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Overview : Data Analysis
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Overview : Goal

3 / 14



Review

Theorem 1

Fix any distribution D and any set of k statistical queries φ1, ..., φk .
Let S ∈ Dn consist of a set of n points sampled i.i.d. from D. Then with
probability 1− δ over the sample:

maxi |ES [φi ]− ED [φi ]| ≤
√

ln(2k/δ)

2n

Fix δ and n

Fix error

Example :
√

ln(2k/δ)
2n = 100→ k = δ

2 e2n/10000
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Adaptive v.s. Non-adaptive Data

Non-adaptive Data : The identities of the queries φi are fixed before
the dataset S is sampled

Adaptive Data : Steps depend on previous analyses of the same
dataset S
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Example

Adaptive Data

Let S denote a data set of n points sampled uniformly at random from
{0, 1}d .
We can, after the dataset is drawn, defne a query φ such that φ(x) = 1 if
x ∈ S and φ(x) = 0 otherwise. By defnition, ES [φ] = 1, but ED [φ] ≤ n

2d
.

So with probability 1, we have

|ES [φ]− ED [φ]| ≥ 1− n

2d
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Differential Privacy

Attack :Gain confidential information through queries

Limiting the analyst’s access to the dataset to the ability to compute the
empirical answers to statistical queries is not enough to prevent this kind
of ”attack”.

We can design a single statistical query whose (exact) empirical answer
allows us to just ”read of” the elements in the sample S.
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Example

Attack by 2 statistical queries

Suppose without loss of generality that the data domain X = {1, 2, 3, ...}.
Defne the query q(x) = 1/2x . Then n · ES [q] =

∑
x∈S 1/2x , and the

binary representation of this value is a histogram representing the dataset.
Then, such a data analyst can overfit after asking just two queries: using
the first one to read off the data set, and using the 2nd one to overfit as
above.

This kind of attack would be foiled if we just truncated our evaluation of
ES [q] to a small number of bits of precision
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Case Study

Case

Suppose our data domain consists of labeled examples
(x , y) ∈ {0, 1}d × {0, 1}: i.e. each example x consists of d binary features,
and is endowed with a binary label y.

Our goal is to learn some classifier f : {0, 1}d → {0, 1} that will classify
these examples as well as possible, i.e. to maximize the accuracy
acc(f ) = Pr(x ,y)∼D [f (x) = y ].

Note that for a classifier f, acc(f) is just a statistical query.
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Algorithm

Steps

1. Begin by checking how predictive each feature on its own is with the
label: For each i from 1 to d, compute ci = ES [1(xi = y)].
2. Say that a feature is predictive if ci ≥ 1

2 + 1√
n

. Let P be the set of

predictive features.
3. Produce a classifier f that simply takes a majority vote over the
predictive features:

f (x) =

{
1
∑

i∈P xi ≥ |P|2
0 otherwise

4. Check the performance of our classifier: Compute
accS(f ) = ES [1(f (x) = y)]

We might expect that our estimate of the error of our final classifier is
fairly accurate:

|accs(f )− acc(f )| ≤ O(
√

log(d/δ)
n )
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Theorem

Theorem 2

When D denotes the uniform distribution over {0, 1}d × {0, 1}, there is a
constant c such that with probability 1− δ, if d ≥ c ·max(n, log(1/δ)):

|accS(f )− acc(f )| ≥ 0.49
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proof

Remark

If we have m independent random variables Xi , taking values in {0, 1}
such that Pr [Xi = 1] = p, and we write X =

∑m
i=1 Xi , then:

Pr [X < pm − t] ≤ exp(
−2t2

m
)

Now consider a uniformly randomly selected (x , y) ∈ S . By definition of f,
we have that f (x) = y if and only if

∑
i∈P 1(xi = y) > |P|/2. But by

definition of P, we have that for each i ∈ P,

Pr [1(xi = y)] ≥ 1

2
+

1√
n

Hence :

E [
∑
i∈P

1(xi = y)] ≥ |P|
2

+
|P|√
n
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Proof

Therefore, we have that f (x) = y unless
∑

i∈P 1(xi = y) differs from its
expectation by at least |P|/

√
n.

Thus, for a randomly selected point (x , y) ∈ S we have:

Pr(x ,y)∼S [f (x) 6= y ] =

Pr[
∑

i∈P 1(xi = y) ≤ E [
∑

i∈P 1(xi = y)]− |P|√
n

]

≤ exp(−2|P|
2

n|P| ) = exp(−2|P|n )

This is less than 1/100 when |P| ≥ n · ln(100)/2
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