

1z1). Thus, a1 ≡ a2 ≡ a4 ≡ a5 ≡
a6 ≡ 0 (mod N0). Using these results and −N1a2 − N2a3 ≡ 0 (mod N0) (coefficient of
u1u2), we additionally obtain a3 ≡ 0 (mod N0). Thus, the polynomials of F are linearly
independent modulo N0.
Consequently, F is determinant preserving and we can directly use the determinant of L
to calculate conditions on which we can determine the solutions.
It is det(L) = U−5

1 U−5
2 Z−2

1 Z−2
2 N6

0 = 2−14(n−t)+6n. We again use the simplified condition
det(L) > 1 and obtain

4

7
n < t . (6.29)

This condition can be fulfilled by parameter sets with 4
7
n < n−α, thus, whenever α < 3

7
n.

Now we would like to compare this bound to the ones we have obtained with the lattice
constructions given in the previous examples. It is 4

7
n ≤ 3

7
α + 11

28
n ⇔ 5

12
n ≤ α and

4
7
n ≤ 3

2
α ⇔ 8

21
n ≤ α. Thus, for a small range of larger values of α, the new construction

improves the bounds obtained in Theorem 6.1.7 and Example 6.1.10.

Like in the case of Theorem 6.1.7, we have successfully checked the validity of Assump-
tion 6.1.6 with respect to the previous examples. Apart from a few negative examples with
a parameter t being tight to the bound, Assumption 6.1.6 could be verified.
A general comparison of the bounds we have obtained in the various examples is given
in Figure 6.5. The overall best results obtained non-asymptotically so far are 3

2
α < t if

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 147

f

b

d

g

h

e

0

200

400

600

800

1000

t

200 400 600 800 1000

α

Figure 6.5: b : t < n− α, d : t > α+ n
4
, e : t > 3

7
α+ 11

28
n f : t > 4

7
n, g : t > 3

2
α,

h : t > 2α
(
1 − α

n

)
+ 2

Bounds on the number t of bits to be shared in the larger factor depending on α in the case
of two equations and n = 1000.

α < 11
30
n, 3

7
α + 11

28
n < t if 11

30
n ≤ α < 5

12
n, and 4

7
n < t if 5

12
n ≤ α < 3

7
n. The first result is

represented by function g, the second result by function e, and the third result by function
f . Furthermore, the bound calculated in Example 6.1.9 is given by the function d. For
comparison, the asymptotic bound t > 2α

(
1 − α

n

)
+ 2 is also given by function h. We

remark that the explicit bounds are quite good in comparison to the bounds obtained with
equally low dimensional lattices in case of one equation.
Nevertheless, we are not able to beat the asymptotic bound this way, except for small
values of α. In the following paragraphs, we will give an intuition why we cannot obtain
a good asymptotic bound with the modified polynomials g1 and g2. We use a counting
argument to illustrate this.
Let F denote a shift polynomial set built using g1 and g2, and let δ denote the maximum
total degree of a monomial occurring in F . As the polynomials g1 and g2 have maximum
total degree 2, this implies that the maximum total degree of a shift monomial is δ − 2.
First, assume that we can take all monomials of degree less or equal to δ − 2 as shift
monomials for both polynomials. If F remained determinant preserving, this would be a
sensible strategy as all single variables occur as monomials in either g1 or g2.

148 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

The number of all monomials m := ui11 u
i2
2 z

j1
1 z

j2
2 ∈ Z[u1, u2, z1, z2] with deg(m) ≤ δ − 2 is

s :=
δ−2∑

i1=0

δ−2−i1∑

i2=0

δ−2−i1−i2∑

j1=0

δ−2−i1−i2−j1∑

j2=0

1 =
1

24
δ4 +

1

12
δ3 − 1

24
δ2 − 1

12
δ .

Hence, as we can shift each polynomial by each monomial, the number of elements of F is
bounded by 2s. Let us regard the polynomials f ∈ F as elements of the polynomial ring
ZN0 [u1, u2, z1, z2]. We set FN0 := {f (mod N0) | f ∈ F}. To get a rough estimate how
many of these polynomials can be linearly independent modulo N0, we calculate an upper
bound sM on the number of monomials |Mon(FN0)|. For any monomial m := ui11 u

i2
2 z

j1
1 z

j2
2 ∈

Mon(FN0) one of the following conditions holds:
If deg(m) = δ, then m can only be obtained by multiplying the leading monomial of either
g1 or g2 with a monomial of degree δ − 2. Thus, either i1 ≥ 1 and j1 ≥ 1 or i2 ≥ 1 and
j2 ≥ 1.
If deg(m) < δ, then either i1 ≥ 1 or i2 ≥ 1. This is because the monomials of g1 (mod N0)
are u1z1 and u2, and, analogously, the monomials of g2 (mod N0) are u2z2 and u1. Hence,

sM =
δ−1∑

j1=1

δ−j1∑

i1=1

δ−i1−j1∑

i2=0

1 (j2 = δ − i1 − i2 − j1)

+
δ−2∑

j1=1

δ−1−j1∑

j2=1

1 (i1 = 0, i2 = δ − j1 − j2)

+
δ−1∑

j2=1

δ−j2∑

i2=1

1 (j1 = 0, i1 = δ − i2 − j2)

+
δ−1∑

i1=1

δ−1−i1∑

i2=0

δ−1−i1−i2∑

j1=0

δ−1−i1−i2−j1∑

j2=0

1

+
δ−1∑

i2=1

δ−1−i2∑

j1=0

δ−1−i2−j1∑

j2=0

1 (i1 = 0)

=
1

24
δ4 +

5

12
δ3 +

23

24
δ2 − 29

12
δ + 1 .

In this description the first three summands correspond to monomials of degree δ, whereas
the last two summands correspond to monomials of smaller degree.
For fixed values of δ, a determinant preserving shift polynomial set F can contain at most
sM polynomials. Any further polynomial f will linearly depend on F modulo N0. That is,
the additional polynomial f does not give a useful contribution to the determinant of the
sublattice. If F is of size 2s, then at least

2s− sM =
1

24
δ4 − 1

4
δ3 − 25

24
δ2 +

9

4
δ − 1

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 149

do not contribute to the determinant due to linear dependence modulo N0. Note that in
case that the value 2s− sM is negative, we cannot exclude any shift polynomials with this
argument. However, for all δ > 8, it is 2s− sM > 0.
Asymptotically, we obtain 2s − sM = 1

24
δ4 + o(δ4). This value is equal to the asymptotic

value of s. This implies that the number of shift polynomials we can use is also s, the
number of shifts we can maximally construct using only one polynomial. Consequently,
even if shifting in both polynomials, we can only use as many shifts of both polynomials
as we could construct shifts of one polynomial.
However, regarding a single polynomial, gi contains as many variables as fi, namely three.
That is, we do no longer have the advantage of having less variables which we had with
two polynomials. Moreover, the total sizes of the unknowns are smaller in fi than in gi.
Thus, better than considering only one polynomial gi is to use the original polynomial fi.

Returning to the original polynomials, the question is whether we can argue similarly as
in case of the modified polynomials gi. More precisely, can we give an argument why we
cannot improve the bounds? We answer this question in the affirmative. Now let F denote
a shift polynomial set built using f1 and f2, and let δ denote the maximum total degree
of a monomial occurring in F . As both polynomials have maximum total degree 3, this
implies that the maximum total degree of a shift monomial used to construct an element
of F is δ− 3. Let f ∈ F be constructed as mf1 or mf2, where m is a product of powers of
x0, x1, x2, x0x1y1, x0x2y2, x0y1, x1y1, x0y2 and x2y2. That means, the monomial m can be
described as m = xi00 x

i1
1 x

i2
2 y

j1
1 y

j2
2 such that i0+i1+i2+j1+j2 ≤ δ−3 and i0+i1+i2 ≥ j1+j2.

Thus, the maximum number s of all such monomials m is given as

s =

⌊ δ−3
2

⌋
∑

j2=0

⌊ δ−3
2

⌋−j2
∑

j1=0

j2∑

i2=0

j1∑

i1=0

δ−3−i1−i2−j1−j2∑

i0=j1−i1+j2−i2

1

+

⌊ δ−3
2

⌋
∑

j2=0

⌊ δ−3
2

⌋−j2
∑

j1=0

j2∑

i2=0

δ−3−j1−2j2∑

i1=j1+1

δ−3−i1−i2−j1−j2∑

i0=j2−i2
1

+

⌊ δ−3
2

⌋
∑

j2=0

⌊ δ−3
2

⌋−j2
∑

j1=0

δ−3−j2−2j1∑

i2=j2+1

j1∑

i1=0

δ−3−i1−i2−j1−j2∑

i0=j1−i1

1

+

⌊ δ−3
2

⌋
∑

j2=0

⌊ δ−3
2

⌋−j2
∑

j1=0

δ−3−j2−2j1∑

i2=j2+1

δ−3−i2−j1−j2∑

i1=j1+1

δ−3−i1−i2−j1−j2∑

i0=0

1

=
3

640
δ5 − 1

192
δ3 +

1

1920
δ .

Hence, the number of elements of F is bounded by 2s. Again, let us regard them as
elements of ZN0 [x0, x1, x2, y1, y2]. We set FN0 := {f (mod N0) | f ∈ F}. Then we calculate
an upper bound sM on the number of monomials |Mon(FN0)|. For any monomial m :=
xi00 x

i1
1 x

i2
2 y

j1
1 y

j2
2 ∈ Mon(FN0) one of the following conditions holds:

150 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

If deg(m) = δ, then m is derived from the multiplication of some monomial of degree δ− 3
with the leading monomial of either f1 or f2. Thus, either i0, i1 ≥ 1 and j1 ≥ 1 or i0, i2 ≥ 1
and j2 ≥ 1.
If deg(m) < δ, then i0 ≥ 1. Using this, we calculate the number sM of monomials which
occur in F . The first four sums correspond to monomials of degree smaller than or equal
to δ − 2. Monomials of degree δ − 1 do not occur. We get the latter eight sums from
monomials of degree δ, the first four corresponding to monomials with i0, i1 and j1 ≥ 1,
the others to the remaining monomials.

sM =

⌊ δ−3
2

⌋
∑

j2=0

⌊ δ−3
2

⌋−j2
∑

j1=0

j2−1
∑

i2=0

j1−1
∑

i1=0

δ−2−i1−i2−j1−j2∑

i0=j1−i1+j2−i2
1

+

⌊ δ−3
2

⌋
∑

j2=0

⌊ δ−3
2

⌋−j2
∑

j1=0

j2−1
∑

i2=0

δ−2−j1−2j2∑

i1=j1

δ−2−i1−i2−j1−j2∑

i0=j2−i2

1

+

⌊ δ−3
2

⌋
∑

j2=0

⌊ δ−3
2

⌋−j2
∑

j1=0

δ−2−j2−2j1∑

i2=j2

j1−1
∑

i1=0

δ−2−i1−i2−j1−j2∑

i0=j1−i1
1

+

⌊ δ−3
2

⌋
∑

j2=0

⌊ δ−3
2

⌋−j2
∑

j1=0

δ−3−j2−2j1∑

i2=j2

δ−3−i2−j1−j2∑

i1=j1

δ−2−i1−i2−j1−j2∑

i0=1

1

+

⌊ δ
2
⌋−1
∑

j2=0

⌊ δ
2
⌋−j2
∑

j1=1

j2−1
∑

i2=0

j1−1
∑

i1=1

1 (i0 = δ − i1 − i2 − j1 − j2)

+

⌊ δ
2
⌋−1
∑

j2=0

⌊ δ
2
⌋−j2
∑

j1=1

j2−1
∑

i2=0

δ−j1−2j2∑

i1=j1

1 (i0 = δ − i1 − i2 − j1 − j2)

+

⌊ δ
2
⌋−1
∑

j2=0

⌊ δ
2
⌋−j2
∑

j1=1

δ−j2−2j1∑

i2=j2

j1−1
∑

i1=1

1 (i0 = δ − i1 − i2 − j1 − j2)

+

⌊ δ
2
⌋−1
∑

j2=0

⌊ δ
2
⌋−j2
∑

j1=1

δ−j2−2j1∑

i2=j2

δ−1−i2−j1−j2∑

i1=j1

1 (i0 = δ − i1 − i2 − j1 − j2)

+

⌊ δ
2
⌋

∑

j2=1

j2−1
∑

i2=1

δ−2j2∑

i1=0

1 (j1 = 0, i0 = δ − i1 − i2 − j2)

+

⌊ δ
2
⌋

∑

j2=1

δ−1−j2∑

i2=j2

δ−1−i2−j2∑

i1=0

1 (j1 = 0, i0 = δ − i1 − i2 − j2)

6.1. ANALYZING THE PROBLEM OF IMPLICIT FACTORING 151

+

⌊ δ
2
⌋

∑

j2=1

⌊ δ
2
⌋−j2
∑

j1=1

j2−1
∑

i2=1

1 (i1 = 0, i0 = δ − i1 − i2 − j1 − j2)

+

⌊ δ
2
⌋

∑

j2=1

⌊ δ
2
⌋−j2
∑

j1=1

δ−j2−2j1∑

i2=j2

1 (i1 = 0, i0 = δ − i1 − i2 − j1 − j2)

=
3

640
δ5 +

7

192
δ4 +

29

192
δ3 − 127

192
δ2 +

601

1920
δ +

7

128
.

For fixed values of δ, the shift polynomial set F can contain at most sM polynomials
which are linearly independent modulo N0. Any further polynomial will not give a helpful
contribution to the determinant of the sublattice. If F is of size 2s, then at least

2s− sM =
3

640
δ5 − 7

192
δ4 − 31

192
δ3 +

127

192
δ2 − 599

1920
δ − 7

128

polynomials are linearly dependent of the others modulo N0. Asymptotically, we obtain
2s − sM = 3

640
δ5 + o(δ5). Like in the previous case, this is equal to the asymptotic value

of s. Thus, the number of shift polynomials we can use is also s, the maximum number
of shift polynomials we can build using only one polynomial. Consequently, the absolute
number of shift polynomials in a determinant preserving shift polynomial set has to be
smaller than the maximum number of possible shifts in one polynomial.
We remark that the argumentation works similarly using all possible monomials of degree
δ − 3 to construct the shift polynomial set. The same observations can be made with
respect to other shift polynomial sets. However, for this type of polynomials we already
know a good shift polynomial set to analyze only one equation. Thus, we have used a
naturally generalized version of this set to construct F .

These results indicate that we cannot improve the asymptotic bound obtained with only
one polynomial by using additional ones. Note, however, that we do not have to use the
same shift monomials for both polynomials. A shift polynomial set consisting of s shift
polynomials including shifts of f1 and of f2 might still give a better bound than a shift
polynomial set containing only shifts of f1. However, a bound usually gets better if less
monomials have to be introduced. As less monomials also imply more linear dependences,
we do not see a way how to construct such shift polynomial sets based on f1 and f2.
A reason for this behavior is probably the structure of the polynomials we examine. Recall
that if we regard the polynomials modulo N0, we deal with polynomials in only two mono-
mials. More precisely, we consider polynomial equations 2tpx0xiyi − Nix0 ≡ 0 (mod N0).
A solution of this equation is given by (x0, xi, yi) = (q0, qi, p̃i − p̃0). As q0 divides N0, we
search for solutions of the modular equation 2tpxiyi − Ni ≡ 0 (mod p0). Regarding the
equations this way, two equations with different indices i only contain independent vari-
ables. This observation supports the claim that we cannot use the shared variables in our
analyses.
Note that we do not prove that it is impossible to obtain better bounds than t − ǫ >

152 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

2α
(
1 − α

n

)
+ 3

2
, but that we give arguments to support this claim. A rigorous result is a

goal in future work.

6.2 Open Problems and Future Work

In 2007, Aurélie Bauer and Antoine Joux presented a way to use Coppersmith’s algorithm
with several integer polynomials. The shift polynomial set F they use is determinant pre-
serving by construction. However, the shift polynomials cannot directly be constructed
by multiplying the given polynomials by monomials. Instead, it has to be checked if the
ideal I induced by these polynomials is prime. If not, a prime ideal has to be constructed
by decomposition of I in prime ideals. Then a prime ideal corresponding to the original
polynomials has to be chosen. Subsequently, a Groebner basis of this prime ideal has to
be computed.

In this chapter we have analyzed how to use Coppersmith’s algorithm with a shift poly-
nomial set F directly constructed from the integer polynomials. This allows for simpler
constructions of shift polynomial sets. However, not all shift polynomial sets constructed
this way can be used. Instead, further criteria have to be checked. Namely, arbitrary shift
polynomial sets are not necessarily determinant preserving. We have given some criteria
to guarantee that a shift polynomial set is determinant preserving. These criteria do not
directly lead to a general strategy though.

Therefore, in Section 6.1 we have drawn our attention to the problem of implicit factoring
and analyzed how to apply Coppersmith’s method with regard to these specific polynomi-
als. We have stated some good bounds obtained with small dimensional lattices. However,
we could not give a general strategy to calculate a bound on basis of more polynomials.
On the contrary, we have given arguments why a better bound cannot be obtained if we
use two polynomials instead of one polynomial. It remains as an open problem to prove
or disprove the existence of an attack for a wider range of parameters. That is, a goal for
future research is either to extend the arguments to a rigorous proof or to show how to
achieve a better bound.

Moreover, it would be interesting to give a better explanation of the behavior we have
observed with respect to the problem of implicit factoring. Probably the structure of the
polynomials plays an important role. Recall that the polynomials consist of only two
monomials modulo N0. Moreover, the integer polynomial equations imply two modular
polynomial equations in independent variables. These observations support the claim that
we cannot use the shared variables in our analyses.
Therefore, based on the results in the case of the specific example of implicit factoring, it
would be interesting to determine criteria whether an additional equation can be used to
improve the bounds or not.

On a more general scale, a main target is to develop a generic strategy how to apply

6.2. OPEN PROBLEMS AND FUTURE WORK 153

Coppersmith’s algorithm to a system of integer polynomial equations. The method should
be direct. That is, one should be able to construct a shift polynomial set directly from
the initial polynomials. Moreover, the set determined this way ought to be determinant
preserving and, thereby, allow for a simple calculation of the bounds.
Approaching this problem from the opposite direction, a major goal is to give impossi-
bility results. Counting arguments like the ones given in the previous section should be
elaborated on to give impossibility results. Then they should be generalized to work with
arbitrary sets of polynomials.
In the end, given a set of polynomial equations in Z[x1, . . . , xl], one should directly be able
to determine values X1, . . . , Xl such that solutions |x̄i| ≤ Xi can be found efficiently, but
solutions |x̄i| > Xi cannot.

154 CHAPTER 6. MULTIVARIATE EQUATIONS OVER THE INTEGERS

Bibliography

[AM09] Divesh Aggarwal and Ueli M. Maurer. Breaking RSA Generically Is Equivalent
to Factoring. In Antoine Joux, editor, EUROCRYPT, volume 5479 of Lecture
Notes in Computer Science, pages 36–53. Springer, 2009.

[Bau08] Aurélie Bauer. Vers une Géneralisation Rigoureuse des Méthodes de Copper-
smith pour la Recherche de Petites Racines de Polynômes, Dissertation. 2008.

[BD99] Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with Private Key d Less
than N0.292. In Jacques Stern, editor, EUROCRYPT, volume 1592 of Lecture
Notes in Computer Science, pages 1–11. Springer, 1999.

[Ber67] Elwyn R. Berlekamp. Factoring Polynomials Over Finite Fields. Bell System
Tech. J., 46:1849–1853, 1967.

[Ber70] Elwyn R. Berlekamp. Factoring Polynomials Over Large Finite Fields. Math.
of Computation, 24:713–735, 1970.

[BJ07] Aurélie Bauer and Antoine Joux. Toward a Rigorous Variation of Copper-
smith’s Algorithm on Three Variables. In Moni Naor, editor, EUROCRYPT,
volume 4515 of Lecture Notes in Computer Science, pages 361–378. Springer,
2007.

[Blö00] Johannes Blömer. Closest Vectors, Successive Minima, and Dual HKZ-Bases
of Lattices. In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors,
ICALP, volume 1853 of Lecture Notes in Computer Science, pages 248–259.
Springer, 2000.

[BM05] Johannes Blömer and Alexander May. A Tool Kit for Finding Small Roots of
Bivariate Polynomials over the Integers. In Cramer [Cra05], pages 251–267.

[Bon99] Dan Boneh. Twenty Years of Attacks on the RSA Cryptosystem. In Notices of
the American Mathematical Society (AMS), volume 46, No. 2, pages 203–213,
1999.

[Bro06] Daniel R. L. Brown. Breaking RSA May Be as Difficult as Factoring. In
Cryptology ePrint Archive, Report 2005/380, 2006.

155

156 BIBLIOGRAPHY

[BS96] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, volume 1. The
MIT press, 1996.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm
for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Di-
mensional Polynomial Ideal). PhD thesis, Mathematical Institute, University
of Innsbruck, Austria, 1965.

[Buc06] Bruno Buchberger. Bruno Buchberger’s PhD thesis 1965: An Algorithm for
Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional
Polynomial Ideal. J. Symb. Comput., 41(3-4):475–511, 2006.

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA May Not Be Equiv-
alent to Factoring. In Nyberg [Nyb98], pages 59–71.

[BvHKS07] Karim Belabas, Mark van Hoeij, Jürgen Klüners, and Allan Steel. Factoring
Polynomials over Global fields. preprint, to appear in Journal de Theorie des
Nombres de Bordeaux, 2007.

[CFPR96] Don Coppersmith, Matthew K. Franklin, Jacques Patarin, and Michael K.
Reiter. Low-Exponent RSA with Related Messages. In Maurer [Mau96], pages
1–9.

[CKM97] Stéphane Collart, Michael Kalkbrener, and Daniel Mall. Converting Bases
with the Gröbner Walk. J. Symb. Comput., 24(3/4):465–469, 1997.

[CLO97] David Cox, John Little, and Donald O’Shea. Ideals, Varieties and Algorithms,
An Introduction to computational Algebraic Geometry and Commutative Al-
gebra, Second Edition. Springer-Verlag, 1997.

[Cop96a] Don Coppersmith. Finding a Small Root of a Bivariate Integer Equation;
Factoring with High Bits Known. In Maurer [Mau96], pages 178–189.

[Cop96b] Don Coppersmith. Finding a Small Root of a Univariate Modular Equation.
In Maurer [Mau96], pages 155–165.

[Cop97] Don Coppersmith. Small Solutions to Polynomial Equations, and Low Expo-
nent RSA Vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

[Cop01] Don Coppersmith. Finding Small Solutions to Small Degree Polynomials. In
Silverman [Sil01], pages 20–31.

[Cor04] Jean-Sébastien Coron. Finding Small Roots of Bivariate Integer Polynomial
Equations Revisited. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT, volume 3027 of Lecture Notes in Computer Science, pages 492–505.
Springer, 2004.

BIBLIOGRAPHY 157

[Cor07] Jean-Sébastien Coron. Finding Small Roots of Bivariate Integer Polynomial
Equations: A Direct Approach. In Menezes [Men07], pages 379–394.

[Cra05] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume
3494 of Lecture Notes in Computer Science. Springer, 2005.

[DBL83] Proceedings of the Fifteenth Annual ACM Symposium on Theory of Comput-
ing, 25-27 April 1983, Boston, Massachusetts, USA. ACM, 1983.

[DH76] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.

[DK02] Ivan Damgård and Maciej Koprowski. Generic Lower Bounds for Root Extrac-
tion and Signature Schemes in General Groups. In Lars R. Knudsen, editor,
EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 256–
271. Springer, 2002.

[Fau99] Jean-Charles Faugère. A New Efficient Algorithm for Computing Gröbner
Bases (F4). Journal of Pure and Applied Algebra, 139(1–3):61–88, 1999.

[Fau02] Jean-Charles Faugère. A New Efficient Algorithm for Computing Gröbner
Bases without Reduction to Zero (F5). In T. Mora, editor, Proceedings of
the 2002 International Symposium on Symbolic and Algebraic Computation
ISSAC, pages 75–83, 2002.

[FGLM93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora. Effi-
cient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering.
J. Symb. Comput., 16(4):329–344, 1993.

[FMR09] Jean-Charles Faugère, Raphaël Marinier, and Guénaël Renault. Implicit Fac-
toring with Shared Most Significant Bits. preprint, personal communication,
2009.

[FP83] Ulrich Fincke and Michael Pohst. A Procedure for Determining Algebraic
Integers of Given Norm. In van Hulzen [vH83], pages 194–202.

[FR95] Matthew K. Franklin and Michael K. Reiter. A Linear Protocol Failure for
RSA with Exponent Three. In Presented at CRYPTO Rump Session, 1995.

[Hås88] Johan Håstad. Solving Simultaneous Modular Equations of Low Degree. SIAM
J. Comput., 17(2):336–341, 1988.

[Hel85] Bettina Helfrich. Algorithms to Construct Minkowski Reduced and Hermite
Reduced Lattice Bases. Theor. Comput. Sci., 41:125–139, 1985.

158 BIBLIOGRAPHY

[HM08] Mathias Herrmann and Alexander May. Solving Linear Equations Modulo Di-
visors: On Factoring Given Any Bits. In Josef Pieprzyk, editor, ASIACRYPT,
volume 5350 of Lecture Notes in Computer Science, pages 406–424. Springer,
2008.

[HM09] Mathias Herrmann and Alexander May. Attacking Power Generators Using
Unravelled Linearization: When Do We Output Too Much? In Mitsuru Mat-
sui, editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer Science,
pages 487–504. Springer, 2009.

[HS07] Guillaume Hanrot and Damien Stehlé. Improved Analysis of Kannan’s Short-
est Lattice Vector Algorithm. In Menezes [Men07], pages 170–186.

[JM06] Ellen Jochemsz and Alexander May. A Strategy for Finding Roots of Multi-
variate Polynomials with New Applications in Attacking RSA Variants. In Lai
and Chen [LC06], pages 267–282.

[JM07] Ellen Jochemsz and Alexander May. A Polynomial Time Attack on RSA with

Private CRT-Exponents Smaller Than N 0.073. In Menezes [Men07], pages
395–411.

[JNT07] Antoine Joux, David Naccache, and Emmanuel Thomé. When e-th Roots
Become Easier Than Factoring. In ASIACRYPT, pages 13–28, 2007.

[Jut98] Charanjit S. Jutla. On Finding Small Solutions of Modular Multivariate Poly-
nomial Equations. In Nyberg [Nyb98], pages 158–170.

[Kan83] Ravi Kannan. Improved Algorithms for Integer Programming and Related
Lattice Problems. In STOC [DBL83], pages 193–206.

[Kan87] Ravi Kannan. Minkowski’s Convex Body Theorem and Integer Programming.
In Math. Oper. Res. [DBL83], pages 415–440.

[Kat01] Stefan Katzenbeisser. Recent Advances in RSA Cryptography. Advances in
Information Security 3. Springer US, 2001.

[Laz83] Daniel Lazard. Gröbner-Bases, Gaussian Elimination and Resolution of Sys-
tems of Algebraic Equations. In van Hulzen [vH83], pages 146–156.

[LC06] Xuejia Lai and Kefei Chen, editors. Advances in Cryptology - ASIACRYPT
2006, 12th International Conference on the Theory and Application of Cryp-
tology and Information Security, Shanghai, China, December 3-7, 2006, Pro-
ceedings, volume 4284 of Lecture Notes in Computer Science. Springer, 2006.

[Len87] Hendrik W. Lenstra. Factoring Integers with Elliptic Curves. The Annals of
Mathematics, 126(3):649–673, 1987.

BIBLIOGRAPHY 159

[LHWL93] Arjen K. Lenstra and Jr. Hendrik W. Lenstra, editors. The Development of the
Number Field Sieve, volume 1554 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin, 1993.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra Jr., and László Lovász. Factoring
Polynomials with Rational Coefficients. Mathematische Annalen, 261(4):515–
534, 1982.

[LR06] Gregor Leander and Andy Rupp. On the Equivalence of RSA and Factoring
Regarding Generic Ring Algorithms. In Lai and Chen [LC06], pages 241–251.

[Lüb02] Frank Lübeck. On the Computation of Elementary Divisors of Integer Matri-
ces. J. Symb. Comput., 33(1):57–65, 2002.

[Mau92] Ueli M. Maurer. Factoring with an Oracle. In Rainer A. Rueppel, editor,
EUROCRYPT, volume 658 of Lecture Notes in Computer Science, pages 429–
436. Springer, 1992.

[Mau96] Ueli M. Maurer, editor. Advances in Cryptology - EUROCRYPT ’96, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes
in Computer Science. Springer, 1996.

[May06] Alexander May. Skript zur Vorlesung Public Key Kryptanalyse. Win-
tersemester 2005/06.

[McN07] John M. McNamee. Numerical Methods for Roots of Polynomials, Part 1,
volume 14. Elsevier: Studies in Computational Mathematics, 2007.

[Men07] Alfred Menezes, editor. Advances in Cryptology - CRYPTO 2007, 27th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer Science.
Springer, 2007.

[Mey00] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. Cambridge Uni-
versity Press, 2000.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems:
a Cryptographic Perspective, volume 671 of The Kluwer International Series
in Engineering and Computer Science. Kluwer Academic Publishers, Boston,
Massachusetts, March 2002.

[Min96] Hermann Minkowski. Geometrie der Zahlen. Teubner-Verlag, 1896.

[MM82] Ernst W. Mayr and Albert R. Meyer. The Complexity of the Word Problems
for Commutative Semigroups and Polynomial Ideals. Advances in Mathemat-
ics, 46(3):305–329, 1982.

160 BIBLIOGRAPHY

[MR08] Alexander May and Maike Ritzenhofen. Solving Systems of Modular Equations
in One Variable: How Many RSA-Encrypted Messages Does Eve Need to
Know? In Ronald Cramer, editor, Public Key Cryptography, volume 4939 of
Lecture Notes in Computer Science, pages 37–46. Springer, 2008.

[MR09] Alexander May and Maike Ritzenhofen. Implicit Factoring: On Polynomial
Time Factoring Given Only an Implicit Hint. In Stanislaw Jarecki and Gene
Tsudik, editors, Public Key Cryptography, volume 5443 of Lecture Notes in
Computer Science, pages 1–14. Springer, 2009.

[NS05] Phong Q. Nguyen and Damien Stehlé. Floating-Point LLL Revisited. In
Cramer [Cra05], pages 215–233.

[Nyb98] Kaisa Nyberg, editor. Advances in Cryptology - EUROCRYPT ’98, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403 of Lecture
Notes in Computer Science. Springer, 1998.

[Pau07] Franz Pauer. Gröbner Bases with Coefficients in Rings. J. Symb. Comput.,
42(11-12):1003–1011, 2007.

[Pom84] Carl Pomerance. The Quadratic Sieve Factoring Algorithm. In Thomas Beth,
Norbert Cot, and Ingemar Ingemarsson, editors, EUROCRYPT, volume 209
of Lecture Notes in Computer Science, pages 169–182. Springer, 1984.

[RS85] Ronald L. Rivest and Adi Shamir. Efficient Factoring Based on Partial Infor-
mation. In Franz Pichler, editor, EUROCRYPT, volume 219 of Lecture Notes
in Computer Science, pages 31–34. Springer, 1985.

[RSA] RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[SB02] Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis. Springer-
Verlag, New York and Berlin, 2002.

[Sho94] Peter W. Shor. Polynominal Time Algorithms for Discrete Logarithms and
Factoring on a Quantum Computer. In Leonard M. Adleman and Ming-Deh A.
Huang, editors, ANTS, volume 877 of Lecture Notes in Computer Science, page
289. Springer, 1994.

[Sho05] Victor Shoup. A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, 2005.

BIBLIOGRAPHY 161

[Sil01] Joseph H. Silverman, editor. Cryptography and Lattices, International Confer-
ence, CaLC 2001, Providence, RI, USA, March 29-30, 2001, Revised Papers,
volume 2146 of Lecture Notes in Computer Science. Springer, 2001.

[Sim83] Gustave J. Simmons. A "Weak" Privacy Protocol Using the RSA Crypto
Algorithm. Cryptologia, 7(2):180–182, 1983.

[SM09] Santanu Sarkar and Subhamoy Maitra. Further Results on Implicit Factoring
in Polynomial Time. Advances in Mathematics of Communication, 3(2):205–
217, 2009.

[SW99] Uwe Storch and Hartmut Wiebe. Lehrbuch der Mathematik, Band II: Lineare
Algebra . Spektrum Akademischer Verlag, 1999.

[vH83] J. A. van Hulzen, editor. Computer Algebra, EUROCAL ’83, European Com-
puter Algebra Conference, London, England, March 28-30, 1983, Proceedings,
volume 162 of Lecture Notes in Computer Science. Springer, 1983.

[vH01] Mark van Hoeij. Factoring Polynomials and 0-1 Vectors. In Silverman [Sil01],
pages 45–50.

[VZ95] Scott A. Vanstone and Robert J. Zuccherato. Short RSA Keys and Their
Generation. J. Cryptology, 8(2):101–114, 1995.

[Wie90] Michael J. Wiener. Cryptanalysis of Short RSA Secret Exponents. IEEE
Transactions on Information Theory, 36(3):553–558, 1990.

Acknowledgments

First of all, I would like to thank my supervisor Prof. Dr. Alexander May for giving me the
opportunity to write this thesis, for inviting me to accompany him when he took up a new
position in Bochum and, in particular, for the many and inspiring scientific discussions and
the constant support at all stages of the thesis. Furthermore, I would like to say thank you
to Prof. Dr. Hans Ulrich Simon for agreeing to act as co-referee. Moreover, I am grateful
to Dr. Olivier Brunat for suggesting I should have a look at elementary divisors.
I have greatly enjoyed my time working at the Technical University of Darmstadt and at
the Ruhr-University of Bochum. Thanks to the group of CDC in Darmstadt as well as the
group of CITS and the other chairs of the HGI in Bochum who contributed to this. In
particular, I would like to thank Christina Lindenberg and Roberto Samarone dos Santos
Araújo for making me feel so welcome and for a great time sharing the office in Darmstadt.
Thank you to Mathias Herrmann for more than two years of shared office time in Bochum,
for discussing many scientific ideas or problems, but also for other discussions. Further,
thank you, Mathias, for the thorough proofreading of my thesis, the helpful advice given
on many occasions and for somehow managing to find enjoyment in tackling those little
problems which to me just seemed annoying. Furthermore, I would like to thank Alexan-
der Meurer and Enrico Thomae for proofreading a part of this thesis and for their helpful
remarks. A special thanks to Christian Stinner for a very detailed proofreading although
he had many other duties in the same period of time. Thank you, Christian, for your many
helpful comments and for your encouragement.
Moreover, I would like to say thank you to my family and friends who have encouraged,
supported and distracted me over the past years. Thank you to my parents and my brother
for their constant support at all times, for their love and understanding.
Thank you to all the friends who have been there at one time or another and who con-
tributed to so many enjoyable moments. In particular, I would like to thank Christiane
for a longlasting friendship which has overcome all the changes in our lives, and for the
opportunity to share our problems and frustrations as they arose. Although we were never
really able to understand what the exact scientific problem of the other was, this helped
me a lot. Thank you, Sarah, for all our intense discussions on nearly any topic (except
for mathematics, maybe), for always being there in spite of any physical distance. Thank
you, Tina, for so many true comments at exactly the right moments, for always joining in
when it was once again time ”to drink some more tea” and for all those comforting laps of
”jogging”.
Thank you to all the people who made the past few years the way they were!

